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ABSTRACT

We propose a new class of deep reinforcement learning (RL) algorithms that
model latent representations in hyperbolic space. Sequential decision-making re-
quires reasoning about the possible future consequences of current behavior. Con-
sequently, capturing the relationship between key evolving features for a given
task is conducive to recovering effective policies. To this end, hyperbolic geom-
etry provides deep RL models with a natural basis to precisely encode this inher-
ently hierarchical information. However, applying existing methodologies from
the hyperbolic deep learning literature leads to fatal optimization instabilities due
to the non-stationarity and variance characterizing RL gradient estimators. Hence,
we design a new general method that counteracts such optimization challenges
and enables stable end-to-end learning with deep hyperbolic representations. We
empirically validate our framework by applying it to popular on-policy and off-
policy RL algorithms on the Procgen and Atari 100K benchmarks, attaining near
universal performance and generalization benefits. Given its natural fit, we hope
future RL research will consider hyperbolic representations as a standard tool.

1 INTRODUCTION

Figure 1: Hierarchical relationship between
states in breakout, visualized in hyperbolic space.

Reinforcement Learning (RL) achieved notable
milestones in several game-playing and robotics ap-
plications (Mnih et al., 2013; Vinyals et al., 2019;
Kalashnikov et al., 2018; OpenAI et al., 2019; Lee
et al., 2021). However, all these recent advances re-
lied on large amounts of data and domain-specific
practices, restricting their applicability in many im-
portant real-world contexts (Dulac-Arnold et al.,
2019). We argue that these challenges are symp-
tomatic of current deep RL models lacking a proper
prior to efficiently learn generalizable features for
control (Kirk et al., 2021). We propose to tackle this
issue by introducing hyperbolic geometry to RL, as a new inductive bias for representation learning.

The evolution of the state in a Markov decision process can be conceptualized as a tree, with the pol-
icy and dynamics determining the possible branches. Analogously, the same hierarchical evolution
often applies to the most significant features required for decision-making (e.g., presence of bricks,
location of paddle/ball in Fig. 1). These relationships tend to hold beyond individual trajectories,
making hierarchy a natural basis to encode information for RL (Flet-Berliac, 2019). Consequently,
we hypothesize that deep RL models should prioritize encoding precisely hierarchically-structured
features to facilitate learning effective and generalizable policies. In contrast, we note that non-
evolving features, such as the aesthetic properties of elements in the environment, are often linked
with spurious correlations, hindering generalization to new states (Song et al., 2019). Similarly, hu-
man cognition also appears to learn representations of actions and elements of the environment by
focusing on their underlying hierarchical relationship (Barker & Wright, 1955; Zhou et al., 2018).

Hyperbolic geometry (Beltrami, 1868; Cannon et al., 1997) provides a natural choice to efficiently
encode hierarchically-structured features. A defining property of hyperbolic space is exponential
volume growth, which enables the embedding of tree-like hierarchical data with low distortion us-
ing only a few dimensions (Sarkar, 2011). In contrast, the volume of Euclidean spaces only grows

⇤
edoardo.cetin@kcl.ac.uk, work done while interning at Twitter.

1



DeepRL Workshop, NeurIPS 2022

polynomially, requiring high dimensionality to precisely embed tree structures (Matoušek, 1990),
potentially leading to higher complexity, more parameters, and overfitting. We analyze the proper-
ties of learned RL representations using a measure based on the �-hyperbolicity (Gromov, 1987),
quantifying how close an arbitrary metric space is to a hyperbolic one. In line with our intuition, we
show that performance improvements of RL algorithms correlate with the increasing hyperbolicity
of the discrete space spanned by their latent representations. This result validates the importance
of appropriately encoding hierarchical information, suggesting that the inductive bias provided by
employing hyperbolic representations would facilitate recovering effective solutions.

Hyperbolic geometry has recently been exploited in other areas of machine learning showing sub-
stantial performance and efficiency benefits for learning representations of hierarchical and graph
data (Nickel & Kiela, 2017; Chamberlain et al., 2017). Recent contributions further extended tools
from modern deep learning to work in hyperbolic space (Ganea et al., 2018; Shimizu et al., 2020),
validating their effectiveness in both supervised and unsupervised learning tasks (Khrulkov et al.,
2020; Nagano et al., 2019; Mathieu et al., 2019). However, most of these approaches showed clear
improvements on smaller-scale problems that failed to hold when scaling to higher-dimensional data
and representations. Many of these shortcomings are tied to the practical challenges of optimizing
hyperbolic and Euclidean parameters end-to-end (Guo et al., 2022). In RL, We show the non-
stationarity and high-variance characterizing common gradient estimators exacerbates these issues,
making a naive incorporation of existing hyperbolic layers yield underwhelming results.

In this work, we overcome the aforementioned challenges and effectively train deep RL algorithms
with latent hyperbolic representations end-to-end. In particular, we design spectrally-regularized hy-
perbolic mappings (S-RYM), a simple recipe combining scaling and spectral normalization (Miyato
et al., 2018) that stabilizes the learned hyperbolic representations and enables their seamless integra-
tion with deep RL. We use S-RYM to build hyperbolic versions of both on-policy (Schulman et al.,
2017) and off-policy algorithms (Hessel et al., 2018), and evaluate on both Procgen (Cobbe et al.,
2020) and Atari 100K benchmarks (Bellemare et al., 2013). We show that our framework attains
near universal performance and generalization improvements over established Euclidean baselines,
making even general algorithms competitive with highly-tuned SotA baselines. We hope our work
will set a new standard and be the first of many incorporating hyperbolic representations with RL.
To this end, we share our implementation at sites.google.com/view/hyperbolic-rl.

2 PRELIMINARIES

In this section, we introduce the main definitions required for the remainder of the paper. We refer
to App. A and (Cannon et al., 1997) for further details about RL and hyperbolic space, respectively.

2.1 REINFORCEMENT LEARNING

The RL problem setting is traditionally described as a Markov Decision Process (MDP), defined by
the tuple (S,A, P, p0, r, �). At each timestep t, an agent interacts with the environment, observing
some state from the state space s 2 S, executing some action from its action space a 2 A, and
receiving some reward according to its reward function r : S⇥A 7! R. The transition dynamics P :
S⇥A⇥S 7! R and initial state distribution p0 : S 7! R determine the evolution of the environment’s
state while the discount factor � 2 [0, 1) quantifies the agent’s preference for earlier rewards. Agent
behavior in RL can be represented by a parameterized distribution function ⇡✓, whose sequential
interaction with the environment yields some trajectory ⌧ = (s0, a0, s1, a1, ..., sT , aT ). The agent’s
objective is to learn a policy maximizing its expected discounted sum of rewards over trajectories:

argmax
✓

E⌧⇠⇡✓,P

" 1X

t=0

�
t
r(st, at)

#
. (1)

We differentiate two main classes of RL algorithms with very different optimization procedures
based on their different usage of the collected data. On-policy algorithms collect a new set of tra-
jectories with the latest policy for each training iteration, discarding old data. In contrast, off-policy
algorithms maintain a large replay buffer of past experiences and use it for learning useful quantities
about the environment, such as world models and value functions. Two notable instances from each
class are Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Rainbow DQN (Hessel
et al., 2018), upon which many recent advances have been built upon.
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2.2 MACHINE LEARNING IN HYPERBOLIC SPACES

A hyperbolic space H
n is an n-dimensional Riemannian manifold with constant negative sectional

curvature �c. Beltrami (1868) showed the equiconsistency of hyperbolic and Euclidean geometry
using a model named after its re-discoverer, the Poincaré ball model. This model equips an n-
dimensional open ball Bn = {x 2 R

n : ckxk < 1} of radius 1/
p
c with a conformal metric of the

form Gx = �
2
xI, where �x = 2

1�ckxk2 is the conformal factor (we will omit the dependence on
the curvature �c in our definitions for notation brevity). The geodesic (shortest path) between two
points in this metric is a circular arc perpendicular to the boundary with the length given by:

d(x,y) =
1p
c
cosh�1

✓
1 + 2c

kx� yk2

(1� ckxk2) (1� ckyk2)

◆
. (2)

Figure 2: Geodesics on H
2 and shortest

paths connecting nodes of a tree.

From these characteristics, hyperbolic spaces can be viewed
as a continuous analog of trees. In particular, the volume
of a ball on H

n grows exponentially w.r.t. its radius. This
property mirrors the exponential node growth in trees with
constant branching factors. Visually, this makes geodesics
between distinct points pass through some midpoint with
lower magnitude, analogously to how tree geodesics be-
tween nodes (defined as the shortest path in their graph)
must cross their closest shared parent (Fig. 2).

Key operations for learning. On a Riemannian manifold,
the exponential map exp

x
(v) outputs a unit step along a

geodesic starting from point x in the direction of an input
velocity v. It thus allows locally treating H

n as Euclidean
space. We use the exponential map from the origin of the
Poincaré ball to map Euclidean input vectors v into H

n,
exp0(v) = tanh

�p
ckvk

� vp
ckvk

. (3)

Following Ganea et al. (2018), we consider the framework of gyrovector spaces (Ungar, 2008) to
extend common vector operations to non-Euclidean geometries, and in particular H

n. The most
basic such generalized operation is the Mobius addition � of two vectors,

x� y =
(1 + 2xhx,yi+ ckyk2)x+ (1 + ckxk2)y

1 + 2chx,yi+ c2kxk2kyk2 . (4)

Next, consider a Euclidean affine transformation f(x) = hx,wi+ b used in typical neural network
layers. We can rewrite this transformation as f(x) = hx � p,wi and interpret w,p 2 R

d as the
normal and shift parameters of a hyperplane H = {y 2 R

d : hy�p,wi = 0} (Lebanon & Lafferty,
2004). This allows us to further rewrite f(x) in terms of the signed distance to the hyperplane H ,
effectively acting as a weighted ‘decision boundary’:

f(x) = sign (hx� p,wi) kwkd(x, H). (5)
This formulation allows to extend affine transformations to the Poincaré ball by considering the
signed distance from a gyroplane in B

d (generalized hyperplane) H = {y 2 B
d : hy��p,wi = 0},

f(x) = sign(hx��pwi) 2kwkp
1� ckpk2

d(x, H); d(x, H) =
1p
c
sinh�1

✓
2
p
c|hx��p,wi|

(1� ckx��pk2)kwk

◆
(6)

In line with recent use of hyperbolic geometry in supervised (Khrulkov et al., 2020; Guo et al., 2022)
and unsupervised (Nagano et al., 2019; Mathieu et al., 2019) deep learning, we employ these opera-
tions to parameterize hybrid neural networks: we first process the input data x with standard layers
to produce some Euclidean velocity vectors xE = fE(x). Then, we obtain our hyperbolic represen-
tations by applying the exponential map xH = exp0(xE). Finally, we employ affine transformations
{fi} of the form 6 to output the set of policy and value scalars with fH(xH) = {fi(xH)}.

3 HYPERBOLIC REPRESENTATIONS FOR REINFORCEMENT LEARNING

In this section, we base our empirical RL analysis on Procgen (Cobbe et al., 2020). This benchmark
consists of 16 visual environments, with procedurally-generated random levels. Following common
practice, we train agents using exclusively the first 200 levels of each environment and evaluate on
the full distribution of levels to assess agent performance and generalization.
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Figure 3: A geodesic space is �-hyperbolic if every triangle is �-slim, i.e., each of its sides is entirely contained
within a �-sized region from the other two. We illustrate the necessary � to satisfy this property for 4ABC in
a tree triangle (Left), a hyperbolic triangle (Center) and an Euclidean triangle (Right); sharing vertex coordi-
nates. In tree triangles, �tree = 0 since AC always intersects both AB and BC.

Figure 4: Performance and relative �-hyperbolicity of the final latent representations of a PPO agent.

3.1 THE INHERENT HYPERBOLICITY OF DEEP RL

Key quantities for each state, such as the value and the policy, are naturally related to its possi-
ble successors. In contrast, other fixed, non-hierarchical information about the environment such
as its general appearance, can often be safely ignored. This divide becomes particularly relevant
when considering the problem of RL generalization. For instance, Raileanu & Fergus (2021) found
that agents’ can overfit to spurious correlations between the value and non-hierarchical features
(e.g., background color) in the observed states. Hence, we hypothesize that effective representations
should encode features directly related to the hierarchical state relationships of MDPs.

�-hyperbolicity. We analyze the representation spaces learned by RL agents, testing whether they
preserve and reflect this hierarchical structure. We use the �-hyperbolicity of a metric space (X, d)
(Gromov, 1987; Bonk & Schramm, 2011), which we formally describe in App. A.2. For our use-
case, X is �-hyperbolic if every possible geodesic triangle 4xyz 2 X is �-slim. This means that for
every point on any side of 4xyz there exists some point on one of the other sides whose distance is
at most �. In trees, every point belongs to at least two of its sides yielding � = 0 (Figure 3). Thus, we
can interpret �-hyperbolicity as measuring the deviation of a given metric from an exact tree metric.

The representations learned by an RL agent from encoding the collected states span some finite
subset of Euclidean space xE 2 XE ⇢ R

n, yielding a discrete metric space XE . To test our
hypothesis, we compute the �-hyperbolicity of XE and analyze how it relates to agent performance.
Similarly to (Khrulkov et al., 2020), we compute � using the efficient algorithm proposed by Fournier
et al. (2015). To account for the scale of the representations, we normalize � by diam(XE), yielding
a relative hyperbolicity measure �rel = 2�/diam(XE) (Borassi et al., 2015), which can span values
between 0 (hyperbolic hierarchical tree-like structure) and 1 (perfectly non-hyperbolic spaces).

Results. We train an agent with PPO (Schulman et al., 2017) on four Procgen environments, encod-
ing states from the latest rollouts using the representations before the final linear policy and value
heads, xE = fE(s). Hence, we estimate �rel from the space spanned by these latent encodings as
training progresses. As shown in Figure 4, �rel quickly drops to low values (0.22� 0.28) in the first
training iterations, reflecting the largest relative improvements in agent performance. Subsequently,
in the fruitbot and starpilot environments, �rel further decreases throughout training as the agent
recovers high performance with a low generalization gap between the training and test distribution
of levels. Instead, in bigfish and dodgeball, �rel begins to increase again after the initial drop, sug-
gesting that the latent representation space starts losing its hierarchical structure. Correspondingly,
the agent starts overfitting as test levels performance stagnates while the generalization gap with
the training levels performance keeps increasing. These results validate our hypothesis, empirically
showing the importance of encoding hierarchical features for recovering effective solutions. Fur-
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Figure 6: Analysis of key statistics for our naive implementations of hyperbolic PPO agents using existing
practices to stabilize optimization in hyperbolic space. On the left, we display performance (A.1) and negative
entropy (A.2). On the right, we display magnitudes (B.1) and variances (B.2) of the backpropagated gradients.

thermore, they suggest that PPO’s poor generalization in some environments is due to the observed
tendency of the Euclidean latent space to encode spurious features that hinder its hyperbolicity.

Motivated by our findings, we propose employing hyperbolic geometry to model the latent rep-
resentations of deep RL models. Representing tree-metrics in Euclidean spaces incurs non-trivial
worse-case distortions, growing with the number of nodes at a rate dependent on the dimensionality
(Matoušek, 1990). This property suggests that it is not possible to encode complex hierarchies in Eu-
clidean space both efficiently and accurately, explaining why some solutions learned by PPO could
not maintain their hyperbolicity throughout training. In contrast, mapping the latent representations
to hyperbolic spaces of any dimensionality enables encoding features exhibiting a tree-structured
relation over the data with arbitrarily low distortion (Sarkar, 2011). Hence, hyperbolic latent repre-
sentations introduce a different inductive bias for modeling the policy and value function, stemming
from this inherent efficiency of specifically encoding hierarchical information (Tifrea et al., 2018).

3.2 OPTIMIZATION CHALLENGES

Figure 5: PPO model with an hyper-
bolic latent space, extending the archi-
tecture from Espeholt et al. (2018).

Naive integration. We test a simple extension to PPO, map-
ping the latent representations of states s 2 S before the final
linear policy and value heads xE = fE(s) to the Poincaré ball
with unitary curvature. As described in Section 2, we perform
this with an exponential map to produce xH = exp1

0(xE), re-
placing the final ReLU. To output the value and policy logits,
we then finally perform a set of affine transformations in hy-
perbolic space, ⇡(s), V (s) = fH(xH) = {f1

i
(xH)}|A|

i=0. We
also consider a clipped version of this integration, following
the recent stabilization practice from Guo et al. (2022), which
entails clipping the magnitude of the latent representations to
not exceed unit norm. We initialize the weights of the last
two linear layers in both implementations to 100⇥ smaller val-
ues to start training with low magnitude latent representations,
which facilitates the network first learning appropriate angular
layouts (Nickel & Kiela, 2017; Ganea et al., 2018).

Results. We analyze this naive hyperbolic PPO implementa-
tion in Figure 6. As shown in part (A.1), performance is gener-
ally underwhelming, lagging considerably behind the performance of standard PPO. While applying
the clipping strategy yields some improvements, its results are still considerably inferior on the tasks
where Euclidean embeddings appear to already recover effective representations (e.g. starpilot). In
part (A.2) we visualize the negated entropy of the different PPO agents. PPO’s policy optimization
objective includes both a reward maximization term, which requires an auxiliary estimator, and an
entropy bonus term that can instead be differentiated exactly and optimized end-to-end. Its purpose
is to push PPO agents to explore if they struggle to optimize performance with the current data.
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Figure 7: Analysis of hyperbolic PPO with the proposed S-RYM stabilization. We visualize performance (A)
and gradient magnitudes (B) as compared to the original Euclidean and the naive hyperbolic baselines.

We note that the Hyperbolic PPO agents take significantly longer to reach higher levels of entropy
in the initial training phases and are also much slower to reduce their entropy as their performance
improves. These results appear to indicate the presence of optimization challenges stemming from
end-to-end RL training with hyperbolic representations. Therefore, we turn our attention to ana-
lyzing the gradients in our hyperbolic models. In part (B.1), we visualize the magnitude of the
gradients both as backpropagated from the final representations and to the convolutional encoder.
In part (B.2), we also visualize the variance of the same gradients with respect to the different in-
put states in a minibatch. We find that hyperbolic PPO suffers from a severe exploding gradients
problem, with both magnitudes and variances being several orders of magnitude larger than the Eu-
clidean baseline. Similar instabilities have been documented by much recent literature, as described
in App. B. Yet, in the RL case, common stabilization techniques such as careful initialization and
clipping are visibly insufficient, resulting in ineffective learning and inferior agent performance.

3.3 STABILIZING HYPERBOLIC REPRESENTATIONS

We attribute the observed optimization challenges from our naive hyperbolic PPO implementation
to the high variance and non-stationarity characterizing RL. Initialization and clipping have been
designed for stationary ML applications with fixed dataset and targets. In these settings, regu-
larizing the initial learning iterations enables the model to find appropriate angular layouts of the
representations for the underlying fixed loss landscape. Without appropriate angular layouts, useful
representations become very hard to recover due to the highly non-convex spectrum of hyperbolic
neural networks, often resulting in failure modes with low performance (Ganea et al., 2018; López
& Strube, 2020). We can intuitively see why this reliance is incompatible with the RL setting, where
the trajectory data and loss landscape can change significantly throughout training, making early
angular layouts inevitably suboptimal. This is further exacerbated by the high variance gradients
already characterizing policy gradient optimization (Sutton & Barto, 2018; Wu et al., 2018) which
facilitate entering unstable learning regimes that can lead to our observed failure modes.

Spectral norm. Another sub-field of ML dealing with non-stationarity and brittle optimization is
generative modeling with adversarial networks (GANs) (Goodfellow et al., 2014). In GAN train-
ing, the generated data and discriminator’s parameters constantly evolve, making the loss landscape
highly non-stationary as in the RL setting. Furthermore, the adversarial nature of the optimization
makes it very brittle to exploding and vanishing gradients instabilities which lead to common failure
modes (Arjovsky & Bottou, 2017; Brock et al., 2018). In this parallel literature, spectral normaliza-
tion (SN) (Miyato et al., 2018) is a popular stabilization practice whose success made it ubiquitous in
modern GAN implementations. Recent work (Lin et al., 2021) showed that a reason for its surpris-
ing effectiveness comes from regulating both the magnitude of the activations and their respective
gradients very similarly to LeCun initialization (LeCun et al., 2012). Furthermore, when applied
to the discriminator model, SN’s effects appear to persist throughout training, while initialization
strategies tend to only affect the initial iterations. In fact, they also show that ablating SN from GAN
training empirically results in exploding gradients and degraded performance, closely resembling
our same observed instabilities. We provide details about GANs and SN in App. A.3.
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Table 1: Performance comparison for the considered versions of PPO full Procgen benchmark

Task\Algorithm PPO PPO + data aug. PPO + S-RYM PPO + S-RYM, 32 dim.

Levels distribution train/test train/test train/test train/test

bigfish 3.71±1 1.46±1 12.43±4 (+235%) 13.07±2 (+797%) 13.27±2 (+258%) 12.20±2 (+737%) 20.58±5 (+455%) 16.57±2 (+1037%)
bossfight 8.18±1 7.04±2 3.38±1 (-59%) 2.96±1 (-58%) 8.61±1 (+5%) 8.14±1 (+16%) 9.26±1 (+13%) 9.02±1 (+28%)
caveflyer 7.01±1 5.86±1 6.08±1 (-13%) 4.89±1 (-16%) 6.15±1 (-12%) 5.15±1 (-12%) 6.38±1 (-9%) 5.20±1 (-11%)
chaser 6.58±2 5.89±1 2.14±0 (-67%) 2.18±0 (-63%) 6.60±2 (+0%) 7.82±1 (+33%) 9.04±1 (+37%) 7.32±1 (+24%)
climber 8.66±2 5.11±1 7.61±1 (-12%) 5.74±2 (+12%) 8.91±1 (+3%) 6.64±1 (+30%) 8.32±1 (-4%) 7.28±1 (+43%)
coinrun 9.50±0 8.25±0 8.40±1 (-12%) 9.00±1 (+9%) 9.30±1 (-2%) 8.40±0 (+2%) 9.70±0 (+2%) 9.20±0 (+12%)
dodgeball 5.07±1 1.87±1 3.94±1 (-22%) 3.20±1 (+71%) 7.10±1 (+40%) 6.52±1 (+248%) 7.74±2 (+53%) 7.14±1 (+281%)
fruitbot 30.10±2 26.33±2 27.56±3 (-8%) 27.98±1 (+6%) 30.43±1 (+1%) 27.97±3 (+6%) 29.15±1 (-3%) 29.51±1 (+12%)
heist 7.42±1 2.92±1 4.20±1 (-43%) 3.60±0 (+23%) 5.40±1 (-27%) 2.70±1 (-7%) 6.40±1 (-14%) 3.60±1 (+23%)
jumper 8.86±1 6.14±1 7.70±1 (-13%) 5.70±0 (-7%) 9.00±1 (+2%) 6.70±1 (+9%) 8.50±0 (-4%) 6.10±1 (-1%)
leaper 4.86±2 4.36±2 6.80±1 (+40%) 7.00±1 (+61%) 8.00±1 (+65%) 7.30±1 (+68%) 7.70±1 (+59%) 7.00±1 (+61%)
maze 9.25±0 6.50±0 8.50±1 (-8%) 7.10±1 (+9%) 9.50±0 (+3%) 6.10±1 (-6%) 9.20±0 (-1%) 7.10±1 (+9%)
miner 12.95±0 9.28±1 9.81±0 (-24%) 9.36±2 (+1%) 12.09±1 (-7%) 10.08±1 (+9%) 12.94±0 (+0%) 9.86±1 (+6%)
ninja 7.62±1 6.50±1 6.90±1 (-10%) 4.50±1 (-31%) 6.50±1 (-15%) 6.10±1 (-6%) 7.50±1 (-2%) 5.60±1 (-14%)
plunder 6.92±2 6.06±3 5.13±0 (-26%) 4.96±1 (-18%) 7.26±1 (+5%) 6.87±1 (+13%) 7.35±1 (+6%) 6.68±0 (+10%)
starpilot 30.50±5 26.57±5 43.43±7 (+42%) 32.41±3 (+22%) 37.08±3 (+22%) 41.22±3 (+55%) 41.48±4 (+36%) 38.27±5 (+44%)
Average norm. score 0.5614 0.3476 0.4451 (-21%) 0.3536 (+2%) 0.5846 (+4%) 0.4490 (+29%) 0.6326 (+13%) 0.4730 (+36%)
Median norm. score 0.6085 0.3457 0.5262 (-14%) 0.3312 (-4%) 0.6055 (+0%) 0.4832 (+40%) 0.6527 (+7%) 0.4705 (+36%)
# Env. improvements 0/16 0/16 3/16 10/16 11/16 12/16 8/16 13/16

Figure 8: Performance comparison for the considered versions of PPO agents with Euclidean and hyperbolic
latent representations, increasingly lowering the number of training levels.

S-RYM. Inspired by these connections, we propose to counteract the optimization challenges in RL
and hyperbolic representations with SN. We make two main changes from its usual application for
GAN regularization. First, we apply SN only in the Euclidean encoder sub-network (fE), leaving
the final linear transformation in hyperbolic space (fH ) unregularized since our instabilities appear
to occur in the gradients from the hyperbolic representations. Furthermore, we add a scaling term
to preserve stability for different latent representation sizes. In particular, modeling xE 2 R

n by
an independent Gaussian, the magnitude of the representations follows some scaled Chi distribution
kxEk ⇠ �n, which we can reasonably approximate with E[kxEk] = E[�n] ⇡

p
n. Therefore,

we propose to rescale the output of fE by 1/
p
n, such that modifying the dimensionality of the

representations should not significantly affect their magnitude before mapping them H
n. We call

this general stabilization recipe spectrally-regularized hyperbolic mappings (S-RYM).

Results. As shown in Figure 7, integrating S-RYM with our hyperbolic RL agents appears to resolve
their optimization challenges and considerably improve the Euclidean baseline’s performance (A).
To validate that these performance benefits are due to the hyperbolic geometry of the latent space, we
also compare with another Euclidean ablation making use of SN, which fails to attain any improve-
ment. Furthermore, S-RYM maintains low gradient magnitudes (B), confirming its effectiveness to
stabilize training. In App. E.1, we also show that SN and rescaling are both crucial for S-RYM.
Thus, in the next section we evaluate our hyperbolic deep RL framework on a large-scale, analyzing
its efficacy and behavior across different benchmarks, RL algorithms, and training conditions.

4 EXTENSIONS AND EVALUATION

To test the generality of our hyperbolic deep RL framework, in addition to the on-policy PPO we also
integrate it with the off-policy Rainbow DQN algorithm (Hessel et al., 2018). Our implementations
use the same parameters and models specified in prior traditional RL literature, without any addi-
tional tuning. Furthermore, in addition to the full Procgen benchmark (16 envs.) we also evaluate on
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Figure 9: Absolute difference in normalized performance (Y-axis) and relative improvements (Above bars)
from integrating hyperbolic representations with S-RYM onto our Rainbow implementation.

the popular Atari 100K benchmark (Bellemare et al., 2013; Kaiser et al., 2020) (26 envs.), repeating
for 5 random seeds. We provide all details about benchmarks and implementations in App. C.

Generalization on Procgen. Given the documented representation efficiency of hyperbolic space,
we evaluate our hyperbolic PPO implementation also reducing the dimensionality of the final repre-
sentation to 32 (see App. E.2), with relative compute and parameter efficiency benefits. We compare
our regularized hyperbolic PPO with using data augmentations, a more traditional way of encoding
inductive biases from inducing invariances. We consider random crop augmentations from their
popularity and success in modern RL. As shown in Table 1, our hyperbolic PPO implementation
with S-RYM appears to yield conspicuous performance gains on most of the environments. At the
same time, reducing the size of the representations provides even further benefits with significant
improvements in 13/16 tasks. In contrast, applying data augmentations yields much lower and incon-
sistent gains, even hurting on some tasks where hyperbolic RL provides considerable improvements
(e.g. bossfight). We also find that test performance gains do not always correlate with gains on the
specific 200 training levels, yielding a significantly reduced generalization gap for the hyperbolic
agents. We perform the same experiment but apply our hyperbolic deep RL framework to Rainbow
DQN with similar results, also obtaining significant gains in 13/16 tasks, as reported in App. D.1.

We also evaluate the robustness of our PPO agents to encoding spurious features, only relevant for
the training levels. In particular, we examine tasks where PPO tends to perform well and consider
lowering the training levels from 200 to 100, 50, and 25. As shown in Figure 8, the performance of
PPO visibly drops at each step halving the number of training levels, suggesting that the Euclidean
representations overfit and lose their original efficacy. In contrast, hyperbolic PPO appears much
more robust, still surpassing the original PPO results with only 100 training levels in fruitbot and
50 in starpilot. While also applying data augmentation attenuates the performance drops, its effects
appear more limited and inconsistent, providing almost null improvements for starpilot.

Table 2: Aggregate results on Atari 100K

Metric\Algorithm Rainbow Rainbow + S-RYM

Human norm. mean 0.353 0.686 (+93%)
Human norm. median 0.259 0.366 (+41%)
Super human scores 2 5

Sample-efficiency on Atari 100K. We focus on the
performance of our hyperbolic Rainbow DQN im-
plementation, as the severe data limitations of this
benchmark make PPO and other on-policy algo-
rithms impractical. We show the absolute and rela-
tive per-environment performance changes from our
hyperbolic RL framework in Figure 9, and provide
aggregate statistics in Table 2. Also on this benchmark, the exact same hyperbolic deep RL frame-
work provides consistent and significant benefits. In particular, we record improvements on 22/26
Atari environments over the Euclidean baseline, almost doubling the final human normalized score.

Considerations and comparisons. Our results empirically validate that introducing hyperbolic
representations to shape the prior of deep RL models is both remarkably general and effective. We
record almost universal improvements on two fundamentally different RL algorithms, considering
both generalizations to new levels from millions of frames (Procgen) and to new experiences from
only 2hrs of total play time (Atari 100K). Furthermore, our hyperbolic RL agents outperform the
scores reported in most other recent advances, coming very close to the current SotA algorithms
which incorporate different expensive and domain-specialized auxiliary practices (see App. D.2-
D.3). Our approach is also orthogonal to many of these advances and appears to provide compatible
and complementary benefits (see App. E.3). Taken together, we believe these factors show the great
potential of our hyperbolic framework to become a standard way of parameterizing deep RL models.
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Figure 10: Visualization of 2-dimensional hyperbolic embeddings in the bigfish environment as we progress
through a trajectory, encoding states from either policy transitions or random transitions (details in App. D.4).

Representations interpretation. We train our hyperbolic PPO agent with only 2-dimensional rep-
resentations, which still remarkably provide concrete generalization benefits over Euclidean PPO
(App. D.4). Then, we analyze how these representations evolve within trajectories, mapping them
on the Poincaré disk and visualizing the corresponding states. We observe a recurring cyclical be-
havior, where the magnitude of the representations monotonically increases within subsets of the
trajectory as more obstacles/enemies appear. We show this in Fig. 10 and Fig. 12, comparing the
representations of on-policy states sampled at constant intervals with trajectory deviations from
executing random behavior. We observe the representations form tree-like structures, with the mag-
nitudes in the on-policy states growing in the direction of the Value function’s gyroplane’s normal.
This intuitively reflects that as new elements appear the agent recognizes a larger opportunity for
rewards, yet, requiring a finer level of control as distances to the policy gyroplanes will also grow
exponentially, reducing entropy. Instead, following random deviations, magnitudes grow in direc-
tions orthogonal to the Value gyroplane’s normal. This still reflects the higher precision required for
optimal decision-making, but also the higher uncertainty to obtain future rewards from worse states.

5 RELATED WORK

Generalization is a key open problem in RL (Kirk et al., 2021). End-to-end training of deep models
with RL objectives appears has been shown prone to overfitting from spurious features only relevant
in the observed transitions (Song et al., 2019; Bertran et al., 2020). To address this, prior work con-
sidered different data augmentation strategies (Laskin et al., 2020b; Yarats et al., 2021a; Cobbe et al.,
2019), and online adaption methods on top to alleviate engineering burdens (Zhang & Guo, 2021;
Raileanu et al., 2020). Alternative approaches have been considering problem-specific properties
of the environment (Zhang et al., 2020; Raileanu & Fergus, 2021), auxiliary losses (Laskin et al.,
2020a; Schwarzer et al., 2020), and frozen pre-trained layers (Yarats et al., 2021b; Stooke et al.,
2021). Instead, we propose to encode a new inductive bias making use of the geometric properties
of hyperbolic space, something orthogonal and likely compatible with most such prior methods.

While hyperbolic representations found recent popularity in machine learning, there have not been
notable extensions for deep RL (Peng et al., 2021). Most relatedly, Tiwari & Prannoy (2018) pro-
posed to produce hyperbolic embeddings of the state space of tabular MDPs to recover options
(Sutton et al., 1999). Yet, they did not use RL for learning, but fixed data and a supervised loss
based on the co-occurrence of states, similarly to the original method by Nickel & Kiela (2017).

6 DISCUSSION AND FUTURE WORK

In this work, we introduce hyperbolic geometry to deep RL. We analyze training agents using latent
hyperbolic representations and propose spectrally-regularized hyperbolic mappings, a new stabiliza-
tion strategy that overcomes the observed optimization instabilities. Hence, we apply our framework
to obtain hyperbolic versions of established on-policy and off-policy RL algorithms, which we show
substantially outperform their Euclidean counterparts in two popular benchmarks. We provide nu-
merous results validating that hyperbolic representations provide deep models with a more suitable
prior for control, with considerable benefits for generalization and sample-efficiency. We share our
implementation to facilitate future RL advances considering hyperbolic space as a new, general tool.
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