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ABSTRACT

Recent advances in spatial transcriptomics enable the exploration of biological
processes between cells at an unprecedented resolution. Leveraging spatial infor-
mation allows us to construct cell-to-cell interaction graphs that describe possi-
ble communication between cells. Combining spatial interactions through graph
neural networks (GNNs) with cells’ gene expressions is a promising avenue for
uncovering the underlying mechanisms behind, for example, cell differentiation.
However, how to best construct a meaningful graph that captures relevant spatial
information remains an open question. Moreover, what GNN architectures per-
form well on typical prediction tasks, such as cell-type prediction, is unclear. We
address these questions by systematically evaluating several graph construction
methods with common GNNs on four publicly available spatial transcriptomics
datasets. Our results show that the spatial cell-to-cell interaction graphs contain
relevant information for predicting cell types. Despite differences in graph topol-
ogy, the choice of graph construction method affects cell-type prediction perfor-
mance only minimally. Common GNN models do not perform better than a sim-
pler multi-layer perceptron that does not have access to spatial information.

1 INTRODUCTION

Recent breakthroughs in sequencing technology enable us to measure gene expression at the cell
level while simultaneously capturing each cell’s location inside a given tissue sample. Such spatial
transcriptomics data opens new opportunities to understand how the spatial organization of cells
influences processes like gene expression or differentiation, thus facilitating the development of tar-
geted treatments against diseases like cancer. Cell-to-cell interactions between nearby cells are an
important mechanism through which the spatial organization of tissue can influence the function of
individual cells (Armingol et al., 2021). Graphs that connect nodes via edges are a natural fit to
model possible cell-to-cell interactions. The rich toolkit of measures originally developed in graph
theory and social network analysis enables us to investigate how the interactions between cells in-
fluence dynamical processes like cell differentiation based on the graph topology. The development
of graph neural networks (GNNs) further facilitates the application of deep learning techniques to
spatial transcriptomics data, assuming that we can infer meaningful cell-to-cell interaction graphs.
In particular, recent works in this area have investigated different GNN architectures for tasks like
spatial domain clustering (Liu et al., 2024b) or prediction (Yasin & Ahmed, 2023).
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While these works show the potential of GNNs, the application of graph-based deep learning to
spatial transcriptomics data also raises questions that are currently poorly understood. Despite recent
advances in sequencing and imaging technology, spatial transcriptomics data typically does not
include information on actual cell-to-cell interactions. This necessitates inferring interaction graphs
based on other information, e.g., the spatial organisation of cells. However, it is not clear how those
methods influence the results. Additionally, the different recently developed GNN architectures
have been shown to differ in terms of performance and expressivity. To the best of our knowledge,
it has not been systematically evaluated (i) how the performance of GNN architectures differs in the
context of cell-type prediction using spatial transcriptomics data, (ii) to what extent it is influenced
by the underlying graph construction and (iii) what advantages graph-based deep learning provides
over methods that do not account for the topology of potential cell-to-cell interactions.

Addressing these issues, this work investigates the application of different graph construction meth-
ods and GNN architectures to cell-type prediction using spatial transcriptomics data. Our key con-
tributions are as follows:

• Using four publicly available spatial transcriptomics datasets, we apply four commonly
used methods to construct cell-to-cell interaction graphs.

• We evaluate four GNN models and compare them to a baseline that only uses a cell’s gene
expressions to investigate the influence of spatial information captured by different graph
construction methods.

• By randomizing both gene expression and the interaction graph, we isolate the predictive
power that is due to the interaction graph alone.

Our work builds on the hypothesis that graph models that perform better in cell-type prediction are
likely to better model the actual (unknown) topology of cell-to-cell interactions. Our systematic
evaluation aims to aid the development of GNN-based methods for spatial transcriptomics data to
understand the role of cell-to-cell interactions better and thus aid the design of targeted treatments.

2 BACKGROUND AND RELATED WORK

Providing the background of our work, we briefly summarise key methods to construct graphs from
spatial data in the following. We further introduce popular graph neural network architectures and
briefly review recent applications of deep graph learning in spatial transcriptomics data.

Graph Construction Applying graph-based machine learning to spatial transcriptomics data re-
quires using the cells’ position to construct a graph that captures possible cell-to-cell interactions.
Given a set of n cells i = 1, . . . , n with coordinates ci ∈ R2, we create a graph G = (V,E) with
nodes vi ∈ V and undirected edges (vi, vj) ∈ E whenever cells i and j are likely to interact based
on their coordinates ci and cj . We consider the following construction methods:

• k-nearest-neighbour (k-NN) graph : For each cell i we create undirected edges (vi, vj)
for those k cells cj that are closest in terms of their Euclidean distance.

• ϵ-radius graph: For two cells i and j we include an undirected edge (vi, vj) iff their
Euclidean distance dist(ci, cj) < ϵ.

• Delaunay graph: We perform a Delaunay triangulation (Delaunay, 1934) of cell coordi-
nates and use edges of the triangles as edges of the graph.

• δ-radius-Delaunay graph: We compute the Delaunay graph and remove all edges (vi, vj)
where dist(ci, cj) ≥ δ, i.e. the resulting edges correspond to the intersection of edges in
the Delaunay and the ϵ-radius-graph.

The average node degree for the first two methods largely depends on parameter choices. Since the
Delaunay graph does not have any parameters, we choose the parameters k and ϵ for our evaluations
to match the average degree of the Delaunay graph approximately and set δ = ϵ. Properties other
than the average degree can vary significantly for differently constructed graphs from the same
dataset (for more details see appendix C).

In figure 1, we visualise the resulting graph topologies for an example dataset that captures cell
coordinates of an intestine tissue sample, where colours indicate cell types (Petukhov et al., 2022).
The included magnifications highlight some key differences: The Delaunay graph contains many
long-distance edges connecting cells to closest neighbours in all directions due to the underlying
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triangulation. In contrast, the ϵ-radius graph imposes a hard upper distance limit, which leads to high
connectivity in dense areas and sparse connectivity in regions with low cell density. The k-NN graph
balances between the purely distance-based construction of the ϵ-radius graph and the triangulation-
based Delaunay graph. In the following, we investigate whether these differences in graph topology
translate to differences in the predictive power of graph-based deep learning methods.

(a) k-NN graph (b) ϵ-radius graph

(c) Delaunay graph (d) δ-radius-Delaunay graph

Figure 1: Each visualization shows one of the graph construction methods for the intestine dataset
(Petukhov et al., 2022). Each color denotes a different cell type.

Graph Neural Networks The use of standard machine learning techniques, such as logistic re-
gression, support vector machines or multi-layer perceptrons (MLPs), requires an additional pre-
processing step when applied to graph-based data. In this step nodes in the graph are embedded in
Euclidean space such that the embeddings “encode” the node’s position in the graph. More recent
graph-based deep learning techniques address the limitations of this approach by learning the node
representations end-to-end during the optimization of the machine learning model that is used for
the actual prediction task. Graph neural networks implement this with a deep neural network archi-
tecture that includes at least one neural message passing layer (Gilmer et al., 2017), in which nodes
exchange features with their neighbours. The feature aggregation ψ from the neighbours N(v) (and
v’s own feature) and the subsequent application of a transformation function ϕ with learnable pa-
rameters allow GNNs to learn internal node representations that capture patterns in the topology of
the graph and in the distribution of additional node features. Formally, a message-passing layer can
be defined as

h′
v = ϕ

(
hv, ψ

(
hv, {hu|u ∈ N(v)}

))
,

where hv is node v’s feature vector. After one or more message-passing layers, a GNN typically
uses one final transformation to generate the model’s output.

We select four popular GNN variants that differ in expressive power measured by the Weisfeiler-
Leman graph isomorphism test (Li & Leskovec, 2022) to investigate their performance on cell-type
prediction in section 3: (i) The graph convolutional network (GCN) (Kipf & Welling, 2017) that uses
a mean aggregation allowing the model to learn from the distribution of elements in the neighbour-
hood. (ii) SAGE (Hamilton et al., 2017) that aggregates the neighbours using max-pooling which
means it only learns to distinguish unique elements from the neighbourhood. (iii) The graph isomor-
phism network (GIN) (Xu et al., 2019) that sums up all representations followed by an MLP which
leads to the most expressive power since it recognises repetitive elements in the neighbourhood
multiset. Lastly, (iv) the graph attention network (GAT) (Velickovic et al., 2018) which employs
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self-attention to learn how to aggregate the node’s neighbourhood to maximize the performance.
GAT is similarly expressive as the GCN since it also averages the neighbouring features. Formal
definitions of all GNN models are included in appendix A.2.

Application of GNNs to Omics Data In recent years, many approaches have been proposed to
solve a variety of tasks by applying GNN models to spatial transcriptomics data (Hetzel et al., 2021;
Danishuddin et al., 2024). These include cell-type annotation via label transfer or clustering (Liu
et al., 2024a), latent representation learning or the inference of communications between genes or
cells (Almet et al., 2021). Most of these methods (systematically summarized in table 1) use one
of the aforementioned graph construction methods and GNN models but have not been compared to
many of the other approaches highlighting the necessity of a systematic evaluation.

Before the advent of spatial transcriptomics, GNNs had already been applied in a wide range of
tasks using a variety of constructed graphs based on, e.g., similarities in gene expression or gene
regulation (Hetzel et al., 2021). For the latter case, benchmark studies on phenotype prediction have
shown that simpler machine learning models often outperform more sophisticated deep learning
approaches (Smith et al., 2020) like GNNs (Brouard et al., 2024) which questions the necessity for
more complex models. A similar question was recently raised by Yuan (2024) for spatial domain
detection – one of the tasks for spatial transcriptomics where GNNs are commonly applied. This
emphasises the need to compare typically used models against simple baselines to measure the
influence of spatial information as well as the impact of model complexity on the task.

Table 1: Overview of GNN approaches that solve different tasks in spatial transcriptomics.

Reference Goal Space Graph Constr. Model Features

STELLAR (Brbić et al., 2022) label
transfer

cell coord. ϵ-radius graph GCN/SAGE gene expr.

GraphST (Long et al., 2023) clustering cell coord. k-NN graph GCN gene expr.
SpaGCN (Hu et al., 2021) clustering cell coord. +

histology
fully connected and

weighted
GCN PCA of gene

expr.
SCGDL (Liu et al., 2023) clustering cell coord. “neighbor graph” (Bresson & Laurent,

2017)
gene expr.

STAGATE (Dong & Zhang,
2022)

clustering cell coord. (pruned) ϵ-radius
graph

GAT gene expr.

SpaceFlow (Ren et al., 2022) clustering cell coord. δ-radius-Del. graph GCN gene expr.
SCAN-IT (Cang et al., 2021) clustering cell coord. δ-radius-Del. graph GCN gene expr.
CytoCommunity (Hu et al.,

2024)
clustering cell coord. k-NN graph (Morris et al., 2019) cell type

DeepST (Xu et al., 2022) clustering cell coord. k-NN graph GCN or GAT gene expr. +
hist.

CCSt (Li et al., 2022) clustering cell coord. ϵ-radius graph GCN gene expr.
stAA (Fang et al., 2024) clustering cell coord. ϵ-radius graph custom GNN gene expr.

Spatial-MGCN (Wang et al.,
2023)

clustering cell coord. +
gene expr.

multi-view k-NN
graph

GCN gene expr.

GRAPHDeep (Liu et al.,
2024b)

clustering cell coord. ϵ-radius or k-NN
graph

20 GNN models gene expr.

SEDR (Xu et al., 2024) latent repr. cell coord. k-NN graph GCN gene expr.
stMVC (Zuo et al., 2022) latent repr. cell coord. +

histology
k-NN graph GAT gene expr.

Spage2Vec (Partel & Wählby,
2021)

gene signat.
clust.

RNA coord. ϵ-radius graph SAGE gene expr.

GCNG (Yuan & Bar-Joseph,
2020)

gene
interaction

cell coord. ϵ-radius graph GCN or GAT (graph
classification)

gene expr. of
ligand-receptor

NCEM (Fischer et al., 2023) intercell.
commun.

cell coord. ϵ-radius graph GCN cell type

CLARIFY (Bafna et al., 2023) cell + gene
interaction

cell coord. k-NN + gene regul.
net.

GCN gene expr.

3 EXPERIMENTAL EVALUATION

To investigate the influence of different graph construction methods and GNN architectures for cell-
type prediction, we perform the following experimental evaluation: Using four datasets detailed in
appendix A.1, we use the cell coordinates ci to construct an undirected graph G using the graph
construction methods introduced in section 2. On each of the resulting graphs, we then train a GNN
with a dropout and a linear output layer using the gene expressions as node features hv to predict
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the cell type for each node. We systematically evaluate the GNN models outlined in section 2 and
optimise hyperparameters using a grid search with cross-validation (cf. appendix A.2). In figure 2
we illustrate the architecture used in our experiments. Additionally, we train an MLP on the node
features as a baseline that does not use any spatial information. Our code is available on GitHub.

cell co-
ordinates

gene
expressions

cell types

graph
construction

node features

GNN layer

activation

dropout
for

k
in

{
1
,...,n}

linear layer result

true labels

Figure 2: Overview of the architecture that is used for the experiments.

Results Table 2 shows the average weighted F1 scores over 10 runs on a test set for each combi-
nation of dataset, graph construction method and GNN architecture. We find that the MLP baseline
performs best on all four datasets, closely followed by SAGE. Other models perform substantially
worse than the baseline, with GIN performing the worst in our experiments. The performance of all
models is similar across graph construction methods, with GIN showing the largest variation.

Table 2: Average weighted F1 scores and standard deviations over 10 runs on a test set. For dataset,
graph and model, the best hyperparameters listed in table 5 are chosen based on a validation set,
respectively. Note that the MLP does not receive the graph as input.

Dataset Graph MLP GCN SAGE GIN GAT

intestine k-NN 0.91 ± 0.01 0.80 ± 0.01 0.89 ± 0.01 0.71 ± 0.01 0.78 ± 0.01
radius - 0.79 ± 0.01 0.89 ± 0.01 0.70 ± 0.01 0.78 ± 0.02
Delaunay - 0.78 ± 0.01 0.90 ± 0.01 0.68 ± 0.01 0.79 ± 0.02
radius-Del. - 0.81 ± 0.01 0.90 ± 0.01 0.71 ± 0.01 0.78 ± 0.01

embryo k-NN 0.85 ± 0.01 0.78 ± 0.01 0.84 ± 0.00 0.76 ± 0.01 0.76 ± 0.01
radius - 0.78 ± 0.01 0.84 ± 0.01 0.76 ± 0.01 0.76 ± 0.01
Delaunay - 0.72 ± 0.01 0.84 ± 0.01 0.72 ± 0.01 0.76 ± 0.01
radius-Del. - 0.78 ± 0.01 0.84 ± 0.01 0.76 ± 0.01 0.76 ± 0.01

hypoth. k-NN 0.86 ± 0.01 0.68 ± 0.01 0.85 ± 0.01 0.60 ± 0.01 0.74 ± 0.02
radius - 0.65 ± 0.01 0.85 ± 0.01 0.57 ± 0.01 0.74 ± 0.02
Delaunay - 0.65 ± 0.01 0.85 ± 0.02 0.57 ± 0.02 0.74 ± 0.02
radius-Del. - 0.68 ± 0.01 0.85 ± 0.01 0.61 ± 0.01 0.73 ± 0.03

brain k-NN 0.96 ± 0.01 0.87 ± 0.01 0.95 ± 0.01 0.70 ± 0.01 0.82 ± 0.02
radius - 0.86 ± 0.01 0.95 ± 0.01 0.68 ± 0.02 0.83 ± 0.01
Delaunay - 0.85 ± 0.01 0.95 ± 0.01 0.67 ± 0.01 0.84 ± 0.02
radius-Del. - 0.88 ± 0.01 0.95 ± 0.01 0.73 ± 0.01 0.82 ± 0.01

The results show that using node features (i.e. gene expression) without spatial information is suffi-
cient to make good cell-type predictions. This is expected since the assumed ground truth labels of
the datasets were inferred based on the gene expressions. Surprisingly, the best GNN model, namely
SAGE, does not perform better but slightly worse than the baseline on all datasets, which indicates
that the graph topology – irrespective of the graph construction method – does not contribute any
additional information that improves the performance of the model over the baseline. We note that
the max-pool aggregator used in SAGE is less expressive compared to the other aggregation steps.
The most expressive model (GIN) surprisingly performs worst (Xu et al., 2019). This suggests that
SAGE may perform this well – not despite – but because it uses the least amount of topological
information from the graph, which increases the importance of the cells’ own gene expressions.
This would mean that SAGE’s prediction is mostly based on the node’s gene expression, while GIN
is likely to assign more weight to the gene expression of other nodes as compared to the gene ex-
pression of a cell itself. A possible interpretation of this result is that – at least in the data used in
our study – spatial information provides no additional benefit for predicting a cell’s type, regard-
less of the graph construction method. In the following, we test this assumption by isolating spatial
information to predict the cell type solely based on the graph topology.
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Influence of Graph Topology To exclusively study the predictive power of the cell interaction
graph for different graph construction methods and GNN architectures, we perform additional ex-
periments where we randomise the data. We replace the gene expressions with random node fea-
tures sampled from a normal distribution with the same number of dimensions while leaving the
underlying graph untouched. We then compare the predictive power of GNN-based models in the
randomised data with intact graph topology to a further randomised version where we addition-
ally randomise the graph’s topology. Using a Molloy-Reed configuration model, we preserve node
degrees but randomly permute edges (Newman, 2018). With this setup, a difference in predictive
power between the data with and without randomly shuffled graph is due to the underlying topology,
which is constructed from the cells’ spatial organisation.

Table 3 shows the results of the GNN models with randomised node features where the value in
parentheses gives the baseline performance of a model with both the graph and the node features
randomised. Although we observe a considerable drop in predictive performance compared to the
results with gene expressions, the models that have access to information on the graph topology
perform substantially better than the baseline without topological information. In contrast to our
findings above, this shows that the graph topology provides useful information to predict cell types,
although it does not seem to provide information that is useful in addition to gene expression. Never-
theless, the performance remains similar across graph construction methods despite the differences
in graph topology (cf. appendix C). Referring to our assumption that better performance is associ-
ated with a more biologically meaningful graph model of cell-to-cell interactions, all tested graph
construction methods seem to be equally suitable.

Table 3: Average weighted F1 scores over 10 runs on a test set with random node features. The
scores with the shuffled graphs as input are printed in parentheses. Standard deviations are reported
in appendix B and hyperparameters are chosen as in table 2.

Dataset Graph MLP GCN SAGE GIN GAT

intestine k-NN 0.12 (0.12) 0.52 (0.10) 0.43 (0.10) 0.52 (0.12) 0.53 (0.12)
radius - 0.51 (0.10) 0.45 (0.11) 0.51 (0.12) 0.53 (0.13)
Delaunay - 0.53 (0.10) 0.44 (0.11) 0.52 (0.12) 0.53 (0.12)
radius-Del. - 0.51 (0.11) 0.42 (0.10) 0.50 (0.12) 0.52 (0.12)

embryo k-NN 0.10 (0.10) 0.66 (0.09) 0.53 (0.09) 0.65 (0.09) 0.67 (0.09)
radius - 0.66 (0.10) 0.53 (0.10) 0.65 (0.11) 0.67 (0.11)
Delaunay - 0.68 (0.08) 0.59 (0.09) 0.67 (0.09) 0.68 (0.09)
radius-Del. - 0.66 (0.09) 0.52 (0.10) 0.64 (0.10) 0.67 (0.10)

hypoth. k-NN 0.22 (0.22) 0.32 (0.20) 0.26 (0.21) 0.32 (0.21) 0.33 (0.22)
radius - 0.33 (0.20) 0.27 (0.20) 0.32 (0.22) 0.33 (0.21)
Delaunay - 0.33 (0.20) 0.26 (0.20) 0.32 (0.21) 0.33 (0.21)
radius-Del. - 0.32 (0.20) 0.26 (0.21) 0.30 (0.21) 0.33 (0.22)

brain k-NN 0.08 (0.08) 0.39 (0.08) 0.29 (0.07) 0.38 (0.09) 0.40 (0.09)
radius - 0.38 (0.08) 0.29 (0.07) 0.38 (0.08) 0.40 (0.09)
Delaunay - 0.39 (0.07) 0.28 (0.07) 0.38 (0.09) 0.40 (0.08)
radius-Del. - 0.37 (0.08) 0.27 (0.07) 0.36 (0.09) 0.39 (0.09)

4 CONCLUSION

In summary, we investigated approaches to model the spatial organisation of cells using different
graph construction methods. We further compared the predictive power of common GNN-based
approaches for cell type prediction with a simpler baseline model that does not explicitly utilise
spatial information. The results show that – at least for the datasets investigated in our work –
including spatial information with GNNs does not increase predictive performance. A possible
reason is that the cells’ gene expression profiles already carry high predictive power for determining
cell types. This is in line with other recent works (Brouard et al., 2024; Yuan, 2024) that questioned
the benefit of GNN models for related tasks. Nevertheless, our experiments show that the graph does
contain useful information for cell-type prediction. At least in our data, the specific method used to
construct the graph did not considerably influence the performance of GNNs.

Our work acts as a reminder to carefully evaluate the performance of new machine learning tech-
niques to simpler baseline methods. At the same time, by uncovering intricacies of spatial transcrip-
tomics data, we hope to aid the future development of specialised GNN approaches for this domain
and, eventually, the design of novel targeted treatments against diseases.
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A EXPERIMENTAL SETUP

The following provides further details on the experimental setup of this work. We start by describing
the datasets and then specify the hyperparameters that are used in the performed grid search.

A.1 DATASETS

The input datasets consist of three parts as visualized in figure 2: cell coordinates, gene expressions
and cell types. Cell coordinates and gene expressions were measured using MERFISH and SeqFish
(Rao et al., 2021). For the cell types, there are many different established ways to infer them based
on clustering or label-transfer approaches and manual preparation. The datasets use different infer-
ence methods but all of them only use the gene expression profiles and are independent of the cell
coordinates. Table 4 summarises general properties and figure 3 visualises the datasets by coloring
each cell type differently.

Table 4: Summary of the used datasets.

Name Number of Cells Number of Genes Number of Cell Types

intestine 7416 241 19
embryo 19 451 351 24
hypothalamus 6412 155 16
brain 7626 254 24

(a) Intestine (b) Embryo

(c) Hypothalamus (d) Brain

Figure 3: All cells are visualised at the measured coordinates where each colour denotes a different
cell type in each tissue. To enhance the contrast between different cell types, we use a colour scheme
that contains 10 distinct colours. In datasets with more than ten cell types, multiple cell types are
represented with the same colour.

All datasets contain cells from different body parts which means that each dataset can contain dif-
ferent cell types. All of them have an unbalanced distribution of cell types which is visualised
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in figure 4. The following provides detailed information about the used measurement technology,
preprocessing procedures and cell type inference method for each of the datasets.

intestine embryo hypoth. brain

Figure 4: The class imbalance is shown by colouring the bar with the cell-type proportions.

Mouse Intestine The first dataset (Petukhov et al., 2022) contains genes measured in the ileum
– the final section of the small intestine – of a mouse using MERFISH. The protocol measures
molecule coordinates that correspond to a gene transcript. Petukhov et al. (2022) performed the
segmentation using a novel method called Baysor with some priors of membrane stains to assign the
gene transcripts to cells. Afterwards, all cells with ten gene transcripts or less and all cells with 900
or more were discarded as a preprocessing step. This work uses the transcript counts and positions
of each cell as provided by the authors.

For the cell-type annotation, Petukhov et al. (2022) normalised the gene transcript counts using the
cell area obtained via the segmentation. 200 genes were considered highly variable and used for
PCA. They projected the first 50 principal component using UMAP (McInnes & Healy, 2018). The
authors obtained the final cell types that are also used in this work using Leiden clustering (Traag
et al., 2019).

Mouse Embryo The second dataset (Lohoff et al., 2022) contains cells from a mouse embryo
recorded with SeqFISH. The original dataset has three samples and only the first is used in this
work. Measurements from two different tissue slices are available. This is represented in the data as
a third dimension for the cell coordinates. Lohoff et al. (2022) segmented the data into cells using
the tools ilastik (Berg et al., 2019) and Multicut (Beier et al., 2017).

The authors transferred the cell types from another dataset (Pijuan-Sala et al., 2019) using PCA
(Lun et al., 2016) and a mutual-nearest-neighbours (Haghverdi et al., 2018) approach to improve the
data quality. Lohoff et al. (2022) assigned each cell the type of the majority of the cell’s labelled
neighbours in a joint k-NN graph. This work uses the cell coordinates, transcript counts and cell-
type annotation as provided by the authors.

Mouse Hypothalamus The next dataset (Moffitt et al., 2018) contains cells from the hypotha-
lamus of a mouse. It was captured using MERFISH. The original dataset contains samples from
multiple mice at different positions. This work only uses the data of the first female mouse that is
located −0.24mm away from the bregma – the intersection point of the different skull bones. The
cells were segmented using a seeded watershed approach. As gene expressions, this dataset provides
a normalised count that incorporates the cell area and the number of gene transcripts per cell.

Moffitt et al. (2018) identified the cell-types with Louvain clustering (Blondel et al., 2008) on the
k-NN graph constructed from the data after applying PCA. In this work, we use the dataset as
provided.
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Mouse Brain This dataset (Zhang et al., 2021) is comprised of samples from a mouse’s primary
motor cortex We refer to it as the brain dataset for simplicity. The original data consists of slices
from multiple samples captured with MERFISH. This work only uses the largest slice – namely
slice 153 from Mouse 1 Sample 3. For segmentation, a seeded watershed was used similar to the
processing pipeline of the previous dataset. The gene expressions that we utilize in this work were
normalized using the cell area.

We further use the cell-type annotation from Zhang et al. (2021). They applied common preprocess-
ing steps like outlier removal, normalization and PCA and constructed a k-NN graph using the 35
first principal components. The authors obtained the cell types with Louvain clustering.

A.2 HYPERPARAMETERS

We train the four GNN models using the methods explained above to construct the input graphs
G = (V,E) with nodes v ∈ V and corresponding node features hv . Given a nodes neighbourhood
N(v) = {u : (v, u) ∈ E} and degree dv = |N(v)|, we define a single GNN layer of each selected
model formally as follows:

• GCN(hv) = σ
((∑

u∈N(v)∪{v}
1√
dvdu

hu

)
W

)
(Kipf & Welling, 2017)

• SAGE(hv) = σ
(
maxu∈N(v)

(
σ
(
huWpool

))
Wn + hvW

)
(Hamilton et al., 2017)

• GIN(hv) = σ
(
σ
((

hv +
∑

u∈N(v) hu

)
W1

)
W2

)
(Xu et al., 2019)

• GAT(hv) = σ
(∑

u∈N(v)∪{v} avuhuW
)

with attention weights normalized across N(v)

avu = Softmaxu∈N(v)∪{v}

(
LeakyReLU

(
hvWA+ huWAn

))
(Velickovic et al., 2018)

The matricesW andA denote learnable weights and function σ a non-linear activation where we use
ReLU throughout this work. For the graph attention network (Velickovic et al., 2018), a common
approach is to use multiple heads per layer. This means that each layer can consist of multiple
GAT(hv) that are concatenated to get the final output representation.

For all dataset, graph construction method and GNN model combinations, the hyperparameters listed
in table 5 are tested using grid search and we select the best configuration based on the average
weighted F1 score over ten runs each on a random validation set. The models are optimized with
Adam using a batch size of 512 and the training stops early if there is no improvement after 5 epochs
to avoid overfitting. As a baseline, we train MLP models that receive only a node’s gene expressions
to predict its cell type using the same hyperparameter combinations.

Table 5: Overview of hyperparameters that are used.

Hyperparameters Options

number of layers 1; 2; 3
number of neurons 64; 128
learning rate 10−2; 10−3

dropout rate 0.0; 0.2
number of heads (only GAT) 1; 8

The evaluations are run on a machine with an AMD RyzenTM 9 7900X 12-Core Processor as CPU
with 64 GB memory. As GPU, an NVIDIA® GeForce RTX® 4080 with 32 GB RAM is used. We
use PyTorch Geometric (Fey & Lenssen, 2019) for the GNN implementations.

B STANDARD DEVIATIONS FOR TABLE 3

We report the standard deviations that correspond to the average values of table 3 in table 6.
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Table 6: Standard deviations corresponding to the mean values reported in table 3.

Dataset Graph MLP GCN SAGE GIN GAT

intestine k-NN 0.01 (0.01) 0.01 (0.01) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01)
radius - 0.01 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)
Delaunay - 0.01 (0.01) 0.02 (0.01) 0.01 (0.00) 0.02 (0.01)
radius-Del. - 0.02 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)

embryo k-NN 0.01 (0.00) 0.01 (0.00) 0.02 (0.01) 0.01 (0.00) 0.01 (0.00)
radius - 0.01 (0.01) 0.02 (0.00) 0.01 (0.01) 0.01 (0.00)
Delaunay - 0.01 (0.00) 0.01 (0.00) 0.01 (0.01) 0.01 (0.01)
radius-Del. - 0.01 (0.00) 0.01 (0.01) 0.01 (0.00) 0.01 (0.00)

hypoth. k-NN 0.01 (0.01) 0.02 (0.02) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01)
radius - 0.01 (0.02) 0.02 (0.02) 0.02 (0.01) 0.02 (0.01)
Delaunay - 0.01 (0.01) 0.02 (0.02) 0.01 (0.01) 0.01 (0.01)
radius-Del. - 0.03 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.02)

brain k-NN 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.02 (0.00) 0.01 (0.01)
radius - 0.01 (0.00) 0.02 (0.01) 0.02 (0.01) 0.01 (0.01)
Delaunay - 0.01 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)
radius-Del. - 0.01 (0.01) 0.01 (0.01) 0.02 (0.01) 0.01 (0.00)

C GRAPH CONSTRUCTION METHODS

We provide a detailed analysis of the graph construction methods evaluated in this work and their
differences in the following. Table 7 shows the mean with the corresponding standard deviation
of the degrees. As mentioned above, the parameters k and ϵ for the k-NN and the ϵ-radius graph
are chosen to approximate the degree of the parameterless Delaunay construction which is approxi-
mately eight for all datasets except the embryo dataset. This is due to the additional third dimension
of the cell coordinates (see appendix A.1). Since the nearest neighbour relation between nodes is not
symmetric, the mean degree is expected to be larger than k for the undirected k-NN graph that results
from removing the direction of all directed edges to the nearest neighbours. We choose k = 5 for
all datasets to get an average degree that is close to the average degree of the Delaunay graph. The
distance threshold of the ϵ-radius graph is selected using a binary-search-like approach that searches
for an ϵ producing a graph with an average degree of eight. The algorithm selects an ϵ with a fault
tolerance of 0.2 for each dataset. The δ-radius-Delaunay graph uses the same value, i.e. δ = ϵ. All
of the resulting graphs contain a self-loop for each node. Table 7 further includes baseline statistics
for each method that are based on 10 000 nodes placed uniformly at random inside a unit square.

As mentioned above, the magnifications in figure 1 visualise the key differences between the eval-
uated construction methods: The graph resulting from the Delaunay triangulation contains many
long-distance edges connecting cells to neighbours in all directions. Because of this, the graph
exhibits a similar connectivity in densely populated areas as in regions with only a few cells. In
contrast, the ϵ-radius graph contains edges based on a hard upper limit on the distance between
nodes, which leads to high connectivity in dense areas and very sparse connectivity in regions with
low cell density. The k-NN graph balances the purely distance-based ϵ-radius approach and the
triangulation-based Delaunay graph construction resulting in a well-connected graph with similar
connectivity in all regions. The δ-radius-Delaunay graph maintains similar connectivity in areas
with high cell density as the k-NN graph but is less connected over larger distances due to the upper
limit of the ϵ-radius graph.

We can see in table 7 that the properties described above also manifest in some of the measures
that are commonly used to quantify the graph topology (Newman, 2018). In particular, the diameter
– i.e. the longest path out of all shortest paths between all node pairs – and the average shortest
path are substantially smaller for the Delaunay graph that contains edges over long distances. Note
that across datasets, the path length measures differ according to the number of cells that are used to
construct the graph. The number of components #C and the size of the largest component S(G1, G)
highlights the good connectivity of the Delaunay graph for all regions but also how the k-NN graph
can be seen as a balance between ϵ-radius and Delaunay graph in terms of connectivity.

The average clustering coefficient measures how often two neighbours of a node are connected
and is similar across the investigated approaches and datasets. The degree assortativity coefficient
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describes the tendency of nodes to connect to similar nodes. The values differ for all construction
methods but are similar across datasets. The small degree assortativity coefficients in combination
with the degree’s small standard deviations of the k-NN graph and Delaunay graph show that the
nodes in all regions have a similar degree. The higher values for ϵ-radius and δ-radius-Delaunay
graph emphasize that the node degrees vary but are similar in the respective regions of cell density.

Generally, we observe that the investigated properties are different across construction methods but
similar for each method across datasets. Furthermore, the baselines using random coordinates for
the graph constructions also exhibit similar properties as the other graphs respectively. Thus, regard-
less of the cells’ locations used for the graph construction, all graphs of the evaluated construction
methods exhibit substantially different topological properties motivating the above evaluation to
investigate if these differences translate to varying GNN performance for cell type prediction.

Table 7: Properties of the graphs constructed from real-world datasets. The average degree ⟨d⟩
and standard deviation, the diameter diam(G), the average shortest path length ⟨l⟩, the number
of components #C., the relative size of the largest component S(G1, G), the average clustering
coefficient C(G) and the degree assortativity coefficient r are listed (Newman, 2018). Note that the
path measures are calculated for the largest connected component which can result in differences
due to the component size.

Dataset Constr. ⟨d⟩ diam(G) ⟨l⟩ # C. S(G1, G) C(G) r

intestine k-NN 6.77 ± 0.86 164 54.33 2 0.99 0.45 0.29
ϵ-radius 8.10 ± 2.81 141 46.88 108 0.79 0.50 0.79
Delaunay 7.99 ± 1.22 54 24.08 1 1.00 0.43 0.15
δ-radius-Del. 6.40 ± 1.51 161 53.64 108 0.79 0.41 0.58

embryo k-NN 6.64 ± 0.76 220 71.84 9 0.57 0.38 0.29
ϵ-radius 8.12 ± 2.31 242 77.69 148 0.56 0.46 0.78
Delaunay 16.49 ± 6.34 11 6.10 1 1.00 0.48 0.28
δ-radius-Del. 7.32 ± 1.69 255 80.91 148 0.56 0.44 0.60

hypothalamus k-NN 6.71 ± 0.83 114 44.36 1 1.00 0.44 0.28
ϵ-radius 8.09 ± 2.24 111 40.83 17 0.99 0.51 0.72
Delaunay 7.99 ± 1.24 44 22.89 1 1.00 0.43 0.14
δ-radius-Del. 6.54 ± 1.32 119 46.00 17 0.99 0.42 0.48

brain k-NN 6.79 ± 0.89 154 53.07 2 1.00 0.48 0.28
ϵ-radius 8.00 ± 2.43 167 53.26 52 0.98 0.54 0.73
Delaunay 7.99 ± 1.28 53 23.69 1 1.00 0.43 0.14
δ-radius-Del. 6.31 ± 1.37 188 59.37 52 0.98 0.43 0.52

random k-NN 6.85 ± 0.95 148 57.61 2 1.00 0.53 0.28
ϵ-radius 8.02 ± 2.54 164 62.29 62 0.97 0.60 0.72
Delaunay 7.99 ± 1.38 52 26.14 1 1.00 0.44 0.15
δ-radius-Del. 6.13 ± 1.34 186 71.42 62 0.97 0.47 0.49
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