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Abstract001

Related work cherishes structural relationships.002
While existing automated methods, includ-003
ing those leveraging Large Language Models004
(LLMs), have advanced content summariza-005
tion capabilities, they often struggle to repli-006
cate the crucial argumentative flow and ex-007
plicit inter-paper relational structures found in008
human-written related work, despite many com-009
mendable efforts in recent years. To address010
this concern, we propose a novel approach cen-011
tered on Rhetorical Structure Theory (RST).012
We introduce a structure-aware Related Work013
Generation (RWG) pipeline where LLM agents014
are guided by an RST-derived structural plan to015
generate related work with iteratively improved016
structural relationships. Finally, we craft two017
structure-specific metrics, Width Profile Simi-018
larity (WPS) and Edge Coverage Ratio (ECR),019
to evaluate the coherence of the generated re-020
lated work. Through extensive experiments, we021
demonstrate that our RST-centric generation022
method significantly enhances the structural023
and overall quality of RWG.024

1 Introduction025

Context shapes research. Related work is of026

paramount value for situating new research within027

the broader academic landscape. It provides con-028

text, highlights new contributions, and helps iden-029

tify limitations in prior knowledge (Martin-Boyle030

et al., 2024; Li and Ouyang, 2025). Additionally,031

engaging with prior studies also convinces the read-032

ers that this new research builds upon a solid foun-033

dation, avoids redundancy, and contributes mean-034

ingfully to ongoing research findings. However,035

manually compiling related work is becoming in-036

creasingly difficult due to the rapid growth of scien-037

tific publications (Martin-Boyle et al., 2024; Li and038

Ouyang, 2025). Consequently, generating a related039

work section as an initial draft, commonly known040

as RWG (Hoang and Kan, 2010; Li and Ouyang,041

2022, 2024), emerges as a significant and active 042

research area within NLP. 043

Substantial research has been dedicated to RWG. 044

Initial approaches often employed extractive sum- 045

marization techniques (Hu and Wan, 2014; Wang 046

et al., 2018; Chen and Zhuge, 2019), which iden- 047

tify and assemble key sentences from cited pa- 048

pers. With the advent of Transformer architec- 049

tures (Vaswani et al., 2017), abstractive meth- 050

ods gained prominence (Chen et al., 2021, 2022; 051

Liu et al., 2023a), enabling models to summa- 052

rize and paraphrase content from source docu- 053

ments. More recently, the remarkable capabili- 054

ties of LLMs (Zhao et al., 2025) have been in- 055

creasingly applied to RWG, demonstrating poten- 056

tial for advancing abstractive related work gener- 057

ation (Martin-Boyle et al., 2024; Li and Ouyang, 058

2025; Zhang et al., 2025). 059

Considering that related work must clearly artic- 060

ulate the relationships among the target and cited 061

papers, recent endeavors begin to pursue structural 062

relationships in RWG but fall short in various as- 063

pects: Wang et al. (2024a) proposed a P-S-E-D 064

framework emphasizing the establishment of con- 065

nections between target and cited papers, but the 066

P-S-E-D framework could be too narrow to capture 067

all essential rhetorical structures in related work. 068

One problem could be: it neglects the relations 069

between the cited papers, which are necessary for 070

RWG. Martin-Boyle et al. (2024) observed that 071

straightforward prompting of LLMs often fails to 072

adequately interconnect cited papers in a manner 073

akin to human-written related work, but did not pro- 074

pose an effective method to solve it. Li and Ouyang 075

(2025) highlighted that information about citation 076

is beneficial and necessary; however, such infor- 077

mation is often hard to derive. Zhang et al. (2025) 078

employed knowledge graphs to identify conceptual 079

relations for RWG, yet this approach only excels at 080

concept-level relational structures. Whereas RWG 081

requires paper-level relations. 082
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This paper establishes the foundation for a083

structure-centric RWG. We introduce a structure-084

aware RWG pipeline with two quantitative struc-085

tural assessment metrics. Inspired by RST (Mann086

and Thompson, 1988), a robust linguistic frame-087

work renowned for its ability to analyze text or-088

ganization by identifying the functional relations089

between discourse segments, our pipeline employs090

an LLM guided by an RST-derived structural plan,091

aiming to generate related work that is not only092

informative but also exhibits strong adherence to a093

desired rhetorical structure. Furthermore, we craft094

two novel evaluation metrics specifically designed095

to assess the structural coherence of a related work096

by focusing on the logical flow and explicit rela-097

tions between cited papers.098

Our primary contributions are as follows:099

• We develop a structure-aware RWG pipeline,100

called RETELL, that leverages the RST-101

derived relational structure to guide an LLM102

in iteratively writing the related work, pro-103

moting adherence to the desired organization104

during generation.105

• We design two novel structure evaluation met-106

rics, Width Profile Similarity (WPS) and Edge107

Coverage Ratio (ECR), specifically to assess108

the logical flow and the inter-paper relational109

structure in related work.110

• Through extensive experiments, we demon-111

strate that our structure-aware generation112

method significantly improves the structural fi-113

delity and overall quality of generated related114

work compared to baseline methods.115

2 Preliminary & Related Works116

This section first formally defines the task of RWG.117

It then introduces RST as the foundational linguis-118

tic framework for our approach. Finally, it reviews119

prior research in RWG, its evaluation, and the ap-120

plications of RST in NLP, highlighting the gaps our121

work aims to address.122

2.1 Problem Definition for RWG123

Let T denote the target paper for which a related124

work needs to be generated. We assume access to125

relevant textual content t from the target paper, typ-126

ically its abstract. Let C = {C1, C2, . . . , CN} be127

a predefined set of N cited papers that are required128

to be discussed in the generated related work. For129

each cited paper Ci ∈ C, we assume access to its130

corresponding textual content ci. The objective of 131

RWG is to learn a mapping function f such that, 132

given the target paper’s relevant textual content t 133

and the set of cited papers’ relevant texutal con- 134

tents {ci}Ni=1, it outputs a generated related work 135

r̂ = f(t, {ci}Ni=1). Again, the primary goal is to 136

generate r̂ that not only accurately summarizes the 137

content of the cited papers in the context of the tar- 138

get paper but also, crucially, reproduces the logical 139

flow and relational structure observed in a human- 140

written ground truth related work r. Capturing and 141

evaluating the logical flow and relational structure 142

is the central focus of our work. 143

2.2 Rhetorical Structure Theory (RST) 144

Rhetorical Structure Theory, proposed by Mann 145

and Thompson (1988), is a descriptive linguis- 146

tic theory focused on text organization and coher- 147

ence. It analyzes texts by identifying rhetorical rela- 148

tions between non-overlapping and contiguous text 149

segments, known as Elementary Discourse Units 150

(EDUs). According to RST, adjacent text spans, 151

which can be individual EDUs or larger spans com- 152

posed of multiple contiguous EDUs, are connected 153

by rhetorical relations drawn from a predefined set. 154

Most relations exhibit an asymmetry between a 155

central span, termed the nucleus, and a supporting 156

span, called the satellite. The nucleus is consid- 157

ered more essential to the writer’s communicative 158

purpose, while the satellite provides supplementary 159

information that supports the nucleus. 160

Based on the RST, a text r can be analyzed and 161

built into a hierarchical, tree-like structure, com- 162

monly referred to as Rhetorical structure tree (RS- 163

tree), denoted T (r). From a bottom-up perspective 164

on the RS-tree, the leaf nodes correspond to the in- 165

dividual EDUs of the text. Internal nodes represent 166

larger text spans formed by the recursive applica- 167

tion of rhetorical relations that connect adjacent 168

sub-spans. The root node represents the entire text. 169

This hierarchical representation explicitly models 170

the discourse structure and the underlying logic of 171

the text’s organization. 172

2.3 Related Work 173

Related Work Generation. The automated gen- 174

eration of related work has evolved from extrac- 175

tive methods that select salient sentences (Hu and 176

Wan, 2014; Wang et al., 2018; Chen and Zhuge, 177

2019), to abstractive approaches that synthesize 178

novel text (Chen et al., 2021, 2022; Wang et al., 179

2022). This shift towards abstraction has naturally 180
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Figure 1: Illustration on RST-centric related work generation and assessment.

increased focus on the structural quality of gen-181

erated text (Liu et al., 2023a; Wang et al., 2024a).182

With the advent of LLMs (Zhao et al., 2025), recent183

RWG research has further explored organizational184

aspects, for instance, through human-AI collabo-185

ration (Martin-Boyle et al., 2024), analyzing input186

information’s impact on coherence (Li and Ouyang,187

2025), or using knowledge graphs to guide genera-188

tion (Zhang et al., 2025). Despite these advances,189

ensuring human-like coherence and logical flow190

remains a key challenge in RWG, which is compre-191

hensively addressed by RETELL (See Figure 1).192

Evaluation of RWG. A significant hurdle in ad-193

vancing RWG is the evaluation of structural qual-194

ity. Traditional n-gram metrics like ROUGE (Lin,195

2004) primarily assess lexical overlap and are in-196

sufficient for structural evaluation. While semantic197

metrics (Zhao et al., 2019; Yuan et al., 2021) and198

LLM-based judgments (Liu et al., 2023b; Wang199

et al., 2024a) offer deeper content assessment, they200

do not provide a direct, comprehensive measure of201

logical flow and relational structure. Some studies202

explore specific structural checks like novelty state-203

ment detection (Nishimura et al., 2024) or citation204

grouping (Martin-Boyle et al., 2024; Nishimura205

et al., 2024), but these address limited facets. Rely-206

ing on human evaluation for coherence (Li and207

Ouyang, 2025) is expensive and impractical at208

scale. This persistent gap in evaluation capabil-209

ities makes it difficult to reliably measure progress210

in generating structurally sound related work and211

to guide models effectively. Therefore, to directly212

address this limitation, we propose two novel graph-213

based evaluation metrics grounded in RST.214

RST in NLP. Rhetorical Structure Theory215

(RST) (Mann and Thompson, 1988) is a well- 216

established linguistic framework for analyzing text 217

organization and coherence by identifying func- 218

tional relations between text segments. Its applica- 219

tions in NLP are diverse (Hou et al., 2020), notably 220

in RST parsing for automatically deriving discourse 221

structures (Sagae, 2009; Li et al., 2014; Liu et al., 222

2021) and in RST-guided text generation to pro- 223

duce more coherent and organized text (Adewoyin 224

et al., 2022; Liu and Demberg, 2024; Kim et al., 225

2025). Beyond generation, RST has also been ap- 226

plied to other tasks such as distinguishing between 227

human-written and machine-generated text by ana- 228

lyzing structural features (Kim et al., 2024). The 229

proven ability of RST to model and enhance textual 230

structure underpins its suitability for addressing the 231

challenges in RWG. 232

3 RST-centric Related Work Generation 233

and Assessment 234

3.1 Overview 235

Figure 1 illustrates our RST-centric design, i.e., 236

RETELL. Initially, the LLM-based agent, given the 237

target paper and a set of cited papers, constructs a 238

planned RST-graph ( 1 ). This graph explicitly de- 239

fines the intended rhetorical relationships between 240

the cited papers and the target paper. Subsequently, 241

the LLM agent uses this planned RST-graph as a 242

structural blueprint to synthesize the initial draft of 243

the related work ( 2 ). After that, the agent itera- 244

tively refines the related work until the predicted 245

RST-graph converges or a certain iteration thresh- 246

old is met ( 3.1 and 3.2 ). Finally, we extract the 247

RS-tree and RST-graph for the ground truth re- 248

lated work ( 4.1 ). We compare the RS-tree and 249
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RST-graph of our predicted related work and the250

ground truth related work to quantitatively assess251

their structural similarity ( 4.2 ).252

In the following subsections, we first detail our253

LLM-based workflow for RST-based RWG (Sec-254

tion 3.2). We then explain the process of RST-graph255

extraction (Section 3.3), which is integral to both256

the generation’s refinement loop and the final eval-257

uation. Finally, we introduce our novel RST-based258

evaluation metrics (Section 3.4).259

3.2 RST-based Related Work Generation260

This section introduces our LLM-powered agent,261

which aims to emulate a structured human writing262

process: first understanding inter-paper relations,263

leveraging this understanding to construct a well-264

organized related work, and then keep refining it265

by re-analyzing the structure. The generation work-266

flow comprises three key phases:267

RST-graph planning 1 . The input for this268

phase consists of information from the target pa-269

per and the set of cited papers. Given the input,270

the LLM is prompted to determine the most salient271

rhetorical relationships between the target and cited272

papers. To ensure global structural coherence and273

avoid the potential loss of context, we let the LLM274

generate the overall graph structure with all papers275

provided in the context, thanks to long context sup-276

port in recent LLM models (Beltagy et al., 2020;277

Su et al., 2024; Wang et al., 2024b).278

We constrain the LLM to utilize a predefined set279

of ten key rhetorical relations (the specific choices280

and their definitions are detailed in Appendix A),281

where the definitions are provided in the system282

prompt. Furthermore, the LLM is guided to en-283

sure the resulting graph is a directed acyclic graph284

(DAG) (Yao et al., 2024; Ma, 2025), thereby avoid-285

ing cycles, and to maintain overall coherence. Fi-286

nally, we get the output of this phase: a DAG where287

nodes represent the cited papers, and the directed,288

labeled edges signify the intended rhetorical rela-289

tions.290

RST-graph-guided related work synthesis 2 .291

This phase begins with outline generation, where,292

before drafting the full text, the LLM formulates a293

high-level outline based on the planned RST-graph.294

This outline specifies the overall theme, the se-295

quence for introducing cited papers, strategies for296

transitioning between them, explicitly reflecting the297

relationships encoded in the planned RST-graph,298

and the bridges between the cited papers and the299

target paper. This step effectively translates the300

structured graph into planned text discourse. Fol- 301

lowing the outline generation, the LLM generates 302

an initial draft of the related work, denoted as r̂0. 303

Iterative self-refinement ( 3.1 , 3.2 ). This phase 304

aims to iteratively refine the related work by mak- 305

ing the LLM re-analyze the inter-paper relations. 306

This phase is necessary as it is hard for LLM to 307

completely understand the rhetorical relations and 308

even harder for it to follow the planned RST graph 309

to write a related work. However, it is well-known 310

that iteratively asking LLM to refine the output 311

would lead to better generated results, see (Madaan 312

et al., 2023; Chen et al., 2024). Below, we discuss 313

our design: 314

Once an initial draft r̂0 is generated, RETELL ex- 315

tracts its corresponding RST-graph Gr̂0 , following 316

Section 3.3. Subsequently, the LLM is prompted 317

to analyze each relation within this parsed Gr̂0 by 318

referencing back to the contents of the cited and 319

target papers. Particularly, for each edge in Gr̂0 , 320

the LLM agent verifies its correctness by check- 321

ing back to the content of the paper. Changing the 322

perspective from the target and cited papers to the 323

newly generated related work and its RST-graph 324

provides a new context for the LLM to reflect and 325

improve the structure. Following this analysis, the 326

LLM generates new action items for improving the 327

related work. Based on the action items, the LLM 328

refines the draft, producing a new version r̂1. Sub- 329

sequently, an RST-graph Gr̂1 is extracted from this 330

new draft r̂1. 331

The core of the refinement cycle involves com- 332

paring the newly extracted graph Gr̂1 with the 333

graph from the previous iteration Gr̂0 . If mis- 334

matches are detected between these two graphs, 335

the LLM is prompted to focus on these differing 336

relations and generate new action items for fur- 337

ther refinement. This iterative process of analysis, 338

action item generation, and textual revision con- 339

tinues. The cycle terminates when the extracted 340

RST-graphs from two consecutive iterations, Gr̂i 341

and Gr̂i+1
, are identical, or when i reaches a preset 342

maximum number of iterations, where i is the num- 343

ber of iterations. Finally, we get the related work, 344

denoted as r̂. 345

3.3 RS-tree and RST-graph Extraction 346

This section introduces how to extract the RST- 347

graph G(r) from a given related work text r, a 348

critical component utilized in steps 3.1 and 4.1 . 349

Figure 2 explains how to build an RS-tree for the 350

related work example (on the top). Subsequently, 351
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a. Related Work Example: [Recently, VDSH @Cite:1 proposed to use a VAE]1 [to learn the latent representations of documents]2 
[and then use a separate stage]3 [to cast the continuous representations into binary codes.]4 [While fairly successful,]5 [this 
generative hashing model requires a two-stage training.]6 [NASH @Cite:2 proposed to substitute the Gaussian prior in VDSH with 
a Bernoulli]7 [prior to tackle this problem,]8 [by using a straight-through estimator @Cite:3]9 [to estimate the gradient of neural 
network]10 [involving the binary variables.]11 [This model can be trained in an end-to-end manner.]12 [Our models differ from 
VDSH and NASH]13 [in that mixture priors are employed]14 [to yield better hashing codes,]15 [whereas only the simplest priors are 
used in both VDSH and NASH.]16
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Figure 2: Illustration on RS-tree parsing and RST-graph extraction (nodes building blue nodes are omitted).

we can extract an RST-graph from the RS-tree. Of352

note, this related work example is an example from353

the Multi-XScience dataset (Lu et al., 2020).354

It begins with RST parsing, where the input text355

r, i.e., related work example, is processed by an356

RST parser. As shown in Figure 2a, we use “[”, “]”357

pair to split this related work into 16 EDUs. We358

put the EDU number as the superscript of “[]”. Fig-359

ure 2b depicts the corresponding RS-tree. Each360

circle indicates a text span, where we use the num-361

ber pair i : j to indicate the text span ranges from362

i-th EDU to j-th EDU of r. For example in the bot-363

tom left of Figure 2b, the span node(1:2) is formed364

by an Enablement relation, where node(1) is the365

nucleus and node(2) is the satellite.366

Following parsing, the next step involves identi-367

fying cited papers within the RS-Tree. Each node368

in the RS-tree is analyzed to identify any cited pa-369

pers mentioned within its textual content, which370

can be done using regular expressions. In Figure 2b,371

text spans containing citations are color-coded as372

orange nodes, blue nodes otherwise.373

The final step is to extract the RST-graph G(r)374

from the RS-tree T (r), as shown in Figure 2c. In375

an RST-graph, each node represents a unique cited376

paper. Firstly, edges that connect nodes both con-377

taining citations in the RS-tree with rhetorical rela-378

tionships are identified. If each node only contains379

one citation, we link the two paper-nodes with the380

rhetorical relation on the edge. For example, we381

connect the paper node(Cite:2) with (Cite:3) with382

the Enablement relation between span node(7:8) 383

and (9:11). 384

If a selected text span node contains more than 385

one citation, we will perform two attempts: (i) We 386

will identify the main citation across these citations, 387

guided by the nucleus/satellite distinction within 388

the RS-tree. For example, the span node (5:12) 389

has two citations, i.e., Cite 2, 3, where we need 390

to identify which citation of the span node (5:12) 391

is the core for this Joint relationship. We achieve 392

this via traversing the RS-tree as follows: Within 393

the RS-tree of Figure 2b, the text span node (7:8, 394

Cite:2) is identified as a nucleus relative to the 395

text span node (9:11, Cite:3). Therefore, Cite:2 is 396

the core citation when compared to Cite:3. This 397

indicates that Cite:2 results in a Joint edge between 398

paper-node (Cite:3) and paper-node (Cite:1) in the 399

RST-graph. We thus only keep this Joint edge. (ii) 400

Chances are that multiple distinct citations in a 401

single text span might not have any relationship 402

in (i). In this case, we simply regard all these 403

citations in the single text span as the main citations, 404

resulting in multiple rhetorical relationships in the 405

RST-graph. Further, we will also establish a Joint 406

relationship between these citations. 407

3.4 RST-based Assessment 408

To evaluate the structural quality of a generated 409

related r̂, we compare its RS-tree T (r̂) and RST- 410

graph G(r̂) against those of the ground truth re- 411

lated work r (T (r) and G(r)). We propose two 412
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graph-based metrics ( 4.2 ) for this purpose:413

Width Profile Similarity (WPS) This metric414

assesses the similarity in the overall hierarchical415

shape of the RS-trees T (r) and T (r̂). Firstly, each416

RS-tree is converted into a “width profile” vector417

P = [w0, w1, . . . , wk], where wj represents the418

number of nodes at depth j in the tree. For WPS,419

we consider the tree formed by only “builds” rela-420

tions. The shape of this tree can be indicative of the421

discourse strategy; for instance, a wider tree struc-422

ture might suggest a breadth-first discussion cover-423

ing multiple points with similar emphasis, whereas424

a deeper, narrower tree could imply a focus on a425

primary argument with extensive elaboration. The426

WPS is then calculated as the cosine similarity be-427

tween the width profile vectors of the ground truth428

and generated RS-trees:429

WPS(r, r̂) = cos(P (T (r)), P (T (r̂)) (1)430

A higher WPS score indicates that the generated431

related work exhibits a hierarchical organization, in432

terms of layer-wise node distribution, that is more433

similar to that of the ground truth.434

Edge Coverage Ratio (ECR) While WPS cap-435

tures the general tree shape, ECR focuses on the436

specific relational connections between cited pa-437

pers as represented in their respective RST-graphs438

G(r) and G(r̂). This metric measures the propor-439

tion of correctly identified edges from the ground440

truth graph that are present in the generated graph.441

ECR is calculated as:442

ECR(r, r̂) =
|E ∩ Ê|
|E|

(2)443

where E denotes the set of edges in the ground444

truth RST-graph G(r), and Ê represents the set of445

edges in the generated RST-graph G(r̂).446

We opt for ECR over the Jaccard index based447

on the natural assumption that all the rhetorical448

relationships in the ground truth are correct (i.e.,449

rigorously verified by the expert writer). How-450

ever, human-crafted related work might be subject451

to missing some rhetorical relationships that were452

captured by RETELL.453

ECR assesses how well the generated RWS cov-454

ers the essential relationships present in the ground455

truth. ECR directly measures recall of these ground456

truth edges, which we deem more critical for struc-457

tural fidelity in this context than penalizing relation-458

ships that were absent in ground truth but captured459

by automatically generated related work. Of note, 460

the Jaccard index would emphasize that penaliza- 461

tion in the denominator. 462

4 Experiments 463

4.1 Dataset 464

Following common practice in related work gener- 465

ation research (Chen et al., 2022; Liu et al., 2023a; 466

Zhang et al., 2025), we evaluate our proposed 467

method on three publicly available datasets: Multi- 468

XScience, TAS2, and TAD. Multi-XScience (Lu 469

et al., 2020) is constructed by integrating data 470

from arXiv (Ginsparg, 1991) and the Microsoft 471

Academic Graph (MAG) (Sinha et al., 2015). 472

TAS2 (Chen et al., 2021) is derived from the 473

S2ORC dataset (Lo et al., 2020), encompassing 474

multiple scientific domains such as physics and 475

mathematics. TAD (Chen et al., 2021) consists of 476

related work sections from computer science ar- 477

ticles, sourced from the Delve dataset (Akujuobi 478

and Zhang, 2017). For evaluation, we randomly 479

selected 500 samples of related work from the test 480

splits of each dataset. Each selected sample in- 481

cluded at least four cited papers. In all datasets, 482

the input consists of the abstracts from the cited 483

papers, while the ground truth is the related work 484

section from the target paper. The Multi-XScience 485

dataset additionally provides the abstract of the tar- 486

get paper. Detailed statistics for these datasets are 487

available in Appendix B. 488

4.2 Settings 489

We compare our RST-based approach against three 490

alternative LLM-based methods for related work 491

generation: 492

• Group-based (Martin-Boyle et al., 2024): 493

This method first employs an LLM to organize 494

citations into coherent groups based on their 495

topical similarity and relevance to the target 496

paper. The LLM then generates the related 497

work using these pre-defined groups. 498

• Feature-based (Li and Ouyang, 2025): This 499

method involves prompting an LLM to create 500

a faceted summary (including object, method, 501

findings, contribution, and keywords) for each 502

cited paper. It also generates a main idea for 503

the target related work based on these sum- 504

maries. All this information is subsequently 505

fed to the LLM to produce the related work. 506
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Model Method
Mutli-XScience TAS2 TAD

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Llama

Group-based 29.60 5.21 14.40 24.45 3.31 13.64 27.51 3.70 13.93
Feature-based 27.65 5.32 13.25 23.50 3.66 12.71 29.37 4.32 13.99

MiniGraph 26.58 5.47 12.63 23.09 3.74 12.24 29.64 4.54 13.76
RETELL(Ours) 32.18 5.63 14.92 26.43 3.75 13.94 30.18 4.42 14.48

Qwen

Group-based 29.50 4.76 14.64 25.21 3.43 13.84 28.29 3.62 14.14
Feature-based 27.43 4.94 12.87 23.55 3.49 12.41 29.13 4.10 13.68

MiniGraph 26.28 4.88 12.09 23.42 3.64 11.97 29.18 4.16 13.14
RETELL(Ours) 31.79 5.04 14.67 26.73 3.65 14.01 29.82 4.11 14.29

Table 1: Performance with respect to the ROUGE metrics.

• MiniGraph (Zhang et al., 2025): This method507

first constructs a knowledge graph, called min-508

igraph, from entities and relations extracted509

from the text of a subset of cited papers. The510

LLM is then prompted to generate a summary511

for each minigraph. These chunk summaries512

are finally combined to form the related work.513

For the RST parsing component, we used the514

parser developed by Liu et al. (2021). The self-515

refinement loop in our method was constrained to516

a maximum of 5 iterations. Our experiments were517

conducted using two LLM backbones: Llama-3.1-518

8B-Instruct (Llama Team, 2024) and Qwen2.5-519

14B-Instruct (Qwen Team, 2024). To evaluate520

structural quality, we employed our proposed RST-521

graph-based metrics, WPS and ECR, as defined522

in Section 3.4. Additionally, we utilized standard523

ROUGE F1 scores (ROUGE-1, ROUGE-2, and524

ROUGE-L) (Lin, 2004) to assess generation qual-525

ity. All experiments were performed in a single run,526

with results averaged across the entire dataset.527

4.3 Structural Quality528

Model Method
Mutli-XScience TAS2 TAD
WPS ECR WPS ECR WPS ECR

Llama

Group-based 62.48 29.64 70.06 27.50 72.65 29.24
Feature-based 54.08 32.56 59.59 33.91 64.96 41.11

MiniGraph 60.50 31.49 68.29 33.20 79.76 37.39
RETELL(Ours) 75.40 39.92 75.75 34.71 82.30 41.77

Qwen

Group-based 76.59 16.32 76.13 12.96 78.53 13.52
Feature-based 67.53 21.23 65.96 34.23 77.93 34.93

MiniGraph 60.42 36.22 66.55 29.68 78.92 43.41
RETELL(Ours) 77.70 44.43 76.94 39.98 81.92 44.01

Table 2: Structure quality.

Table 2 displays the results of the structural qual-529

ity assessment using our proposed metrics. Our530

method consistently achieves the highest scores for531

both WPS and ECR across all models. This in-532

dicates that our approach generates related work533

that has a similar overall structure to the ground534

truth related work, and also captures the relation-535

ships among cited papers well (a specific example536

is provided in Appendix C). Regarding the other537

methods, their performance for the second-best 538

WPS scores varies across different datasets and 539

models. Generally, group-based methods perform 540

the poorest on the ECR metric, suggesting that 541

merely grouping cited papers is insufficient for un- 542

covering the intricate relations among them. The 543

Feature-based and MiniGraph methods show better 544

ECR performance, implying that information about 545

the target paper’s main idea and conceptual rela- 546

tionships can, to some extent, aid in establishing 547

connections between cited papers. 548

4.4 Overall Performance 549

Table 1 showcases the overall performance of 550

the methods based on the standard ROUGE-1, 551

ROUGE-2, and ROUGE-L metrics. For exam- 552

ple, on the Multi-XScience dataset, when aver- 553

aging results from the Llama and Qwen models, 554

our method demonstrates improvements over the 555

second-best performing baseline by 2.43 points 556

in ROUGE-1, 0.13 in ROUGE-2, and 0.27 in 557

ROUGE-L. Similarly, for the TAS2 dataset, our ap- 558

proach yields average gains of 1.75 in ROUGE-1, 559

0.01 in ROUGE-2, and 0.23 in ROUGE-L. On the 560

TAD dataset, our method shows improvements of 561

0.59 in ROUGE-1 and 0.31 in ROUGE-L, although 562

a slight decrease is observed in the ROUGE-2 score 563

compared to the top baseline. 564

This strong performance suggests that the en- 565

hancement in the structure positively influences the 566

overall generation quality. By guiding the LLM 567

to produce better-organized content that accurately 568

reflects inter-paper relationships, our method likely 569

facilitates more focused and relevant text genera- 570

tion for each segment of the related work. 571

4.5 Ablation Study 572

To assess the contribution of the iterative self- 573

refinement phase in our method, we performed an 574

ablation study. We compared our complete genera- 575

tion pipeline (referred to as “Ours”) with a variant 576

that omits the self-refinement module (referred to 577

7



as “Ours-Ref.”). In this ablated version, the gener-578

ation process concludes after the initial synthesis579

phase, treating the draft related work as the final580

output, without subsequent revisions. This compar-581

ison was conducted using the Llama backbone on582

the Multi-XScience, TAS2, and TAD datasets.583
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Figure 3: Ablation study of the iterative self-refinement
phase on structural quality.

First, we examine the impact of the iterative self-584

refinement phase on structural quality, as shown in585

Figure 3. The results clearly demonstrate the value586

of self-refinement. For both WPS and ECR metrics,587

which assess the overall hierarchical structure and588

relation among the cited papers, the full method589

significantly outperforms the ablated version across590

all three datasets. This indicates that the refinement591

loop is effective in correcting structural errors and592

aligning the generated text more closely with the593

planned rhetorical structure.594
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Figure 4: Ablation study of the iterative self-refinement
phase on generation quality.

Next, Figure 4 illustrates the impact of the in-595

teractive self-refinement module on overall perfor-596

mance as measured by ROUGE scores. Consis-597

tent with the improvements in structural quality,598

the full method generally achieves slightly higher599

ROUGE-1, ROUGE-2, and ROUGE-L scores com-600

pared to the version without refinement across all601

three datasets. This again suggests that the en-602

hanced structural integrity due to the refinement603

process can positively contribute to the content rel- 604

evance captured by ROUGE metrics. 605
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Figure 5: Study on the impact of number of cited paper.

We investigate the impact of varying the number 607

of cited papers on both structural quality and gen- 608

eration performance. We conduct this sensitivity 609

analysis on the Multi-XScience dataset with the 610

Llama model as the LLM backbone. Our findings 611

are illustrated in Figure 5. The results indicate that 612

the ROUGE-1 score remains largely stable across 613

all methods, irrespective of the number of cited pa- 614

pers. In contrast, the Edge Coverage Ratio demon- 615

strates significant sensitivity to this variable. No- 616

tably, as the number of cited papers increases, the 617

ECR for baseline methods tends to decline rapidly. 618

Our proposed RST-based method, however, main- 619

tains a more consistent ECR in these scenarios, 620

indicating a better preservation of structural rela- 621

tions. Despite this relative robustness, a noticeable 622

performance drop in ECR is observed for all ap- 623

proaches, including ours, when the number of cited 624

papers reaches eight or more. This suggests that 625

generating a structurally coherent related work sec- 626

tion becomes substantially more challenging as the 627

density of inter-paper relations increases, poten- 628

tially indicating an inherent difficulty in the task at 629

higher citation counts. 630

5 Conclusion 631

In this paper, we aim to address the critical chal- 632

lenge of generating structurally coherent related 633

work and the inadequacy of existing metrics. In- 634

spired by RST, we introduce RETELL, a novel 635

LLM-based pipeline for generating structure-aware 636

related work. Besides, we introduce two new graph- 637

based metrics for assessing the logical flow and 638

inter-paper relational structure. Our experiments 639

demonstrate our method significantly enhances the 640

structural fidelity and overall quality of the output. 641
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6 Limitations642

Due to resource constraints, our evaluations only643

explored the open-source LLM backbones and did644

not include a comprehensive comparison against645

the latest large-scale commercial models. Con-646

sequently, our reported results primarily serve to647

demonstrate the relative efficacy of our approach.648

Moreover, our experiments were conducted on649

three standard datasets where, consistent with com-650

mon practice in many existing works, only abstracts651

were used as the textual input for cited papers. We652

would like to explore full-text documents that con-653

tain richer contextual and relational information.654

7 Ethical Considerations655

The development of automated academic writing656

tools, such as our proposed related work generation657

system, brings some ethical concerns. Key risks658

include misuse, such as plagiarism through unmod-659

ified use of the generated text, and the potential660

for factual inaccuracies or biases inherent in LLMs.661

Although our RST-guided approach enhances co-662

herence, it does not ensure factual accuracy. We663

emphasize the necessity of responsible use, rigor-664

ous content verification, and strict adherence to665

academic integrity to mitigate these risks.666
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means the two papers exhibit some sort of 926

parallel structure between two papers, but are 927

not in contrast. 928

• Elaboration: An Elaboration relation from 929

one paper to another means the first paper 930

adds detail or explanation to the main topic of 931

the second paper. 932

• Explanation: An Explanation relation from 933

one paper to another means the first paper pro- 934

vides evidence or justification for the situation 935

presented in the second paper. 936

• Contrast: A Contrast relation between two 937

papers means the two papers are in contrast 938

with each other along some dimension. 939
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one paper to another means the first paper 953

enables the second paper to happen. 954

• Evaluation: An Evaluation relation from one 955

paper to another means the first paper assesses 956

the second paper and recognizes the value it 957

assigns. 958
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Dataset # of Samples Textual Content of
Target Paper

Textual Content of
Cited Paper

Avg. # of
Cited Papers

Avg. # of Words
in Cited Papers

Avg. # of
Relations

Multi-XScience 500 Abstract Abstract 6.05 156.27 11.99
TAS2 500 None Abstract 4.45 223.27 4.91
TAD 500 None Abstract 4.19 176.29 4.41

Table 3: Dataset statistics.

• Cause: A Cause relation from one paper to959

another means the first paper is the cause and960

the second paper is the effect.961

B Dataset Statistics962

The statistics of the evaluated dataset are presented963

in Table 3.964

C Generated Related Work Example965

We present an example from the Multi-XScience966

dataset to demonstrate the different outputs gen-967

erated by different methods, as shown in the grey968

boxes on the following pages.969
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Ground Truth:
Powered by large-scale datasets of 3D CAD models (e.g., ShapeNet [1] ), deep-learning-based
methods have been proposed for 3D reconstruction. Both 3D-R2N2 [2] and LSM [4] use RNNs
to infer 3D shape from single or multiple input images and achieve impressive results. How-
ever, RNNs are time-consuming and permutation-variant, which produce inconsistent reconstruc-
tion results. 3DensiNet [3] uses max pooling to aggregate the features from multiple images.
However, max pooling only extracts maximum values from features, which may ignore other

valuable features that are useful for 3D reconstruction.

Ours (ROUGE-1: 30.89, ECR: 1.0):
Previous research has established the foundational concept of using deep learning for 3D shape
representation [1], which has been further developed in subsequent works [2] and [4] . These
studies explore the use of deep learning for 3D reconstruction, with [2] employing recurrent
neural networks (RNNs) for generating 3D reconstructions from multiple images, while [4]
leverages geometric constraints for more efficient and accurate 3D reconstruction using fewer
input images. In contrast, [3] proposes an alternative approach using density heat-maps for 2D-
to-3D transformation, addressing the limitations of RNN-based methods by introducing a novel
architecture named 3DensiNet. This approach not only enhances the quality of the generated 3D
volumes but also integrates adversarial learning for improved accuracy. Our work, Pix2Vox, builds
on these advancements by introducing a context-aware fusion module to enhance the consistency
and quality of multi-view 3D reconstructions, thereby outperforming existing methods in terms of
both accuracy and efficiency.

Group-based (ROUGE-1: 25.20, ECR: 0.167):
This paper delves into the use of recurrent neural networks (RNNs) for 3D reconstruction from
multi-view images, a topic that has been explored in several recent works. Notably, [2] discusses
the inherent limitations of RNN-based approaches in this context. The paper highlights that when
given the same set of input images in different orders, RNNs are unable to produce consistent
reconstruction results, a critical issue for multi-view 3D reconstruction. Additionally, due to long-
term memory loss, RNNs cannot fully leverage input images to refine reconstruction outcomes,
thus limiting their effectiveness in capturing detailed 3D representations [2].
Another relevant study [4] addresses 3D reconstruction through a different lens, emphasizing the
importance of leveraging 3D geometry via feature projection and unprojection along viewing rays.
Although this approach does not directly use RNNs, it underscores the challenges of handling
multi-view images for 3D reconstruction, providing a broader context for the limitations and
potential solutions beyond the scope of RNN-based methods.
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Feature-based (ROUGE-1: 22.59, ECR: 0.167):
Previous research efforts in the domain of 3D reconstruction from RGB images have primarily
focused on leveraging deep learning techniques to enhance the representation and accuracy of
reconstructed 3D models. For instance, [1] introduced 3D ShapeNets, a Convolutional Deep Belief
Network (CDBN) designed to represent geometric 3D shapes as probability distributions on a
3D voxel grid. This method not only facilitates the recovery of full 3D shapes from 2.5D depth
maps but also supports joint object recognition and shape completion, significantly improving
performance over existing methods. However, 3D ShapeNets rely on synthetic CAD data and do
not directly address the challenges of converting RGB images to 3D volumes.
In contrast, [2] proposed the 3D Recurrent Reconstruction Neural Network (3D-R2N2), which
leverages recurrent neural networks (RNNs) to map images to 3D occupancy grids. This approach
is particularly effective in handling single-view and multi-view reconstructions without requiring
annotations or object class labels. Despite its success, RNN-based methods like 3D-R2N2 suffer
from limitations such as inconsistency in reconstruction results when input images are presented in
different orders and the inability to fully utilize all input images due to long-term memory loss.
To overcome these limitations, recent works have explored alternative architectures that do not rely
on RNNs. For example, [3] introduced 3DensiNet, a neural network that predicts 3D volumetric
objects from 2D images using density heat-maps as an intermediate step. This method has been
shown to outperform classical 3D autoencoders and other state-of-the-art techniques. Similarly,
[4] presents a multi-view stereopsis system that combines learning with geometric constraints to
achieve efficient and complete 3D reconstruction. However, these methods do not address the
inconsistencies and inefficiencies associated with sequential processing in RNN frameworks.
In this paper, we introduce Pix2Vox, a novel framework that enhances the consistency and efficiency
of 3D reconstruction from RGB images. Unlike previous methods, Pix2Vox utilizes an encoder-
decoder architecture to generate a coarse 3D volume from each input image and a context-aware
fusion module to select high-quality reconstructions. Additionally, a refiner is employed to
further refine the fused 3D volume, leading to superior performance and speed compared to
existing approaches. Experimental results on the ShapeNet and Pix3D benchmarks demonstrate
the effectiveness of Pix2Vox in terms of reconstruction accuracy and generalization to unseen
categories.
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MiniGraph (ROUGE-1: 24.89, ECR: 0.5):
Recent advancements in 3D shape representation and reconstruction have spurred significant
progress in visual understanding [1]. Specifically, the introduction of 3D ShapeNets, which
utilize Convolutional Deep Belief Networks to model 3D shapes as probability distributions on
voxel grids, has enabled joint object recognition and shape completion from 2.5D depth maps
[1]. However, the reliance on 2.5D depth maps limits the applicability of such methods to
scenarios with RGB data only. To address this, [2] proposed the 3D Recurrent Reconstruction
Neural Network (3D-R2N2), a recurrent neural network capable of reconstructing 3D shapes
from multi-view RGB images without the need for annotations or object class labels. Although
3D-R2N2 demonstrates superior performance in single-view reconstruction, it suffers from inherent
limitations such as inconsistency in reconstruction results due to the order of input images and
long-term memory loss in RNNs, which hampers the effective refinement of reconstructions [2].
In parallel, [3] introduced 3DensiNet, a novel architecture that leverages density heat-maps for
2D-to-3D transformations, showing promising results in generating 3D volumetric objects from
single 2D images. Despite these advances, the aforementioned methods either rely on specific input
modalities or face challenges in refining and fusing information from multiple views effectively.
Recent advancements in 3D reconstruction from multi-view and single-view RGB images have
been predominantly driven by deep learning techniques. For instance, [4] introduces a learnt system
for multi-view stereopsis that leverages feature projection and unprojection along viewing rays,
enabling end-to-end learning for metric 3D reconstruction. This system integrates shape priors
and geometric constraints, outperforming both classical approaches and recent learning-based
methods on the ShapeNet dataset. However, existing works like 3D-R2N2, which rely on recurrent
neural networks (RNNs), suffer from order dependency and long-term memory loss, making it
challenging to produce consistent and refined reconstructions from multiple inputs. Our proposed
Pix2Vox framework addresses these limitations by employing an encoder-decoder architecture for
coarse 3D volume generation and a context-aware fusion module to adaptively select high-quality
reconstructions, thereby ensuring superior performance and consistency across different input
orders.
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