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Abstract

Related work cherishes structural relationships.
While existing automated methods, includ-
ing those leveraging Large Language Models
(LLMs), have advanced content summariza-
tion capabilities, they often struggle to repli-
cate the crucial argumentative flow and ex-
plicit inter-paper relational structures found in
human-written related work, despite many com-
mendable efforts in recent years. To address
this concern, we propose a novel approach cen-
tered on Rhetorical Structure Theory (RST).
We introduce a structure-aware Related Work
Generation (RWG) pipeline where LLM agents
are guided by an RST-derived structural plan to
generate related work with iteratively improved
structural relationships. Finally, we craft two
structure-specific metrics, Width Profile Simi-
larity (WPS) and Edge Coverage Ratio (ECR),
to evaluate the coherence of the generated re-
lated work. Through extensive experiments, we
demonstrate that our RST-centric generation
method significantly enhances the structural
and overall quality of RWG.

1 Introduction

Context shapes research. Related work is of
paramount value for situating new research within
the broader academic landscape. It provides con-
text, highlights new contributions, and helps iden-
tify limitations in prior knowledge (Martin-Boyle
et al., 2024; Li and Ouyang, 2025). Additionally,
engaging with prior studies also convinces the read-
ers that this new research builds upon a solid foun-
dation, avoids redundancy, and contributes mean-
ingfully to ongoing research findings. However,
manually compiling related work is becoming in-
creasingly difficult due to the rapid growth of scien-
tific publications (Martin-Boyle et al., 2024; Li and
Ouyang, 2025). Consequently, generating a related
work section as an initial draft, commonly known
as RWG (Hoang and Kan, 2010; Li and Ouyang,

2022, 2024), emerges as a significant and active
research area within NLP.

Substantial research has been dedicated to RWG.
Initial approaches often employed extractive sum-
marization techniques (Hu and Wan, 2014; Wang
et al., 2018; Chen and Zhuge, 2019), which iden-
tify and assemble key sentences from cited pa-
pers. With the advent of Transformer architec-
tures (Vaswani et al., 2017), abstractive meth-
ods gained prominence (Chen et al., 2021, 2022;
Liu et al., 2023a), enabling models to summa-
rize and paraphrase content from source docu-
ments. More recently, the remarkable capabili-
ties of LLMs (Zhao et al., 2025) have been in-
creasingly applied to RWG, demonstrating poten-
tial for advancing abstractive related work gener-
ation (Martin-Boyle et al., 2024; Li and Ouyang,
2025; Zhang et al., 2025).

Considering that related work must clearly artic-
ulate the relationships among the target and cited
papers, recent endeavors begin to pursue structural
relationships in RWG but fall short in various as-
pects: Wang et al. (2024a) proposed a P-S-E-D
framework emphasizing the establishment of con-
nections between target and cited papers, but the
P-S-E-D framework could be too narrow to capture
all essential rhetorical structures in related work.
One problem could be: it neglects the relations
between the cited papers, which are necessary for
RWG. Martin-Boyle et al. (2024) observed that
straightforward prompting of LLMs often fails to
adequately interconnect cited papers in a manner
akin to human-written related work, but did not pro-
pose an effective method to solve it. Li and Ouyang
(2025) highlighted that information about citation
is beneficial and necessary; however, such infor-
mation is often hard to derive. Zhang et al. (2025)
employed knowledge graphs to identify conceptual
relations for RWG, yet this approach only excels at
concept-level relational structures. Whereas RWG
requires paper-level relations.



This paper establishes the foundation for a
structure-centric RWG. We introduce a structure-
aware RWG pipeline with two quantitative struc-
tural assessment metrics. Inspired by RST (Mann
and Thompson, 1988), a robust linguistic frame-
work renowned for its ability to analyze text or-
ganization by identifying the functional relations
between discourse segments, our pipeline employs
an LLM guided by an RST-derived structural plan,
aiming to generate related work that is not only
informative but also exhibits strong adherence to a
desired rhetorical structure. Furthermore, we craft
two novel evaluation metrics specifically designed
to assess the structural coherence of a related work
by focusing on the logical flow and explicit rela-
tions between cited papers.

Our primary contributions are as follows:

* We develop a structure-aware RWG pipeline,
called RETELL, that leverages the RST-
derived relational structure to guide an LLM
in iteratively writing the related work, pro-
moting adherence to the desired organization
during generation.

* We design two novel structure evaluation met-
rics, Width Profile Similarity (WPS) and Edge
Coverage Ratio (ECR), specifically to assess
the logical flow and the inter-paper relational
structure in related work.

* Through extensive experiments, we demon-
strate that our structure-aware generation
method significantly improves the structural fi-
delity and overall quality of generated related
work compared to baseline methods.

2 Preliminary & Related Works

This section first formally defines the task of RWG.
It then introduces RST as the foundational linguis-
tic framework for our approach. Finally, it reviews
prior research in RWG, its evaluation, and the ap-
plications of RST in NLP, highlighting the gaps our
work aims to address.

2.1 Problem Definition for RWG

Let T" denote the target paper for which a related
work needs to be generated. We assume access to
relevant textual content ¢ from the target paper, typ-
ically its abstract. Let C' = {C},Cy,...,Cn} be
a predefined set of IV cited papers that are required
to be discussed in the generated related work. For
each cited paper C; € C, we assume access to its

corresponding textual content c;. The objective of
RWG is to learn a mapping function f such that,
given the target paper’s relevant textual content £
and the set of cited papers’ relevant texutal con-
tents {c;} 2 ,, it outputs a generated related work
7 = f(¢,{ci}Y,). Again, the primary goal is to
generate 7 that not only accurately summarizes the
content of the cited papers in the context of the tar-
get paper but also, crucially, reproduces the logical
flow and relational structure observed in a human-
written ground truth related work . Capturing and
evaluating the logical flow and relational structure
is the central focus of our work.

2.2 Rhetorical Structure Theory (RST)

Rhetorical Structure Theory, proposed by Mann
and Thompson (1988), is a descriptive linguis-
tic theory focused on text organization and coher-
ence. It analyzes texts by identifying rhetorical rela-
tions between non-overlapping and contiguous text
segments, known as Elementary Discourse Units
(EDUs). According to RST, adjacent text spans,
which can be individual EDUs or larger spans com-
posed of multiple contiguous EDUs, are connected
by rhetorical relations drawn from a predefined set.
Most relations exhibit an asymmetry between a
central span, termed the nucleus, and a supporting
span, called the satellite. The nucleus is consid-
ered more essential to the writer’s communicative
purpose, while the satellite provides supplementary
information that supports the nucleus.

Based on the RST, a text r can be analyzed and
built into a hierarchical, tree-like structure, com-
monly referred to as Rhetorical structure tree (RS-
tree), denoted 7 (). From a bottom-up perspective
on the RS-tree, the leaf nodes correspond to the in-
dividual EDUs of the text. Internal nodes represent
larger text spans formed by the recursive applica-
tion of rhetorical relations that connect adjacent
sub-spans. The root node represents the entire text.
This hierarchical representation explicitly models
the discourse structure and the underlying logic of
the text’s organization.

2.3 Related Work

Related Work Generation. The automated gen-
eration of related work has evolved from extrac-
tive methods that select salient sentences (Hu and
Wan, 2014; Wang et al., 2018; Chen and Zhuge,
2019), to abstractive approaches that synthesize
novel text (Chen et al., 2021, 2022; Wang et al.,
2022). This shift towards abstraction has naturally
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Figure 1: Illustration on RST-centric related work generation and assessment.

increased focus on the structural quality of gen-
erated text (Liu et al., 2023a; Wang et al., 2024a).
With the advent of LLMs (Zhao et al., 2025), recent
RWG research has further explored organizational
aspects, for instance, through human-AlI collabo-
ration (Martin-Boyle et al., 2024), analyzing input
information’s impact on coherence (Li and Ouyang,
2025), or using knowledge graphs to guide genera-
tion (Zhang et al., 2025). Despite these advances,
ensuring human-like coherence and logical flow
remains a key challenge in RWG, which is compre-
hensively addressed by RETELL (See Figure 1).

Evaluation of RWG. A significant hurdle in ad-
vancing RWG is the evaluation of structural qual-
ity. Traditional n-gram metrics like ROUGE (Lin,
2004) primarily assess lexical overlap and are in-
sufficient for structural evaluation. While semantic
metrics (Zhao et al., 2019; Yuan et al., 2021) and
LLM-based judgments (Liu et al., 2023b; Wang
et al., 2024a) offer deeper content assessment, they
do not provide a direct, comprehensive measure of
logical flow and relational structure. Some studies
explore specific structural checks like novelty state-
ment detection (Nishimura et al., 2024) or citation
grouping (Martin-Boyle et al., 2024; Nishimura
et al., 2024), but these address limited facets. Rely-
ing on human evaluation for coherence (Li and
Ouyang, 2025) is expensive and impractical at
scale. This persistent gap in evaluation capabil-
ities makes it difficult to reliably measure progress
in generating structurally sound related work and
to guide models effectively. Therefore, to directly
address this limitation, we propose two novel graph-
based evaluation metrics grounded in RST.

RST in NLP. Rhetorical Structure Theory

(RST) (Mann and Thompson, 1988) is a well-
established linguistic framework for analyzing text
organization and coherence by identifying func-
tional relations between text segments. Its applica-
tions in NLP are diverse (Hou et al., 2020), notably
in RST parsing for automatically deriving discourse
structures (Sagae, 2009; Li et al., 2014; Liu et al.,
2021) and in RST-guided text generation to pro-
duce more coherent and organized text (Adewoyin
et al., 2022; Liu and Demberg, 2024; Kim et al.,
2025). Beyond generation, RST has also been ap-
plied to other tasks such as distinguishing between
human-written and machine-generated text by ana-
lyzing structural features (Kim et al., 2024). The
proven ability of RST to model and enhance textual
structure underpins its suitability for addressing the
challenges in RWG.

3 RST-centric Related Work Generation
and Assessment

3.1 Overview

Figure 1 illustrates our RST-centric design, i.e.,
RETELL. Initially, the LLM-based agent, given the
target paper and a set of cited papers, constructs a
planned RST-graph (@)). This graph explicitly de-
fines the intended rhetorical relationships between
the cited papers and the target paper. Subsequently,
the LLM agent uses this planned RST-graph as a
structural blueprint to synthesize the initial draft of
the related work (e). After that, the agent itera-
tively refines the related work until the predicted
RST-graph converges or a certain iteration thresh-
old is met () and @)). Finally, we extract the
RS-tree and RST-graph for the ground truth re-
lated work (Q). We compare the RS-tree and



RST-graph of our predicted related work and the
ground truth related work to quantitatively assess
their structural similarity (@).

In the following subsections, we first detail our
LLM-based workflow for RST-based RWG (Sec-
tion 3.2). We then explain the process of RST-graph
extraction (Section 3.3), which is integral to both
the generation’s refinement loop and the final eval-
uation. Finally, we introduce our novel RST-based
evaluation metrics (Section 3.4).

3.2 RST-based Related Work Generation

This section introduces our LLM-powered agent,
which aims to emulate a structured human writing
process: first understanding inter-paper relations,
leveraging this understanding to construct a well-
organized related work, and then keep refining it
by re-analyzing the structure. The generation work-
flow comprises three key phases:

RST-graph planning ). The input for this
phase consists of information from the target pa-
per and the set of cited papers. Given the input,
the LLM is prompted to determine the most salient
rhetorical relationships between the target and cited
papers. To ensure global structural coherence and
avoid the potential loss of context, we let the LLM
generate the overall graph structure with all papers
provided in the context, thanks to long context sup-
port in recent LLM models (Beltagy et al., 2020;
Su et al., 2024; Wang et al., 2024b).

We constrain the LLM to utilize a predefined set
of ten key rhetorical relations (the specific choices
and their definitions are detailed in Appendix A),
where the definitions are provided in the system
prompt. Furthermore, the LLM is guided to en-
sure the resulting graph is a directed acyclic graph
(DAG) (Yao et al., 2024; Ma, 2025), thereby avoid-
ing cycles, and to maintain overall coherence. Fi-
nally, we get the output of this phase: a DAG where
nodes represent the cited papers, and the directed,
labeled edges signify the intended rhetorical rela-
tions.

RST-graph-guided related work synthesis @).
This phase begins with outline generation, where,
before drafting the full text, the LLM formulates a
high-level outline based on the planned RST-graph.
This outline specifies the overall theme, the se-
quence for introducing cited papers, strategies for
transitioning between them, explicitly reflecting the
relationships encoded in the planned RST-graph,
and the bridges between the cited papers and the
target paper. This step effectively translates the

structured graph into planned text discourse. Fol-
lowing the outline generation, the LLM generates
an initial draft of the related work, denoted as 7.

Iterative self-refinement (€f), @)). This phase
aims to iteratively refine the related work by mak-
ing the LLM re-analyze the inter-paper relations.
This phase is necessary as it is hard for LLM to
completely understand the rhetorical relations and
even harder for it to follow the planned RST graph
to write a related work. However, it is well-known
that iteratively asking LLLM to refine the output
would lead to better generated results, see (Madaan
et al., 2023; Chen et al., 2024). Below, we discuss
our design:

Once an initial draft #( is generated, RETELL ex-
tracts its corresponding RST-graph G5, following
Section 3.3. Subsequently, the LLM is prompted
to analyze each relation within this parsed G, by
referencing back to the contents of the cited and
target papers. Particularly, for each edge in G,
the LLLM agent verifies its correctness by check-
ing back to the content of the paper. Changing the
perspective from the target and cited papers to the
newly generated related work and its RST-graph
provides a new context for the LLM to reflect and
improve the structure. Following this analysis, the
LLM generates new action items for improving the
related work. Based on the action items, the LLM
refines the draft, producing a new version #1. Sub-
sequently, an RST-graph G, is extracted from this
new draft 7;.

The core of the refinement cycle involves com-
paring the newly extracted graph G, with the
graph from the previous iteration Gz,. If mis-
matches are detected between these two graphs,
the LLM is prompted to focus on these differing
relations and generate new action items for fur-
ther refinement. This iterative process of analysis,
action item generation, and textual revision con-
tinues. The cycle terminates when the extracted
RST-graphs from two consecutive iterations, G's,
and G'3,, ,, are identical, or when 7 reaches a preset
maximum number of iterations, where ¢ is the num-
ber of iterations. Finally, we get the related work,
denoted as 7.

3.3 RS-tree and RST-graph Extraction

This section introduces how to extract the RST-
graph G(r) from a given related work text r, a
critical component utilized in steps @) and @)
Figure 2 explains how to build an RS-tree for the
related work example (on the top). Subsequently,
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Figure 2: Illustration on RS-tree parsing and RST-graph extraction (nodes building blue nodes are omitted).

we can extract an RST-graph from the RS-tree. Of
note, this related work example is an example from
the Multi-XScience dataset (Lu et al., 2020).

It begins with RST parsing, where the input text
r, i.e., related work example, is processed by an
RST parser. As shown in Figure 2a, we use “[”, “]”
pair to split this related work into 16 EDUs. We
put the EDU number as the superscript of “[]”. Fig-
ure 2b depicts the corresponding RS-tree. Each
circle indicates a text span, where we use the num-
ber pair ¢ : j to indicate the text span ranges from
1-th EDU to j-th EDU of r. For example in the bot-
tom left of Figure 2b, the span node(/:2) is formed
by an Enablement relation, where node(/) is the
nucleus and node(2) is the satellite.

Following parsing, the next step involves identi-
fying cited papers within the RS-Tree. Each node
in the RS-tree is analyzed to identify any cited pa-
pers mentioned within its textual content, which
can be done using regular expressions. In Figure 2b,
text spans containing citations are color-coded as
orange nodes, blue nodes otherwise.

The final step is to extract the RST-graph G(r)
from the RS-tree 7 (7), as shown in Figure 2c. In
an RST-graph, each node represents a unique cited
paper. Firstly, edges that connect nodes both con-
taining citations in the RS-tree with rhetorical rela-
tionships are identified. If each node only contains
one citation, we link the two paper-nodes with the
rhetorical relation on the edge. For example, we
connect the paper node(Cite:2) with (Cite:3) with

the Enablement relation between span node(7:8)
and (9:11).

If a selected text span node contains more than
one citation, we will perform two attempts: (i) We
will identify the main citation across these citations,
guided by the nucleus/satellite distinction within
the RS-tree. For example, the span node (5:12)
has two citations, i.e., Cite 2, 3, where we need
to identify which citation of the span node (5:12)
is the core for this Joint relationship. We achieve
this via traversing the RS-tree as follows: Within
the RS-tree of Figure 2b, the text span node (7:8,
Cite:2) is identified as a nucleus relative to the
text span node (9:11, Cite:3). Therefore, Cite:2 is
the core citation when compared to Cite:3. This
indicates that Cite:2 results in a Joint edge between
paper-node (Cite:3) and paper-node (Cife: 1) in the
RST-graph. We thus only keep this Joint edge. (ii)
Chances are that multiple distinct citations in a
single text span might not have any relationship
in (i). In this case, we simply regard all these
citations in the single text span as the main citations,
resulting in multiple rhetorical relationships in the
RST-graph. Further, we will also establish a Joint
relationship between these citations.

3.4 RST-based Assessment

To evaluate the structural quality of a generated
related 7, we compare its RS-tree 7 (#) and RST-
graph G(7) against those of the ground truth re-
lated work = (7 (r) and G(r)). We propose two



graph-based metrics (@) for this purpose:

Width Profile Similarity (WPS) This metric
assesses the similarity in the overall hierarchical
shape of the RS-trees 7 () and 7 (#). Firstly, each
RS-tree is converted into a “width profile” vector
P = [wp,ws,...,ws], where w; represents the
number of nodes at depth j in the tree. For WPS,
we consider the tree formed by only “builds” rela-
tions. The shape of this tree can be indicative of the
discourse strategy; for instance, a wider tree struc-
ture might suggest a breadth-first discussion cover-
ing multiple points with similar emphasis, whereas
a deeper, narrower tree could imply a focus on a
primary argument with extensive elaboration. The
WPS is then calculated as the cosine similarity be-
tween the width profile vectors of the ground truth
and generated RS-trees:

WPS(r,#) = cos(P(T(r)), P(T(#)) (1)

A higher WPS score indicates that the generated
related work exhibits a hierarchical organization, in
terms of layer-wise node distribution, that is more
similar to that of the ground truth.

Edge Coverage Ratio (ECR) While WPS cap-
tures the general tree shape, ECR focuses on the
specific relational connections between cited pa-
pers as represented in their respective RST-graphs
G(r) and G(7). This metric measures the propor-
tion of correctly identified edges from the ground
truth graph that are present in the generated graph.
ECR is calculated as:

ENE
ECR(T,?):| 7] |

2

where E denotes the set of edges in the ground
truth RST-graph G(r), and F represents the set of
edges in the generated RST-graph G(#).

We opt for ECR over the Jaccard index based
on the natural assumption that all the rhetorical
relationships in the ground truth are correct (i.e.,
rigorously verified by the expert writer). How-
ever, human-crafted related work might be subject
to missing some rhetorical relationships that were
captured by RETELL.

ECR assesses how well the generated RWS cov-
ers the essential relationships present in the ground
truth. ECR directly measures recall of these ground
truth edges, which we deem more critical for struc-
tural fidelity in this context than penalizing relation-
ships that were absent in ground truth but captured

by automatically generated related work. Of note,
the Jaccard index would emphasize that penaliza-
tion in the denominator.

4 Experiments

4.1 Dataset

Following common practice in related work gener-
ation research (Chen et al., 2022; Liu et al., 2023a;
Zhang et al., 2025), we evaluate our proposed
method on three publicly available datasets: Multi-
XScience, TAS2, and TAD. Multi-XScience (Lu
et al., 2020) is constructed by integrating data
from arXiv (Ginsparg, 1991) and the Microsoft
Academic Graph (MAG) (Sinha et al., 2015).
TAS2 (Chen et al., 2021) is derived from the
S20RC dataset (Lo et al., 2020), encompassing
multiple scientific domains such as physics and
mathematics. TAD (Chen et al., 2021) consists of
related work sections from computer science ar-
ticles, sourced from the Delve dataset (Akujuobi
and Zhang, 2017). For evaluation, we randomly
selected 500 samples of related work from the test
splits of each dataset. Each selected sample in-
cluded at least four cited papers. In all datasets,
the input consists of the abstracts from the cited
papers, while the ground truth is the related work
section from the target paper. The Multi-XScience
dataset additionally provides the abstract of the tar-
get paper. Detailed statistics for these datasets are
available in Appendix B.

4.2 Settings

We compare our RST-based approach against three
alternative LLM-based methods for related work
generation:

* Group-based (Martin-Boyle et al., 2024):
This method first employs an LLM to organize
citations into coherent groups based on their
topical similarity and relevance to the target
paper. The LLM then generates the related
work using these pre-defined groups.

* Feature-based (Li and Ouyang, 2025): This
method involves prompting an LLM to create
a faceted summary (including object, method,
findings, contribution, and keywords) for each
cited paper. It also generates a main idea for
the target related work based on these sum-
maries. All this information is subsequently
fed to the LLLM to produce the related work.



Mutli-XScience

Model Method

TAS2 TAD

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Group-based 29.60 5.21 14.40 24.45 3.31 13.64 27.51 3.70 13.93

Llama Feature-based 27.65 5.32 13.25 23.50 3.66 12.71 29.37 4.32 13.99
MiniGraph 26.58 5.47 12.63 23.09 3.74 12.24 29.64 4.54 13.76
RETELLOurs) 3218 563 1492 2643 375 1394 3018 44 14.48
Group-based 29.50 4.76 14.64 25.21 343 13.84 28.29 3.62 14.14

Qwen Feature-based 27.43 4.94 12.87 23.55 3.49 12.41 29.13 4.10 13.68
MiniGraph 26.28 4.88 12.09 23.42 3.64 11.97 29.18 4.16 13.14
RETELLOurs) 3179 504 1467 2673 365 1401 298 41l 14.29

Table 1: Performance with respect to the ROUGE metrics.

* MiniGraph (Zhang et al., 2025): This method
first constructs a knowledge graph, called min-
igraph, from entities and relations extracted
from the text of a subset of cited papers. The
LLM is then prompted to generate a summary
for each minigraph. These chunk summaries
are finally combined to form the related work.

For the RST parsing component, we used the
parser developed by Liu et al. (2021). The self-
refinement loop in our method was constrained to
a maximum of 5 iterations. Our experiments were
conducted using two LLM backbones: Llama-3.1-
8B-Instruct (Llama Team, 2024) and Qwen2.5-
14B-Instruct (Qwen Team, 2024). To evaluate
structural quality, we employed our proposed RST-
graph-based metrics, WPS and ECR, as defined
in Section 3.4. Additionally, we utilized standard
ROUGE F1 scores (ROUGE-1, ROUGE-2, and
ROUGE-L) (Lin, 2004) to assess generation qual-
ity. All experiments were performed in a single run,
with results averaged across the entire dataset.

4.3 Structural Quality

Mutli-XScience TAS2 TAD

Model Method WPS ECR WPS ECR WPS ECR
Group-based 6248 20.64 70.06 27.50 72.65 29.24
Llama  Fature-based 5408 3256 5950 3391 64.96 4111
MiniGraph ~ 60.50 3149 6829 3320 79.76 37.39
RETELL(Ours) 75.40 3992 7575 3471 8230 4177
Group-based 7659 1632  76.13 12.96 78.53 13.52
Qwen Feature-based 67.53  21.23 6596 34.23 7793 3493

MiniGraph 60.42 3622  66.55 29.68 78.92 4341

RETELL(Ours) 77.70 4443 7694 3998 81.92 44.01

Table 2: Structure quality.

Table 2 displays the results of the structural qual-
ity assessment using our proposed metrics. Our
method consistently achieves the highest scores for
both WPS and ECR across all models. This in-
dicates that our approach generates related work
that has a similar overall structure to the ground
truth related work, and also captures the relation-
ships among cited papers well (a specific example
is provided in Appendix C). Regarding the other

methods, their performance for the second-best
WPS scores varies across different datasets and
models. Generally, group-based methods perform
the poorest on the ECR metric, suggesting that
merely grouping cited papers is insufficient for un-
covering the intricate relations among them. The
Feature-based and MiniGraph methods show better
ECR performance, implying that information about
the target paper’s main idea and conceptual rela-
tionships can, to some extent, aid in establishing
connections between cited papers.

4.4 Overall Performance

Table 1 showcases the overall performance of
the methods based on the standard ROUGE-1,
ROUGE-2, and ROUGE-L metrics. For exam-
ple, on the Multi-XScience dataset, when aver-
aging results from the Llama and Qwen models,
our method demonstrates improvements over the
second-best performing baseline by 2.43 points
in ROUGE-1, 0.13 in ROUGE-2, and 0.27 in
ROUGE-L. Similarly, for the TAS2 dataset, our ap-
proach yields average gains of 1.75 in ROUGE-1,
0.01 in ROUGE-2, and 0.23 in ROUGE-L. On the
TAD dataset, our method shows improvements of
0.59 in ROUGE-1 and 0.31 in ROUGE-L, although
a slight decrease is observed in the ROUGE-2 score
compared to the top baseline.

This strong performance suggests that the en-
hancement in the structure positively influences the
overall generation quality. By guiding the LLM
to produce better-organized content that accurately
reflects inter-paper relationships, our method likely
facilitates more focused and relevant text genera-
tion for each segment of the related work.

4.5 Ablation Study

To assess the contribution of the iterative self-
refinement phase in our method, we performed an
ablation study. We compared our complete genera-
tion pipeline (referred to as “Ours”) with a variant
that omits the self-refinement module (referred to



as “Ours-Ref.”). In this ablated version, the gener-
ation process concludes after the initial synthesis
phase, treating the draft related work as the final
output, without subsequent revisions. This compar-
ison was conducted using the Llama backbone on
the Multi-XScience, TAS2, and TAD datasets.

90

w
o

[ Ours (WPS)
[Z1 Ours-Ref. (WPS)

B Ours (ECR)
EmA Ours-Ref. (ECR)

o]
o
N
o

70

Width Profile Similarity
Edge Coverage Ratio

w
o

N
o

0
Multi-XScience TAS2 TAD

Figure 3: Ablation study of the iterative self-refinement
phase on structural quality.

First, we examine the impact of the iterative self-
refinement phase on structural quality, as shown in
Figure 3. The results clearly demonstrate the value
of self-refinement. For both WPS and ECR metrics,
which assess the overall hierarchical structure and
relation among the cited papers, the full method
significantly outperforms the ablated version across
all three datasets. This indicates that the refinement
loop is effective in correcting structural errors and
aligning the generated text more closely with the
planned rhetorical structure.
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Figure 4: Ablation study of the iterative self-refinement
phase on generation quality.

Next, Figure 4 illustrates the impact of the in-
teractive self-refinement module on overall perfor-
mance as measured by ROUGE scores. Consis-
tent with the improvements in structural quality,
the full method generally achieves slightly higher
ROUGE-1, ROUGE-2, and ROUGE-L scores com-
pared to the version without refinement across all
three datasets. This again suggests that the en-
hanced structural integrity due to the refinement

process can positively contribute to the content rel-
evance captured by ROUGE metrics.

4.6 Impact of Number of Cited Papers
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Figure 5: Study on the impact of number of cited paper.

We investigate the impact of varying the number
of cited papers on both structural quality and gen-
eration performance. We conduct this sensitivity
analysis on the Multi-XScience dataset with the
Llama model as the LLM backbone. Our findings
are illustrated in Figure 5. The results indicate that
the ROUGE-1 score remains largely stable across
all methods, irrespective of the number of cited pa-
pers. In contrast, the Edge Coverage Ratio demon-
strates significant sensitivity to this variable. No-
tably, as the number of cited papers increases, the
ECR for baseline methods tends to decline rapidly.
Our proposed RST-based method, however, main-
tains a more consistent ECR in these scenarios,
indicating a better preservation of structural rela-
tions. Despite this relative robustness, a noticeable
performance drop in ECR is observed for all ap-
proaches, including ours, when the number of cited
papers reaches eight or more. This suggests that
generating a structurally coherent related work sec-
tion becomes substantially more challenging as the
density of inter-paper relations increases, poten-
tially indicating an inherent difficulty in the task at
higher citation counts.

5 Conclusion

In this paper, we aim to address the critical chal-
lenge of generating structurally coherent related
work and the inadequacy of existing metrics. In-
spired by RST, we introduce RETELL, a novel
LLM-based pipeline for generating structure-aware
related work. Besides, we introduce two new graph-
based metrics for assessing the logical flow and
inter-paper relational structure. Our experiments
demonstrate our method significantly enhances the
structural fidelity and overall quality of the output.



6 Limitations

Due to resource constraints, our evaluations only
explored the open-source LLM backbones and did
not include a comprehensive comparison against
the latest large-scale commercial models. Con-
sequently, our reported results primarily serve to
demonstrate the relative efficacy of our approach.
Moreover, our experiments were conducted on
three standard datasets where, consistent with com-
mon practice in many existing works, only abstracts
were used as the textual input for cited papers. We
would like to explore full-text documents that con-
tain richer contextual and relational information.

7 Ethical Considerations

The development of automated academic writing
tools, such as our proposed related work generation
system, brings some ethical concerns. Key risks
include misuse, such as plagiarism through unmod-
ified use of the generated text, and the potential
for factual inaccuracies or biases inherent in LLMs.
Although our RST-guided approach enhances co-
herence, it does not ensure factual accuracy. We
emphasize the necessity of responsible use, rigor-
ous content verification, and strict adherence to
academic integrity to mitigate these risks.
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A Rhetorical Relation Set

We adopt the design of eighteen relations proposed
by Carlson and Marcu (2001). To better align with
the task of related work generation, we selected ten
relations and defined them as follows in the system
prompts:

» Joint: A Joint relation between two papers
means the two papers exhibit some sort of
parallel structure between two papers, but are
not in contrast.

* Elaboration: An Elaboration relation from
one paper to another means the first paper
adds detail or explanation to the main topic of
the second paper.

* Explanation: An Explanation relation from
one paper to another means the first paper pro-
vides evidence or justification for the situation
presented in the second paper.

* Contrast: A Contrast relation between two
papers means the two papers are in contrast
with each other along some dimension.

* Temporal: A Temporal relation from one pa-
per to another means the situation presented
in the first paper occurs before or leads up to
the situation in the second paper.

* Background: A Background relation from
one paper to another means the first paper
establishes the context or grounds with respect
to which the second paper is to be interpreted.

* Manner-Means: A Manner-Means relation
from one paper to another means the first pa-
per explains the way in which something in
the second paper is done.

* Enablement: An Enablement relation from
one paper to another means the first paper
enables the second paper to happen.

* Evaluation: An Evaluation relation from one
paper to another means the first paper assesses
the second paper and recognizes the value it
assigns.
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https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2022.coling-1.543/
https://aclanthology.org/2022.coling-1.543/
https://aclanthology.org/2022.coling-1.543/
https://doi.org/10.1016/j.eswa.2024.123781
https://doi.org/10.1016/j.eswa.2024.123781
https://doi.org/10.1016/j.eswa.2024.123781
https://doi.org/10.1016/j.eswa.2024.123781
https://doi.org/10.1016/j.eswa.2024.123781
https://doi.org/10.24963/ijcai.2024/917
https://doi.org/10.24963/ijcai.2024/917
https://doi.org/10.24963/ijcai.2024/917
https://doi.org/10.18653/v1/D18-1204
https://doi.org/10.18653/v1/D18-1204
https://doi.org/10.18653/v1/D18-1204
https://arxiv.org/abs/2403.14358
https://arxiv.org/abs/2403.14358
https://arxiv.org/abs/2403.14358
https://proceedings.neurips.cc/paper_files/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://arxiv.org/abs/2411.06159
https://arxiv.org/abs/2411.06159
https://arxiv.org/abs/2411.06159
https://arxiv.org/abs/2411.06159
https://arxiv.org/abs/2411.06159
https://arxiv.org/abs/2303.18223
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053

Textual Content of Textual Content of Avg. # of Avg. # of Words Avg. # of

Dataset # of Samples Target Paper Cited Paper Cited Papers in Cited Papers Relations
Multi-XScience 500 Abstract Abstract 6.05 156.27 11.99
TAS2 500 None Abstract 4.45 223.27 491
TAD 500 None Abstract 4.19 176.29 441

Table 3: Dataset statistics.

* Cause: A Cause relation from one paper to
another means the first paper is the cause and
the second paper is the effect.

B Dataset Statistics

The statistics of the evaluated dataset are presented
in Table 3.

C Generated Related Work Example

We present an example from the Multi-XScience
dataset to demonstrate the different outputs gen-
erated by different methods, as shown in the grey
boxes on the following pages.
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Ground Truth:

Powered by large-scale datasets of 3D CAD models (e.g., ShapeNet [1] ), deep-learning-based
methods have been proposed for 3D reconstruction. Both 3D-R2N2 [2] and LSM [4] use RNNs
to infer 3D shape from single or multiple input images and achieve impressive results. How-
ever, RNNs are time-consuming and permutation-variant, which produce inconsistent reconstruc-
tion results. 3DensiNet [3] uses max pooling to aggregate the features from multiple images.
However, max pooling only extracts maximum values from features, which may ignore other
valuable features that are useful for 3D reconstruction.

Ours (ROUGE-1: 30.89, ECR: 1.0):

Previous research has established the foundational concept of using deep learning for 3D shape
representation [1], which has been further developed in subsequent works [2] and [4] . These
studies explore the use of deep learning for 3D reconstruction, with [2] employing recurrent
neural networks (RNNs) for generating 3D reconstructions from multiple images, while [4]
leverages geometric constraints for more efficient and accurate 3D reconstruction using fewer
input images. In contrast, [3] proposes an alternative approach using density heat-maps for 2D-
to-3D transformation, addressing the limitations of RNN-based methods by introducing a novel
architecture named 3DensiNet. This approach not only enhances the quality of the generated 3D
volumes but also integrates adversarial learning for improved accuracy. Our work, Pix2Vox, builds
on these advancements by introducing a context-aware fusion module to enhance the consistency
and quality of multi-view 3D reconstructions, thereby outperforming existing methods in terms of
both accuracy and efficiency.

Group-based (ROUGE-1: 25.20, ECR: 0.167):

This paper delves into the use of recurrent neural networks (RNNs) for 3D reconstruction from
multi-view images, a topic that has been explored in several recent works. Notably, [2] discusses
the inherent limitations of RNN-based approaches in this context. The paper highlights that when
given the same set of input images in different orders, RNNs are unable to produce consistent
reconstruction results, a critical issue for multi-view 3D reconstruction. Additionally, due to long-
term memory loss, RNNs cannot fully leverage input images to refine reconstruction outcomes,
thus limiting their effectiveness in capturing detailed 3D representations [2].

Another relevant study [4] addresses 3D reconstruction through a different lens, emphasizing the
importance of leveraging 3D geometry via feature projection and unprojection along viewing rays.
Although this approach does not directly use RNNs, it underscores the challenges of handling
multi-view images for 3D reconstruction, providing a broader context for the limitations and
potential solutions beyond the scope of RNN-based methods.
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Feature-based (ROUGE-1: 22.59, ECR: 0.167):

Previous research efforts in the domain of 3D reconstruction from RGB images have primarily
focused on leveraging deep learning techniques to enhance the representation and accuracy of
reconstructed 3D models. For instance, [1] introduced 3D ShapeNets, a Convolutional Deep Belief
Network (CDBN) designed to represent geometric 3D shapes as probability distributions on a
3D voxel grid. This method not only facilitates the recovery of full 3D shapes from 2.5D depth
maps but also supports joint object recognition and shape completion, significantly improving
performance over existing methods. However, 3D ShapeNets rely on synthetic CAD data and do
not directly address the challenges of converting RGB images to 3D volumes.

In contrast, [2] proposed the 3D Recurrent Reconstruction Neural Network (3D-R2N2), which
leverages recurrent neural networks (RNNs) to map images to 3D occupancy grids. This approach
is particularly effective in handling single-view and multi-view reconstructions without requiring
annotations or object class labels. Despite its success, RNN-based methods like 3D-R2N2 suffer
from limitations such as inconsistency in reconstruction results when input images are presented in
different orders and the inability to fully utilize all input images due to long-term memory loss.
To overcome these limitations, recent works have explored alternative architectures that do not rely
on RNNs. For example, [3] introduced 3DensiNet, a neural network that predicts 3D volumetric
objects from 2D images using density heat-maps as an intermediate step. This method has been
shown to outperform classical 3D autoencoders and other state-of-the-art techniques. Similarly,
[4] presents a multi-view stereopsis system that combines learning with geometric constraints to
achieve efficient and complete 3D reconstruction. However, these methods do not address the
inconsistencies and inefficiencies associated with sequential processing in RNN frameworks.

In this paper, we introduce Pix2Vox, a novel framework that enhances the consistency and efficiency
of 3D reconstruction from RGB images. Unlike previous methods, Pix2Vox utilizes an encoder-
decoder architecture to generate a coarse 3D volume from each input image and a context-aware
fusion module to select high-quality reconstructions. Additionally, a refiner is employed to
further refine the fused 3D volume, leading to superior performance and speed compared to
existing approaches. Experimental results on the ShapeNet and Pix3D benchmarks demonstrate
the effectiveness of Pix2Vox in terms of reconstruction accuracy and generalization to unseen
categories.
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MiniGraph (ROUGE-1: 24.89, ECR: 0.5):

Recent advancements in 3D shape representation and reconstruction have spurred significant
progress in visual understanding [1]. Specifically, the introduction of 3D ShapeNets, which
utilize Convolutional Deep Belief Networks to model 3D shapes as probability distributions on
voxel grids, has enabled joint object recognition and shape completion from 2.5D depth maps
[1]. However, the reliance on 2.5D depth maps limits the applicability of such methods to
scenarios with RGB data only. To address this, [2] proposed the 3D Recurrent Reconstruction
Neural Network (3D-R2N2), a recurrent neural network capable of reconstructing 3D shapes
from multi-view RGB images without the need for annotations or object class labels. Although
3D-R2N2 demonstrates superior performance in single-view reconstruction, it suffers from inherent
limitations such as inconsistency in reconstruction results due to the order of input images and
long-term memory loss in RNNs, which hampers the effective refinement of reconstructions [2].
In parallel, [3] introduced 3DensiNet, a novel architecture that leverages density heat-maps for
2D-to-3D transformations, showing promising results in generating 3D volumetric objects from
single 2D images. Despite these advances, the aforementioned methods either rely on specific input
modalities or face challenges in refining and fusing information from multiple views effectively.
Recent advancements in 3D reconstruction from multi-view and single-view RGB images have
been predominantly driven by deep learning techniques. For instance, [4] introduces a learnt system
for multi-view stereopsis that leverages feature projection and unprojection along viewing rays,
enabling end-to-end learning for metric 3D reconstruction. This system integrates shape priors
and geometric constraints, outperforming both classical approaches and recent learning-based
methods on the ShapeNet dataset. However, existing works like 3D-R2N2, which rely on recurrent
neural networks (RNNs), suffer from order dependency and long-term memory loss, making it
challenging to produce consistent and refined reconstructions from multiple inputs. Our proposed
Pix2Vox framework addresses these limitations by employing an encoder-decoder architecture for
coarse 3D volume generation and a context-aware fusion module to adaptively select high-quality
reconstructions, thereby ensuring superior performance and consistency across different input
orders.
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