Under review as a conference paper at ICLR 2026

DISTPFN: TEST-TIME POSTERIOR ADJUSTMENT FOR
TABULAR FOUNDATION MODELS UNDER LABEL SHIFT

Anonymous authors
Paper under double-blind review

ABSTRACT

TabPFN has recently gained attention as a foundation model for tabular datasets,
achieving strong performance by leveraging in-context learning on synthetic data.
However, we find that TabPFN is vulnerable to label shift, often overfitting to the
majority class in the training distribution. To address this limitation, we propose
DistPFN, the first test-time posterior adjustment method designed for in-context
tabular foundation models. DistPFN rescales predicted class probabilities by
downweighting the influence of the training prior (i.e., the class distribution of
the context) and emphasizing the contribution of the model’s predicted posterior,
without modifying the architecture or requiring additional training. We further
introduce DistPFN-T, which incorporates temperature scaling to adaptively control
the adjustment strength based on the discrepancy between prior and posterior. We
evaluate our methods on over 250 OpenML datasets, demonstrating substantial
improvements for various TabPFN-based models in classification tasks under label
shift, while maintaining strong performance in standard settings without label shift.

1 INTRODUCTION

Tabular data is among the most prevalent data formats across various domains, such as healthcare
(Johnson et al., 2016) and finance (Arun et al., 2016)). Tree-based models (Chen & Guestrin, 2016;
Ke et al.,2017) have consistently demonstrated strong performance on tabular tasks, owing to their
ability to handle heterogeneous feature types with minimal hyperparameter tuning. Recently, deep
learning (DL) methods, especially transformer-based models (Huang et al., 2020} |Gorishniy et al.,
2021)), have emerged as strong alternatives by capturing complex feature interactions.

Among these methods, TabPFN (Hollmann et al., | 2023) introduces in-context learning (ICL) to
tabular classification by pretraining on synthetic datasets and producing predictions for test samples
in a single forward pass. While TabPFN achieves strong performance on small-scale datasets, it
suffers from scalability issues due to the quadratic complexity of self-attention (Vaswani et al., 2017).
To address this limitation, several extensions have been proposed to improve inference efficiency on
larger datasets (Thomas et al.,|2024; |Xu et al.| 2025; Zeng et al., [2025)).

In this paper, we highlight an overlooked limitation of TabPFN, namely its vulnerability to label
shift, which is a critical scenario in tabular learning and frequently arises in real-world tasks (Kim
et al.} [2024). We observe that TabPFN tends to overfit to the majority class in the training dataset
(i.e., majority-class bias), resulting in poor performance when the class distribution in the test dataset
differs. As shown in Figure E] and Table E], TabPFN-v2 (Hollmann et al., 2025) exhibits a strong
majority-class bias, making incorrect predictions even when trained and tested on the same dataset.

To this end, we propose DistPFN, a simple yet effective test-time adaptation method that improves
the robustness of TabPFN-based models to label shift, without modifying the architecture or updating
any parameters. Specifically, it adjusts the model’s output distribution (i.e., posterior) by reweighting
class probabilities based on the ratio between the posterior and the class distribution of the training
dataset (i.e., prior). Intuitively, this adjustment downweights the influence of the training distribution
and amplifies the impact of the observed test samples. Furthermore, to make the adjustment more
adaptive to distributional mismatch between the labels of the training and test datasets, we propose
DistPFN-T, which adjusts the reweighting intensity via temperature scaling, where the temperature is
determined based on the discrepancy between the posterior and the prior. Unlike classical correction

Under review as a conference paper at ICLR 2026

Performance under Class Imbalance X
(Class 0) 87.2% vs. (Class 1) 12.8% (gﬁgﬂg&?. + 1()(1)SutrlgN

100 88.5% 91.9% .

L o % 76.3% %) |yg=0 g=1 (%) =0 g=1
g 60 \? y=0| 87.2 0.0 y=0 1 8I.1 6.1
§ 40 e Accuracy Yy = 1 11.1 17 Yy = 1 30 98
< 20 10.5% Recall Total 98.3 1.7 Total 84.1 15.9

’ TabPFN-v2 + DistPFN

Table 1: Confusion matrices. TabPFN exhibits se-
Figure 1: Majority-class bias of TabPFN. vere majority-class bias, predicting 98.3% of sam-
TabPFN suffers from majority-class bias, re- ples as the majority class, whereas DistPEN allevi-
sulting in poor recall for the minority class. ates this issue through a simple test-time adjustment.

methods that require explicit estimation of test priors, our approach is novel in that it leverages the
in-context inference structure to enable an adjustment without additional training or prior estimation.

We conduct extensive experiments on over 250 classification datasets o
to evaluate the effectiveness of DistPFN in both standard and label- 5]
shifted classification scenarios. As shown in Figure 2] DistPFN 37
significantly improves accuracy of TabPFN-v2 (Hollmann et al.| §75 e TabPFN-2
2025) under label shift, with the x-axis indicating the degree of shift <7 T 77270,

(see Sec.[4.4) and the y-axis showing average accuracy over 253 Foros 1
datasets. Our main contributions are summarized as follows:

2
Degree of shift (B)

Figure 2: Robustness to shift.

* We identify an overlooked limitation of TabPFN—its vulnerability under label shift, as it tends to
overfit to the majority class in training dataset. The performance of various TabPFN-based models
degrades drastically as the degree of shift increases.

* We propose DistPFN, a novel and simple test-time adaptation method that adjusts TabPFN’s output
distribution based on the ratio between the predicted posterior and the prior representing the class
distribution of the training dataset. We further introduce DistPFN-T, which extends this approach
by applying temperature scaling to adaptively control the strength of adjustment according to the
degree of distributional mismatch between the prior and the posterior.

* We present extensive evaluations on over 250 classification datasets, demonstrating that our
methods significantly improve the performance of various TabPFN-based models under label shift,
surpassing baseline methods and achieving state-of-the-art (SoTA) performance.

* We provide a theoretical interpretation of our method, showing that it can be viewed from both 1)
classical label shift correction and 2) Bayesian inference, with details provided in Appendix

2 RELATED WORKS

Gradient Boosting Decision Trees (GBDTs). GBDTs (Chen & Guestrin, 2016} Ke et al., 2017
Prokhorenkova et al.l [2018]) are widely used for tabular data due to their strong inductive biases,
minimal preprocessing, and robust performance across diverse datasets (Grinsztajn et al., [2022;
McElfresh et al.| |2023)). Despite advances in deep learning, GBDTs remain dominant in tabular tasks,
as gradient-based models struggle to encode suitable inductive biases and often underperform in
several benchmarks (Grinsztajn et al.| [2022}; |[Shwartz-Ziv & Armon, |2022; McElfresh et al., 2023).

Tabular Deep Learning (DL). Transformer-based models have been proposed to capture complex
feature interactions in tabular data, where TabTransformer (Huang et al.,|2020) applies contextual
embeddings to categorical features using self-attention. Several other architectures have also been
introduced (Arik & Pfister,[2021;|Somepalli et al.| 202 1)), but these methods typically require extensive
hyperparameter tuning and often fail to generalize across datasets (Kadra et al., [2021} |Grinsztajn
et al.}2022). Recently, TabM (Gorishniy et al., 2024a) proposes an MLP-based ensemble model that
generates multiple predictions per instance with shared parameters, and ModernNCA (Ye et al.,[2024)
introduces a differentiable kNN approach based on neighborhood components analysis. RealMLP
(Holzmiiller et al., [2024) simplifies MLPs with improved design and meta-tuned default parameters,
and TabR (Gorishniy et al., 2024b) augments inputs by retrieving similar training examples.

Tabular Foundation Models. TabPFN (Hollmann et al., [2023)) is a foundation model for tabular
classification that uses in-context learning (ICL) via large-scale synthetic pretraining. It predicts
test instances by conditioning on training inputs and labels, without gradient updates. TabPFN-v2
(Hollmann et al. [2025)) enhances scalability and generalization through dual-axis attention over
samples and features, and structurally diverse synthetic pretraining. Limited by its computational

Under review as a conference paper at ICLR 2026

(a) TabPFN (b) + DistPFN

(TabPFN-v2, LoCalPFN, TabICL ...)

Biased foward the
(MH?@@?

[Transformer

(Test—timevAdaptation)
Distribution Adjustment

Figure 3: Overall framework of DistPFN. (a) TabPFN exhibits a majority-class bias under label
shift, predicting test instances toward the dominant class in the training dataset. (b) DistPFN mitigates
this bias via a simple fest-time adaptation method that rescales the predicted class probabilities for
each test instance. This scaling factor is computed from the 1) the training class distribution (i.e.,
prior, Puain(y)) and 2) the predicted class distribution of the test instances (i.e., posterior, Pes(y)).

complexity, TabPFN has led to several extensions, where LoCalPFN (Thomas et al.,[2024) improves
TabPFN by retrieving neighbors of test samples and fine-tuning on this local context, and MixturePFN
(Xu et al., 2025) scales TabPFN to larger datasets by combining nearest-neighbor sampling with
bootstrapped fine-tuning at inference time. TuneTable (Feuer et al.,2024) scales TabPFN to larger
datasets by learning dataset-specific contexts through fine-tuning, and TabFlex (Zeng et al.| 2025)
replaces softmax attention of TabPFN with linear attention to improve efficiency. TabICL (Qu et al.}
20235)) uses a two-stage architecture with column-then-row attention to embed rows.

Label shift. Several studies have addressed label shift by rescaling classifier outputs, typically
requiring estimation of the test distribution (Elkan, [2001} [Lipton et al.,|2018};|Azizzadenesheli et al.,
2019). In contrast, our method avoids test prior estimation and instead leverages only the training
prior (e.g., the in-context dataset) and the predicted distribution, yielding a simple and efficient plug-in
adjustment that requires no architectural modifications. Moreover, unlike Drift-Resilient TabPFN
(Helli et al., 2024}, which addresses temporal shift through causal pretraining, our method specifically
addresses label shift and enables test-time adaptation of pretrained models without retraining.

3 PRELIMINARIES

Tabular classification. A tabular dataset consists of instances z; € R?, where each z; is a d-
dimensional feature vector composed of numerical, ordinal, or (one-hot encoded) categorical attributes.
Each instance is associated with a label y; € {1,. .., C} indicating one of C predefined classes. The
training dataset is denoted as Dyin = {(24,v:)} ZV:‘I and the test dataset as Dy = {z; }N “ Ina

tabular classification task, a model f predicts the class labels y; given the x; from the test set.

Tabular ICL. TabPFN-based methods (Hollmann et al., 2023} |2025)) predict test labels by condition-

ing on the labeled Dyain = { (24, yl)}f\’:‘“f“ and the unlabeled Dy = {z; };V:‘esl‘ Note that these models
infer the corresponding test labels y; in a single forward pass without any gradient updates.

Label shift. In this paper, we aim to address label shift, which is a distribution shift scenario where
the marginal label distribution differs between training and test datasets, i.e., Puain(y) 7# Prest(Y)-
Specifically, for each class ¢ € {1, ..., C}, the label distributions are estimated as

1{i € [Nuain] : i = c}| {7 € [Nest] 1 95 = Ck}|
Ntrain thest

ptrain(y = Ck) = 3 ptest(y = Ck) =

where piest(y = ¢k) cannot be directly computed, as test labels are not observed.

4 METHODOLOGY

In this section, we build upon TabPFN [ﬂ (Sec.[A)), which performs ICL by conditioning on the
training dataset but suffers from label shift. To address this, we propose DistPFN (Sec.4.2), which
reweights predicted class probabilities using the ratio between the posterior and the prior. We
further introduce DistPFN-T (Sec.[43]), which adaptively controls the adjustment strength using
temperature scaling. Lastly, we propose a inverse-frequency-based oversampling method (Sec. £.4)
that oversamples rare classes in the training dataset based on inverse frequency to enable controlled
evaluation under label shift. The overall framework of our method is described in Figure [3]and 4]

'We use TabPFN to refer broadly to the family of ICL-based tabular foundation models, including variants
such as TabPFN-v2 (Hollmann et al.} 2025}, TabICL (Qu et al.}[2025)), and LoCalPFN (Thomas et al.} 2024

Under review as a conference paper at ICLR 2026

(a) Posterior distn. (b) Average accuracy by shift

[?[?‘%]‘%I + DistPFN 253 OpenML Label Shift
Datasets | Low | Mid | High
HREEEEEES TabPFN 818 | 782|727

+ DistPFN 81.8 | 79.1 | 76.9
+ DistPFN-T | 81.8 | 79.6 | 77.5

Figure 4: TabPFN vs. DistPFN vs. DistPFN-T. (a) As TabPFN suffers from majority-class bias
under label shift, DistPFN mitigates this by adjusting its posterior distribution based on its own
predictions. DistPFN-T further refines the adjustment by dynamically scaling its strength based on
the discrepancy between the prior and posterior distributions. (b) Under label shift, both DistPFN
and DistPFN-T outperform TabPFN, with DistPFN-T showing the most consistent improvements.

4.1 TABPFN

In tabular in-context learning, TabPFN predicts the label of a test instance x; by conditioning on the
entire training dataset Dy,. Let f(z 7> Dvain) € R denote the model output logits for the C' classes.
The posterior distribution of TabPFN is computed via softmax:

D1 exp x'7Drin
PrapeN (Y | 25, Dirain) = —¢& (f (%, Dyain) [y])

> =1 XD (f (2, Duwain) [c])
where [-] denotes indexing over class logits. For simplicity, we denote the posterior distribution of
any model p(y | «, Dyain) as P(y), omitting the notations of input and training dataset.

; ey

4.2 DISTPFN: TEST-TIME POSTERIOR ADJUSTMENT

To improve the robustness under label shift, DistPFN extends TabPFN by adjusting the model’s
output, or the predicted distribution of x;. Specifically, it introduces an adjustment factor based on
the ratio between the predicted distribution pr.,pen(y) and the training prior pain(y) as:

~ ~ DTabPEN (y) DTabPEN (y) 2
DpiseEN(y) = Norm(Prwwpen (¥) © ———F—— = Norm(—————~—), 2)
' () (‘ () ptrain(y)) (ptrain(y))
————

Adjustment factor (<)

where Norm(-) denotes normalization over classes to ensure the probabilities sum to one. This
adjustment down-weights the influence of the training prior and instead emphasizes the model’s own
prediction at test time, without requiring any modification to the model architecture or parameters.

Note that unlike conventional methods where the training distribution is only indirectly encoded in
model parameters, ICL-based TabPFN directly conditions on the training dataset (i.e., context) at
inference time, thereby enabling access to training data during prediction. This property makes our
method specifically tailored to mitigate such bias in tabular foundation models.

4.3 DISTPFN-T: TEMPERATURE-SCALED ADJUSTMENT

While DistPFN corrects for label shift using the training prior, the optimal strength of adjustment may
vary depending on the deviation of test-time predictions from the training prior. To make posterior
adjustment more adaptive to the discrepancy between the training and the test dataset, we propose
DistPFN-T, which introduces temperature scaling to control the sharpness of adjustment based on the
discrepancy between the training prior py,i(y) and the predicted distribution prpprn (y). Specifically,
a temperature value 7 is computed using the cross-entropy (CE) between the two distributions, where
the predicted distribution pryppen () is then passed through a temperature-scaled softmax as:
Pravpen-T(Y =€) = Cexp (pTdbeN(y /) , where 7 = CE(Pravpen (Y), Prrain (¥))-
> =1 exXp (Pravpen(y =)/ 7) 3)

When the predicted distribution strongly deviates from the training prior (i.e., high cross-entropy),
a high temperature is applied to smooth the predictions, thereby preventing over-adjustment. This
temperature-scaled distribution pr.pen.t(y) is used as the numerator of the adjustment factor in
DistPFN-T, replacing prypprn (v) used in DistPFN as:

ﬁTabPFN-T (y)
FabPR Ty, 4
Prtrain (y)) ()

Adjustment factor (cv)

DpiseN-T(Y) = Norm(Pravpen (y) -

Under review as a conference paper at ICLR 2026

Algorithm 1 Pseudocode for DistPFN m—) : Stronger label shift
(Label 0:1) 10%:90% (Label 0:1) 30%:70%

x test: test instance(s) o1 1.0

D_train: training dataset c Lo08 £= L 08

p_train: training class prior w206 L6l

f£: TabPFN-based model (1] 5 —- 5

alpha: adjustment factor bt 30'4 = Label 0 g“

method: ["tabpfn", "distpfn", "distpfn-t"] | i

Label1 | ~02 Label 1

logits = f(x_test, D_train)
p_hat = softmax(logits, dim=0)

= = F
@

-t c
if method == "tabpfn": (7] -go.s / -‘é’o.e
alpha = 1 s, ___ S o4l 7
£° / mm Lavelo | ©° W Label 0
elif method == "distpfn": 02 J w Label 1 02 w2 Label 1
alpha = p._hat/p-train 0.0 ’
0 . h - 3 . h i &
elif method == "distpfn-t": Shift Strength (B) Shift Strength (B)
tau = cross_entropy(p_hat, p_train) 1 . - - ing.
p_hat_scaled = softmax (p_hat/tau, dim=0) Flgur? 5: Inverse freqqepcy basgd oyersamplmg
alpha = p.hat_scaled/p.train As [increases, the training distribution becomes
p_hat = alpha * p_hat 1ncreg1s1ngly 'blased tqward rare clasges, Whlle the
return p_hat/p_hat.sum(dim=0) test distribution remains fixed, enabling fair com-

parison across varying degrees of shift.

Table [2] shows the example where DistPEN-T

A i . Prediction Case 1) Majority | Case 2) Minority
smooths the adjusted probabilities of DistPFN

based on the prediction of TabPFN and the train- Cl_ass A B A B
ing prior. When the prediction of TabPFN aligns _Prior 0.80 0.20 0.80 0.20
with the majority class (i.e., leans toward the ma- TabPFN 060 040(-) | 040 0.60 (-

jority class in the training prior), as in Case 1) +DistPEN | 0.36 0.64 (1) | 0.10 0.90 (1)
Majority, DistPFN-T amplifies the minority class _+ DistPEN-T | 0.33 0.67 (1) | 0.12 0.88 (1)
more than DistPFN, potentially inducing over- .1 5. pregiction w/ DistPEN and DistPEN-T.
prediction. Conversely, when the prediction of

TabPFN aligns with the minority class, as in Case 2) Minority, DistPFN-T amplifies the majority
prediction to mitigate overprediction. This design is intuitive, as it counterbalances the bias introduced
by the label distribution and the model’s own prediction, leading to more calibrated and stable outputs.
The effectiveness of DistPEN-T over DistPEN is demonstrated in Table 3| and Figure[7] using three
different foundation models under varying degrees of distribution shift.

As TabPFN takes the entire test dataset (i.e., multiple instances) as input at once rather than processing
each instance individually (i.e., single instance), the proposed methods apply their adjustment based
on either the predicted distribution of a single instance or the average distribution of the test dataset,
with the latter used by default in our experiments. A comparison of these two strategies is presented
in Table 0] demonstrating the robustness of this design choice.

4.4 BENCHMARK FOR LABEL SHIFT: INVERSE-FREQUENCY-BASED OVERSAMPLING

To enable controlled evaluation under label shift, we propose inverse-frequency-based oversampling,
which modifies the label distribution of Dy, by oversampling each class according to its inverse
frequency, while keeping D unchanged for direct comparison with the non-shifted setting. Note
that we adopt oversampling rather than undersampling to avoid potential performance degradation
caused by the removal of training instances. We define the class frequency in a dataset D consisting
of N samples as p(y = ¢) = W, where the class-wise sampling weights are computed
using their inverse frequency, assigning higher weights to rarer classes in the original distribution as:

Gotm) o5
wp=——— , ==
p<y = Ck) Ele wj

with 5 > 0 controlling the strength of the shift.

Figure [3]illustrates the class distributions of the training and test datasets after oversampling, with
respect to 1) the shift strength () and 2) the class distribution of the entire dataset. Higher values
of 3 assign higher sampling probabilities to rare classes, inducing a stronger shift, whereas § = 0
corresponds to uniform sampling (i.e., equal proportions across all classes). Note that 8 = 0 does not
imply the absence of label shift, as the dataset itself may be class-imbalanced.

Under review as a conference paper at ICLR 2026

i Shift strength (3)
Methods w/o shift

0.0 0.1 0.5 1.0 2.0 5.0 Avg.
LogReg. 0.76540.002 | 0.71940.002 0.709+0.002 0.67440.004 0.63410004 0.597+0.002 0.56610.004 | 0.650
+ HPO 0.77140.003 | 0.697+10.005 0.687+0.003 0.653+0.003 0.61610.006 0.586+0.003 0.550+0.003 | 0.631
SVM 0.780 40003 | 0-6840002 0-64610.002 056020005 0-53120003 048610005 044850004 | 0.559
+HPO 0.78410.003 | 0.73140.001 0.6891+0.008 0.62610.003 0.597+0.005 0.57010.005 0.54140.007 | 0.626
= MLP 0.77840.004 | 0.65810.005 0.64710.004 0.61310.005 0.57410006 0.5274+0.004 0.49310.001 | 0.585
g + HPO 0.79540.005 | 0.706+10.006 0.688+0.006 0.654+0.008 0.615+0.006 0.580+0.005 0.54510.005 | 0.631
3 kNN 0.76540.004 | 0.66310.004 0.65710.004 0.62910.003 0.589+0.003 0.53810.003 0.50110.004 | 0.596
2 +HPO 0.78310.002 | 0.69310.002 0.68410.003 0.64410.00a 0.588+0.003 0.54010.003 0.49840.002 | 0.608
§ Random Forest | 0.79640.003 | 0.768+10.003 0.76540.003 0.74840.005 0.71840.004 0.6654+0.005 0.61810.005 | 0.714
= + HPO 0.803+0.002 | 0.77140.002 0.76710.001 0.74310.004 0.701:0.004 0.62710.008 0.57810.006 | 0.698
LightGBM 0.78940.003 | 0.758+0.00a 0.75310.002 0.73410.003 0.705+0.004 0.65710.005 0.618+40.005 | 0.704
+ HPO 0.79040.006 | 0.72640.00s 0.661109.005 0.655+0.008 0.608+0.008 0.577+0.015 0.55110.004 | 0.630
CatBoost 0.803+0.001 | 0.77410.002 0.77110.002 0.75140.004 0.71840.004 0.6654+0.005 0.62110005 | 0.717
+HPO 0.80210.002 | 0.774x0.002 0.77110.002 0.75210.004 0.71910.004 0.66510.006 0.62140.005 | 0.717
~ | FTI-Transformer | 0.78410.002 | 0.74840.004 0.74610.004 0.71810.005 0.67440.005 0.610+0.003 0.55110.007 | 0.675
g TabM 0.79440.002 | 0.76240.004 0.75740.004 0.73510.003 0.69410.005 0.62410.006 0.56510.006 | 0.690
o TabulaRNN 0.74940.003 | 0.69940.003 0.68410.003 0.6411000a 0.585+0.000 0.52210.011 0.46540.008 | 0.599
5 | MambaTab 0.71940.004 | 0.62940.006 0.60310.004 0.52510.002 0.46610.010 0.43010.005 0.39440.002 | 0.508
0 Z | RealMLP 0.79440.002 | 0.760+£0.004 0.758+0.005 0.745+0.003 0.720+0.005 0.677+0.002 0.64310.004 | 0.717
g LoCalPFN 0.8160.002 | 0.79410.003 0.79310.004 0.78810.003 0.77810.002 0.75310.004 0.71940.000 | 0.771
g + DistPEN 081620002 | 0.797-0001 07940000 0.7% 10000 079010002 078240001 0.7700 005 | 0.788
’E‘_ = | + DistPEN-T 0.81640.002 | 0.79840.002 0.79710.002 0.79610.002 0.79410.002 0.78710.001 0.77640.005 | 0.791
E '% TabICL 0.8060.002 | 0.78310.003 0.78110.003 0.77010.003 0.74710.003 0.70410.006 0.66419.006 | 0.742
2 | + DistPEN 0.8060.002 | 0.78610000 078610002 0781 10000 077610002 0-76310000 074640004 | 0.773
£ | +DISPENT | 0.80650005 | 0786:0000 0.78630005 07830002 07802000 07715000 07550004 | 0777
TabPFN-v2 0.81810.00a | 0.797 5003 0.796+0.004 0.79010.002 0.78210.002 0.759+0.003 0.72710.003 | 0.775
+ DistPEN 0.81820.002 | 079950000 079750002 07910000 079040005 0-78310005 076910005 | 0.789
+ DistPEN-T 0.818.10.002 | 0.79910.003 0.79810.002 0.79710.002 0.79610.003 0.78910.003 0.775+0.003 | 0.792

Table 3: Tabular classification results. While most baselines suffer substantial performance
degradation under label shift, our methods significantly improve the accuracy of ICL-based tabular
foundation models (e.g., TabPFN-v2) across varying degrees of shift (3), averaged over 253 datasets.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Task and metrics. We evaluate our methods on tabular classification tasks both with and without
label shift to assess their robustness to label shift. For the evaluation metrics, we employ accuracy
(Acc.), ROC-AUC, and average rank (Rank), following the previous works (Hollmann et al., [2023).
Further details regarding the experimental setups are provided in Appendix [A]

Datasets. We evaluate our methods on 253 tabular classification datasets from OpenML (Bischl
et al}|2017), which span a wide range of feature dimensions, class cardinalities, sample sizes, and
domains. Unless otherwise specified, performance is reported as the mean accuracy across all datasets,
averaged over five different random seeds. Additionally, to specifically assess performance under
label shift, we construct synthetic variants by modifying the test set while keeping the training set
fixed, following the standard setup for fair comparison, as described in Section4.4] Following the
previous works (Hollmann et al., 2023 2025), all methods are evaluated using the fixed train/test
splits, where each dataset is randomly split into 50% training and 50% test data.

Baseline models. We categorize a total of 15 baseline tabular models into the following three groups:

* ML models (7): Logistic Regression (LR), Support Vector Machines (SVM), Random Forest
(Liaw & Wiener, |2002), k-nearest neighbors (kKNN), Multi-layer Perceptrons (MLP), LightGBM
(Ke et al.,[2017), CatBoost (Prokhorenkova et al.| 2018)

* DL (non-foundation) models (5): FT-Transformer (Gorishniy et al., [2021]), TabM (Gorishniy
et al., 2024a), TabulaRNN (Thielmann & Samiee, |[2024), MambaTab (Ahamed & Cheng, [2024)),
RealMLP (Holzmiiller et al., [2024)

¢ DL (foundation) models based on ICL (3): TabPFN-v2 (Hollmann et al.l [2025), LoCalPFN
(Thomas et al., [2024)), TabICL (Qu et al., [2025))

Additionally, we perform hyperparameter optimization (HPO) for ML modelsﬂ for stronger baselines,
using the search space provided in a public implementation, with details provided in Appendix [F

>While MLP can be regarded as a DL model, we categorize it as an ML model for the purpose of HPO.

Under review as a conference paper at ICLR 2026

TabPFN-based methods + Ours 212019181716151413121110 9 8 7 6 5 4 3 2 1
[P A P P A A P P P M AP P TP P S AP P
80 []]
MambaTab —12:0. -— H [as TabPFN-v2 + DistPFN-T
" svm 174 47 |6CalPFN + DistPFN-T
K76 TabulaRNN —16-2 I 54 |ocalPFN + DistPFN
>4 PV A— L 54 7apPEN-v2 + DistPFN
S5 mp 160 L——6&1 TappFN-v2
3 . Fl-Transformer 144 | L 64 ocaprn
70 £=. 14.3 6.9 -
LoCalPFN TabICL -~ TabPFN-v2 Log.Reg TabICL + DistPFN-T
68 - .- - L Tabm 136 | L 7.8 TapiCL + DistPFN
+ DistPFN + DistPFN + DistPFN “~‘\“ . 12.1 9.6
66 ® + DistPFN-T -®- + DistPFN-T —e— + DistPFN-T S~ LightGBM ~ - TabICL
00105 1 2 . 5 RF 113 108 catBoost
Degree of shift (B) RealMLp —LL:4
Figure 7: Performance by shift. Figure 8: Rank (CD Diagram) under shift (5 = 2).
Low shift: B=0.5 Mid shift: B=1.0 High shift: B=2.0 TabPFN-v2 vs. DistPFN
10 = 15.0 o :‘lsmn 20 = 80
_ 8 _ 125 - o _
g g g _79
= T 10.0 =
£6 £ H , X8
€4 5 £ e 277
S S g | & ®
5 ,ls 5 5 . C76
E E E | 2 75| o TebPFN2
¢ ok - g g . 2 + DistPFN
< as < <o iE’ y ¥ 741 —e— + DistPFN-T
~2 e = S X+ 04 AR v = >+ 2.1 73] —e— + DistPFN-Oracle
S o m o n o e m o m
Divergence(py.,,.Py...) Divergence(py..;.Py...) Divergence(py,...Py....) 00105 1 2] 5
- Yo e Degree of shift (8)
‘ Stronger Shift — Higher Improvement

Figure 10: vs. Oracle. The figure
Figure 9: Per-dataset improvement. The figure shows the compares the performance of our
accuracy improvement for each dataset under varying 3 values method to DistPFN-Oracle, which
with DistPFN-T applied, shown against the KL-divergence be- uses the ground-truth test label dis-
tween the train and test label distributions of the original dataset. tribution as the adjustment factor.

5.2 CLASS-IMBALANCED BENCHMARK DATASETS

We examine the degree of class imbalance across 253 OpenML Balance ratio of 253 datasets
datasets by defining the balance ratio as the number of samples 250
in the minority class (Nminority) divided by the number of sam- § 4° . - .
ples in the majority class (Npajority). A balance ratio of 100% 20| mm salancea: 397253 15.4%)
corresponds to a perfectly balanced dataset, while lower values = 137 M §impalanc =214/ 2531(8n. 6%}
indicate increasing imbalance. As shown in Figure [6] approxi- o oA as D10 =10
P . 0 . . minority majority
mately 85% of the datasets exhibit class imbalance, highlighting
the importance of addressing the majority-class bias.

Figure 6: Balance ratio of datasets.

5.3 TABULAR CLASSIFICATION

Table 3] reports the average accuracy over 253 datasets across six levels of label shift (), comparing
our method against 16 baselines, including three tabular foundation models to which our method is
applied. For LoCalPFN, we use the k¥ = 10 nearest neighbors for each test sample, with robustness
to k demonstrated in Table[5] While maintaining the original performance under the standard setting
without label shift, our method substantially improves all three foundation models under shift, without
any parameter update or additional computational cost, as shown in Table[T1]

Figure [/ shows that as label shift strength S increases, our methods improve all three foundation
models, yielding larger gains at higher 3, with DistPFN-T providing additional improvements over
DistPFN. For instance, DistPFN and DistPFN-T improve the accuracy of TabICL by 12.3% and
13.7% under 3 = 5, respectively. Additionally, Figure[§|shows the average rank across datasets under
B = 2 using a critical difference (CD) diagram, with DistPFN-T applied to TabPFN-v2 achieving
SoTA performance. A comparison based on ROC-AUC is provided in Appendix [[]

6 ANALYSIS

In this section, we conduct various analyses on the effectiveness of our methods, DistPFN and
DistPFN-T, which are applied to TabPFN-v2 (Hollmann et al., [2025) unless otherwise stated.

Performance gain of each dataset. Figure[Jillustrates the accuracy improvement across 253 datasets
under three different 3 values when DistPFN-T is applied. Each point represents a dataset, with the
x-axis showing the KL-divergence between the train and test label distributions of the original dataset,
and the y-axis indicating the corresponding accuracy improvement. As /3 increases, datasets with
larger original discrepancies become more imbalanced, with those exhibiting stronger divergence
(i.e., larger induced shifts) benefiting more from our method.

Under review as a conference paper at ICLR 2026

Shift strength (53)
Q= s (@) w/o shift
Puain (Y 0.0 0.1 0.5 1.0 2.0 5.0 Avg.
TabPFN-v2 - 0.818 0.797 0.796 0.790 0.782 0.759 0.727 | 0.775
+ DistPFN Dravpen(Y) 0.818 0.799 0.797 0.795 0.791 0.783 0.769 | 0.789
+ DistPEN-T PoisEN-T () 0.818 0.799 0.798 0.797 0.796 0.789 0.775 | 0.792
+ DistPFN-Oracle Drest(Y) 0.818 0.803 0.802 0.800 0.797 0.792 0.784 | 0.796

Table 4: Comparison with oracle. While our method computes the adjustment factor « using the
predicted test label distribution, we also compare it to DistPFN-Oracle, which instead uses the true
test label ratio. The results demonstrate that our methods achieve performance close to this oracle.

k Methods Avg. T o wio shift Shift strength (5)
LoCalPEN | 0.750 =0 00 01 05 1.0 20 50 | Avg
3 :g?;;;ﬂ g-;gg TabPFN-v2 R 0818 | 0797 079 0790 0782 0759 0727 | 0.775
. . Pean(y) | 0818 | 0799 0797 0.795 0791 0.783 0.769 | 0.789
" Lt;;?ag)’gg g-;;g + DistPFN Puan(y) | 0.818 | 0799 0797 0795 0792 0.783 0.768 | 0.789
+ VIS .
+ DistPEN.T | 0789 DI(PENT | Pran(y) | 0818 [0799 0798 0797 079 0789 0775 | 0792
Puan(y) | 0.818 | 0.800 0.800 0798 0.797 0.791 0.777 | 0.793
LoCalPFN | 0.771
20 | +DistPFN | 0.788 Table 6: Training prior vs. Training prediction. Replacing the training
+ DistPEN-T | 0.791 Prior Puain () with the predicted distribution Py (v) in o shows negligible

performance difference, validating the use of py.in(y) as a simple and

Table 5: Application to

LoCalPFN. reliable choice, as Pyain (y) requires additional computation.
N) Shift strength (53)
@+ Prsin: @: Praoeen(y) wloshift | = 001 05 10 20 50 | A
TabPFN-v2 0.818 0.797 0.796 0.790 0.782 0.759 0.727 | 0.775
+DistPEN-T | 7= CE(D,®) 0.818 0.799 0.799 0.797 0.795 0.788 0.769 | 0.791
T7=CE(®,D) 0.818 0.799 0.798 0.797 0.796 0.789 0.775 | 0.792

Table 7: Asymmetric cross-entropy. DistPFN-T employs asymmetric cross-entropy to compute the
temperature 7 for temperature scaling, where both directions outperform TabPFN-v2.

Comparison with oracle. The adjustment factor « in our method is computed using the predicted
label distribution. We compare this to a variant that uses the true label ratio of the test set, referred to
as DistPFN-Oracle, which is unavailable in practice. This replaces the predicted distribution with the
true distribution as the numerator of «. Table] and Figure[I0]show the results, indicating that our
methods achieve performance close to the oracle even without access to the (ground truth) test label.

Robustness to & for LoCalPFN. We apply our methods to LoCalPFN (Thomas et al., 2024)), which
improves the efficiency of TabPFN by retrieving k nearest neighbors for each test sample to construct
the training dataset. For a fair comparison, we do not fine-tune the model and instead use the
pretrained weights of TabPFN-v2 (Hollmann et al.| |2025), providing a stronger baseline than the
original TabPFN (Hollmann et al.,[2023) used in LoCalPFN. Table E] reports results across different
values of number of neighbors (k), averaged over six 3 values. The results indicate that our methods
consistently improve performance, with full results provided in Appendix

Training prior vs. Training prediction. The adjustment factor o of our method uses the ground-truth
label distribution of the training dataset (i.e., fraining prior or py.in(y)) as the denominator, while
the numerator is based on the predicted distribution of the test set, introducing a mismatch between
true and predicted quantities. To assess the impact of this discrepancy, we analyze an alternative
that replaces the training prior with the model’s average predicted distribution on the training dataset
(i-e., training prediction or Dy (y)), which requires additional inference. As shown in Table@ the
performance difference is negligible, validating the choice of the training prior.

Asymmetric cross-entropy (CE). DistPFN-T employs asymmetric cross-entropy to compute the
temperature 7 for temperature scaling, where the value differs depending on whether it is computed
as CE(PravprN (¥), Prrain) OF CE(Piain, DrabpEn(y)). Table [7] shows that both directions outperform
TabPFN-v2, demonstrating robustness to the choice of direction.

Under review as a conference paper at ICLR 2026

Method LoCalPFN TabICL TabPFN-v2 Pred. distn. | w/o shift w/ shift
etods wlo shift w/ shift | w/o shift w/ shift | wio shift w/shift TabPFN-v2) 0818 0775
- 0.816 0.771 0.806 0.742 0.818 0.775 . Single 0.818 0.789
+EME 0801 0783 | 0798 0766 | 0801 0786 +DistPFN Multiple 0818 0.789
+BBE 0.805 0787 | 0802 0768 | 0.805 0.789 : :
+ DistPFN 0816 0788 | 0806 0.73 | 0818 0789 . opeoon | Single 0.818 0.791
+DistPEN-T | 0816 0791 | 0.806 0777 | 0818 0.792 : Multiple 0.818 0.792
Table 8: Comparison with methods for label shift. Table 9: Pred distn: single vs. multiple.
Shift strength i
P | Methods gth (B) Pred. time Avg. Acc.
TabPEN-v2 | 0.644 0.639 0.591 0.547 0.505 0.460 | 0.554 + DistPFN 0.619 0.788
0.05 | +DistPEN | 0.659 0.662 0.627 0.586 0.548 0.493 | 0.589 + DistPEN-T 0.619 0.791
+DistPEN-T | 0.662 0.667 0.640 0.601 0.562 0.504 | 0.605
TabPFN-v2 | 0.663 0.664 0.617 0582 0534 0481 | 0.620 TabICL 0620 0742
abPEN-v - - : : - - : + DistPEN 0.622 0.773
0.10 | +DistPEN | 0.679 0.685 0.650 0.618 0.577 0.515 | 0.642 N D;:[PFN_T 0.622 0777
+DistPFN-T | 0.685 0.691 0.656 0.629 0.588 0.527 | 0.652 : :
TabPFN-v2 | 0.697 0689 0651 0619 0561 0510 | 0638 TabPEN-v2 1.002 0.775
020 | +DistPFN | 0713 0711 0682 0.663 0610 0553 | 0.676 +DistPFN 1.003 0.789
+DistPEN-T | 0.716 0.715 0.689 0.670 0.620 0.563 | 0.688 + DistPFN-T 1.003 0.792

Table 10: Dataset selection with K-means clustering. Our Table 11: Efficiency analysis. Av-
method remains effective when training subsets are formed by erage prediction time (in seconds)
sampling a proportion (P) from each of the K = 10 clusters, average across 253 datasets with
demonstrating robustness to the choice of training subsets. three different backbones.

Comparison label shift correction methods. To demon-
strate the effectiveness of our methods, we compare it with
other techniques handling label shift: EM-based Estimation
(EME) (Saerens et al., [2002) and Black-box Estimation
(BBE) (Lipton et al., 2018)). Table |§| demonstrates that
our method outperforms these approaches without requir-
ing estimation of the test prior. In particular, as shown in
Figure [TT] while other methods suffer from performance
degradation when no shift is present, our method maintains
stable performance across both settings. Details of each
method and full results are provided in Appendix [EJand[]] Figure 11: vs. Other label shift methods.

LoCalPFN

o
A Accuracy (+ %p)

TabICL

TabPFN-v2

+ EME + BBE + DistPFN + DistPFN-T

Predicted distribution of single vs. multiple instance(s). As TabPFN allows test instances to be
evaluated either individually or in batches, with both modes yielding identical predictions, DistPFN
and DistPFN-T can apply their adjustment based on either the 1) prediction of a single instance or 2)
the average prediction across multiple instances in the test dataset. As shown in Table [0} both choices
consistently improve TabPFN-v2, averaged across six Js for w/ shift. The results demonstrate that
our method is robust to the choice of distribution source, with full results shown in Appendix [K]

Training set selection. TabPFN suffers from quadratic complexity, making it inefficient for large
training datasets (Thomas et al.| [2024} |Zeng et al., 2025} |Qu et al., [2025)), and several works mitigate
this by training on selected subsets. One common approach is to use only the local neighbors of each
test sample, as validated in Table|z| with LoCalPFN (Thomas et al.,2024). Another approach clusters
the training dataset and selects the centroid and a few nearby samples per cluster. As shown in
Table |10} our method remains effective across different percentages of samples per cluster (P) under
K =10, where K is the number of clusters. Results for various Ks are provided in Appendix [H]

Efficiency analysis. To evaluate the efficiency of our method, we compare the average prediction time
(seconds) across 253 datasets using TabPFN-v2. Note that our method does not require any additional
parameters, and only applies a simple multiplication of an adjustment factor to the predicted results.
Table [11)summarizes the results, including the average performance across six s, highlighting that
our method achieves superior performance gains with negligible computational burden.

7 CONCLUSION

In this work, we introduce DistPFN, a test-time adjustment method to mitigate label shift in tabular
foundation models using ICL. We further propose DistPFN-T to stabilize the adjustment via tem-
perature scaling based on distributional divergence between training prior and predicted distribution.
While our method effectively handles label shift without retraining, it does not address feature shift,
which can also occur in practice. A potential direction for future work is to design foundation models
that are inherently robust to both label and feature shift, beyond post-hoc adjustment. We hope that
this work encourages further exploration of robustness to distribution shifts in tabular ICL.

Under review as a conference paper at ICLR 2026

REFERENCES

Md Atik Ahamed and Qiang Cheng. Mambatab: A plug-and-play model for learning tabular data.
In 2024 IEEE 7th International Conference on Multimedia Information Processing and Retrieval
(MIPR), pp. 369-375. IEEE, 2024.

Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The
American Statistician, 46(3):175-185, 1992.

Sercan O Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In AAAI, 2021.

Kumar Arun, Garg Ishan, and Kaur Sanmeet. Loan approval prediction based on machine learning
approach. IOSR J. Comput. Eng, 18(3):18-21, 2016.

Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, and Animashree Anandkumar. Regularized learning
for domain adaptation under label shifts. arXiv preprint arXiv:1903.09734, 2019.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel Lang,
Rafael G Mantovani, Jan N van Rijn, and Joaquin Vanschoren. Openml benchmarking suites.
arXiv preprint arXiv:1708.03731, 2017.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794,
2016.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273-297,
1995.

David R Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society:
Series B (Methodological), 20(2):215-232, 1958.

Charles Elkan. The foundations of cost-sensitive learning. In IJCAI, volume 17, pp. 973-978.
Lawrence Erlbaum Associates Ltd, 2001.

Benjamin Feuer, Robin T Schirrmeister, Valeriia Cherepanova, Chinmay Hegde, Frank Hutter, Micah
Goldblum, Niv Cohen, and Colin White. Tunetables: Context optimization for scalable prior-data
fitted networks. NeurIPS, 37:83430-83464, 2024.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. NeurIPS, 34:18932-18943, 2021.

Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep learning with
parameter-efficient ensembling. /CLR, 2024a.

Yury Gorishniy, [van Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem
Babenko. Tabr: Tabular deep learning meets nearest neighbors in 2023. ICLR, 2024b.

Léo Grinsztajn, Edouard Oyallon, and Gaé€l Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? NeurIPS, 35:507-520, 2022.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, 1994.

Kai Helli, David Schnurr, Noah Hollmann, Samuel Miiller, and Frank Hutter. Drift-resilient tabpfn:
In-context learning temporal distribution shifts on tabular data. NeurIPS, 37:98742-98781, 2024.

Noah Hollmann, Samuel Miiller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. /CLR, 2023.

Noah Hollmann, Samuel Miiller, Lennart Purucker, Arjun Krishnakumar, Max Korfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319-326, 2025.

David Holzmiiller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned mlps and
boosted trees on tabular data. NeurIPS, 37:26577-26658, 2024.

10

Under review as a conference paper at ICLR 2026

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
freely accessible critical care database. Scientific data, 3(1):1-9, 2016.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. NeurIPS, 34:23928-23941, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. NeurIPS, 30, 2017.

Changhun Kim, Taewon Kim, Seungyeon Woo, June Yong Yang, and Eunho Yang. Adaptable:
Test-time adaptation for tabular data via shift-aware uncertainty calibrator and label distribution
handler. arXiv preprint arXiv:2407.10784, 2024.

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R News, 2(3):18-22,
2002. URL https://CRAN.R-project.org/doc/Rnews/.

Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for label shift with
black box predictors. In ICML, pp. 3122-3130. PMLR, 2018.

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakrishnan,
Micah Goldblum, and Colin White. When do neural nets outperform boosted trees on tabular data?
NeurlPS, 36:76336-76369, 2023.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. NeurIPS, 31, 2018.

Jingang Qu, David HolzmAvZller, GaAl Varoquaux, and Marine Le Morvan. Tabicl: A tabular
foundation model for in-context learning on large data. ICML, 2025.

Marco Saerens, Patrice Latinne, and Christine Decaestecker. Adjusting the outputs of a classifier to
new a priori probabilities: a simple procedure. Neural computation, 14(1):21-41, 2002.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84-90, 2022.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

Anton Frederik Thielmann and Soheila Samiee. On the efficiency of nlp-inspired methods for tabular
deep learning. arXiv preprint arXiv:2411.17207, 2024.

Valentin Thomas, Junwei Ma, Rasa Hosseinzadeh, Keyvan Golestan, Guangwei Yu, Maks Volkovs,
and Anthony L Caterini. Retrieval & fine-tuning for in-context tabular models. NeurIPS, 37:
108439108467, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 30, 2017.

Derek Xu, Olcay Cirit, Reza Asadi, Yizhou Sun, and Wei Wang. Mixture of in-context prompters for
tabular pfns. ICLR, 2025.

Han-Jia Ye, Huai-Hong Yin, De-Chuan Zhan, and Wei-Lun Chao. Revisiting nearest neighbor for
tabular data: A deep tabular baseline two decades later. ICLR, 2024.

Yuchen Zeng, Tuan Dinh, Wonjun Kang, and Andreas C Mueller. Tabflex: Scaling tabular learning
to millions with linear attention. /CML, 2025.

11

https://CRAN.R-project.org/doc/Rnews/

Under review as a conference paper at ICLR 2026

APPENDIX

|A" Experimental Setups|

[B_Baseline Methods|
IB.1 Machine Learning (ML) Models|
IB.2 Deep Learning (Non-Foundation) Models|
IB.3 " Deep Learning (Foundation) Models based on ICL)

|C Baseline Implementations|

[D_Theoretical Jusfification|

ID.2 Bayesian Interpretation|

Tassical Methods for Label Shift Correcti

[E.1 Prior-ratio Adjustment|

[Hyperparameter Tuning for Stronger Baselines|

G D STafishics

[K-means Clustering for Dataset Selection|

(I Application to LoCalPFN)|

[J__Comparison with Methods for Label Shift Correction|

[K_Predicted Distribution of Single vs. Multiple Instances|

[L_Other Metrics

12

13

13
13
14
14

14

15
15
15

16
16
16
16

17

18

21

22

23

24

25

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL SETUPS

Experimental setups. We use the official implementation of TabPFNE] and adopt all default settings
without modification. This includes architectural choices such as the number of layers and hidden
dimensions, where we use 12 transformer layers, each with a hidden size of 192 and 6 attention heads.
The feedforward layer dimension is implicitly set to 768 via a hidden factor of 4. For inference, we
load the pretrained weights from TabPFN -VZé available on Hugging Face.

Dataset. We evaluate on 250+ tabular datasets from OpenML (Bischl et al.| |2017). The dataset list is
retrieved from the benchmark configuration provided in this repositor which is built on top of the
official TabPFN evaluation setup. Dataset statistics are summarized in Appendix [G]

B BASELINE METHODS

We categorize 15 baseline tabular models into three groups:

* ML models (7): Logistic Regression (LR), Support Vector Machines (SVM), Random Forest
(Liaw & Wiener 2002), k-nearest neighbors (kNN), Multi-layer Perceptrons (MLP), LightGBM
(Ke et al.,|2017), CatBoost (Prokhorenkova et al.,[2018])

* DL (non-foundation) models (5): FT-Transformer (Gorishniy et al.,[2021)), TabM (Gorishniy
et al.,|2024a), TabulaRNN (Thielmann & Samiee} 2024), MambaTab (Ahamed & Cheng} [2024),
RealMLP (Holzmiiller et al., [2024)

¢ DL (foundation) models based on ICL (3): TabPFN-v2 (Hollmann et al., [2025), LoCalPFN
(Thomas et al., [2024)), TabICL (Qu et al., 2025)

Details of each method are provided below.

B.1 MACHINE LEARNING (ML) MODELS

* Logistic Regression (LR) (Cox,|1958): A simple linear model commonly used for binary and
multiclass classification tasks in tabular data.

* Support Vector Machine (SVM) (Cortes & Vapnik, [1995): A kernel-based classifier that aims
to find the optimal decision boundary with maximum margin between classes.

* Multilayer Perceptron (MLP) (Haykin, |1994): A feedforward neural network consisting of
multiple fully connected layers with non-linear activations, trained via backpropagation.

* k-Nearest Neighbors (kNN) (Altman, |1992): A non-parametric method that classifies a sample
based on the majority class among its k£ nearest neighbors in the feature space.

* Random Forest (Liaw & Wiener, 2002): An ensemble learning method based on bagging over
decision trees, which improves robustness and generalization.

* LightGBM (Ke et al.; 2017): A fast and efficient GBDT model using histogram-based algo-
rithms and leaf-wise tree growth.

* CatBoost (Prokhorenkova et al.,2018): A GBDT model that handles categorical features
efficiently and mitigates prediction shift via ordered boosting.

*https://github.com/PriorLabs/TabPFN

*https://huggingface.co/Prior-Labs/TabPFN-v2-clf

5https://github.com/carteakey/tabpfn—eval/blob/main/src/data/openml_
list.csv

13

https://github.com/PriorLabs/TabPFN
https://huggingface.co/Prior-Labs/TabPFN-v2-clf
https://github.com/carteakey/tabpfn-eval/blob/main/src/data/openml_list.csv
https://github.com/carteakey/tabpfn-eval/blob/main/src/data/openml_list.csv

Under review as a conference paper at ICLR 2026

B.2 DEEP LEARNING (NON-FOUNDATION) MODELS

¢ FT-Transformer (Gorishniy et al.,[2021): A transformer-based architecture tailored for tabular
data, providing a simple yet powerful baseline that outperforms many prior DL models on
classification and regression tasks.

» TabM (Gorishniy et al., 2024a): An MLP-based model that leverages an efficient ensemble
mechanism to approximate deep ensembles, enabling multiple predictions per instance while
maintaining computational efficiency.

* TabulaRNN (Thielmann & Samiee,|[2024): An RNN-inspired architecture for tabular data that
emphasizes efficiency, addressing limitations of NLP-style models in terms of scalability and
training cost.

* MambaTab (Ahamed & Cheng} 2024): A scalable and efficient model built on structured
state-space models (SSMs), capturing long-range dependencies with fewer parameters while
maintaining strong predictive performance.

* RealMLP (Holzmiiller et al., 2024): An enhanced MLP variant with meta-tuned hyperpa-
rameters, achieving competitive accuracy—efficiency trade-offs compared to gradient boosting
methods in tabular benchmarks.

B.3 DEEP LEARNING (FOUNDATION) MODELS BASED ON ICL

* LoCalPFN (Thomas et al., 2024): A lightweight PFN variant that reduces computational cost
by leveraging local task priors and architectural simplifications.

* TabICL (Qu et al.,[2025): A two-stage model that first applies column attention to capture
feature dependencies and then row attention to encode sample interactions.

e TabPFN-v2 (Hollmann et al., 2025): A state-of-the-art foundation model for tabular classifica-
tion that leverages a pretrained transformer for zero-shot prediction on small datasets.

C BASELINE IMPLEMENTATIONS

The baseline results are obtained from the following publicly available repositories:

e [1] TabPFN Evaluation frameworklﬂ was used to evaluate all ML models, as well as the founda-
tion models TabPFN and LoCalPFN. Since LoCalPFN does not have an official implementation,
we reimplemented it based on the TabPFN codebase.

¢ [2] AutoGluon V1.4. was used to benchmark TabICL and several non-foundation models
such as FT-Transformer, TabM, and RealMLP.

* [3] Mambulalﬂ provided implementations for additional non-foundation models including
MambaTlab, TabulaRNN, FT-Transformer, and TabM.

For models implemented in both [2] and [3] (e.g., FT-Transformer and TabM), we use the [2] versions
as they yield stronger performance for a stronger baseline.

®https://github.com/carteakey/tabpfn-eval
"nttps://auto.gluon.ai/
$https://github.com/OpenTabular/DeepTabular

14

https://github.com/carteakey/tabpfn-eval
https://auto.gluon.ai/
https://github.com/OpenTabular/DeepTabular

Under review as a conference paper at ICLR 2026

D THEORETICAL JUSTIFICATION

We provide theoretical grounding for our posterior adjustment to clarify that DistPFN is not merely
a heuristic trick, but a principled approximation derived from existing theory. We present two
complementary perspectives: 1) connection to classical label shift correction as a plug-in reweighting
(Section and 2) Bayesian view that replaces the mismatched prior with a self-consistent estimate
from model predictions (Section[D.2)).

D.1 RELATION TO LABEL SHIFT CORRECTION

The label shift setting assumes that the conditional distribution p(z|y) remains invariant while the
marginal priors differ:

plrain(y) 7é ptesl(y)a p(fﬂ|y) is fixed.
Under this assumption, the Bayes-optimal posterior is given by

Ptrain (y | x)
Ptrain (y)
Classical approaches such as EM-based reweighting (Saerens et al.,[2002; Lipton et al.,|2018) estimate

Prest(y) explicitly by matching marginal predictions to unlabeled test data. DistPFN instead uses the
predictive marginal p(y) obtained directly from the model, and constructs the adjustment factor

ptest(y|x) o8 ptesl(y)~

p(y)
plrain(y) .

This yields the corrected posterior

plrain(y|x) ~

—~ bWy
ptrain(y) ()’

which can be seen as a plug-in realization of the classical correction rule, avoiding iterative estimation
while remaining theoretically consistent with label shift correction.

pylz) o

D.2 BAYESIAN INTERPRETATION
From a Bayesian perspective, TabPFN models the posterior under the training distribution:

ptrain(y|x) X p(x‘y) plrain(y)'

At test time, however, the desired posterior is

Prest(Y|2) o< p(]y) Prest (¥)-

The difference comes solely from the prior. DistPFN addresses this gap by substituting pin () with
p(y), the average predictive distribution obtained on the test set:

et 20

This interpretation shows that DistPFN is not an ad-hoc adjustment but a Bayesian posterior correction
where the unknown test prior is approximated in a self-consistent manner from model outputs. The
method therefore inherits a principled justification while retaining the efficiency of a simple, training-
free plug-in procedure.

DDistPEN (y|x) X

15

Under review as a conference paper at ICLR 2026

E CLASSICAL METHODS FOR LABEL SHIFT CORRECTION

In this section, we summarize three representative approaches for handling label shift. All of these
methods directly adjust classifier outputs, but they differ in how the test prior 7 is obtained.

E.1 PRIOR-RATIO ADJUSTMENT

Prior-ratio Adjustment (Elkan| |[2001)) introduces a simple correction under changing class priors in
the binary setting. The method assumes that the new prior 7 is available from external knowledge
or domain statistics. Given a posterior py,in(1|x) trained under 7y, the corrected posterior is
Trest (1
(1) Pran(1J) - S5
plCSt €T = test (1 1—mmest (1 ’
plrain(1|1') . %mm((l)) + (1 - ptrain(”m)) : 17:‘,;“((1))

This approach directly modifies posterior probabilities by scaling them with prior ratios. The same
principle naturally extends to the multiclass case by applying the ratio mes () /Tirain (y) to each class
posterior.

E.2 EM-BASED ESTIMATION

EM-based Estimation (Saerens et al.|[2002) proposes an iterative procedure to estimate unknown test
priors when they are not directly given. At iteration ¢, the posterior is updated by

T (y)
Ttrain (y)

The updated posteriors provide a new estimate of s by averaging across the test set. Repeating this
E-step and M-step allows the estimated test prior to gradually converge. The final corrected posterior
then follows the standard prior-ratio adjustment, but with 7 estimated rather than assumed.

P (yla) < peain(yl) -

E.3 BLACK-BOX ESTIMATION

Black-box Estimation (Lipton et al.,2018) employs a validation dataset with true labels to construct
a confusion matrix C'(s|y) = P(y = s | y) that characterizes prediction errors of the classifier. On
an unlabeled test set, it collects predicted labels to obtain the empirical distribution pies(s). These
quantities are related through the equation

ptest(S) ~ ZC(5|y) 7rtest(y)-

By solving this linear system, the method estimates the test prior 7. Once the test prior is recovered,
the posterior correction is applied using the prior ratio:
Ttrain (y)

This approach is considered black-box as it does not require access to classifier internals, only its
predicted outputs and a validation set to estimate the confusion matrix.

Drest(Y|T) X Dirain (y|) -

16

Under review as a conference paper at ICLR 2026

F HYPERPARAMETER TUNING FOR STRONGER BASELINES

To ensure strong and fair baselines, we perform hyperparameter tuning for each conventional ML
method using the search space provided in a public implementatiorﬂ The search spaces are manually
designed to cover commonly used ranges for each model class, including both optimization-related
parameters (e.g., learning rate, max iterations) and regularization or structural options (e.g., penalty,
tree depth, number of neighbors). We conduct random search over these spaces and tune the models
on validation datasets that are kept separate from the final test splits. The details of the hyperparameter
search spaces are provided in Table

Model Hyperparameter Type Log-scale Range
max_iter int no {50, 100, 200, 500, 1000}
solver categorical no {newton-cg, Ibfgs, liblinear, sag, saga}
Logistic Regression | fit_intercept boolean no {True, False}
penalty categorical no {11, 12, elasticnet, none }
C float no {0.1, 1.0, 10.0, 100.0}
n_estimators int no {10, 50, 100, 200, 500}
criterion categorical no {gini, entropy}
probability boolean no {True}
Random Forest max_depth int / None no {None, 10, 50, 100, 200}
min_samples_split int no {2,5, 10}
min_samples_leaf int no {1,2,4}
max_features categorical no {auto, sqrt, log2}
C float no {0.1, 1.0, 10.0, 100.0}
kernel categorical no {linear, poly, rbf, sigmoid}
SVM probability boolean no {True}
degree int no {2,3,4,5}
gamma categorical no {scale, auto}
max_iter int no {50, 100, 200, 500, 1000}
activation categorical no {identity, logistic, tanh, relu}
MLP solver categorical no {Ibfgs, sgd, adam}
alpha float no {0.0001, 0.001, 0.01, 0.1}
learning_rate categorical no {constant, invscaling, adaptive}
learning_rate_init float no {0.001, 0.01, 0.1}
n_neighbors int no {3,5, 11, 19}
weights categorical no {uniform, distance}
kNN algorithm categorical no {auto, ball_tree, kd_tree, brute}
leaf_size int no {30, 50, 100}
p int no {1, 2}
n_estimators int no {50, 100, 200}
max_depth int no {6, 10, 15, 20}
learning rate float no {0.001, 0.01, 0.1}
XGBoost subsample float no {0.5,0.6,0.7,0.8,0.9, 1.0}
colsample_bytree float no {04,0.5, ..., 1.0}
colsample_bylevel float no {04,0.5, ..., 1.0}
n_estimators int no {50, 100, 200}
max_depth int no {6, 10, 15, 20}
LightGBM learning rate float no {0.001, 0.01, 0.1}
num_leaves int no {31, 60, 120, 240, 480, 960}
min_child_samples int no {10, 20, 30, 40, 50}
iterations int no {50, 100, 200}
depth int no 6,8, 10
CatBoost leinngMe float no {QO%LOIH}Ql}
12_leaf_reg float no {1,3,5,7,9}

Table F.1: Hyperparameter search spaces for each conventional ML baseline. All hyperparameter
values are tuned via random search over manually defined discrete sets.

‘nttps://github.com/carteakey/tabpfn-eval

17

https://github.com/carteakey/tabpfn-eval

Under review as a conference paper at ICLR 2026

G DATASET STATISTICS

We evaluate on 253 tabular datasets from OpenML (Bischl et al., 2017). Summary statistics for
all datasets are provided in Table[G.1} [G.2] and[G.3] Each dataset is described using the following
attributes: the dataset name (Name), the total number of input features (#Features), the number
of categorical features among them (#Cat. Feat.), the number of data instances (#Instances), the
number of class labels (#Classes), the number of missing values (#NaNs), and the number of samples
belonging to the smallest class (Minority Class Size).

Name #Features #Cat. Feat. #Instances #Classes #NaNs Minority Class Size
pollen 6 1 3848 2 0 1924
Sick_numeric 30 1 3772 2 0 231
jungle_chess_2pcs_endgame_rat_rat 47 27 3660 2 0 1605
UCI_churn 21 1 3333 2 0 483
led24 25 25 3200 10 0 296
led7 8 8 3200 10 0 270
kr-vs-kp 37 37 3196 2 0 1527
splice 61 61 3190 3 0 767
space_ga 7 1 3107 2 0 1541
StackOverflow-polarity-train 2 1 3097 3 0 842
seismic-bumps 19 5 2584 2 0 170
ozone-level-8hr 73 1 2534 2 0 160
jungle_chess_2pcs_endgame_lion_lion 47 27 2352 2 0 949
jungle_chess_2pcs_endgame_elephant_elephant 47 27 2351 2 0 1035
segment 20 1 2310 7 0 330
Titanic 4 1 2201 2 0 711
quake 4 1 2178 2 0 969
kel 22 1 2109 2 0 326
balloon 2 1 2001 2 0 482
mfeat-fourier 77 1 2000 10 0 200
ozone-level-8hr_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 73 1 2000 2 0 126
mfeat-karhunen 65 1 2000 10 0 200
jannis_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 55 1 2000 2 0 1000
covertype_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 55 45 2000 2 0 1000
first-order-theorem-proving_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 52 1 2000 6 0 159
MiniBooNE_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 51 1 2000 2 0 1000
KDDCup09-upselling_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 50 16 2000 2 0 1000
ada_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 49 1 2000 2 0 496
mfeat-zernike 48 1 2000 10 0 200
connect-4_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 43 43 2000 3 0 191
kr-vs-kp_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 37 37 2000 2 0 956
road-safety_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 33 4 2000 2 0 1000
GesturePhaseSegmentationProcessed_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 33 1 2000 5 0 202
PhishingWebsites_seed_0_nrows_2000_nclasses_10_ncols_100_stratify True 31 31 2000 2 0 886
pol_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 27 1 2000 2 0 1000
Higgs_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 25 1 2000 2 0 1000
eye_movements_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 24 4 2000 2 0 1000
numerai28.6_seed_0_nrows_2000_nclasses_10_ncols_100_stratify True 22 1 2000 2 0 990
kel _seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 22 1 2000 2 0 309
kdd_ipums_la_97-small_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 21 1 2000 2 0 1000
churn_seed_0_nrows_2000_nclasses_10_ncols_100_stratify True 21 5 2000 2 0 283
compass_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 18 10 2000 2 0 1000
house_16H_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 17 1 2000 2 0 1000
segment_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 17 1 2000 7 0 285
adult_seed_0_nrows_2000_nclasses_10_ncols_100_stratify True 15 9 2000 2 242 479
adult_seed_1_nrows_2000_nclasses_10_ncols_100_stratify_True 15 9 2000 2 248 479
adult_seed_2_nrows_2000_nclasses_10_ncols_100_stratify_True 15 9 2000 2 279 479
adult_seed_3_nrows_2000_nclasses_10_ncols_100_stratify_True 15 9 2000 2 254 479
adult_seed_4_nrows_2000_nclasses_10_ncols_100_stratify_True 15 9 2000 2 253 479
rl_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 13 8 2000 2 0 1000
wine_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 12 1 2000 2 0 1000
Click_prediction_small_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 12 7 2000 2 0 337
Amazon_employee_access_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 10 10 2000 2 0 116
california_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 9 1 2000 2 0 1000
sf-police-incidents_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 9 6 2000 2 0 243
electricity_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 8 1 2000 2 0 1000
airlines_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 8 5 2000 2 0 891
mfeat-morphological 7 1 2000 10 0 200
jungle_chess_2pcs_raw_endgame_complete_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 7 1 2000 3 0 194
phoneme_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 6 1 2000 2 0 1000
wilt_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 6 1 2000 2 0 108
steel-plates-fault 34 1 1941 2 0 673
steel-plates-fault_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 28 1 1941 7 0 55
GAMETES _Epistasis_2-Way_20atts_0.1H_EDM-1_1 21 21 1600 2 0 800
pc3 38 1 1563 2 0 160
cme 10 8 1473 3 0 333
cmc_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 10 8 1473 3 0 333
ibm-employee-performance 34 1 1470 2 0 226
pcd 38 1 1458 2 0 178
pc4_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 38 1 1458 2 0 178
banknote-authentication 5 1 1372 2 0 610
analcatdata_halloffame 17 2 1340 2 20 125
mofn-3-7-10 11 11 1324 2 0 292
socmob 6 5 1156 2 0 256
parity5_plus_S 11 11 1124 2 0 557
PieChart3 38 1 1077 2 0 134
gsar-biodeg 42 1 1055 2 0 356
gsar-biodeg_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 42 1 1055 2 0 356
PizzaCutter3 38 1 1043 2 0 127
rmftsa_sleepdata 3 1 1024 4 0 94
credit-g 21 14 1000 2 0 300
dummy 7 1 1000 2 0 273
xd6 10 10 973 2 0 322
tokyol 45 3 959 2 0 346
tic-tac-toe 10 10 958 2 0 332
Tour-and-Travels-Customer-Churn-Prediction 7 5 954 2 60 224
stock 10 1 950 2 0 462
vehicle 19 1 846 4 0 199
vehicle_reproduced 19 1 846 4 0 199
analcatdata_authorship 71 1 841 4 0 55

Table G.1: Dataset statistics - Part 1

18

Under review as a conference paper at ICLR 2026

Name #Features #Cat. Feat. #Instances #Classes #NaNs Minority Class Size
analcatdata_dmft 5 5 797 6 0 123
diabetes 9 1 768 2 0 268
blood-transfusion-service-center 5 1 748 2 0 178
blood-transfusion-service-center_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 5 1 748 2 0 178
doa_bwin_balanced 14 3 708 2 0 354
PieChart1 38 1 705 2 0 61
breast-w 10 1 699 2 16 241
credit-approval 16 10 690 2 67 307
credit-approval_reproduced 16 10 690 2 67 307
Australian 15 9 690 2 0 307
Australian_seed_0_nrows_2000_nclasses_10_ncols_100_stratify_True 15 9 690 2 0 307
disclosure_x_bias 4 1 662 2 0 317
disclosure_x_tampered 4 1 662 2 0 327
disclosure_x_noise 4 1 662 2 0 329
disclosure_z 4 1 662 2 0 314
PizzaCutter] 38 1 661 2 0 52
balance-scale 5 1 625 3 0 49
monks-problems-2 7 7 601 2 0 206
synthetic_control 61 1 600 6 0 100
sensory 12 12 576 2 0 239
wdbc 31 1 569 2 0 212
arsenic-female-bladder 5 2 559 2 0 80
monks-problems-1 7 7 556 2 0 278
monks-problems-3 7 7 554 2 0 266
climate-model-simulation-crashes 21 1 540 2 0 46
doa_bwin 14 3 530 2 0 176
CPMP-2015-runtime-classification 23 1 527 4 0 78
ke2 22 1 522 2 0 107
threeOf9 10 10 512 2 0 238
rmftsa_ladata 11 1 508 2 0 222
boston_corrected 21 4 506 2 0 223
boston 14 2 506 2 0 209
collins 23 3 500 2 0 80
pml0 8 1 500 2 0 246
no2 8 1 500 2 0 249
LED-display-domain-7digit 8 1 500 10 0 37
irish 6 4 500 2 32 222
PopularKids 11 5 478 3 0 90
analcatd: pnea2 4 3 475 2 0 64
analcatdata_apneal 4 3 475 2 0 61
thoracic-surgery 17 14 470 2 0 70
analcatdata_vineyard 4 2 468 2 0 208
chscase_vine2 3 1 468 2 0 212
sa-heart 10 2 462 2 0 160
analcatdata_apnea3 4 3 450 2 0 55
wholesale-customers 9 2 440 2 0 142
mwl 38 1 403 2 0 31
user-knowledge 6 1 403 5 0 24
chscase_census5 8 1 400 2 0 193
chscase_census4 8 1 400 2 0 194
chscase_census3 8 1 400 2 0 192
chscase_census2 8 1 400 2 0 197
chscase_census6 7 1 400 2 0 165
analcatdata_germangss 6 5 400 4 0 100
calendarDOW 33 21 399 5 0 44
autoMpg 8 4 398 2 6 189
vinnie 3 1 380 2 0 185
jEdit 4.2.4.3 9 1 369 2 0 165
dermatology 35 34 366 6 8 20
analcatdata_draft 5 3 366 2 1 32
analcatdata_birthday 4 3 365 2 30 53
ionosphere 35 1 351 2 0 126
SPECTF 45 1 349 2 0 95
penguins 7 3 344 3 18 68
CastMetall 38 1 327 2 0 42
visualizing_galaxy 5 1 323 2 0 148
plasma_retinol 14 4 315 2 0 133
solar-flare 13 13 315 5 0 21
diggle_table_a2 9 1 310 9 0 18
vertebra-column 7 1 310 3 0 60
haberman 4 2 306 2 0 81
heart-c 14 8 303 2 7 138
cleveland 14 8 303 2 6 139
cholesterol 14 8 303 2 6 137
cleve 14 9 303 2 0 138
cleveland-nominal 8 8 303 5 0 13
CostaMadre1 38 1 296 2 0 38
Heart_disease_prediction_20 14 1 296 2 0 137
breast-cancer 10 10 286 2 9 85
breastTumor 10 9 286 2 9 120
analcatdata_broadwaymult 8 5 285 7 27 21
mu284 11 1 284 2 0 142
DiabeticMellitus 98 1 281 2 2 99
breast-cancer-dropped-missing-attributes-values 10 10 277 2 0 81
jEdit4.0.4.2 9 1 274 2 0 134
heart-statlog 14 1 270 2 0 120
SPECT 23 23 267 2 0 55
Touch2 11 1 265 8 0 27
analcatdata_lawsuit 5 2 264 2 0 19
rmftsa_ctoarrivals 3 2 264 2 0 101

Table G.2: Dataset statistics - Part 2

19

Under review as a conference paper at ICLR 2026

Name #Features #Cat. Feat. #Instances #Classes #NaNs Minority Class Size
MegaWatt1 38 1 253 2 0 27
bodyfat 15 1 252 2 0 124
qualitative-bankruptcy 7 7 250 2 0 107
prnn_synth 3 1 250 2 0 125
conference_attendance 7 7 246 2 0 31
chatfield_4 13 1 235 2 0 93
chscase_whale 9 1 228 2 20 111
lungcancer_.GSE31210 24 3 226 2 0 35
chscase_geyserl 3 1 222 2 0 88
thyroid-new 6 1 215 3 0 30
glass 10 1 214 6 0 9
prnn_fglass 10 1 214 2 0 76
seeds 8 1 210 3 0 70
biomed 9 2 209 2 15 75
cpu 8 2 209 2 0 53
machine_cpu 7 1 209 2 0 56
sonar 61 1 208 2 0 97
regime_alimentaire 20 17 202 2 17 41
heart-long-beach 14 1 200 5 0 10
pwLinear 11 1 200 2 0 97
prnn_crabs 8 2 200 2 0 100
parkinsons 23 1 195 2 0 48
pharynx 11 10 195 2 2 74
KnuggetChase3 40 1 194 2 0 36
wisconsin 33 1 194 2 0 90
lowbwt 10 8 189 2 0 90
triazines 61 1 186 2 0 71
chscase_funds 3 1 185 2 0 87
planning-relax 13 1 182 2 0 52
Smartphone-Based_Recognition_of _Human_Activities 68 2 180 6 0 30
backache 32 27 180 2 0 25
wine 14 1 178 3 0 48
Servo 5 5 167 2 0 38
robot-failures-lp5 91 1 164 5 0 21
analcatdata_wildcat 6 3 163 2 0 47
mc2 40 1 161 2 0 52
corral 7 7 160 2 0 70
hayes-roth 5 1 160 3 0 31
auto_price 16 2 159 2 0 54
autoPrice 16 1 159 2 0 54
analcatdata_gsssexsurvey 10 6 159 2 6 35
TuningSVMs 81 1 156 2 0 54
grub-damage 9 7 155 4 0 19
teachingAssistant 7 5 151 3 0 49
tae 6 3 151 3 0 49
iris 5 1 150 3 0 50
iris-example 5 1 150 3 0 50
sleuth_case2002 7 5 147 2 0 69
kcl-top5 95 1 145 2 0 8
kcl-binary 95 1 145 2 0 60
newton_hema 4 2 140 2 0 70
veteran 8 5 137 2 0 43
analcatdata_boxing2 4 4 132 2 0 61
analcatdata_seropositive 4 2 132 2 0 46
transplant 4 1 131 2 0 48
datatrieve 9 1 130 2 0 11
visualizing_livestock 3 2 130 5 0 26
humandevel 2 1 130 2 0 65
mux6 7 7 128 2 0 64
MindCave2 40 1 125 2 0 44
fruitfly 5 3 125 2 0 49
KungChi3 40 1 123 2 0 16
heart-switzerland 13 1 123 5 0 5
arl 30 1 121 2 0 9
analcatdata_boxing1 4 4 120 2 0 42
rabe_266 3 1 120 2 0 57
robot-failures-1p4 91 1 117 3 0 21
visualizing_environmental 4 1 111 2 0 53
cloud 8 2 108 2 0 32
analcatdata_michiganacc 4 3 108 2 0 48
ard 30 1 107 2 0 20
molecular-biology_promoters 58 58 106 2 0 53
breast-tissue 10 1 106 6 0 14
ar6 30 1 101 2 0 15
Z00 17 16 101 7 0 4
fertility 10 1 100 2 0 12
analcatdata_creditscore 7 4 100 2 0 27
blogger 6 6 100 2 0 32
analcatdata_chlamydia 4 4 100 2 0 19
analcatdata_neavote 3 2 100 2 0 7

Table G.3: Dataset statistics - Part 3

20

Under review as a conference paper at ICLR 2026

H K-MEANS CLUSTERING FOR DATASET SELECTION

Table [H.T|reports the extended results of our K-means clustering-based training set selection under
different numbers of clusters K € {3,5,10}, where a proportion (P € {0.05,0.10,0.20}) of
samples is drawn from each cluster. Across all settings, our method demonstrates stable performance
regardless of K, confirming its robustness when applied with clustering-based selection.

Shift strength ()
0.0 0.1 0.5 1.0 2.0 5.0 Avg.

TabPFN-v2 0.668 0.596 0.591 0.548 0.500 0.439 0.408 | 0.513
0.05 | DistPFN 0.661 0.622 0.614 0.579 0.532 0.454 0.428 | 0.538
DistPFN-T 0.657 0.625 0.616 0.588 0.540 0.459 0.433 | 0.543

TabPFN-v2 0.699 0.626 0.632 0.570 0.528 0.465 0.424 | 0.541
3 | 0.10 | DistPFN 0.692 0.641 0.653 0.620 0.564 0.498 0.450 | 0.573
DistPFN-T 0.687 0.643 0.657 0.628 0.569 0.504 0.454 | 0.584

TabPFN-v2 0.732 0.673 0.668 0.626 0.576 0.505 0.468 | 0.591
0.20 | DistPFN 0.727 0.692 0.688 0.669 0.614 0.556 0.509 | 0.639
DistPFN-T 0.722 0.691 0.692 0.674 0.620 0.568 0.516 | 0.661

TabPFN-v2 0.676 0.605 0.606 0.550 0.503 0.459 0.429 | 0.529
0.05 | DistPFN 0.673 0.628 0.630 0.587 0.534 0.487 0.453 | 0.561
DistPFN-T 0.672 0.629 0.634 0.594 0.539 0.493 0.460 | 0.565

TabPFN-v2 0.699 0.631 0.644 0.586 0.540 0.485 0.446 | 0.569
5 | 0.10 | DistPFN 0.696 0.654 0.665 0.624 0.583 0.528 0.475 | 0.609
DistPFN-T 0.693 0.655 0.670 0.630 0.591 0.538 0.483 | 0.620

TabPFN-v2 0.732 0.670 0.679 0.628 0.582 0.523 0.481 | 0.618
0.20 | DistPFN 0.736 0.687 0.697 0.662 0.625 0.576 0.521 | 0.645
DistPFN-T 0.731 0.690 0.698 0.670 0.631 0.584 0.531 | 0.667

TabPFN-v2 0.708 0.644 0.639 0.591 0.547 0.505 0.460 | 0.554
0.05 | DistPFN 0.706 0.659 0.662 0.627 0.586 0.548 0.493 | 0.589
DistPFN-T 0.701 0.662 0.667 0.640 0.601 0.562 0.504 | 0.605

TabPFN-v2 0.727 0.663 0.664 0.617 0.582 0.534 0.481 | 0.620
10 | 0.10 | DistPFN 0.723 0.679 0.685 0.650 0.618 0.577 0.515 | 0.642
DistPFN-T 0.718 0.685 0.691 0.656 0.629 0.588 0.527 | 0.652

TabPFN-v2 0.749 0.697 0.689 0.651 0.619 0.561 0.510 | 0.638
0.20 | DistPFN 0.749 0.713 0.711 0.682 0.663 0.610 0.553 | 0.676
DistPFN-T 0.748 0.716 0.715 0.689 0.670 0.620 0.563 | 0.688

K P Methods w/o shift

Table H.1: K-means-based training dataset selection. Our method remains effective when training
subsets are selected by clustering the data and sampling a percentage (P) of samples from each of K
clusters.

21

Under review as a conference paper at ICLR 2026

I APPLICATION TO LOCALPEN

Table [I.1] provides the full results for LoCalPEN under different values of k across six 3 values.
The results confirm that our methods yield consistent improvements regardless of the choice of k&,
demonstrating robustness of the approach.

Shift strength (3)
k | Methods Avg.
0.0 0.1 0.5 1.0 2.0 5.0
LoCalPFN 0.789 0.787 0.774 0.758 0.711 0.679 | 0.750
3 | + DistPFN 0.794 0.794 0.792 0.786 0.772 0.752 | 0.782
+ DistPEN-T | 0.794 0.794 0.794 0.790 0.779 0.759 | 0.785

LoCalPFN 0.792 0.791 0.785 0.775 0.744 0.714 | 0.767
5 | + DistPEN 0.794 0.795 0.793 0.790 0.777 0.766 | 0.786
+ DistPEN-T | 0.795 0.796 0.795 0.794 0.784 0.770 | 0.789

LoCalPFN 0.794 0.792 0.786 0.778 0.752 0.720 | 0.770
10 | + DistPEN 0.796 0.795 0.793 0.791 0.779 0.768 | 0.787
+ DistPEN-T | 0.797 0.797 0.796 0.794 0.785 0.774 | 0.789

LoCalPFN 0.794 0.793 0.788 0.778 0.753 0.719 | 0.771
20 | + DistPFN 0.797 0.796 0.794 0.790 0.782 0.770 | 0.788
+ DistPEN-T | 0.798 0.797 0.796 0.794 0.787 0.776 | 0.791

Table I.1: Application to LoCalPFN. DistPFN and DistPEN-T applied to LoCalPFN show consistent
improvements across varying numbers of neighbors (k).

22

Under review as a conference paper at ICLR 2026

J COMPARISON WITH METHODS FOR LABEL SHIFT CORRECTION

To demonstrate the effectiveness of our approach, we compare it with classical methods for handling
label shift by rescaling classifier outputs, which typically require estimating the test distribution:
EM-based Estimation (EME) (Saerens et al.| |2002) and Black-box Estimation (BBE) (Lipton et al.,
2018). Table[J-T|presents the results, showing that our method is effective without requiring estimation
of the test prior.

Shift strength (/3)

Methods w/o shift

0.0 0.1 0.5 1.0 2.0 5.0 Avg.
LoCalPFN 0.816 0.794 0.793 0.788 0.778 0.753 0.719 | 0.771
+ EME 0.801 0.792 0.790 0.786 0.785 0.778 0.769 | 0.783
+ BBE 0.805 0.798 0.795 0.792 0.789 0.782 0.770 | 0.787
+ DistPFN 0.816 0.797 0.796 0.794 0.790 0.782 0.770 | 0.788
+ DistPFN-T 0.816 0.798 0.797 0.796 0.794 0.787 0.776 | 0.791
TabICL 0.806 0.783 0.781 0.770 0.747 0.704 0.664 | 0.742
+ EME 0.798 0.776 0.776 0.770 0.769 0.761 0.747 | 0.766
+ BBE 0.802 0.783 0.785 0.780 0.774 0.754 0.734 | 0.768
+ DistPFN 0.806 0.786 0.786 0.781 0.776 0.763 0.746 | 0.773
+ DistPFN-T 0.806 0.786 0.786 0.783 0.780 0.771 0.755 | 0.777
TabPFN-v2 0.818 0.797 0.796 0.790 0.782 0.759 0.727 | 0.775
+ EME 0.801 0.793 0.793 0.790 0.787 0.783 0.768 | 0.786
+ BBE 0.805 0.799 0.797 0.797 0.791 0.783 0.768 | 0.789
+ DistPFN 0.818 0.799 0.797 0.795 0.791 0.783 0.769 | 0.789
+ DistPFN-T 0.818 0.799 0.798 0.797 0.796 0.789 0.775 | 0.792

Figure J.1: Comparison with other label shift methods.

23

Under review as a conference paper at ICLR 2026

K PREDICTED DISTRIBUTION OF SINGLE VS. MULTIPLE INSTANCES

As TabPFN produces identical predictions whether test instances are evaluated individually or in
batches, DistPFN and DistPFN-T can adjust based on either 1) the prediction of a single instance or
2) the average prediction across multiple instances. As shown in Table K1} both choices consistently
improve TabPFN-v2 (Hollmann et al.l [2025)), averaged across six s for w/ shift, demonstrating
robustness to the choice of distribution source.

)) Shift strength (53)
Pred. distn. | w/o shift

0.0 0.1 0.5 1.0 2.0 5.0 Avg.

TabPFN-v2 - 0.818 0.797 0.796 0.790 0.782 0.759 0.727 | 0.775
+ DistPEN Single 0.818 0.797 0.796 0.795 0.793 0.784 0.770 | 0.789
Multiple 0.818 0.799 0.797 0.795 0.791 0.783 0.770 | 0.789

+ DistPEN-T Single 0.818 0.797 0.797 0.796 0.795 0.788 0.773 | 0.791
Multiple 0.818 0.799 0.798 0.797 0.796 0.789 0.775 | 0.792

Table K.1: Predicted distributions: Single vs. Multiple. The proposed methods consistently im-
proves TabPFN-v2 regardless of whether the adjustment is based on single or aggregated distribution.

24

Under review as a conference paper at ICLR 2026

L. OTHER METRICS

Table[L.I|reports the comparison of our methods and baselines under § = 2 in terms of ROC-AUC,
demonstrating the effectiveness of our method. The results demonstrate that our method shows nearly
the same values as the backbone, as the adjustment only rescales predicted probabilities without
altering their order.

. Shift strength (5)
Methods w/o shift
0.0 0.1 0.5 1.0 2.0 5.0 Avg.
LogReg. 0.81340.002 | 0.789+0.002 0.789+0.002 0.790+0.002 0.788+0.002 0.78410.003 0.77710.002 | 0.786
+ HPO 0.81740.002 | 0.806+40.001 0.806+0.001 0.805+0.002 0.803+0.002 0.797+0.001 0.79140.001 | 0.801
SVM 0.81510.002 | 0.74410.00a 0.74740.005 0.75010.004 0.74440.004 0.73310.005 0.72510.006 | 0.741
+ HPO 0.84040.002 | 0.80440.003 0.804+0.003 0.800+0.001 0.799+0.004 0.79410.002 0.78510.002 | 0.798
o0 MLP 0.82140.003 | 0.74710.002 0.75040.003 0.74610.005 0.73510.004 0.71910.002 0.70240.004 | 0.733
£ | +HPO 0.84940005 | 0.79920.001 0.79940.002 0.7910.001 0.788:0003 0.7810005 0.77240002 | 0.789
<
3 ENN 0.78940.001 | 0.72840.003 0.72810.004 0.72710.004 0.72210.004 0.709+0.003 0.69310.003 | 0.718
2 + HPO 0.82840.002 | 0.775410.002 0.77540.003 0.773+0.002 0.768+0.002 0.75640.001 0.74210.002 | 0.765
'§ Random Forest | 0.836+0.003 | 0.82410.003 0.82310.003 0.821+9.003 0.8184+0.002 0.81210001 0.80210.001 | 0.817
= +HPO 0.84940.003 | 0.83640.003 0.83510.003 0.83440.003 0.83210.002 0.826+0.001 0.818+0.002 | 0.830
LightGBM 0.82440.002 | 0.81310.001 0.81240.001 0.809+0.002 0.805+0.003 0.797+0.002 0.78540.003 | 0.805
+ HPO 0.84540.003 | 0.776+10.000 0.767+0.006 0.781+0.003 0.77410.010 0.77540.000 0.77910.004 | 0.775
CatBoost 0.847 10,003 | 0.83310.003 0.83240.002 0.830+0.003 0.827+0.002 0.82010.002 0.810+0.002 | 0.825
+HPO 0.84310.003 | 0.83310.003 0.83210.002 0.8301£0.003 0.82710.002 0.81910.002 0.81040.001 | 0.825
< | FT-Transformer | 0.82140.003 | 0.81810.003 0.81910.002 0.81610.003 0.81210.002 0.79510.003 0.77110.002 | 0.805
g TabM 0.82410.003 | 0.82410.003 0.82410.002 0.82310.003 0.821i0.001 0.80810.003 0.79140.002 | 0.815
<= | TabulaRNN 0.77440.003 | 0.69940.003 0.684109.003 0.641410004 0.58510009 0.52210011 0.46540.008 | 0.599
£ | MambaTab 0.74340.005 | 0.62910.006 0.603+10.004 0.52540.002 0.46610.010 0.4301+0.005 0.39410.002 | 0.508
0 Z | RealMLP 0.82140.002 | 0.80540.003 0.80640.002 0.80710.002 0.80410.003 0.79510.000 0.7811¢.004 | 0.800
Z
‘E LoCalPFN 0.85810.002 | 0.84240.002 0.84010.001 0.839+0.000 0.836+0.000 0.830+0.000 0.82640.001 | 0.836
51 + DistPEN 0.85840.002 | 0.84210.002 0.84040.002 0.839+0.001 0.836+0.001 0.830+0.001 0.82640.002 | 0.836
T:L - + DistPEN-T 0.85840.002 | 0.84210.002 0.840+0.002 0.839+0.001 0.837+0.001 0.830+0.001 0.82610.003 | 0.836
E '% TabICL 0.84540.003 | 0.83210.003 0.83240.001 0.830+0.002 0.82610.002 0.82110.002 0.81310.003 | 0.826
2 | + DistPFN 0.84510.003 | 0.83240.003 0.83210.001 0.8301£0.002 0.826+0.002 0.82110.002 0.81440.003 | 0.826
2 | + DistPEN-T 0.84540.003 | 0.83210.003 0.83240.001 0.83040.002 0.82610.002 0.82110.002 0.81440.003 | 0.826
2
TabPFN-v2 0.85940.002 | 0.84310.002 0.84240.003 0.84110002 0.838+0.002 0.833+0.001 0.82610.002 | 0.837
+ DistPFN 0.85910.002 | 0.84310.002 0.84310.003 0.84110.002 0.83810.002 0.83310.001 0.82610.003 | 0.837
+ DistPEN-T 0.85940.002 | 0.84310.002 0.84210.003 0.84110002 0.838+0.002 0.83310.001 0.82640.003 | 0.837

Table L.1: Tabular classification results: ROC-AUC comparisons.

25

	Introduction
	Related Works
	Preliminaries
	Methodology
	TabPFN
	DistPFN: Test-Time Posterior Adjustment
	DistPFN-T: Temperature-Scaled Adjustment
	Benchmark for Label Shift: Inverse-Frequency-based Oversampling

	Experiments
	Experimental Setup
	Class-imbalanced Benchmark Datasets
	Tabular Classification

	Analysis
	Conclusion
	Experimental Setups
	Baseline Methods
	Machine Learning (ML) Models
	Deep Learning (Non-Foundation) Models
	Deep Learning (Foundation) Models based on ICL

	Baseline Implementations
	Theoretical Justification
	Relation to Label Shift Correction
	Bayesian Interpretation

	Classical Methods for Label Shift Correction
	Prior-ratio Adjustment
	EM-based Estimation
	Black-box Estimation

	Hyperparameter Tuning for Stronger Baselines
	Dataset Statistics
	K-means Clustering for Dataset Selection
	Application to LoCalPFN
	Comparison with Methods for Label Shift Correction
	Predicted Distribution of Single vs. Multiple Instances
	Other Metrics

