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ABSTRACT

Time cost is a major challenge in achieving high-quality pluralistic image com-
pletion. Recently, the Retentive Network (RetNet) in natural language processing
offers a novel approach to this problem with its low-cost inference capabilities.
Inspired by this, we apply RetNet to the pluralistic image completion task in com-
puter vision. We present RetCompletion, a two-stage framework. In the first stage,
we introduce Bi-RetNet, a bidirectional sequence information fusion model that
integrates contextual information from images. During inference, we employ a
unidirectional pixel-wise update strategy to restore consistent image structures,
achieving both high reconstruction quality and fast inference speed. In the second
stage, we use a CNN for low-resolution upsampling to enhance texture details.
Experiments on ImageNet and CelebA-HQ demonstrate that our inference speed is
10ˆ faster than ICT and 15ˆ faster than RePaint. The proposed RetCompletion
significantly improves inference speed and delivers strong performance, especially
when masks cover large areas of the image.

1 INTRODUCTION

Pluralistic image completion, also known as image inpainting, is a crucial research area with various
applications, including object removal and photo restoration Barnes et al. (2009); Criminisi et al.
(2004); Dale et al. (2009); Wan et al. (2020). CNN-based methods ?Iizuka et al. (2017); Li et al.
(2017) have demonstrated impressive results by capturing local texture patterns, but they often
struggle to model global structures, leading to suboptimal image reconstruction quality. To overcome
this limitation, researchers have introduced hybrid models combining Transformers and CNNs Wan
et al. (2021); Zheng et al. (2022); Li et al. (2022). While these approaches significantly improve
reconstruction quality and produce diverse results by modeling the underlying data distribution,
Transformer-based pixel-wise generation involves extensive feature fusion calculations. This compu-
tational overhead increases inference time, limiting the practicality of these methods, especially in
real-time applications. Therefore, developing algorithms that maintain high-quality reconstruction
while improving computational efficiency remains a critical challenge in this domain.

Recently, Retentive Network (RetNet) Sun et al. (2023) has shown substantial potential in natural
language processing due to its multi-scale retention mechanism, which bridges parallel training
and recurrent inference. This capability enables RetNet to process information efficiently, even in
pixel-wise generation tasks. However, applying RetNet directly to vision tasks presents challenges,
as image information is not unidirectional like language data.

In this work, we propose RetCompletion, a novel image completion framework designed to address
the challenges of slow inference and inconsistent image reconstruction. RetCompletion operates in
two stages: the first stage leverages a Bi-RetNet architecture for low-resolution pixel-wise image
generation, while the second stage uses a CNN for high-resolution texture refinement. Extensive
experiments on datasets such as ImageNet and CelebA-HQ demonstrate that RetCompletion signifi-
cantly accelerates inference while maintaining high reconstruction quality.

The key contributions of this work are:

1. First application of RetNet to image completion: We introduce RetNet for the first time
in image completion tasks, utilizing its parallel training and recursive inference to accelerate
the process.
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2. Bi-RetNet with bidirectional fusion: Our Bi-RetNet architecture fuses forward and back-
ward contextual information, improving consistency and realism, particularly when recon-
structing large masked areas.

3. Efficient pixel-wise inference based on RetNet: RetCompletion’s pixel-wise inference
strategy, enabled by RetNet, is significantly faster than Transformer-based methods and
produces better overall results by incorporating previously generated pixel information
during inference.

2 RELATED WORK

Pluralistic Image Completion The significance of Pluralistic Image Completion lies in providing
a diverse approach to image processing, allowing for the creation of images with different styles
and effects, enriching the toolbox in creative and design fields, and supporting diverse choices
in decision-making processes. PIC Zheng et al. (2019) employs a dual-path framework based on
probabilistic principles: one is the reconstructive path, which utilizes the given ground truth to obtain
prior information about the missing parts and reconstructs the original image from this distribution.
The other is the generative path, where the conditional prior is coupled with the distribution from the
reconstructive path. ICT Wan et al. (2021) directly optimizes the log-likelihood in the discrete space in
the first transformer-based stage without the need for additional assumptions. RePaint Lugmayr et al.
(2022) applies the Diffusion model to the image inpainting task, using a pre-trained unconditional
DDPM Ho et al. (2020) as the generative prior and modifying the reverse diffusion iterations by
sampling the unmasked regions from the given image information. Since this technique doesn’t alter
or condition the original DDPM Ho et al. (2020) network itself, the model can generate high-quality
and diverse output images for any inpainting scenario.

Retentive Network Retentive Network Sun et al. (2023) introduces the retention mechanism with
a dual form of recurrence and parallelism. It has three computation paradigms,i.e., parallel, recurrent,
and chunkwise recurrent. We can train parallelly by using parallel paradigm while conducting
inference recurrently using recurrent and chunkwise paradigms. The retention mechanism utilizes
a rotation-based positional encoding along with a decay term to effectively model the position
information of tokens, known as xPos Sun et al. (2022), a relative position embedding proposed for
Transformer. We attempt to extend this method to two-dimensional images.

3 METHODS

The overall pipeline of our method can be seen in Figure. 1, which consists of two stages. The
first stage is utilized to complete low-resolution images based on Bi-RetNet, while the second stage
generates high-resolution images based on CNN.

3.1 RETENTIVE NETWORK

Retentive Network (RetNet) is a powerful architecture initially designed for natural language pro-
cessing, which combines parallel and recurrent representations to efficiently handle sequential data.
Its key advantage lies in its ability to balance parallel training and recurrent inference, enabling fast
computation even in complex tasks.

RetNet models sequences in a recurrent manner, where the hidden state at each step is computed as:

sn “ Asn´1 ` KJ
n vn (1)

This allows RetNet to accumulate information over time while maintaining efficient updates.

Additionally, RetNet can be diagonalized to simplify the recurrence into a more efficient form using
positional encoding, further improving its speed and accuracy:

on “

n
ÿ

m“1

γn´mpQne
inθqpKmeimθq:vm (2)

The RetNet framework incorporates three key representations:

2
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Figure 1: Pipeline Overview. Our method consists of two networks, which are trained separately.
Based on the Bi-RetNet, the first network is employed for completing low-dimensional images. A
parallel representation is utilized during training, predicting all pixels simultaneously to expedite the
training process. In contrast, during inference, a recurrent representation is employed, predicting one
pixel at a time to enhance the quality of the generated image. The second network, built on a CNN
architecture, comprises an encoder, a decoder, and multiple residual blocks. Its primary function is to
restore high-dimensional images from their low-dimensional counterparts.

Parallel Representation Parallelization allows RetNet to achieve linear complexity during training,
greatly speeding up the process. This is computed as:

RetentionpXq “ pQKT d DqV (3)

Recurrent Representation During inference, RetNet uses its recurrent form, which achieves O(1)
complexity, enabling fast pixel-wise inference:

RetentionpXnq “ QnSn (4)

Chunkwise Recurrent Representation This combines both parallel and recurrent approaches,
allowing for accelerated computations in large-scale tasks:

RetentionpXrisq “ pQrisK
T
ris d DqVris ` QrisRri´1s (5)

This unique combination of representations allows RetNet to efficiently process large datasets, making
it particularly well-suited for pixel-wise image completion tasks, where both speed and accuracy are
critical.

3.2 PREPROCESSING

To reduce the computational cost of attention calculations during preprocessing, we first downsample
the input image from its original resolution H ˆ W to a lower-resolution version L ˆ L:

ĪL ˆ L ˆ 3 “ DownsamplingpIH ˆ W ˆ 3q (6)

This step simplifies the image, reducing the number of pixels that need to be processed during
subsequent stages.
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RGB color channels typically exist in a high-dimensional space (2563 colors), which makes direct
processing computationally expensive. To handle this, we generate a compact visual vocabulary by
applying K-Means clustering on the entire ImageNet dataset Russakovsky et al. (2015), reducing
the space to 512 representative colors. For each unmasked pixel, we map its color to the nearest
representative color from this vocabulary. The image is then raster-scanned and reshaped into a
sequence, which is necessary for the RetNet model:

SL2ˆ1 “ reshapepprojectpĪLˆLˆ3qq (7)

We also create a binary mask sequence, where 1 indicates a masked pixel and 0 represents an
unmasked pixel:

ML2ˆ1 “ IpSi is maskedq, i “ 1, 2, . . . , L2 (8)

Feature Encoding To convert each pixel’s color into a feature vector, we use a trainable embedding.
This transforms the discrete color values from the visual vocabulary into d-dimensional feature
vectors, which will serve as inputs to RetNet.

Position Encoding RetNet uses positional encoding to track the location of tokens in a sequence.
For 2D images, we introduce a learnable position embedding that captures spatial information. This
embedding, combined with the feature encoding, forms the input sequence for RetNet:

XL2ˆd “ FEpSL2ˆ1 d ML2ˆ1q ` PEL2ˆd (9)

By combining the color features and positional information, this sequence serves as the input to the
RetNet model, allowing it to process the image efficiently in the subsequent stages.

3.3 APPEARANCE PRIORS RECONSTRUCTION BY BI-RETNET

Traditional RetNet operates with unidirectional information flow, which is suitable for natural
language processing. However, image completion requires integrating contextual information from
multiple directions. To address this, we developed a bidirectional RetNet model consisting of a
Multi-Head Forward-RetNet and a Multi-Head Backward-RetNet. These two RetNets share the
same structure but have different parameters, enabling them to capture information from different
directions.

Multi-Head Forward-RetNet In this model, we utilize h heads, where each head has a feature
dimension of dhead “ d{h. Different heads use different parameter matrices WQ,WK ,WV P

Rdheadˆdhead . The retention for each head is computed as:

headi “ RetentionpX,Wiq (10)

The multi-head outputs are concatenated and normalized using GroupNorm:

Y “ GroupNormhpConcatphead1, . . . , headhqq (11)

The final output for each forward layer is computed as:

Y l
forward “ MSRpLNpX l

forwardqq ` X l
forward (12)

X l`1forward “ FFNpLNpY lforwardqq ` Y l
forward (13)

where X1 is the sequence obtained from the preprocessing stage, and l denotes the layer index.

Multi-Head Backward-RetNet The Multi-Head Backward-RetNet follows the same procedure,
except that it processes the reversed input sequence. After computation, the result is reversed back to
its original order, yielding X

pL`1q

backward.
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Feature Fusion To combine the forward and backward information, we perform feature fusion
by adding the outputs from the forward and backward passes. Layer normalization, fully connected
layers, and softmax are then applied to produce a per-pixel distribution of 512 possible colors:

P px|X, θq “ softmaxpFCpLNpXL`1forward ` XL`1backwardqqq (14)

This fusion of forward and backward information allows the model to capture richer contextual
dependencies, leading to more accurate and coherent image reconstructions.

Loss Function Similar to BERT Devlin et al. (2018), we employ the Masked Language Model
(MLM) objective to optimize the RetNet. The loss function minimizes the negative log-likelihood of
the masked pixels, ensuring that the model learns to predict missing regions accurately:

LMLM “ E
X

r
1

N

N
ÿ

n“1

´ log ppxn|X, θqs (15)

where N represents the number of masked pixels in the image. By minimizing this loss, the generated
images approach the ground truth, resulting in high-quality reconstructions.

3.4 PARALLEL TRAINING

During training, we utilize both the parallel and chunkwise recurrent representations to accelerate the
process. Specifically, we choose to predict all masked pixels simultaneously, rather than sequentially,
in order to improve training efficiency.

In this approach, masked pixels receive color information exclusively from unmasked pixels, meaning
that masked pixels do not incorporate information predicted for other masked pixels, even those earlier
in the sequence. This strategy allows for more efficient computation, as it reduces dependencies
between predictions and enables faster iteration over large datasets.

By employing this parallelized method, we are able to reduce the overall training time, especially
when handling high-dimensional data.

3.5 PIXEL-WISE INFERENCE

In the inference stage, we adopt a pixel-wise inference method, which has proven to be significantly
more effective compared to predicting all pixels simultaneously. The pixel-wise approach allows the
model to incorporate newly predicted pixel information step by step, improving the overall quality of
the generated images. This advantage is made possible by the Bi-RetNet architecture, which enables
fast updates during inference, a capability that Transformer-based models lack.

We begin by performing information fusion on the initial image to generate integrated representations,
Sforward and Sbackward. Then, we predict the masked pixels one by one in a raster-scan manner.
At each step, we update the retention state of the forward RetNet with the new pixel information,
ensuring that each subsequent pixel prediction benefits from previous predictions.

The inference process is detailed in Algorithm 1, where the model integrates the forward and backward
information for each pixel prediction and updates the RetNet’s retention state after each step:

This pixel-wise inference strategy allows our model to efficiently update and refine each pixel
prediction, improving both speed and accuracy compared to Transformer-based methods.

3.6 GUIDED UPSAMPLING

After reconstructing the appearance priors, we reshape the sequence X P RL2
ˆ3 into It P RLˆLˆ3,

which represents a low-resolution image. We then upscale this image to the original resolution
H ˆW ˆ 3. Following ICT Wan et al. (2021), we employ a CNN-based guided upsampling network,
as CNNs have shown excellent performance in texture reconstruction. The upsampling network is
composed of an encoder, decoder, and residual blocks. First, we upsample It to the original resolution

5
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Algorithm 1 Pixel-wise Inference

1: Initialization:
2: Compute initial Q0 “ X0WQ, K0 “ X0WK , V0 “ X0WV

3: Initialize Sforward and Sbackward with Q0,K0, V0

4: Pixel-wise Inference:
5: for n “ 1 to N (where jn are the indices of masked pixels) do
6: Retrieve positional encodings: X̄forward,n1 “ PEjn , X̄backward,n1 “ PEjn

7: for each layer l from 1 to L do
8: # Forward Pass
9: Yforward,nl “ MSRpLNpX̄forward,nlqq ` X̄forward,nl

10: X̄forward,npl`1q “ FFNpLNpYforward,nlqq ` Yforward,nl

11: # Backward Pass
12: Ybackward,nl “ MSRpLNpX̄backward,nlqq ` X̄backward,nl

13: X̄backward,npl`1q “ FFNpLNpYbackward,nlqq ` Ybackward,nl

14: end for
15: # Combine forward and backward results for prediction
16: P pxnq “ softmaxpFCpLNpX̄forward,npL`1q ` X̄backward,npL`1qqqq

17: Sample pixel value: xn „ P pxnq

18: Update pixel embedding: Xn “ FEpxnq ` PEjn

19: # Update forward RetNet state
20: Compute new Qn “ XnWQ, Kn “ XnWK , Vn “ XnWV

21: Update Sforward with Qn,Kn, Vn

22: end for

using bilinear interpolation, and then we feed the upsampled image along with the original image and
mask into the upsampling network as:

Ipred “ FδpIÒ
t ⌢ Imq P RHˆWˆ3 (16)

where F represents the upsampling network with parameters δ.

We apply both L1 loss between Ipred and I , and adversarial loss to train the upsampling network as:

LL1
“ Er|Ipred ´ I|1s (17)

Ladv “ Erlogp1 ´ DωpIpredqqs ` ErlogDωpIqs (18)

where D is the discriminator with parameters ω.

The upsampling network F and discriminator D are trained with the following optimization objective:

min
F

max
D

Lupsamplepδ, ωq “ α1LL1
` α2Ladv (19)

4 EXPERIMENTS

In our experiments, we evaluate the performance of the proposed method using two datasets: CelebA-
HQ Karras et al. (2017) and ImageNet Russakovsky et al. (2015). We perform both quantitative and
qualitative evaluations to assess the quality of image completion and the inference speed. Quantitative
comparisons are conducted against other state-of-the-art methods in terms of image quality and
computational efficiency, while qualitative comparisons are based on user feedback. Note that all
qualitative and quantitative results reported in this paper are based on a fixed image resolution of 256
pixels.
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Datasets h d N L
CelebA-HQ Karras et al. (2017) 8 512 30 48ˆ48

ImageNet Russakovsky et al. (2015) 8 1024 35 32ˆ32

Table 1: Retention Network parameter setting across different experiment. h: Head number. d:
The dimension of embedding space. N: Number of retention layers. L: The length of appearance
prior.

4.1 IMPLEMENTATION DETAILS

To ensure fair comparisons across different datasets and methods, we follow the same configuration
as ICT Wan et al. (2021) for all experiments, as shown in Table 1. For the CelebA-HQ Karras et al.
(2017) and ImageNet Russakovsky et al. (2015) datasets, we retain the original training and test
splits. Additionally, we employ PConv Liu et al. (2018) to generate diverse masks during training to
simulate various image occlusion scenarios.

4.2 QUANTITATIVE COMPARISONS

We quantitatively compare our method against several state-of-the-art (SOTA) image completion
techniques using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and learned
perceptual image patch similarity (LPIPS). Experiments are conducted on CelebA-HQ Karras et al.
(2017) and ImageNet Russakovsky et al. (2015) datasets with five distinct mask types to assess
performance across different occlusion patterns. For all pluralistic image completion methods, Top-1
sampling is applied during testing.

The results of the quantitative experiments are presented in Table 2. It is clear that our method
consistently outperforms most existing SOTA methods across various mask types and datasets. A
notable observation is the significant difference between pixel-wise inference and simultaneous
pixel estimation (denoted with * in the table). Our pixel-wise inference approach demonstrates clear
superiority in terms of both image quality and perceptual similarity, as evidenced by the improvements
in PSNR, SSIM, and LPIPS metrics. This emphasizes the effectiveness of our method, particularly in
scenarios with complex occlusions.

While this section highlights the quality improvements, the efficiency of our method is also noteworthy.
Our pixel-wise inference strategy not only yields better image reconstruction but also achieves faster
inference times compared to methods that predict all pixels simultaneously. We will explore this
speed advantage in more detail in the subsequent section, where we provide a visual comparison of
the inference time between our method and others.

Mask types We utilize five distinct mask types in our experiments. The Wide and Narrow masks
are adapted from LaMa Suvorov et al. (2022), representing occlusions of different widths across the
image. The Half mask randomly occludes either the top, bottom, left, or right part of the image. The
Center mask covers a central 64 ˆ 64 region, while the Expand mask occludes all regions except for
the central part, covering the majority of the image.

4.3 USER STUDY

To enhance the assessment of subjective quality, we additionally perform a user study to compare our
method against other baseline approaches. We randomly select 50 images and apply various masks
to each. Employing different image completion methods, including pluralistic image completion
methods, we consistently used the Top-1 sampling result. Specifically, we present a set of five images
generated by MED Liu et al. (2020), PIC Zheng et al. (2019), EC Nazeri et al. (2019), ICT Wan et al.
(2021), and our method for each image. Users are then asked to rank the top three images that appear
most realistic. Finally, we calculate the percentage of times each method ranked within the top three.
Sample images for user study are shown in Figure. 2.

The results obtained from 200 users are shown in Figure 3a. The results show that our method
significantly outperforms the PIC method in terms of visual quality. Additionally, our method shows

7
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Dataset CelebA-HQ Karras et al. (2019) ImageNetRussakovsky et al. (2015)
Method Mask Ratio PSNR SSIM LPIPS PSNR SSIM LPIPS

PIC Zheng et al. (2019)

Wide

23.781 0.883 0.164 23.765 0.819 0.234
LaMa Suvorov et al. (2022) 27.581 0.928 0.045 26.099 0.865 0.105

RePaint Lugmayr et al. (2022) 27.496 0.931 0.059 25.768 0.859 0.134
ICT˚ Wanet al. p2021q 26.897 0.922 0.069 25.545 0.848 0.125

ICT Wan et al. (2021) 27.139 0.932 0.063 25.886 0.862 0.107
Ours˚ 27.643 0.926 0.053 25.989 0.852 0.118
Ours 27.966 0.938 0.042 26.087 0.869 0.103

PIC Zheng et al. (2019)

Narrow

25.823 0.901 0.062 24.091 0.823 0.098
LaMa Suvorov et al. (2022) 28.684 0.942 0.028 26.892 0.902 0.061

RePaint Lugmayr et al. (2022) 28.547 0.938 0.028 26.908 0.906 0.064
ICT˚ Wanet al. p2021q 28.242 0.932 0.041 26.887 0.898 0.079

ICT Wan et al. (2021) 28.551 0.944 0.036 26.902 0.903 0.073
Ours* 28.397 0.935 0.031 26.882 0.901 0.071
Ours 28.692 0.943 0.029 26.911 0.902 0.065

PIC Zheng et al. (2019)

Half

21.484 0.852 0.238 19.498 0.708 0.354
LaMa Suvorov et al. (2022) 25.208 0.905 0.138 23.513 0.756 0.254

RePaint Lugmayr et al. (2022) 24.846 0.902 0.165 23.498 0.762 0.304
ICT˚ Wanet al. p2021q 24.356 0.896 0.179 23.476 0.748 0.278

ICT Wan et al. (2021) 24.798 0.906 0.166 23.502 0.753 0.255
Ours˚ 24.798 0.898 0.153 23.496 0.746 0.278
Ours 25.103 0.907 0.145 23.512 0.759 0.262

PIC Zheng et al. (2019)

Center

25.580 0.887 0.153 23.806 0.816 0.167
LaMa Suvorov et al. (2022) 28.529 0.940 0.039 26.276 0.886 0.086

RePaint Lugmayr et al. (2022) 28.556 0.940 0.041 26.304 0.886 0.093
ICT˚ Wanet al. p2021q 28.409 0.935 0.058 26.198 0.879 0.103

ICT Wan et al. (2021) 28.496 0.942 0.052 26.282 0.888 0.096
Ours˚ 28.504 0.932 0.045 26.245 0.880 0.092
Ours 28.559 0.938 0.037 26.311 0.890 0.083

PIC Zheng et al. (2019)

Expand

18.893 0.798 0.576 17.364 0.652 0.712
LaMa Suvorov et al. (2022) 23.382 0.878 0.342 20.384 0.697 0.534

RePaint Lugmayr et al. (2022) 23.376 0.882 0.435 20.439 0.702 0.629
ICT˚ Wanet al. p2021q 23.298 0.876 0.446 20.126 0.683 0.562

ICT Wan et al. (2021) 23.379 0.879 0.432 20.324 0.698 0.544
Ours˚ 23.339 0.872 0.398 20.218 0.696 0.541
Ours 23.380 0.881 0.372 20.423 0.706 0.536

Table 2: Quantitative results on CelebA-HQ Karras et al. (2017) and ImageNet Russakovsky
et al. (2015) datasets with different mask types. All the pluralistic image completion methods use
Top-1 sampling. The models with * indicate the prediction method that uses all pixel points
simultaneously, while the models without * indicate the prediction method that uses pixel-by-pixel
prediction.
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ICT

PIC

Masked

LaMa

RePaint

Ours

Center Expand Half Wide Narrow Center Expand Half Wide Narrow
CelebA-HQ ImageNet

Figure 2: Sample images for user study.

a slight advantage over the ICTWan et al. (2021), LaMa Suvorov et al. (2022), and RePaintLugmayr
et al. (2022) methods. This demonstrates the superiority of our method in terms of visual perception.

(a) Results of user study (b) Inference time comparison

Figure 3: Comparison of user study results and inference time.

4.4 INFERENCE TIME

To ensure a fair comparison, we measured the pixel-wise completion inference time of ICT Wan
et al. (2021), RePaint Lugmayr et al. (2022), and our proposed method on the ImageNet Russakovsky
et al. (2015) dataset using a GeForce RTX 4090 GPU. The results, shown in Figure 3b, demonstrate
that our method achieves significantly lower inference times compared to the other two methods,
particularly at higher mask rates.

For the RePaint method, although its inference time remains consistent regardless of the mask rate,
it requires numerous iterative denoising steps, leading to a substantial overall inference time. On
the other hand, ICT Wan et al. (2021) recalculates attention for each pixel estimation, causing the
inference time to increase linearly as the mask rate rises. In contrast, our method leverages a recurrent
computation paradigm, where only the information of changed pixels is updated and integrated into
the state S. As a result, our method shows only a minimal increase in inference time across different
mask rates, ensuring consistently high-speed performance.
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5 LIMITATIONS

As illustrated in Figure 2, current image completion methods encounter significant difficulties when
dealing with more challenging mask types. For example, the performance on Expand-type masks
is particularly subpar, especially when applied to highly diverse datasets such as ImageNet. This
highlights a notable gap in the effectiveness of existing approaches. Recognizing this limitation, our
future research will place a stronger emphasis on improving the robustness and accuracy of image
completion techniques for these complex mask scenarios.

6 CONCLUSION

We propose RetCompletion, a two-stage method for pluralistic image completion with three key
innovations. First, RetNet is applied for the first time in image completion, offering efficient parallel
training and recursive inference. Second, we introduce Bi-RetNet, which integrates bidirectional
contextual information to enhance image consistency and reconstruction quality. Third, our pixel-wise
inference approach significantly reduces inference time, outperforming Transformer-based methods
in computational efficiency. Experiments demonstrate that RetCompletion delivers superior image
quality over CNN-based methods and achieves comparable results to Transformer approaches, while
maintaining faster inference, making it highly suitable for real-time applications.
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