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ABSTRACT

Automatic generation of Wikipedia-like articles through Retrieval-Augmented
Generation (RAG) has recently gained increasing attention. While recent advances
in Large Language Models (LLMs) show considerable promise for synthesizing
complex information, current RAG-based systems suffer from two fundamental
limitations: they often rely on shallow retrieval strategies, leading to redundant
content, and they lack effective mechanisms for factual verification and content or-
ganization. To address these challenges, we present APOLLO, a multi-agent frame-
work specifically designed to generate high-quality, comprehensive articles with
citations to the given sources. APOLLO simulates the iterative research and edito-
rial process of human contributors through a set of specialized agents that collab-
oratively retrieve, fact-check, and structure information. To evaluate our method,
we introduce SciWiki-2k, a dataset comprising 2,000 high-quality Wikipedia ar-
ticles spanning 20 scientific domains. Compared to baseline methods, APOLLO
produces articles with significantly improved structural coherence, content diver-
sity, and factual accuracy. Human evaluations further establish the practical value
of our approach for generating trustworthy, comprehensive articles.

Code – https://github.com/frosty-compiler/apollo

INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in text generation.
However, producing comprehensive, well-structured, and factually accurate articles remains a sig-
nificant challenge Yang et al. (2023); Liang et al. (2023). Current approaches struggle to maintain
coherence across extended content, synthesizing diverse information sources, and ensuring factual
grounding throughout the generation process. While Retrieval Augmented Generation (RAG) has
emerged as a promising solution to enhance LLM capabilities with external knowledge Lewis et al.
(2020); Gao et al. (2024), most existing systems rely on static retrieval (orange dotted line Fig-
ure 1). Although recent variants like oRAG Shao et al. (2024) have attempted to improve upon this
approach, these systems still lack reflective mechanisms which are fundamental in human research
when exploring and synthesizing information.
Recent work has begun to address these limitations by introducing more structured and agent-based
frameworks. For instance, STORM Shao et al. (2024) and OmniThink Xi et al. (2025) employ multi-
agent frameworks to collect information from diverse perspectives or to simulate tree-based mind
maps. These methods enhance topic coverage by collecting information from multiple perspectives
or simulating reflective exploration (blue dotted line Figure 1). However, while these methods en-
hance coverage through dynamic retrieval, they struggle to represent relationships among the re-
trieved information and to organize it coherently Han et al. (2025). This is important because build-
ing a coherent view of a topic requires not only collecting isolated facts, but also understanding how
the different concepts relate to each other Booth et al. (2003).
Furthermore, human research is inherently iterative and reflective, often involving repeated cycles
of exploration, synthesis, and re-evaluation Doyle (1994); Kuhlthau (2004). For instance, when in-
vestigating the topic of Ensemble Learning (EL), a researcher might start with a broad overview
of the concept and, as their understanding deepens, formulate more focused queries such as “bag-
ging in ensemble methods” or “applications of ensemble learning”. This evolving inquiry gradually
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Figure 1: Overview of retrieval strategies. Static retrieval systems uses a single query to retrieve relevant
content. In dynamic retrieval, gathered information is further analysed to issue new queries and discover new
content.

builds what cognitive scientists refer to as “knowledge structure”; a mental framework in which
new information is systematically integrated with prior knowledge Ausubel (1968). Such structures
help researchers uncover conceptual relationships and identify information gaps that shape future
searches Novak (1998); Chi et al. (2014).
Motivated by these observations, we introduce APOLLO, a multi-agent framework designed to em-
ulate the iterative and reflective patterns of human research and structured writing. APOLLO begins
by gathering information about a given topic through iterative proactive retrieval, organizing the
retrieved evidence into a Knowledge Graph (KG) that captures entities, relationships, and topical
hierarchies. This KG serves as both a record of discoveries and a scaffold for further investigation.
Specialized agents analyze the evolving KG to identify missing links and underexplored subtopics,
then generate targeted search queries to fill these gaps. This process repeats iteratively, with each
cycle enriching the KG with additional relevant information.
After constructing the comprehensive KG, APOLLO transitions to article generation by extracting
a hierarchical outline that represents the main concepts and their relationships. For each section,
relevant content is retrieved from the information gathered during the knowledge curation step. A
specialized writer agent synthesizes this material into an organized, well-supported text, while a re-
viewer agent systematically examines each draft section, verifies claims against referenced sources,
and provides actionable feedback for refinement. This review-and-revision loop continues until all
sections are complete and properly cited, mirroring best practices in collaborative academic writ-
ing Viégas et al. (2007).
To evaluate the effectiveness of our method, we introduce SciWiki-2k, a comprehensive benchmark
for Scientific Article Generation (SAG). We evaluate APOLLO across multiple aspects, including
knowledge curation, outline generation, and article generation, using automatic metrics, LLM-based
qualitative assessments, and human evaluation. Inspired by the fact-checking literature Pang et al.
(2023); Min et al. (2023); Thorne et al. (2018), we introduce two novel metrics to measure halluci-
nation and content coverage. We conduct extensive experiments and compare APOLLO with state-
of-the-art (SOTA) baselines. The results demonstrate substantial improvements across multiple key
evaluation metrics Specifically, APOLLO increases information diversity by 9.2% over OmniThink,
achieves a 7.1-point higher coverage rate than STORM on SciWiki-100, and reduces hallucination
rate by 18% compared to the next-best baseline. Finally, our human evaluation study confirms that
APOLLO outperforms competitive baselines in both overall article quality and factual accuracy, fur-
ther validating its effectiveness in generating high-quality scientific content.
The main contributions of this work are as follows.
• We present APOLLO, a multi-agent framework that automates long-form, structured article gener-

ation through iterative KG construction, reflective gap detection, and agent-based fact verification
• We release the SciWiki-2k, a large benchmark dataset designed for assessing article generation

models, and introduce two novel evaluation metrics called Hallucination and Coverage Rate to
assess the factuality of the generated text.
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Table 1: Capability matrix for automated article gener-
ation across different multi-agent systems.

Framework oRAG STORM OmniThink APOLLO

Dynamic Retrieval → ↭ ↭ ↭
Structured Memory → ↭ ↭ ↭
Reflective Thinking → → ↭ ↭
Fact Verification → → → ↭
Total Capabilities 0/4 2/4 3/4 4/4

Table 2: Quantitative analysis of the content
found in the SciWiki-2k benchmark dataset.

Attribute Value
Total Articles 2000
Scientific Domains 20

Avg. Number of Sections 7.8
Avg. Number of All-level Headings 19.9
Avg. Length of a Section (words) 483.3
Avg. Length of Article (words) 3672.7
Avg. Number of References 71.5

• We provide extensive experiments and a human evaluation study to demonstrate that APOLLO
outperforms existing baselines in terms of coverage, diversity, and factual reliability metrics.

PRELIMINARY

PROBLEM DEFINITION

We define the task of SAG as follows. Given a topic T , representing a scientific concept (e.g.,
“Ensemble Learning”), the goal is to produce a comprehensive, factually grounded article A that ex-
plains the concept, outlines its key components, and organizes relevant subtopics and relationships
in a coherent structure. We break the task of SAG through a three-stage process: (i) Knowledge Cu-
ration, retrieving and organizing relevant information I = Retrieve(T, C) from information sources
C, (ii) Outline Generation, constructing a structured outline O = Construct(I, T ) based on the re-
trieved information, and (iii) Article Generation, synthesizing the final article A = Write(O, I)
using the outline and retrieved information. The challenge lies in ensuring comprehensive cover-
age, factual accuracy, and coherent organization while avoiding redundancy and hallucinations. As
shown in Table 1, none of the existing methods can fully support this task.

SCIWIKI-2K BENCHMARK

To address the lack of comprehensive benchmarks for SAG, we introduce SciWiki-2k, a curated
dataset of 2,000 high-quality Wikipedia articles spanning 20 scientific domains. Unlike existing
benchmarks Shao et al. (2024); Jiang et al. (2024c); Liu et al. (2018); Fan & Gardent (2022) that
focus on general topics, SciWiki-2k specifically targets scientific concepts, providing high-quality
Wikipedia articles as ground truth references for evaluating how well multi-agent systems can gen-
erate comparable scientific content.
The construction of our dataset follows a rigorous process. We begin by selecting a diverse set of
topics representing key trends and core concepts from a broad range of scientific domains. For each
topic, we identify and extract its corresponding Wikipedia article 1. We then apply a quality filtering
using the ORES API2, retaining only articles rated as “B-Class”, “Good Article”, or “Featured Ar-
ticle” according to the Wikipedia grading scheme Wikipedia contributors (2025), thereby excluding
low-quality, ambiguous, or insufficiently developed pages.
After quality filtering, we extract only the main text and section headings from these articles, omit-
ting non-textual elements to standardize the dataset for text-based evaluation. A subsequent manual
review is done to ensure the content of each article closely matches the intended scientific topic
and domain; articles with misaligned or overly broad coverage are removed. For reproducibility,
we release the full pipeline used to extract these pages, alongside SciWiki-2k3. Table 2 shows the
composition of our dataset.

METHODOLOGY

We present APOLLO, a multi-agent framework that automates the generation of comprehensive, fac-
tually grounded articles. APOLLO ’s pipeline consists of three main stages: (i) knowledge curation,

1All Wikipedia articles used in this dataset were retrieved between February and March 2025
2https://www.mediawiki.org/wiki/ORES
3https://huggingface.co/SciWiki
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Figure 2: Overview of APOLLO ’s multi-agent framework for SAG. The pipeline consists of three stages: (i)
Knowledge Curation, where information is iteratively gathered and structured as a KG; (ii) Outline Generation,
which derives a hierarchical article structure from the graph; and (iii) Article Generation, where writer and
reviewer agents collaborate to produce and fact-check each section, resulting in comprehensive, well-cited
articles.

(ii) outline generation, and (iii) article synthesis. Figure 2 provides an overview of our proposed
framework.

KNOWLEDGE CURATION

APOLLO begins article generation by proactively gathering and organizing relevant information
through an iterative process that constructs KGs to identify coverage gaps and guide targeted ex-
ploration. This approach addresses the limitation of simple retrieval strategies that miss valuable
related information discoverable through more exploratory search processes Marchionini (2006);
Savolainen (2018).
Initialization Stage. Given topic T , APOLLO supports two retrieval modes: (i) domain-constrained
search from a curated corpus CD and (ii) open-domain web search. For domain-constrained retrieval,
we perform retrieval from the domain-specific collection as follows.

I0 = Retrieve(T, CD), (1)

where I0 = {si1 , si2 , . . . , sik} → CD represents the top-k most relevant snippets based on cosine
similarity. Each snippet si contains raw text, embedding vectors, and metadata including source
URLs. For web search, we perform an analogous retrieval using search engines.
Knowledge Graph Construction. For each retrieved snippet si ↑ I0, we apply an extraction
operator as follows.

! : si ↓↔↗
{
(h, r, t)

∣∣ h, t ↑ E , r ↑ R
}
, (2)

where an LLM extracts a set of triplets in the form of (h, r, t) comprising of a head entity (h), a
relation label (r), and a tail entity (t). The extracted triplets define a snippet-level sub-graph Gi =
(Vi, Ei) where Vi → E represents entities found in si and Ei = {(h, r, t) | h, t ↑ Vi, r ↑ R}

contains edges linking those entities.
Graph Aggregation and Normalization. We construct the initial KG named G0 by aggregating
all sub-graphs, as shown in the following.

G0 =
k⋃

i=1

Gi =

(
k⋃

i=1

Vi,
k⋃

i=1

Ei

)
, (3)

Since aggregation may result in duplicate entities, we apply a normalization function ω as follows.

G
→
0 = ω(G0) (4)
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where ω is an LLM-based normalizer4 that merges semantically equivalent entities and their associ-
ated edges.
Expansion Stage.
The APOLLO framework employs two collaborative agents that proactively expand the knowledge
representation in multiple iterations through targeted information gathering, emulating human re-
search patterns Pirolli & Card (1999).
• Agent 1: Research Question Generator. The first agent analyses the current KG, G→

m at iteration
m and produces focused research questions Qm as follows.

Qm = ”
(
G
→
m, MQ

)
= { (qj , εj)}

n
j=1, (5)

where ” denotes the system prompt which guides the agent to analyse G→
m, identify underexplored

entities or relations, and generate n = 10 research questions including nd = 5 “in-depth” ques-
tions targeting specific concepts and nb = 5 “breadth” questions that branch into adjacent areas,
(see agent interaction, top right Figure 2). Each question qj includes a rationale εj justifying its
importance. To avoid repetition, the agent maintains a memory set MQ that tracks all previously
generated questions.

• Agent 2: Query Synthesizer. The second agent synthesizes focused search queries from the re-
search questions:

Lm = #
(
Qm, ML

)
= {ϑ1, ϑ2, . . . , ϑt}, (6)

where # is the system prompt guiding the agent to (i) decompose each question into salient entities
and relations, (ii) paraphrase them into concrete search queries, and (iii) filter out terms already
present in its memory ML. We set t ↘ 10 to balance the exploration between depth and breadth.

Retrieval & Graph Update.
At each iteration, newly generated queries retrieve additional snippets (Eq. 1). These are used to
create sub-graphs (Eq. 2), which are merged into the main KG (Eq. 3) after filtering previously seen
content (Eq. 4). The agents update their memory sets to track queries and research questions already
explored. The expansion continues for m iterations until a maximum depth is reached. The resulting
curated collection is:

K =
m⋃

j=0

Ij , (7)

which contains all the collected snippets during the iterative process. This curated collection forms
the foundation for constructing the final article.

OUTLINE GENERATION

Given the final KG G
→
m and topic T , the framework generates a hierarchical article outline using an

LLM-based function called $. This function analyses the structure of the KG and produces a set of
headings and subheadings.

O = $(G→
m, T ) = {h1, h2, . . . , hp}, (8)

where each hi is a main section or subsection, reflecting the entities and relations captured in G
→
m.

This step ensures that the outline matches the conceptual organization found during the knowledge
curation step.

ARTICLE GENERATION

In this phase, the outline O is expanded into the final article A by gathering section-specific content
and refining it through multiple revision cycles.
Section-Specific Retrieval
To support each section hi in the outline, we first retrieve a set of candidate snippets from the
collection K as follows.

Ri = Retrieve(hi,K), (9)
where Ri denotes the top-k snippets most similar to the section heading hi. To ensure relevant
information was gathered, we utilize an LLM-based filter and select a subset of the more relevant
snippets as follows.

Si = {s ↑ Ri | %(s, hi) = relevant}, (10)
4Detailed specifications of all LLM-based functions and prompts are available in our open-source repository.
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Table 3: Outline & Article Quality Evaluation Comparison across lexical and LLM-as-judge metrics be-
tween Apollo and baseline methods. † denotes significant differences (p < 0.05) compared to the best baseline.

Method

Outline Quality Metrics

Soft
Recall

Entity
Recall

Content
Guidance

Hierarchical
Clarity

Logical
Coherence

Scientific Corpus

oRAG 86.42 37.44 3.22 3.97 3.86
STORM 87.63 37.10 3.39 3.95 3.87
OmniThink 88.31 37.74 4.03 3.99 3.98

APOLLO 91.82† 38.52 4.16† 4.00 4.01†
w/o Reflection 80.75 36.14 3.36 3.93 3.82

Web Search

oRAG 87.18 38.30 4.12 4.05 4.27
STORM 87.89 38.47 4.37 4.08 4.36
OmniThink 88.45 38.41 4.44 4.04 4.51

APOLLO 92.25† 42.44† 4.63† 4.10 4.65†
w/o Reflection 88.92 40.92 4.25 4.02 4.33

Method

Article Quality Metrics

ROUGE
R1

ROUGE
RL

Entity
Recall

Interest
Level

Coherence
Organization

Relevance
Focus

Depth
Exploration

Scientific Corpus

oRAG 41.84 14.03 5.92 2.34 4.32 3.92 3.88
STORM 42.11 14.44 6.51 1.61 4.85 4.10 4.54
OmniThink 41.76 13.94 5.53 1.37 4.28 4.12 4.27

APOLLO 52.10† 15.81† 9.17† 3.29† 4.92† 4.90† 4.94†
w/o Filter 49.17 15.51 7.35 1.99 4.74 4.57 4.77

Web Search

oRAG 39.95 13.65 5.07 2.22 4.57 3.88 4.05
STORM 42.32 14.60 5.64 2.27 4.69 4.11 4.35
OmniThink 32.07 12.58 3.57 1.85 4.68 3.45 3.61

APOLLO 52.01† 16.88† 9.44† 2.92† 4.84† 4.87† 4.46†
w/o Filter 50.28 15.92 8.21 2.02 4.83 4.79 3.89

where % determines whether snippet s provides valuable information for writing section hi. The
resulting set Si serves as the supporting material for generating the content of section hi.
Iterative Content Generation After collecting the relevant information for a section, two agents
collaborate to produce the content. For each section hi, let a(r)i denote the content generated in
revision r.
• Agent 3: Writer Agent. The writer first generates a draft for section hi using the supporting

content found earlier:
a(0)i = &(hi,Si), (11)

where & is the system prompt that instructs the agent to transform Si into a well-organized and
factual text which includes in-line citations to the given snippets. After the initial draft, the writer
updates the section iteratively based on the feedback of the reviewer agent as follows.

a(r+1)
i = &revise(a(r)i ,F(r)

i ,Si), (12)

where F(r)
i contains a list of bullet points that the writer agent follows to refine the content of the

section at revision r. An example of this process is shown in Figure 2 (e.g., Rewrite sentence...).
• Agent 4: Reviewer Agent. The reviewer evaluates the generated content a(r)i and maintains feed-

back memory MF :
F(r)
i = ϖ(a(r)i ,Si,MF ), (13)

where ϖ is the system prompt that instructs the agent to (i) assess whether cited snippets sup-
port claims, (ii) identify inconsistencies, and (iii) produce a structured feedback list F(r)

i =
{f1, f2, . . . , fq} with actionable revision items for the writer agent.

This collaborative process continues until either all feedback items are addressed or a maximum
number of revisions rmax is reached.
Article Assembly. The final article is constructed by combining all refined sections while preserv-
ing the hierarchical structure from the outline. This produces a comprehensive article A where all
claims are supported by evidence from the curated collection K.

EXPERIMENTS

Baselines. We compare articles generated by our method with those generated by three other base-
lines, including oRAG Shao et al. (2024), STORM Shao et al. (2024), and OmniThink Xi et al.
(2025). oRAG is a two-stage RAG baseline that generates an outline first, then processes each sec-
tion independently using section-specific retrieval. STORM is a multi-agent system that simulates
conversations between perspective-guided agents to gather diverse information before generating
articles. OmniThink leverages a hierarchical tree representation to organize and synthesize informa-
tion for article generation.
Hyper-parameters. We implement all the agents using Chain-of-Thought (CoT) Wei et al. (2022)
and Zero-Shot (ZS) prompting the gpt-4o-mini-2024-02-15 model. For reproducibility, we
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set the temperature to 1.0 and top-p to 0.9. For web retrieval, we use Brave’s API5 with each query
returning up to 3 web pages. For retrieval using the scientific corpus, we use Qdrant6 with Snowflake
embeddings7. During the knowledge curation step, we set the maximum depth of exploration to
m = 3. For article generation, we allow up to rmax = 3 writer–reviewer revision cycles per section.
All experiments are conducted on a single AWS g5.2xlarge instance (24GiB GPU, 8 vCPUs). To
ensure a fair comparison, we allow a maximum of 135 search queries for all baselines. For STORM,
we use default values and set the limit of perspectives to 3; for Omnithink, we set the depth of the
tree expansion to 3. To ensure robust evaluation, we conduct five independent runs for APOLLO
and the baselines under two retrieval settings, including (i) web search using the Brave API and (ii)
domain-constrained search using a curated scientific corpus. To build this dataset we use a set of
review articles published across 2,700 journals, as well as the content of 43,000 books published
in different science domains. For segmenting books and articles into passages, we considered each
(sub-)section as a passage8.
Dataset. Following prior work Shao et al. (2024); Jiang et al. (2024a), we evaluate APOLLO
using SciWiki-100, a subset of SciWiki-2k dataset constructed by randomly selecting 5 topics from
each of 20 scientific domains in this dataset. We generate articles using APOLLO and each baseline
for the topics SciWiki-100 dataset. To evaluate whether the extracted KGs effectively capture the
information from retrieved snippets, we employ the Measure of Information in Nodes and Edges
(MINE) benchmark9, a dataset designed to evaluate the completeness and factual consistency of
KGs extracted from scientific text Mo et al. (2025).

EVALUATION SETUP

In the following, we explain the metrics used for evaluating the performance of each stage of our
framework.
Knowledge Curation Quality. We assess the effectiveness of our knowledge curation module
by measuring the number of unique sources retrieved and measure information diversity defined
by Jiang et al. (2024b) as: Div(I) = 1 ↔

1
n(n↑1)

∑
i ↓=j cos(ei, ej). Outline Quality. We com-

pare generated section headings against SciWiki-100 reference articles using soft recall and entity
recall (named entity overlap via FLAIR NER Akbik et al. (2019)). LLM-as-judge assessments are
done using M-Prometheus-7B Kim et al. (2024) to evaluate Content Guidance, Hierarchical Clarity,
and Logical Coherence on a 5-point scale. Moreover, we perform an AB preference test comparing
APOLLO’s generated outlines against the best baseline (i.e., Omnithink) judged by three LLM eval-
uators (Claude-3.7-Sonnet Anthropic (2024), Llama-3.3-70B-Instruct Touvron et al. (2024), GPT-
4o-mini)10.
Article Quality. We assess the quality of the generated content for each section by using Recall,
ROUGE-1, and ROUGE-L metrics, considering the content of articles from the SciWiki-100 dataset
as gold data. Also, we conduct LLM-as-judge assessments on four different metrics, namely Interest,
Organization, Relevance, and Depth.
Citation Quality. We introduce two novel automatic metrics for evaluating citation quality in gen-
erated scientific articles: hallucination rate and coverage. Hallucination rate (1 ↔

|Cv|
|C| ) quantifies

the proportion of claims not supported by any evidence linked through in-line citations Min et al.
(2023), and coverage ( |Sv|

|S| ) measures the proportion of article sections with at least one claim veri-
fiably grounded in cited retrieved snippets Samarinas et al. (2025). LLM-based entailment is used
for automated claim verification.
Human Evaluation. We select one topic at random from each of the 20 scientific domains and gen-
erate articles using the scientific corpus for both APOLLO and the best baseline (STORM) according
to article generation metrics. This results in a total of 40 articles which is scored by Subject Matter

5https://brave.com/search/api/
6https://qdrant.tech/
7https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2
8The details of the corpus will be added upon publication.
9https://github.com/stair-lab/kg-gen

10We access this models via Amazon Bedrock: claude-3-7-sonnet-20250219-v1 and llama3-3-70b-instruct-
v1
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Table 4: Results of KG construction quality
of our proposed model and baseline model
using different LLM backbones.

LLM Backbone Method MINE Score
Normalized Non-Normalized

Claude-3.7-Sonnet
Ours 0.714 0.701
KG-Gen 0.725 0.680
LightRAG 0.709 0.705

Llama-3.3-70B
Ours 0.620 0.610
KG-Gen 0.580 0.550
LightRAG 0.535 0.542

GPT-4o-mini
Ours 0.501 0.486
KG-Gen 0.392 0.388
LightRAG 0.432 0.428

Table 5: Average number of
unique URLs retrieved by each
method.

Feature APOLLO OmniThink STORM oRAG

Scientific Corpus
Num Unique URLs ↔ 105.71 83.27 60.12 45.45
Info Diversity (%) ↔ 60.81 54.74 42.23 33.02

Web Search
Num Unique URLs ↔ 88.60 63.22 59.82 19.49
Info Diversity (%) ↔ 66.02 61.64 45.13 34.92

Figure 3: Win rate results from A/B prefer-
ence tests comparing APOLLO’s generated outlines
against the best performing baseline across differ-
ent LLMs evaluators. Claude-3-7-Sonnet displays
the highest preference for APOLLO (79.5%). Error
bars show standard deviation across 5 runs.

Figure 4: Scatter plot showing the trade-off between
coverage rate and hallucination rate for APOLLO and
baseline models.

Experts (SMEs) using the same 5-point rubric used by our LLM-as-judge for both outline and article
quality. SMEs are scientific domain experts with advanced training relevant to the evaluation topics.

RESULTS

Starting with the knowledge curation phase we analyse whether our constructed KGs can capture
meaningful entities and relationships to further guide the research stage of our framework. To this
end, we measure the quality of our KGs construction using the MINE Score. We report the per-
formance of APOLLO using different LLM backbones and two KG construction baseline methods,
including KG-Gen Mo et al. (2025) and LightRAG Guo et al. (2024), in Table 4. The results show
that our knowledge construction agent outperforms the baselines when using Llama-3.3-70B and
GPT-4o-mini LLMs.
Building on these results, we measure how much unique retrieved information APOLLO can discover
in the knowledge curation phase. As shown in Table 5, our proposed method consistently retrieves
more unique URLs and achieves greater information diversity across both scientific corpus and web
search settings. In particular, APOLLO outperforms the next-best method (i.e., OmniThink) by a
wide margin in information diversity, confirming the effectiveness of our proactive retrieval agents.
Following our evaluation setup, we assess how well APOLLO constructs article outlines and orga-
nizes retrieved information into coherent sections. Looking at the left side of Table 3, we observe
that outlines generated by APOLLO outperform baseline methods using both retrieval settings over
all metrics. Higher value of Entity recall and Soft recall for APOLLO compared to the baselines,
shows that the outlines generated by APOLLO are more similar to the outlines of the gold standard
SciWiki-100 dataset. Moreover, considering the three metrics judged by LLM, we observe a sig-
nificant improvement in Content and Coherence over the best baseline method (i.e., OmniThink).
Additionally, we use an AB Preference test to validate the superior performance of APOLLO in gen-
erating outlines using SOTA LLMs and report the results in Figure 3. As can be seen, using different
LLMs, APOLLO constantly wins the OmniThink baseline.
Based on the results presented in Table 3, we can see that APOLLO outperforms the baselines in
terms of article-level evaluation metrics. Notably, we observe a significant improvement in Depth,
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Figure 5: Result of human evaluation study comparing APOLLO and STORM article quality across eight
metrics.

Relevant, and Interest metrics compared to the best performing baseline (i.e., STORM). Moreover,
the results of the ablation study show that disabling the reflecting agent and our LLM-based filter
function decreases the quality of our generated outlines and articles, respectively. The results of
factual accuracy evaluation from Figure 4 demonstrate the importance of our review-and-revision
iterative process to avoid the generation of hallucinated content and increase coverage rate. Particu-
larly, we observe that when disabling the Reviewer agent, the articles generated by our method tend
to include more unsupported claims and show a marked increase in hallucination rates.
Finally, based on the results of the human evaluation study depicted in Figure 5, we observe that
in 7 out of 8 metrics APOLLO is consistently rated higher than STORM (best baseline for article
creation). This result further validates the reliability of our automated evaluation metrics.

RELATED WORK

Retrieval-Augmented Generation. RAG enhances LLMs with external knowledge to improve
factuality and relevance Karpukhin et al. (2020); Guu et al. (2020). Early work focused on static
retrieval pipelines for tasks such as QA Izacard & Grave (2021), summarization Menick et al.
(2022), and citation generation Ram et al. (2023). Recent studies explore dynamic retrieval strate-
gies that trigger queries adaptively during generation Jiang et al. (2023); Yao et al. (2023a). However,
most RAG systems still operate as flat, single-step pipelines, lacking iterative reflection of retrieved
knowledge Guo et al. (2024).
Knowledge Graphs for Generation. KGs have shown strong potential in improving the factuality,
structure, and completeness of LLM outputs Dai et al. (2024); Markowitz et al. (2025). Methods
like GraphRAG Yao et al. (2023b) and HopRAG Liu et al. (2025) explicitly leverage graph-based
representations for multi-hop question answering and evidence tracing. KGs have also been used
to structure retrieved evidence, support outline generation, and mitigate hallucinations Zhu et al.
(2025); Cao et al. (2024).
Factual Grounding and Verification. Factual accuracy is a key challenge in knowledge-intensive
generation tasks Zhang et al. (2023); Thorne et al. (2018). While some systems apply post-hoc ver-
ification Huang et al. (2023), recent work explores integrating self-reflection and iterative feedback
into the generation process Madaan et al. (2024); Ye et al. (2023). However, maintaining factual
consistency across multi-stage or multi-agent pipelines remains difficult, as agents can introduce
unsupported claims or drift from retrieved evidence Nie et al. (2023); Liang et al. (2024).

CONCLUSION

We introduced APOLLO, a multi-agent framework for generating comprehensive, factually grounded
scientific articles. By combining iterative KG construction, agent-based fact verification, and re-
flective writer–reviewer interactions, APOLLO produces content with high coverage, diversity, and
factual reliability. To support rigorous evaluation, we also curated SciWiki-2k for the evaluation
of the content quality, and propose two novel factuality metrics: Hallucination Rate and Coverage
Rate. Extensive experiments and human evaluations confirm APOLLO ’s superiority over existing
baselines.
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