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Abstract—Aldroubi et al., in [11], studied source recovery
problems in a discrete dynamical system for the stable recovery
of source terms with the help of frames. Inspired by the work of
Aldroubi et al., we introduce discrete dynamical system indexing
over a non-uniform discrete set arising from spectral pairs,
which is not necessarily a group. We call it non-uniform discrete
dynamical system (NUDDS, in short). Using the techniques given
in [11], we analyze the stability of the source term of the NUDDS
in terms of frames.

Index Terms—Sampling theory; forcing; frames; reconstruc-
tion.

I. INTRODUCTION

A countable collection {φk}k∈I of members of an infinite-
dimensional Hilbert space H is called a frame for H if there
exist finite positive scalars Lo, Uo ∈ (0,∞) such that

Lo∥φ∥2 ≤
∑
k∈I

|⟨φ,φk⟩|2 ≤ Uo∥φ∥2 for all φ ∈ H. (1)

Scalars Lo and Uo, are called the lower frame bound and
upper frame bound, respectively, of {φk}k∈I. If only the upper
inequality holds in (1), then we say that {φk}k∈I is a Bessel
sequence with Bessel bound Uo. The operator T : ℓ2(I) → H
defined as T ({ck}k∈I =

∑
k∈I ckφk, {ck}k∈I ∈ ℓ2(I) is called

the pre-frame operator or the synthesis operator. The Hilbert-
adjoint operator T ∗ of T is called the analysis operator,
given by T ∗ : H → ℓ2(I), T ∗φ = {⟨φ,φk⟩}k∈I, φ ∈
H. The composition TT ∗ = Θ: H → H, defined by
Θ: φ →

∑
k∈I⟨φ,φk⟩φk is called the frame operator which

is bounded, linear and invertible on H. This gives the recon-
struction formula for each vector φ ∈ H: φ = ΘΘ−1φ =∑

k∈I⟨Θ−1φ,φk⟩φk. For fundamental properties of frames
with different structures and their applications in pure math-
ematics and engineering science, we refer to texts [17]–[19],
[22], [26].

Dynamical sampling, initiated by Aldroubi et al. [1], [2],
has revolutionized our understanding in recovering signals
from spatially and temporally evolving measurements. Recent
advancements extend these concepts to challenges in dynamic
environments, such as medical diagnostics and artificial in-
telligence. Researchers have developed frameworks for stable
recovery of signals and source terms in separable Hilbert
spaces, leveraging Bessel systems, spectral pairs [15], and

non-uniform multiresolution analysis [16]. Current studies
explore stability conditions for discrete dynamical systems
and recovery of source terms in both finite and infinite-
dimensional settings, offering insights for applications like
environmental monitoring and numerical methods for partial
differential equations. Dynamical sampling problems can be
stratified in three types depending on the specific variable of
interest. These types are the space-time trade-off [1], [4], [5],
[7], [12], [14], system identification [3], [6], [13], [24] source
recovery problems, see [8]–[11] and many references therein.

Recently, Aldroubi et al., in [11], focused on the source
recovery problem by characterizing frames for stable recov-
ery of source terms in dynamical systems. Specifically, they
consider the discrete dynamical system of the form

xn+1 = Axn + w, n ∈ N, w ∈ W,

where xn ∈ H is the n-th state of the system, and H is a
separable Hilbert space. The operator A ∈ B(H), x0 ∈ H is
the initial state, and W is a closed subspace of H. Time-space
sample measurements

D(x0, w) = [⟨xn, gj⟩]n≥0, j≥1

are obtained by inner products ⟨xn, gj⟩ with vectors of a
Bessel system {gj}j≥1 ⊂ H. They provided necessary and
sufficient conditions for the stable recovery of constant source
terms from time-space samples in a Hilbert space. This re-
search holds significant relevance for real-world applications
such as identifying pollution sources in environmental moni-
toring.

On the other hand, using spectral pairs in the Lebesgue
space L2(R), Gabardo and Nashed [16] generalized the con-
cept of multiresolution analysis (MRA). The outcome in the
generalized MRA gives non-uniform wavelets and improving
numerical methods for solving partial differential equations.
Unlike traditional MRA, their framework uses a spectrum
rather than a group for translations, providing a characteri-
zation of non-uniform wavelets.

Definition 1. [16] Let Ω ⊂ R be measurable and Λ ⊂ R
a countable subset. If the collection {|Ω|− 1

2 e2πiλ.χΩ(.)}λ∈Λ

forms complete orthonormal system for L2(Ω), where χΩ is



indicator function on Ω and |Ω| is Lebesgue measure of Ω,
then the pair (Ω,Λ) is a spectral pair.

Example 2. [16] Let N ∈ N, r be a fixed odd integer coprime
with N such that 1 ≤ r ≤ 2N − 1, and let Λ =

{
0, r

N

}
+2Z,

and Ω = [0, 1
2 ) ∪

[
N
2 ,

N+1
2

)
. Then, (Ω,Λ) is a spectral pair.

Definition 3. [23] A frame of the form {fk}k∈Λ ⊂ H for H
is called a non-uniform frame for H.

For non-uniform frames with discrete Gabor and wavelet
structure, we refer to [20], [21], [25] and references therein.

Motivated by the above work, we study the stability of the
source term of the non-uniform discrete dynamical system in
infinite dimensional separable Hilbert spaces. More precisely,
we deliberate on indexing the dynamical system and sampling
vectors by sets arising from spectral pairs, which is not
necessary a group but a spectrum which is based on the theory
of spectral pairs [15], [16].

II. NOTATIONS

Let N ∈ N and r be a fixed odd integer co-prime with
N such that 1 ≤ r ≤ 2N − 1. We recall a notation Λ :={
0, r

N

}
+2Z. Untill and unless specified, symbol [2K] denotes

the set

[2K] :=
{
− 2K,−2K +

r

N
, . . . ,−2,−2 +

r

N
,

0,
r

N
, 2, . . . , 2K − 2, 2K − 2 +

r

N

}
, K ∈ N,

and |[2K]| denotes the cardinality of the set [2K]. The set
[2K] is only used to represent finite number of iterations. To
define the notion of stable reconstruction, we need to specify
the measurement spaces, where the data resides, along with
an appropriate norm. This framework enables us to represent
the reconstruction operator R as a bounded linear mapping
from the data space B to the Hilbert space H. The following
spaces will be used in the sequel:

• ℓ2(Λ) :=
{
x = {xλ}λ∈Λ ⊂ C :

∑
λ∈λ |xλ|2 < ∞

}
is

a Hilbert space with respect to the inner product defined
by

⟨x, y⟩ =
∑
λ∈Λ

xλȳλ, x = {xλ}λ∈Λ, y = {yλ}λ∈Λ ∈ ℓ2(Λ).

• ℓ∞(Λ) :=
{
x = {xλ}λ∈Λ ⊂ C : supλ∈λ |xλ| < ∞

}
is a Banach space endowed with the norm ∥x∥ℓ∞(Λ) =
supλ∈Λ |xλ|.

• C[2K] :=
{
x = (xλ)λ∈[2K] : xλ ∈ C

}
.

Now, we familiarize the spaces B(ℓ2(Λ),C[2K]),
B(ℓ2(Λ), ℓ∞(Λ)), and Bs(ℓ2(Λ), ℓ∞(Λ)) which are vital
for our work.

Definition 4. The space B(ℓ2(Λ),C[2K]) is the set of all
infinite matrices T = [aij ]i∈[2K],j∈Λ such that each row ri
of T belongs to ℓ2(Λ). We endow B(ℓ2(Λ),C[2K]) with the
norm ∥T∥ℓ2(Λ)→C[2K] =

∑
i∈[2K] ∥ri∥ℓ2(Λ).

The space B(ℓ2(Λ),C[2K]) is a Banach space which is
tantamount to the space of bounded linear operators from
ℓ2(Λ) to C[2K], endowed with the operator norm.

Definition 5. The space B(ℓ2(Λ), ℓ∞(Λ)) is the set of all
doubly infinite matrices T = [aij ]i,j∈Λ such that each row
ri of T belongs to ℓ2(Λ), and sup

i∈Λ
∥ri∥ℓ2(Λ) is finite. We

endow B(ℓ2(Λ), ℓ∞(Λ)) with the norm ∥T∥ℓ2(Λ)→ℓ∞(Λ) =
sup
i∈Λ

∥ri∥ℓ2(Λ).

The space B(ℓ2(Λ), ℓ∞(Λ)) is a Banach space which is
tantamount to the space of bounded linear operators from
ℓ2(Λ) to ℓ∞(Λ), endowed with the operator norm. Now, we
are ready to define the subspace Bs(ℓ2(Λ), ℓ∞(Λ)).

Definition 6. The space Bs(ℓ2(Λ), ℓ∞(Λ)) is the set of
matrices {T = [aij ] : i, j ∈ Λ} ⊂ B(ℓ2(Λ), ℓ∞(Λ)) such that
there exists a z ∈ ℓ2(Λ) satisfying lim|i|→∞ ∥ri − z∥ℓ2(Λ) =

0. We endow Bs(ℓ2(Λ), ℓ∞(Λ)) with the norm induced by
B(ℓ2(Λ), ℓ∞(Λ)).

III. DISCRETE DYNAMICAL SYSTEM OVER A
NON-UNIFORM SET

We begin this section with the definition of non-uniform
discrete dynamical system (NUDDS, in short).

Definition 7. [23] Let A be a bounded linear operator on H,
W be a closed subspace of H and w ∈ W is the source term
or forcing term. A system of the form

xλ+ r
N

=Axλ + w, λ ∈ 2Z;

xλ+2− r
N

=Axλ + w, λ ∈ 2Z+ +
r

N
∪
{ r

N

}
;

xλ−2− r
N

=Axλ + w, λ ∈ 2Z− +
r

N
, (2)

is called the non-uniform discrete dynamical system (NUDDS,
in short), where xλ ∈ H, λ ∈ Λ, is the λ-th state of the system
in H. The terms x0 and x−2 are called initial states.

Time-space sample measurements

D(x0, x−2, w) = [⟨xλ, gλ′⟩]λ, λ′∈Λ , (3)

where Λ =
{
0, r

N

}
+ 2Z, N ≥ 1 is an integer, and r be a

fixed odd integer co-prime with N such that 1 ≤ r ≤ 2N −1,
are obtained via inner products ⟨xλ, gλ′⟩ with the vectors of a
Bessel system {gj}j∈Λ ⊂ H, referred to as the set of spatial
sampling vectors. These measurements are organized in the
matrix D(x0, x−2, w), which is known as the data matrix.
This matrix is also referred to as the data of the system, or
alternatively as the set of time-space samples, measurements,
or observations. We ruminate for the following two cases of
non-uniform discrete dynamical system:

i. In the first case, the data matrix D(x0, x−2, w) =
[⟨xλ, gλ′⟩]λ, λ′∈Λ is obtained from finitely many itera-
tions |[2K]|.

ii. In the second case, the data matrix D(x0, x−2, w) =
[⟨xλ, gλ′⟩]λ, λ′∈Λ is obtained from infinitely many time
iterations.



For the first case, all data measurements are carried out in
the space B(ℓ2(Λ),C[2K]). In the second case of infinitely
many time iterations, we utilize the space Bs(ℓ2(Λ), ℓ∞(Λ))
which is a closed subspace of B(ℓ2(Λ), ℓ∞(Λ)).

Now, we define non-uniform discrete dynamical systems
that are the generalized version of (2). In this general setting,
we assume that the states xλ, λ ∈ Λ are obtained via the
recursive relation

xλ =


Fλ(x0, x r

N
, x2, x2+ r

N
· · · , xλ−2+ r

N
, w), λ ∈ 2Z+;

Fλ(x0, x r
N

, x2, x2+ r
N

· · · , xλ− r
N

, w), λ ∈ 2Z+ + r
N ∪

{
r
N

}
;

Fλ(x−2, x−2+ r
N

, x−4, x−4+ r
N

· · · , xλ+2+ r
N

, w), λ ∈ 2Z−;

Fλ(x−2, x−2+ r
N

, x−4, x−4+ r
N

· · · , xλ− r
N

, w), λ ∈ 2Z− + r
N ,

(4)

with w belongings to the closed subspace W of H. In
particular, Fλ can be a non-linear functional of its arguments.

To present certain results in the context of setting (4), we
assume that the system satisfies the following properties:

i. For each w ∈ W , there is a corresponding unique pair
of stationary states. More explicitly, given any w ∈ W ,
there is a pair of initial states (x0(w), x−2(w)) such that

xλ =
(x0 + x−2)(w)

2
for allλ ∈ Λ.

ii. The correspondence between w and its unique pair of
stationary states (x0(w), x−2(w)) is bounded. That is,
the mapping S : W −→ H defined by

S(w) =
(x0 + x−2)(w)

2

is a bounded linear operator, and S is called as the
stationary mapping operator.

iii. For any source term w ∈ W and any arbitrary initial
states x0, x−2 ∈ H, we have

lim
|λ|→∞

xλ = S(w),

where the above limit is in ∥.∥H.

Definition 8. [23] A non-uniform discrete dynamical system
(4) satisfying the above properties (i)−(iii) is denoted by the
quadruple (H,W,F , S).

Next, we define the notion of stable recovery for the non-
uniform discrete dynamical system.

i. The source term w ∈ W ⊆ H is said to be sta-
bly recovered from the data matrix D(x0, x−2, w) in
finitely many time iterations if there exists a bounded
linear operator R : B(ℓ2(Λ),C[2K]) −→ H such that
R(D(x0, x−2, w)) = w for all x0, x−2 ∈ H, w ∈ W .

ii. The source term w ∈ W ⊆ H is said to be stably
recovered from the data matrix D(x0, x−2, w) in in-
finitely many time iterations if there exists a bounded
linear operator R : Bs(ℓ2(Λ), ℓ∞(Λ)) −→ H such that
R(D(x0, x−2, w)) = w for all x0, x−2 ∈ H, w ∈ W .

IV. RESULTS

In our initial results, the source w can be any element of
the space H. While this scenario is less practical compared to
the more restricted case of closed subspaces, since, in reality,
sources are typically confined to specific spatial regions, it
offers a mathematically elegant solution to the source recovery
problem.

Motivated by the work of [11, Theorem 3.1], the
following result ratifies an important property of the
space Bs(ℓ2(Λ), ℓ∞(Λ)), that it is a natural domain of
the reconstruction operator R and the operator R :
Bs(ℓ2(Λ), ℓ∞(Λ)) −→ H is bounded.

Theorem 9. [23, Theorem 3.10] Let {gj}j∈Λ ⊂ H be a
Bessel sequence with optimal Bessel bound β > 0. Then, for
each T = [aij ] ∈ Bs(ℓ2(Λ), ℓ∞(Λ)), the limit

limT{gj}j∈Λ = lim
|i|→∞

[aij ]i, j∈Λ{gj}j∈Λ := lim
|i|→∞

∑
j∈Λ

aijgj

exists in H. Moreover, the mapping

R : Bs(ℓ2(Λ), ℓ∞(Λ)) −→ H defined as T 7→ limT{gj}j∈Λ

is a well defined bounded operator whose norm is precisely√
β.

Taking inspiration from [11, Theorem 3.2], the next the-
orem incorporates a necessary and sufficient condition on
{gj}j∈Λ ⊂ H for the existence of reconstruction operator
R : B(ℓ2(Λ),C[2K]) −→ H in finitely many iterations.

Theorem 10. [23, Theorem 3.14] Let {gj}j∈Λ ⊂ H be
a Bessel sequence with Bessel bound β > 0. Then, for
the NUDDS defined in (2), with any arbitrary initial states
x0, x−2 ∈ H, the source term w ∈ W can be stably recovered
from the measurements D(x0, x−2, w) = [⟨xλ, gj⟩]λ∈[2K], j∈Λ

for some 1 ≤ |[2K]| < ∞ if and only if {gj}j∈Λ is a frame
for H.

In the next result, we constrain the source term to lie
within a closed subspace W ⊂ H. From a practical perspec-
tive, this case is particularly significant, despite being more
mathematically intricate. The following theorem provides a
necessary condition for the stable recovery of source term of
the non-uniform discrete dynamical system (2) in finitely many
iterations.

Theorem 11. [23, Theorem 3.16] Suppose
1) {gj}j∈Λ is a Bessel sequence in H with Bessel bound

β > 0.
2) W is a closed subspace H and PW : H → H denotes

the orthogonal projection onto W .
Then, for the NUDDS defined in (2), with any arbitrary initial
states x0, x−2 ∈ H and 1 /∈ σ(A), {PW (I−A∗)−1gj}j∈Λ is a
frame for W if the source term w ∈ W can be stably recovered
from the measurements D(x0, x−2, w) = [⟨xλ, gj⟩]λ∈[2K], j∈Λ

for some 1 ≤ |[2K]| < ∞.

Remark 12. Note that the converse of the above theorem need
not be true. For details, one can refer [23].



Motivated by [11, Theorem 3.4], the following theorem
betokens the characterization for the stable recovery of the
source term of the non-uniform discrete dynamical system (4)
from the data measurements D(x0, x−2, w) in infinitely many
iterations.

Theorem 13. [23, Theorem 3.19] Suppose
1) {gj}j∈Λ ⊂ H is a Bessel sequence with Bessel bound

β > 0.
2) W is a closed subspace of H.

Then, for the NUDDS defined in (4) (H,W,F , S) with the
assumption that F is linear, each source term w ∈ W can
be stably recovered from the measurements D(x0, x−2, w) =
[⟨xλ, gj⟩]λ, j∈Λ if and only if {S∗gj}j∈Λ is a frame for W .

As a fruitage of Theorem 13, we characterize stable recov-
ery for the source term of the non-uniform discrete dynamical
system (2) with the spectral radius ρ(A) < 1.

Theorem 14. [23, Theorem 3.21] Suppose
1) {gj}j∈Λ ⊂ H is a Bessel sequence with Bessel bound

β > 0.
2) W is a closed subspace of H.

Then, for the NUDDS defined in (2), with ρ(A) < 1, each
source term w ∈ W can be stably recovered from the
measurements D(x0, x−2, w) = [⟨xλ, gj⟩]λ, j∈Λ if and only
if {PW (I −A∗)−1gj}j∈Λ is a frame for W .
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