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Abstract
Our ability to interpret others’ mental states001
through nonverbal cues (NVCs) is fundamen-002
tal to our survival and social cohesion. While003
existing Theory of Mind (ToM) benchmarks004
have primarily focused on false-belief tasks and005
reasoning with asymmetric information, they006
overlook other mental states beyond belief and007
the rich tapestry of human nonverbal communi-008

cation. We present MOTION2MIND, a com-009
prehensive framework for evaluating the ToM010
capabilities of machines in interpreting NVCs.011
Starting from an FBI agent’s validated pro-012

file handbook, we develop MOTION2MIND,013
a carefully curated video dataset with fine-014
grained annotations of NVCs paired with psy-015
chological interpretations. It encompasses 222016
types of nonverbal cues and 397 mind states.017
Our evaluation reveals that current AI systems018
struggle significantly with NVC interpretation,019
exhibiting not only a substantial performance020
gap in Detection, but also patterns of over-021
interpretation in Explanation compared to hu-022
man annotators.023

1 Introduction024

Understanding others’ mental states through vi-025

sual cues is fundamental to human social interac-026

tion and intelligence (Fernandez-Duque and Baird,027

2005; Tomasello et al., 2005). We naturally infer028

emotions from facial expressions (Barrett et al.,029

2011), intentions from behaviors (Becchio et al.,030

2018), and social status from appearances (Free-031

man and Ambady, 2011). As artificial intelli-032

gence systems become increasingly integrated into033

our daily lives - from virtual assistants to social034

robots (Mathur et al., 2024) - their ability to inter-035

pret these NVCs becomes crucial for meaningful036

human-AI interaction.037

Large Language Models (LLMs) have made038

remarkable progress in processing text-based in-039

teractions (Park et al., 2023), yet their capabil-040

ity to understand subtle mental states expressed041

through nonverbal communication remains largely 042

unverified. Existing Theory of Mind (ToM) bench- 043

marks (Le et al., 2019; Weber et al., 2021; Jin et al., 044

2024a) advance, but they primarily focus on false- 045

belief tasks (Wimmer and Perner, 1983) - testing 046

an agent’s ability to reason about asymmetric in- 047

formation between characters. However, there is 048

a growing body of papers which call for a much 049

broader spectrum of mental state inference in ToM 050

task (Ma et al., 2023; Wang et al., 2025). 051

Another attempt to measure NVC understanding 052

capability through video datasets (Luo et al., 2020; 053

Chen et al., 2023; Liu et al., 2021a; Huang et al., 054

2021) has encountered two significant methodolog- 055

ical limitations. First, they employ an oversim- 056

plified scoring system focused on emotions (e.g., 057

rating valence/arousal on a 1-7 scale), which fail to 058

capture the broad range of mental states. Second, 059

these annotations lack pinpointed behavioral anno- 060

tation -for instance, they lack information which 061

identifies which exact moment in a video sequence 062

indicates that a subject is in ‘happiness’ or ‘proud 063

of themselves’. 064

To address these challenges, we introduce 065

MOTION2MIND, a comprehensive framework 066

to evaluate mind state interpretation capabilities 067

using NV as important information. Our frame- 068

work starts from an expert-established psycholog- 069

ical literature about NVCs, and we expand into 070

MOTION2MIND, grounded in realistic contexts 071

from sitcom, reality, and movie. Our data is vali- 072

dated by a high score of human labelers showing its 073

plausibleness and clarity. While the current state- 074

of-the-art model GPT-4o (OpenAI et al., 2024a) 075

correctly guesses complex false belief tasks, it fails 076

to understand day-to-day NVC in real-world simu- 077

lating contexts. 078

Our key contributions are: 079

1. MOTION2MIND: A Comprehensive 080

Video Benchmark for Nonverbal Cue Anal- 081

1



Figure 1: We disentangle concept of nonverbal cue understanding into three distinct components: (1) Detection,
identifying and labeling various naturalistic movements; (2) Knowledge, the general understanding of the psycho-
logical meanings associated with specific cues; and (3) Explanation, contextual reasoning to infer the psychological
state behind observed cues. Our test set, developed based on Joe Navarro’s work, reveals that while LLMs perform
comparably to humans in Knowledge, they exhibit a substantial gap in the Explanation and Detection phase.

ysis. We introduce a dataset comprising 1k082

annotated video clips with 222 unique non-083

verbal cues (e.g., neck stretching, high voice084

pitch) mapped to 397 psychological states.085

2. Contextual Analysis of NVC Interpreta-086

tion in Vision-Language Models. Through087

empirical analysis, we assess the extent to088

which state-of-the-art VLMs accurately iden-089

tify and interpret nonverbal cues in varying090

social contexts, revealing a tendency toward091

over-interpretation.092

3. Bottleneck Identification in NVC Reason-093

ing and Psychological Inference. We pin-094

point critical bottlenecks in current VLMs’095

interpretation of ambiguous cues, across three096

distinct components.097

In §2, we introduce key components in theoriz-098

ing Nonverbal cue (NVC) communications. §3099

evaluates basic knowledge of the NVCs without100

contexts. §4 introduces our MOTION2MIND101

framework, and §5 presents empirical analyzes of102

current models.103

2 Components in Understanding104

Nonverbal Theory of Mind105

Many psychological studies typically divide men-106

talization process into successive stages (Fonagy,107

2011; Heider, 2013). To systemically evaluate108

the performance of NVC understanding, we break109

down the process where external stimuli are trans-110

formed into mental-state inferences.111

2.1 Detection / Perception112

Detection converts raw multimodal signals into113

discrete nonverbal cue recognition. Accurate de-114

tection is a prerequisite for downstream inference. 115

Key challenges include handling inter- and intra- 116

subject variability and mitigating noise (e.g.camera 117

angle, background audio). 118

2.2 Knowledge 119

The knowledge component maps each detected 120

cue to a set of ‘plausible’ psychological meanings. 121

As shown in Figure 1, each nonverbal cue maps 122

many-to-many to its meanings. There are some 123

psychological studies establish logical foundations 124

for interpreting nonverbal cues by using patterns 125

from various contexts. We build our knowledge 126

base on an expert-curated body-language dictionary 127

authored by an experienced FBI agent (Navarro, 128

2018). 129

2.3 Explanation 130

Explanation takes the candidate interpretations 131

from the knowledge component and combines them 132

with contextual information to yield a final mental- 133

state hypothesis (e.g. ‘surprised,’ ‘engaged’). This 134

stage addresses the inherent ambiguity of nonverbal 135

behavior by leveraging environmental cues. 136

Terminology. We use nonverbal cue (NVC) for 137

observable gestures, poses, or vocal prosody, and 138

mind state for the latent psychological interpreta- 139

tion (emotion, attitude, or intention). Unless noted, 140

ToM accuracy refers to choosing the correct mind 141

state among four options (§3.1). 142

3 Knowledge: Body-language 143

understanding Without Context 144

We test state-of-the-art LLMs (GPT, Claude, 145

Qwen2.5-Instruct) about the body language of 146
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Cue → Explanation Explanation → Cue

Prompt Given a nonverbal cue, please choose the most
plausible explanation from the options.

Given the explanation of a nonverbal cue, please
provide a plausible nonverbal cue from the op-
tions.

‘Arm crossing’ ‘Feeling insecure or threatened’

Options 0: Enthusiastic celebration 0: Arm crossing
1: Drive to emphasize key statements 1: Elation triumph displays
2: Feeling insecure or threatened 2: Elbow flexing
3: Wanting to connect or belong 3: Hugging

Table 1: Example of prompts in §3. We implement two-sided tasks: Cue to Explanation and Explanation to Cue.
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Figure 2: NVC knowledge scores of intelligent LLMs
(GPT (green), Claude (orange), Qwen2.5-Instruct (pur-
ple)) tested on body language dictionary. LLMs man-
ifests structurized knowledge even than psychological
experts with clear scale effects.

others, using a validated body language dictio-147

nary (Navarro, 2018).148

3.1 Methodology149

Test Set We use the Body language dictio-150

nary (Navarro, 2018) as test set. This book covers151

407 NVCs and their possible (multiple) psycho-152

logical meanings. We structure the consolidated153

Explanation paragraph into n different semantic154

units (e.g.1. Stressed, 2. Threatened) using the155

GPT-o1.156

Tasks As shown in Table 1, we design two task157

types to measure NVC proficiency.158

1. Cue → Explanation (Understanding): Mod-159

els select the most plausible interpretation of160

a given nonverbal cue.161

2. Explanation → Cue (Generation): Models162

generate a matching cue from an explanation.163

Given the multi-answer nature of NVC interac- 164

tion, we simplify the task into Multi-choice QA 165

questionnaires for clear evaluation. With cosine 166

similarity of the semantic embeddings1, we delib- 167

erately select distractor options with semantically 168

distant explanations from the all the explanation 169

units of correct answer. More details are in Ap- 170

pendix G. 171

Human Baselines Performance is measured 172

against two human groups: Experts (psychologists 173

with counseling certificates) and Non-Experts (gen- 174

eral population). This dual baseline highlights gaps 175

between LLMs and human understanding. 176

3.2 Results 177

Advanced Knowledge In Figure 2, all tested 178

models significantly outperform even psychologi- 179

cal experts, showing a strong ability in documented 180

theoretical knowledge. They show scale effect, that 181

larger models show better theoretical understand- 182

ing of NVCs (Explanation: o1-83%, 32B-75%, 183

0.5B-31%). In our erroneous study, their erroneous 184

answers are often plausible, not being entirely base- 185

less. 186

Understanding vs. Generating Models get bet- 187

ter scores at understanding cues (Explanation) than 188

generating plausible cues (Cue) (83% vs 73% 189

in O1). For instance, while ‘Arm crossing’ was 190

correctly linked to ‘Threatened’, the reverse task 191

yielded lower precision. This asymmetry mirrors 192

human expertise, where decoding nonverbal signals 193

is often easier than producing context-appropriate 194

ones. 195

1Semantic embeddings in this paper use ‘text-embedding-
3-small’.
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Automatic Motion Captioning (32B-VLM)

 Authomatic Filtering: Grounding in NVC Dictionary

 Manual Filtering: Complete Human Inspection

Semantic Similarity > 0.85

Semantic Similarity > 0.75

NVC Dictionary

407 Cues

1,907 Meanings

Parsed Caption
Cue

Explanation
Actor

C1 M1
M2

C2 M3

 Is the cue appearing clear
 Is the explanation appropriate?

High Accordance

Easy NVC Dataset!

 Human Labelers

Data

STT,

Vocal Cue Annot

 Small scene changes
 Human Appearance.  What counts as a nonverbal cue

 What does it mean psychologically?

Higly detailed, but noisy

4 sec Clips

(32 Frames)

Filter Clips Body parts
Appearing body 
part in the Clip

The girl in the clip 
dangle the shoes,...

Motion Caption
Videos 497hr
Scripts 4k

Figure 3: We build MOTION2MIND, a dataset with fine-grained nonverbal cue and validated psychologcial
explanation. We source dataset from youtube (sitcom, movie, reality) and automatically process with video language
model’s captioning ability and dictionary’s knowledge.

4 MOTION2MIND196

We present MOTION2MIND, a carefully curated197

video dataset designed to assess psychological in-198

terpretation of nuanced body language within con-199

texts. Our automated and scalable pipeline consists200

of distinct stages, systematically producing video201

clips (§4.1) annotated with nonverbal cues (§4.2)202

and corresponding psychological interpretations203

(§4.3).204

4.1 Video Clips205

Video Collection We collect video clips from206

YouTube channels spanning various genres, in-207

cluding sitcoms (Clipzone Sitcoms, 2025; The Of-208

fice, 2025; Friends, 2025), movies (lionsgate, 2025;209

joblo, 2025), and reality shows (Keeping Up with210

the Kardashians, 2025), utilizing the yt-dlp (yt-dlp211

contributors, 2025) framework. These sources pro-212

vide a wide array of social interactions and nonver-213

bal behaviors, resulting in a total of 497.92 hours214

of videos divided into 4,730 clips.215

Frame Extraction For every video, we randomly216

sample up to 40 clips with 4-second length. Each217

clip contains 32 frames captured at 8 fps, and this218

resolution is determined by our hands-on experi-219

ence to sufficiently comprehend a whole appear-220

ance of nonverbal cue while maintaining efficiency.221

We employ Yolov8 (Jocher et al., 2023) to detect222

the number of people present in each frame and223

filter out (1) non-human content (e.g., cars, alarms)224

and (2) clips with frequent changes in the number225

of individuals, which indicates many scene transi- 226

tions. 227

Subtitles Speech-to-text conversion is performed 228

using Whisper-large-v3 (Radford et al., 2022), 229

with speaker segmentation managed by Nvidia- 230

Nemo (Kuchaiev et al., 2019). The resulting subti- 231

tles are then aligned with video timestamps. 232

4.2 Nonverbal Cue 233

Visual Cue Annotation As shown in Figure 3, 234

we leverage Qwen2.5-32B-VL-Instruct to automat- 235

ically generate descriptions of prominent nonverbal 236

cues within each 4-second clip. 237

1. Body Part Specification: We use pose esti- 238

mator model (Lugaresi et al., 2019) to identify 239

appearing body parts (e.g.Face, Arms, Feet) 240

within each clip. These components are then 241

included in the text prompt to provide more 242

granular annotations. 243

2. Captioning: Qwen-32B-VL-Instruct is 244

prompted to generate separate descriptions 245

for each detected person. 246

3. Structurization: GPT-4o-mini structures the 247

generated free-form captions into a standard- 248

ized JSON format, which includes the cue, 249

actor, and the inferred mental state (if speci- 250

fied), and contextual details. 251

4. Automatic Filtering: We validate the cues 252

using a predefined body language dictio- 253
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Dataset Items Mods # Mind Cue. Invalid Vocal. Source

MOTION2MIND 1,022 V +A +T 397 ✓ ✓ ✓ Movie, Sitcom, Reality

SOCIAL GENOME (Mathur et al., 2025) 272 V +A +T — ✓ ✗ ✓ YouTube
MMToM-QA (Jin et al., 2024b) 7.5k V +A +T Unk (B, D, I) ✓ ✗ ✗ Simulation
Aff–Wild2 (Kollias and Zafeiriou, 2019) 548 V +A 8 (E) ✗ ✗ ✓ YouTube
VEATIC (Ren et al., 2023) 124 V +A Cont. (E) ✗ ✗ ✓ Mixed clips
MovieGraphs (Vicol et al., 2018) 7.6k V +T 9 (R) ✓ ✗ ✗ Movies
Social–IQ (Li et al., 2025) 1.2k V +T QA ✓ ✗ ✗ YouTube
iMiGUE (Liu et al., 2021b) 359 V 3 (E) ✗ ✗ ✗ Tennis press
BoLD / ARBEE (Luo et al., 2019) 9.8k V 26 (E) ✗ ✗ ✗ Movies
BoME (Wu et al., 2023) 1.6k V 4 (E) ✗ ✗ ✗ AVA-derived

Table 2: We introduce MOTION2MIND, the first multimodal dataset with fine-grained motion annotations and
validated psychological explanations. V = vision, A = audio, T = text. Cue. denotes specification of behavior in the
visual modality. B, D, I, E, R stand for Belief, Desire, Intention, Emotion, and Relationship, respectively. Cont. =
continuous variable; Vocal. = annotation of vocal nonverbal cue.

nary (Navarro, 2018), applying semantic and254

lexical matching with thresholds, respectively.255

5. Human Inspection: The authors conduct a256

manual review to verify the appropriateness257

of detected cues, ensuring dataset reliability258

and content validity.259

Vocal Cue: Automatic Pitch, Volume, Speech260

Speed Annotation Our vocal cue annotation261

pipeline identifies three primary vocal cues —262

speaking rate, pitch, and silence duration — by263

adapting baseline statistics per speaker.264

1. Speaking Rate: The speaking rate is calcu-265

lated as words per minute (WPM) within each266

segment. We update the baseline mean and267

standard deviation by the speaker. A segment268

is labeled as [FAST] if its WPM exceeds the269

baseline 1.5 times of mean by one standard270

deviation.271

2. Pitch: Pitch estimation is conducted using272

Parselmouth (Boersma and Weenink, 2021),273

which applies Praat’s pitch extraction algo-274

rithm. Segments shorter than 120 ms are275

excluded to prevent unreliable pitch estima-276

tion. If a segment’s average pitch (F0) sur-277

passes 1.25 times of the speaker’s baseline278

mean by one standard deviation, it is labeled279

as [HIGH_PITCH].280

3. Long Pause: Silent periods are detected us-281

ing WebRTC VAD. Segments with a silence282

duration exceeding 600 ms and accounting283

for over 5% of the total segment length are284

labeled as [LONG_PAUSE].285

4.3 Psychological Meaning (Explanation) 286

General Meaning As we do automatic filtering 287

in §4.2, all the annotated nonverbal cue is mapped 288

with a nonverbal cue name defined in dictionary, 289

also with the multiple possible explanations. This 290

explanation is conditioned with the nonverbal cue, 291

not with the context. 292

Context-Dependent Meaning To ensure the se- 293

lection of the most definitive subset, we adopt the 294

following assumption and pseudo-labeling strat- 295

egy, conducting manual annotation through all data 296

items: 297

1. Meaning Constraint: We only acknowledge 298

meanings present in the dictionary. While ac- 299

tions such as closing one’s eyes can signify 300

fatigue, stress, emotional response, or social 301

etiquette (e.g., during a kissing moment), in- 302

terpretations beyond the dictionary scope are 303

excluded to minimize excessive subjectivity 304

of annotations. 305

2. LLM-Dictionary Alignment: We prioritize 306

labeling samples where mind state in §4.2- 307

Structurization closely matches with the ex- 308

planations in our dictionary. If the motion 309

caption and the meaning are both have simi- 310

larity with pain in dictionary, we consider it 311

more compatible. 312

5 Test VLMs 313

Now we test current VLMs’ performance with 314

MOTION2MIND. We test current video lan- 315

guage models (GPT-4o series, Qwen2.5-VL (Wang 316

et al., 2024) series, and InternVL (Chen et al., 317

5



Detection Cue Explanation Prediction

Model Open Input MCQ Binary Accuracy Total Valid Invalid MCQ

Expert – – – 89.0 – 81.3 76.3 86.3 90.0
Non-expert – – – 92.0 – 69.3 63.3 73.3 83.3

GPT-o1 ✗ V + T + (A) 64.3 45.0 40.6 62.5 64.9 50.6 95.7
GPT-4o ✗ V + T + (A) 64.3 45.4 41.1 62.3 64.9 49.4 67.9
Gemini-Flash-1.5 ✗ V + T + A 67.6 59.2 64.9 46.2 65.2 63.5 73.8

Qwen 2.5-32B ✓ V + T + (A) 65.0 69.3 47.7 59.6 65.5 30.0 83.2
Qwen 2.5-7B ✓ V + T + (A) 67.6 32.3 46.8 59.5 65.1 29.6 49.5
Qwen 2.5-3B ✓ V + T + (A) 58.8 54.0 44.2 47.8 57.3 0.0 25.7
InternVL3-8B ✓ V + T + (A) 68.0 78.0 54.0 59.9 66.0 29.5 81.5
InternVL3-2B ✓ V + T + (A) 67.0 95.6 49.6 43.8 51.3 6.5 68.9
InternVL3-1B ✓ V + T + (A) 40.6 49.8 25.7 17.8 20.2 5.3 54.4

Table 3: Performance of VLMs on MOTION2MIND. VLMs generally perform worse than humans across
Detection, Explanation, and Prediction tasks. Except Detection-Binary, the random baseline is 25.0% since we
provide four options for each question.

2024c) series). For clear evaluation, we formu-318

late this task as a multiple-choice question (MCQ),319

similar to §3, employing the same option sampling320

methods. We shuffle answer labels to remove label321

bias.322

5.1 Task Definition323

Detection (MCQ) Detection indentifies which324

nonverbal cue is present in a video clip. The inputs325

are raw multimodal signals, and the output is the326

specified cue.327

Detection (Binary) To more clearly assess the328

detection ability, we ask model to determine329

whether a given cue appears in a short video using330

two options: "1. Appears" or "2. Does not appear.".331

The answer is always ‘yes,’.332

Cue Generation Cue generation identifies which333

nonverbal action should occur in a marked video334

segment. This task is akin to generating an ap-335

propriate nonverbal cue for the given scene. To336

provide visual context without spoiler, we utilize337

the previous chunk (4 seconds prior) as input.338

Explanation Explanation entails inferring the339

most plausible psychological interpretation of an340

observed cue within context.341

Next-Utterance Prediction Predicting the next342

line of dialogue following a marked cue serves as343

a proxy for inferring mental state capabilities. We344

input a marked transcript excerpt and speaker of345

the utterance, and output the utterance. Distractors346

are randomly sourced from the script corpus with 347

semantic distances. 348

5.2 Input modality 349

Visual Cues: Frames The models receive vi- 350

sual token inputs consisting of a series of images 351

representing moments when NVCs occur during 352

a dialogue. Given that 32 frames would consume 353

a significant number of visual tokens, we dynami- 354

cally adjust the image size to a minimum of 64 to 355

avoid exceeding the context length limits of vision- 356

language models. 357

Text Cues: Script and Vocal Cues We also pro- 358

vide the script along with annotated vocal cues as 359

input. The input consists of 1-minute script seg- 360

ments paired with truncated video clips. 361

5.3 Results 362

Clear Human-AI Gap In Table 3, even non- 363

experts human demonstrate superior performance 364

compared to the best AI model in Detection and 365

Explanation task. Within same group, clear scale 366

effect that large version model outperforms smaller 367

model with big gap. 368

Larger Models Excels in Explanation over Cue 369

Generation Excluding Gemini-Flash-1.5, larger 370

models such as Qwen 2.5-32B and Qwen 2.5-7B 371

exhibit notably stronger performance in Explana- 372

tion tasks compared to Cue Detection (32B: 65.5% 373

vs 47.7%, 7B: 65.1% vs 46.8%). They also show 374

superior performance in context-dependant tasks 375

such as Prediction. This trend suggests that the 376
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context comprehension capabilities of these larger377

models may facilitate more accurate psychological378

interpretations.379

Detection Binary vs Detection MCQ In the bi-380

nary detection task, models generally perform bet-381

ter than in the multi-choice (MCQ) detection set-382

ting, suggesting lower cognitive load and ambiguity383

in label selection. However, some smaller models384

such as InternVL3-2B shows extreme gains in Bi-385

nary task (95.6%), highlighting that model with386

high recall is advantageous, as all the label is ‘Ap-387

pears’.388

Struggles in Invalid Understanding In Explana-389

tion task, the ability to discern invalid cues remains390

a significant challenge across all models. Even391

the strongest model, GPT-4o, struggled with high392

rates of false alarms in the invalid category (Invalid393

50.6% vs Valid 64.9%).394

5.4 Over-interpretation vs.395

Under-interpretation396

In Figure 4 and Table 4, we categorize the model397

answer and the groundtruth combinations in Expla-398

nation task.

Type Ground-truth Model answer

TP Valid Same Valid
FN Valid Invalid
EP Valid Different Valid
TN Invalid Invalid
FP Invalid A valid

Table 4: ‘Valid’ is a specific psychological meaning
(e.g.Stressed). We define False Negative (FN) and
False Positive (FP) as under-interpretation and over-
interpretation.

399

0 20 40 60 80 100
InternVL3-1B
InternVL3-2B
InternVL3-8B

Qwen2.5-VL-3B
Qwen2.5-VL-7B

Qwen2.5-VL-32B
o1

True Positive
False Negative (Under)
Error Positive

True Negative
False Positive (Over)

Figure 4: Stacked bar plots of LLM Explanation task
answers.

The larger vision-language models—Qwen 2.5- 400

VL-32B and InternVL3-8B—achieve the highest 401

counts of both true positives and true negatives, and 402

thus the best overall accuracy. 403

When we break down the errors (False Negatives 404

+ False Positives + Error Positives), a clear size 405

effect emerges: as we move to smaller models, the 406

share of EP (Error Positives) increases sharply. 407

Smaller models make more over-interpretation 408

mistakes on the ‘Invalid’ labels, and when we con- 409

centrate on the 1B–3B models, they almost always 410

assess the given NVCs as valid. Therefore, it ap- 411

pears that they have almost no ability to respond 412

with “invalidity” according to the context in which 413

the nonverbal cue occurs. 414

Finally, when we compare over-interpretation 415

and under-interpretation, we can see that over- 416

interpretation occurs far more frequently. De- 417

spite a label imbalance where valid ground-truth is 418

far more numerous than invalid ground-truth, the 419

models almost never commit under-interpretation, 420

whereas over-interpretation accounts for most of 421

the invalid-cue inputs. 422

5.5 Qualitative results 423

Figure 5 representative cases where the O1 model 424

produces incorrect inferences in Detection-binary 425

(first row) and Explanation (second row) tasks. 426

In Detection-Binary task, the model misidentifies 427

even clear cues such as ‘neck touching’ and ‘gestur- 428

ing while speaking’. In the explanation tasks, the 429

model demonstrates a tendency to over-interpret 430

benign cues as indicative of psychological states, 431

such as just sitting forward alone is connected with 432

‘intention to show empathy’. 433

6 Related Work 434

Theory of Mind Benchmarks Early AI ToM 435

benchmarks largely mirror developmental false- 436

belief tests in text form (Le et al., 2019; Kim et al., 437

2023; Li et al., 2023; Amirizaniani et al., 2024), 438

some papers encompassing visual cues as input (Jin 439

et al., 2024a; Chen et al., 2024a; Zhang et al., 2024; 440

van Groenestijn, 2024; Etesam et al., 2023; Ma 441

et al., 2023) evaluating models’ ability to distin- 442

guish asymmetric information in templated stories. 443

Recent efforts expand ToM assessments to broader 444

mental states—emotions, intentions, desires, be- 445

liefs, knowledges, percepts—and incorporate vi- 446

sual context (Wang et al., 2025; Ma et al., 2023; 447

Duan et al., 2022; Fan et al., 2021; Mao et al., 2024; 448
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Actor: woman
Cue: smile

Actor: Woman in Red Dress
Cue: Neck touching

Actor: Woman with short hair
Cue: Gesturing while speaking

Actor: Man
Cue: Closed-eyes

Actor: Upright individual
Cue: forehead-tension

F: Stress reliever and pacifier
T: focus

Actor: man
Cue: sitting-forward

F: Intention to show empathy
T: Invalid 

Actor: Woman Sitting at the Table
Cue: fingers-close-together

F: Needing a quick way to relieve stress 
T: Invalid 

Actor: Man in the right side
Cue: Toes-pointing-up

F: I have to leave this situation
T: Joyful anticipation

Figure 5: Examples of erroneous inferences by the GPT-O1 model in Detection-Binary and explanation tasks. The
first row illustrates the example which model doesn’t recognize the given cue (e.g.Smile, Neck touching). The
second row presents misinterpretations, where benign or contextually ambiguous cues are incorrectly assigned
psychological meanings (F: False explanation, T: True explanation).

Bortoletto et al., 2024) utilizing agent behavior or449

navigation as the inferred cue. MOTION2MIND450

deals with nuanced and detailed body language451

with validated dictionary to cover comprehensive452

range of body language.453

Video-Based Social Reasoning NVC datasets454

are built in video understanding domain to clas-455

sify the appropriate emotion state or social re-456

lation of the character in the video (Luo et al.,457

2020; Liu et al., 2021a; Huang et al., 2021;458

Wicke, 2024; Zadeh et al., 2019; Lu et al., 2020;459

Chen et al., 2024b; Tapaswi et al., 2019). So-460

cial Genome (Mathur et al., 2025) introduces461

272 videos paired with 1,486 human-annotated462

reasoning traces. Social Genome focuses on463

grounded, multimodal social-reasoning chains, but464

our MOTION2MIND isolates pure visual infor-465

mation in the domain of NVCs.466

Affective Computing & HRI Affective HRI467

aims to sense and react to human states from facial,468

bodily, and vocal cues (Picard, 1997; Spezialetti469

et al., 2020). Early work centered on real-time470

emotion or intent recognition for assistive robots471

(Rudovic et al., 2018; van der Pol et al., 2022).472

Recent studies embed explicit ToM: false-belief473

reasoning on humanoids (Zeng et al., 2020) and474

GPT-4V–based multimodal inference in AToM-Bot475

(Shu et al., 2024), advancing toward robots with476

functional Theory of Mind (Breazeal and Scassel-477

lati, 2002; Sturgeon et al., 2021). 478

7 Conclusion 479

Our study presents the comprehensive evaluation 480

framework with benchmark MOTION2MIND, 481

for assessing AI systems’ capacity to interpret non- 482

verbal cues (NVCs) in real-world, multimodal con- 483

texts, revealing substantial gaps between human 484

and machine performance. Their performance de- 485

grades significantly when faced with contextual 486

ambiguity and nuanced social cues (Invalid). State- 487

of-the-art models such as GPT-4o and Qwen2.5- 488

VL fail to consistently integrate visual and tex- 489

tual modalities, as evidenced by inconsistent per- 490

formance in combined Detection and Explanation 491

tasks. 492

8 Limitations 493

Coverage of Nonverbal Behaviors While our 494

dataset incorporates a comprehensive range of 495

NVCs from established literature, it cannot exhaus- 496

tively capture the full spectrum of human nonverbal 497

communication. Cultural variations in gesture in- 498

terpretation, micro-expressions, and complex com- 499

binations of simultaneous nonverbal signals remain 500

challenging to represent fully in our framework. 501

Additionally, our reliance on a single body lan- 502

guage dictionary, though expertly curated, may not 503

capture emerging or culturally specific nonverbal 504

behaviors. 505

8



Simplified Assumptions in Action Recognition506

Our framework assumes perfect detection of NVCs507

in both text and video modalities, which may not508

reflect real-world challenges in action recognition.509

While this assumption allows us to focus on eval-510

uating higher-level understanding, it potentially511

oversimplifies the complexities of detecting sub-512

tle movements, continuous motion, and overlap-513

ping gestures in practical applications. Future514

work should address the integration of actual action515

recognition systems and their associated errors.516

Limitations of Synthetic Data Although our517

synthetic data generation approach enables a sys-518

tematic evaluation of edge cases, it may not fully519

capture the naturalness and spontaneity of human520

nonverbal communication. The use of GPT-4o521

for data generation, although carefully controlled,522

could introduce biases or artifacts that differ from523

natural patterns of nonverbal behavior in human524

interactions.525

9 Ethical Considerations526

Privacy and Consent While our video dataset527

uses publicly available movie clips, the broader ap-528

plication of NVC understanding raises important529

privacy concerns. The ability to automatically inter-530

pret body language and emotional states could en-531

able surveillance systems that infringe on personal532

privacy. Future deployments of such technology533

should carefully consider consent mechanisms and534

privacy protections, particularly in public spaces or535

workplace environments.536

Potential for Misuse and Manipulation Ad-537

vanced understanding of NVCs could be exploited538

for manipulation or deception. Systems capable539

of interpreting subtle behavioral signals might be540

misused for psychological profiling, social engi-541

neering, or targeted influence campaigns. Addi-542

tionally, the technology could potentially be used543

to develop more sophisticated deepfake systems544

that incorporate realistic nonverbal behaviors, fur-545

ther complicating issues of digital authenticity and546

trust.547

Bias and Cultural Sensitivity Our framework,548

despite efforts to be comprehensive, may contain549

inherent biases in how it interprets and validates550

NVCs across different cultural contexts. Reliance551

on Western-centric sources for body language in-552

terpretation could lead to misinterpretation or over-553

simplification of culturally specific gestures and554

expressions. Furthermore, the use of movie clips as 555

a data source may perpetuate certain cultural stereo- 556

types or biases in the portrayal and interpretation 557

of emotional states. 558
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A More Analysis1150

A.1 Knowledge: Validity-binary task1151

Model Acc. Prec. Recall

Qwen2.5-32B-Instruct 0.886 0.964 0.834
Qwen2.5-14B-Instruct 0.911 0.923 0.902
Qwen2.5-7B-Instruct 0.875 0.927 0.839
Qwen2.5-3B-Instruct 0.894 0.856 0.926
Qwen2.5-1.5B-Instruct 0.884 0.998 0.814
Qwen2.5-0.5B-Instruct 0.565 0.966 0.536

Table 5: Valdity binary task results. Random score is
0.5.

Besides cue and explanation task in §3, We mea-1152

sure performance of validity-binary task, which is1153

to guess if the combination of nonverbal cue and1154

psychological meaning is valid or not (e.g.Input:1155

Arm crossing - self-protection / Output: True).1156

We source the positive sample in the dictionary,1157

and match the negative sample with semantic dis-1158

tance between True explanation pool of the cue.1159

Basic random score is 0.5.1160

In Table 5, we see the model accuracy, precision1161

and recalls are all generally high except 0.5B mod-1162

els. Even 1.5B models show above 0.8 score for1163

three metrics. This implies high level of knowledge1164

about Nonverbal cue and possible meanings.1165

A.2 Categorical Performance Difference1166
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Figure 6: 5 most accurate (Orange) and inaccurate
(Green) body parts. Models are less likely to choose
‘invalid’ responses when similar NVC is added to the
dialogue (x: NVC numbers, y: Answer as invalid) for
both validity and explanation tasks.

Contrary to common assumptions that fa-1167

cial cues—often considered the ’window to the1168

mind’—would yield the highest accuracy in nonver-1169

bal cue interpretation, while arms, hips, and hand-1170

s/fingers exhibit relatively higher accuracy. This1171

unexpected pattern suggests the process of trans-1172

lating these cues into verbal descriptors (e.g., ‘eye1173

darting’) can introduce ambiguity and semantic1174

drift, complicating accurate recognition. Further- 1175

more, lower accuracy in regions such as legs, nose, 1176

and feet may reflect their less frequent role as focal 1177

points in everyday nonverbal communication. 1178

A.3 Appearing Human size 1179

To determine whether recognition accuracy varies 1180

with the on-screen size of a person, we computed 1181

the correlation between the average area of the 1182

human bounding box and the model’s accuracy. 1183

The analysis revealed virtually no association— 1184

the overall mean correlation coefficient was –0.005 1185

± 0.065—indicating that bounding-box size has 1186

little influence on accuracy. 1187

A.4 Frame Numbers 1188

We set the max frame numbers as 16, and we 1189

measure the performace change based on the in- 1190

put frame numbers. We uniformly sample frames 1191

at equal intervals from each GIF (up to a maxi- 1192

mum of 32 frames). In Figure 7, as the number 1193

of frames decreases, the non-verbal cue motions 1194

become harder to discern, and the model’s per- 1195

formance correspondingly declines. Explanation 1196

shows minor drop than Detection as it use script as 1197

another information to answer question. 1198
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Figure 7: Performance change based on max frames
number. In §5, we set max frames to 16.

B Inference Details 1199

For inference, we utilize maximum 4 NVIDIA 1200

GeForce RTX 3090 for inference especially for 1201

32B Video-language Model. For other 8B, 7B, 3B, 1202

2B, 1B we adopt 1 3090 GPUs. Using paged atten- 1203

tion served in VLLM library (Kwon et al., 2023), 1204

inference for one task type takes less than 2 hours. 1205

For hyperparamenters, we utilize 0 temperature 1206

for reproducibility, seed 0, max tokens 500, top p 1207

0.001, repetition penalty as 1.05. 1208
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Figure 8: Example of the labeling interface.

C Human Evaluation1209

C.1 Annotator Selection1210

Experts We recruited 3 Ph.D. candidates in clini-1211

cal psychology who routinely interpret nonverbal1212

behaviour as part of their training and research. All1213

expert annotators are fluent in English. To ensure1214

fair compensation, we set a minimum rate of $151215

per hour.1216

Non-experts We additionally recruited 5 grad-1217

uate students outside clinical psychology who1218

demonstrated English proficiency sufficient for the1219

task. They were compensated at the same mini-1220

mum rate of $15 per hour.1221

C.2 Procedure1222

To balance cognitive load with annotation quality,1223

we adopted a subsampling strategy. Each annotator1224

labelled an identical set of 50 items, enabling us to1225

compute inter-annotator agreement while keeping1226

the session manageable.1227

C.3 Interface1228

Annotations were collected with Label Studio2 us-1229

ing the interface shown in Figure 8.1230

D List of LLMs Used in Paper1231

The models we utilized in this paper are as follows:1232

• GPT-o1 (OpenAI et al., 2024b)1233

2https://labelstud.io/

• GPT-4o (OpenAI et al., 2024a) 1234

• GPT-4o-mini (OpenAI et al., 2024a) 1235

• Gemini-1.5-Flash (Team et al., 2024) 1236

• Qwen2.5-VL-32B-Instruct (Wang et al., 1237

2024) 1238

• Qwen2.5-VL-7B-Instruct (Wang et al., 2024) 1239

• Qwen2.5-VL-3B-Instruct (Wang et al., 2024) 1240

• InternVL3-8B (Chen et al., 2024c) 1241

• InternVL3-2B (Chen et al., 2024c) 1242

• InternVL3-1B (Chen et al., 2024c) 1243

E MOTION2MIND 1244

E.1 Comprehensiveness of mind state labeling 1245

In Table 6, we list up the representative mind state 1246

labels which can be categoried by the 6 mental 1247

states described in Ma et al. (2023). 1248

In Figure 9, we visualize treemap to see the most 1249

frequent 15 motion cue labels with 5 most frequent 1250

mind state labels for each. 1251

E.2 Cultural Universality 1252

Our source dataset is derived from Navarro’s body- 1253

language dictionary (Navarro, 2018), which cata- 1254

logues nonverbal cues that are widely considered 1255

biologically based and cross-culturally universal 1256
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reflections of internal mental states. Examples in-1257

clude eyebrow flashes or raised brows (affiliation/-1258

greeting), eye-widening (surprise or fear), proto-1259

typical anger and sadness expressions, jaw drops,1260

the disgust-related nose-wrinkle (bilateral or uni-1261

lateral), nostril flaring, teeth baring, blink-rate ac-1262

celeration, and pupil dilation. Because these sig-1263

nals are largely automatic and tied to autonomic1264

physiology, their form and interpretation remain1265

remarkably stable across societies.1266

By contrast, gestures such as head nods and1267

shakes, the thumbs-up or ‘OK’ sign, and norms1268

governing direct eye contact are strongly culture-1269

bound—their meanings can even reverse from one1270

region to another. Mapping this culture-specific1271

layer of nonverbal communication is a valuable re-1272

search problem in its own right, but it lies beyond1273

the scope of the present study.1274

F Psychological Grounding1275

F.1 The dictionary of body language1276

Joe Navarro is a behavioral analysis expert who1277

served in the FBI for over 25 years, and his1278

book Navarro (2018) is widely cited in psychol-1279

ogy and rhetoric. Based on his extensive experi-1280

ence, he compiles 407 reliable NVCs (nonverbal1281

cues). His research (Navarro and Schafer, 2001)1282

has been extensively used in FBI and police inves-1283

tigations, while studies have shown the correlation1284

between unconscious body signals and psychologi-1285

cal states (Marono et al., 2017).1286

His 407 cue entries span every major body re-1287

gion—Eyes, Neck, Nose, Face, Hands/Fingers,1288

Cheeks/Jaw, Chest Torso, Belly, Hips Buttocks1289

(Genitals), Chin, Eyebrows, Arms, Forehead, Shoul-1290

ders, Mouth, Feet, Head, Legs, Lips, Ears. Below1291

we highlight representative scientific findings that1292

mirror Navarro’s field claims and justify our choice1293

to adopt his taxonomy.1294

• Eyes. Pupil dilation tracks interest and1295

arousal (Bradley et al., 2008). Direct gaze sig-1296

nals confidence but, in hostile settings, domi-1297

nance (Kleinke, 1986).1298

• Nose. Nostril-flare marks anger/high arousal,1299

while brief nose-wrinkle pairs with disgust (Ek-1300

man, 1997).1301

• Mouth & Lips. Lip compression indexes tension1302

or withheld opinion (Ekman, 2003). A lateral1303

lip-purse conveys disagreement (Hess and Bour- 1304

geois, 2010). One-sided lip raise (AU 14) univer- 1305

sally signals contempt (Matsumoto and Hwang, 1306

2008). 1307

• Cheeks & Jaw. Clenched jaw correlates with 1308

anger or restraining speech (Burgoon et al., 2016). 1309

Cheek sucking (drawing cheeks inward) often 1310

precedes decision anxiety (Navarro, 2018). 1311

• Forehead & Eyebrows. Brow-lower (AU 4) 1312

denotes anger/effort; raised inner brows (AU 1313

1+2) indicate fear or pleading (Ekman, 2003). 1314

Forehead tension peaks during concentration or 1315

stress (Davis and Senghas, 2010). 1316

• Arms & Hands. Crossed arms predict defensive 1317

or closed attitudes (?). Arms-akimbo (hands on 1318

hips, elbows out) broadcasts dominance and con- 1319

fidence (Carney et al., 2010). Self-touch (arm 1320

rubbing, neck stroking) functions as a pacifier 1321

under anxiety (Kraus, 2019). 1322

• Shoulders & Torso. Shoulder shrug (elevated, 1323

rotated) conveys uncertainty; shoulder slump co- 1324

occurs with sadness and low confidence (Mehra- 1325

bian, 1972). 1326

• Chest / Belly. Expansive chest displays pride 1327

or high status, whereas inward chest and belly 1328

guarding indicate vulnerability (Tramposch et al., 1329

2021). 1330

• Hips, Buttocks, Genitals. Pelvic retreat (hips 1331

angled away) shows discomfort; pelvis forward 1332

with relaxed stance signals attraction or confi- 1333

dence (Givens, 2016). 1334

• Legs & Feet. Sudden leg uncrossing or weight- 1335

shift marks threat arousal. Increased foot fidget- 1336

ing accompanies nervous energy. 1337

Collectively, these peer-reviewed findings vali- 1338

date Navarro’s cluster-based approach and demon- 1339

strate that his dictionary encompasses empirically 1340

supported NVCs across the full spectrum of body 1341

parts. 1342

F.2 Vocal Cue Annotation 1343

Our algorithm maintains a rolling baseline for each 1344

speaker (last 50 segments≈ 5 min) and tags utter- 1345

ances when (i) words-per-minute (WPM) or (ii) 1346

fundamental frequency (F0) exceed the speaker’s 1347

mean by +1σ ([FAST], [HIGH_PITCH]), or (iii) 1348

silence lasts ≥ 600 ms and covers ≥ 5% of the 1349
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Category Mind–state labels

BELIEFS confidence, self-assurance, trust, doubt, skepticism, suspicious, disbelief, certainty, confidence in telling
the truth, belief in one’s statement, negative or worrisome thoughts

INTENTIONS emphasis, accusing, desire to appear polite and agreeable, desire to appear more attractive, desire to
drive home a point, trying to attract a potential mate, directing attention, open to response, actively
participating, gesture to confide, intent, accusation or emphasis, joking gesture, stop-sign (blocking),
signalling closeness, asking consent

PERCEPTS attentive, attention, observing, focus, engagement, passive observation, distracted, disinterest, curiosity,
showing focused attention, glare, looking away, openness, withdrawal

DESIRES seeking comfort or reassurance, desire for self-comfort, desire for closeness and bonding, seeking
understanding, desire to emphasize, desire to appear attractive, trying to block out pain, wanting privacy,
wanting relief, yearning/intense wanting (energy)

KNOWLEDGE uncertainty, genuine uncertainty (‘I really don’t know’), confusion, contemplation, thoughtfulness,
reflection, consideration, awareness, evaluation / judging, realization, inquisitiveness

EMOTIONS stress, anxiety, fear, panic, anger, annoyance, irritation, happiness, joy, sadness, calm, relaxation,
affection, warmth, excitement, enthusiasm, nervousness, frustration, comfort, disgust, aversion, contempt,
surprise, shock, embarrassment, humility, fatigue, tiredness

Table 6: Representative ‘explanation’ labels onto six broad cognitive–affective categories used in Theory-of-Mind
literature (Ma et al., 2023). MOTION2MIND covers wide range of human cognition.

Closed eyes Attentiveness Alertness Surprise Excitement Engagement

Eye pointing Engagement Assertive Focused Attentiveness Confident
Sitting forward Confidence Engaged Relaxed Attentiveness Focused

Arms stiffening Observation Calm Attentiveness Comfortable Neutral/passive

Animated gestures Expressiveness Enthusiasm Enthusiastic Engaged Emphasis
Arms held behind back Focused Attentiveness Neutral Reserved Engaged

Legs spreading apart, sitting Relaxed Confidence and readiness Engagement Open Confident
Crossing leg as barrier, sitting Relaxed Comfort Comfortable Engaged Introspective

Neck stretching Focused Discomfort Engagement Calm Comfort
Holding legs together, sitting Attentive Formal Confidence Reserved Comfort

Arm crossing, holding wrist Defensive Defensiveness Composure Reservation Guarded, skeptical

Gesturing while speaking Active communication Engaged Emphasizing Determined Excited

Standing leg crossing (comfort) Calm and attentive Comfort Comfortable Relaxed Reserved

Smile Happy Friendliness Friendly Happiness Amusement

Mouth open, jaw to side Excitement Neutral Speaking/listening Active communication Thoughtfulness

Figure 9: Treemap of top 15 most frequent nonverbal cues and its psychological explanation. We clustered the
explanation with the semantic embedding and title as one of each cluster.
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segment ([LONG_PAUSE]). Segments shorter than1350

120 ms skip F0 analysis, and baselines update after1351

each decision.1352

Pitch. Social-threat and anxiety tasks reliably1353

raise F0 by roughly one standard deviation above1354

baseline (Weeks et al., 2012), and meta-analytic1355

work shows a comparable pitch lift during decep-1356

tion (Anolli et al., 2012). Conversely, major de-1357

pression produces lower, flatter pitch contours (Ya-1358

mamoto et al., 2020). Labeling F0> µ+σ there-1359

fore captures the arousal-linked excursions of inter-1360

est while respecting individual vocal ranges.1361

Speech rate. Average conversational English1362

hovers around 150 WPM (tfc); state-anxious speak-1363

ers often surge beyond 180–200 WPM—about1364

+1σ on personal baselines (Behnke and Sawyer,1365

2001). In contrast, depressive speech frequently1366

drops below 110 WPM (Yamamoto et al., 2020). A1367

+1σ rule thus isolates the adrenaline-driven accel-1368

erations without penalising naturally brisk talkers.1369

Pauses. Depressed individuals and deceivers1370

show markedly longer within-utterance pauses and1371

response latencies (often > 600 ms) compared with1372

controls (Yamamoto et al., 2020; Vrij and Taylor,1373

2004). Confident speakers, by contrast, use brief,1374

infrequent pauses (Scherer et al., 1973). Tagging1375

silences that both exceed 600 ms and occupy≥ 5%1376

of the segment pinpoints these cognitively-loaded1377

gaps.1378

Rolling z-scoring is recommended in vocal-1379

affect research to remove inter-speaker physiolog-1380

ical variance while highlighting state deviations1381

(Weeks et al., 2012). Hence, our adaptive thresh-1382

olds translate decades of paralinguistic evidence1383

into objective, speaker-normalised labels.1384

G Option Generation Algorithm1385

In §3 and §5, we utilze testset as multi-choice ques-1386

tion format sourcing distractor options in the data1387

pool. We use the semantic cosine distance, consid-1388

ering all the explanation pool described in dictio-1389

nary given one nonverbal cue.1390

H Prompts1391

In Table 7 and Table 8, we specify the prompts we1392

use for §4 and §5.1393

I Use of AI Assistants1394

We use AI assistants in coding and correcting gram-1395

matical errors.1396
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Algorithm 1 GENDIVERSEOPTIONS

T : list of targets
I: list of items (each has pivot, subcat)
k: #options to pick (≈ 3)
dir ∈ {far, close}: choose dissimilar or similar distractors
τmin, τmax: cosine-similarity thresholds (optional) R: MCQ records
Pre-compute embeddings
C ← list of all pivot texts in I
E ← ENCODE(C) *matrix |I|×d
t ∈ T e⋆ ← ENCODE(t.pivot)
σ ← cos_sim(E, e⋆) *|I| scores
Candidate mask
mask← true|I|

if use subcategory then mask &= (I.subcat = t.subcat) exclude the target itself mask &=
(
C ̸= t.pivot

)
if τmin given then mask &= (σ ≥ τmin)

if τmax given then mask &= (σ ≤ τmax)
A ← indices where mask= true

if |A| < k then*fallback A ← {j | C[j] ̸= t.pivot}
Greedy selection
S ← [ ]

while |S| < k do dir = far pick j⋆ = argminj∈A σ[j] pick j⋆ = argmaxj∈A σ[j]
S += [ I[j⋆] ]; A ← A \ {j⋆}
Assemble MCQ entry
R +=

〈
t, [ t ] ∪ S

〉
returnR
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Variable: body part, Frames

{Frames}

Please explain the nonverbal cues in the video of the given body part in the most detail.

– If multiple people appear, explain each person’s cues separately.
– Do not mention cues unrelated to the specified body part.

[Body part]: {body part}

Variables: script + caption

Given the caption about the short video clip and script, please parse the appearing nonverbal cues into JSON format. Do
not annotate vocal cues.

FORMAT:
[

{
"cue_id": "0",
"cue_sign": "...", # concise description
"body_part": "...", # head, face, neck, arms ...
"cue_agent": "...", # who performed the action
"mind_state": "...", # psychological meaning or "none"
"detail": "..." # extra detail

},
...

]

[Script with Caption]
{script + caption}

[Appearing action]

Table 7: Captions used in §4. Prompt used to get novnerbal cue captions in the video and reconstruct the data into
json format.
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Variables: script, agent, options

Given the following script and a video clip, please select the most plausible nonverbal action (behaviour by {agent})
in the blank. The MARKED SCENE is bounded by ***** SCENE START ***** and ***** SCENE END *****. The
previous chunk of the scene is included for context.

[Script]
{script}

Choose from the following options (answer only the option number without any other text):
{options}

Variables: script, options

Given the following script of a short video clip, please explain the nonverbal action in the blank. Focus on the cue between
the scene start and end marks.

[Script]
{script}

Choose from the following options (answer only the option number without any other text):
{options}

Variables: script, options

Given the following script of a short video clip, please predict the next utterance in the blank. Focus on the cue between
the scene start and end marks.

[Script]
{script}

Choose from the following options (answer only the option number without any other text):
{options}

Variables: agent, options

Given the following video, please detect what nonverbal cue (behaviour by {agent}) is present.

Choose from the following options (answer only the option number without any other text):
{options}

Variables: cue, agent, options

Given the following video, please detect whether the specified nonverbal cue appears.

Nonverbal cue: {cue} by {agent}

Choose from the following options (answer only the option number without any other text):
1. appears
2. does not appear

Table 8: Prompt templates for the five task types used in our benchmark, ordered left-to-right: cue, explanation,
next_prediction, detection, and detection_binary. Curly-braced tokens ({}) are filled at runtime.
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