
Under review as a conference paper at ICLR 2023

LEARNING CONTROL POLICIES FOR REGION STABI-
LIZATION IN STOCHASTIC SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of learning control policies in stochastic systems which
guarantee that the system stabilizes within some specified stabilization region with
probability 1. Our approach is based on the novel notion of stabilizing ranking su-
permartingales (sRSMs) that we introduce in this work. Our sRSMs overcome the
limitation of methods proposed in previous works whose applicability is restricted
to systems in which the stabilizing region cannot be left once entered under any
control policy. We present a learning procedure that learns a control policy to-
gether with an sRSM that formally certifies probability-1 stability, both learned as
neural networks. Our experimental evaluation shows that our learning procedure
can successfully learn provably stabilizing policies in practice.

1 INTRODUCTION

Machine learning methods present a promising approach to solving non-linear control problems.
However, the key challenge for their deployment in real-world scenarios is that they do not con-
sider hard safety constraints. For instance, the main objective of reinforcement learning (RL) is to
maximize expected reward (Sutton & Barto, 2018), but doing this provides no guarantees of the
system’s safety. This is particularly concerning for safety-critical applications such as autonomous
driving or healthcare, in which unsafe behavior of the system might have fatal consequences. Thus,
a fundamental challenge for deploying learning-based methods in safety-critical applications such
as robotics problems is formally certifying safety of learned control policies (Amodei et al., 2016;
García & Fernández, 2015).

Stability is a fundamental safety constraint in control theory, which requires the system to converge
to and eventually stay within some specified stabilizing region with probability 1, a.k.a. almost-sure
(a.s.) asymptotic stability (Khalil, 2002; Kushner, 1965). Most existing research on learning policies
for a control system with formal guarantees on stability considers deterministic systems and employs
Lyapunov functions (Khalil, 2002) for certifying the system’s stability. In particular, a Lyapunov
function is learned jointly with the control policy (Berkenkamp et al., 2017; Richards et al., 2018;
Chang et al., 2019; Abate et al., 2021a). Informally, a Lyapunov function is a function that maps
system states to nonnegative real numbers whose value decreases after every one-step evolution of
the system until the stabilizing region is reached. Recent work Lechner et al. (2022) has extended
the notion of Lyapunov functions to stochastic systems and proposed ranking supermartingales
(RSMs) for certifying a.s. asymptotic stability in stochastic systems. RSMs generalize Lyapunov
functions to supermartingale processes in probability theory (Williams, 1991) and decrease in value
in expectation upon every one-step evolution of the system.

While these works present significant advances in learning control policies with formal stability
guarantees, they are either only applicable to deterministic systems or assume that the stabilizing
set is closed under system dynamics, i.e., the agent cannot leave it once entered. In particular, the
work of Lechner et al. (2022) reduces stability in stochastic systems to an a.s. reachability condition
by assuming that the agent cannot leave the stabilization set. However, this assumption may not
hold in real-world settings because the agent may be able to leave the stabilizing set with some
positive probability due to the existence of stochastic disturbances. We illustrate this on an example
in Figure 1.

Contributions In this work, we introduce stabilizing ranking supermartingales (sRSMs) and prove
that they certify a.s. asymptotic stability even when the stabilizing set is not assumed to be closed

1

Under review as a conference paper at ICLR 2023

under system dynamics. The key novelty of our sRSMs compared to RSMs is that they also impose
an expected decrease condition within a part of the stabilizing region. The additional condition
ensures that, once entered, the agent leaves the stabilizing region with a probability at most p < 1.
Thus, the probability of the agent entering and leaving the stabilizing region N times is at most
pN , which by letting N → ∞ implies that the agent eventually stabilizes within the region with
probability 1. The key conceptual novelty is that we combine the convergence results of RSMs
Lechner et al. (2022) with a concentration bound on the supremum value of a supermartingale
process. This combined reasoning allows us to formally guarantee a.s. asymptotic stability even for
systems in which the stabilizing region is not closed under system dynamics.

We also present a method for learning a control policy jointly with an sRSM that certifies a.s. asymp-
totic stability. The method parametrizes both the policy and the sRSM as neural networks and draws
insight from established procedures for learning neural network Lyapunov functions Chang et al.
(2019) and RSMs Lechner et al. (2022). It loops between a learner module that jointly trains a pol-
icy and an sRSM candidate and a verifier module that certifies a.s. asymptotic stability of the learned
sRSM candidate by formally checking whether all sRSM conditions are satisfied. If the sRSM can-
didate violates some sRSM conditions, the verifier module produces counterexamples that are added
to the learner module’s training set to guide the learner in the next loop iteration.

We experimentally evaluate our learning procedure on 2 stochastic RL tasks in which the stabilizing
region is not closed under system dynamics and show that our learning procedure successfully learns
control policies with a.s. asymptotic stability guarantees for both tasks.

2 RELATED WORK

Stability for deterministic systems Most early works on control with stability constraints rely either
on hand-designed certificates or their computation via sum-of-squares (SOS) programming (Henrion
& Garulli, 2005; Parrilo, 2000). Automation via SOS programming is restricted to problems with
polynomial dynamics and does not scale well with dimension. Learning-based methods present a
promising approach to overcome these limitations (Richards et al., 2018; Jin et al., 2020; Chang
& Gao, 2021). In particular, the methods of (Chang et al., 2019; Abate et al., 2021a) also learn a
control policy and a Lyapunov function as neural networks by using a learner-verifier framework
that our method builds on and extends to stochastic systems.

Stability for stochastic systems While the theory behind stochastic system stability is well stud-
ied (Kushner, 1965; 2014), there are only a few works that consider control with formal stability
guarantees. The methods of (Crespo & Sun, 2003; Vaidya, 2015) are numerical and certify weaker
notions of stability. Recently, (Lechner et al., 2022; Žikelić et al., 2022) used RSMs and a learning
procedure for learning a stabilizing policy together with an RSM that certifies a.s. asymptotic sta-
bility. However, as discussed in Section 1, this method is applicable only to systems in which the
stabilizing region is assumed to be closed under system dynamics. In contrast, we propose the first
method that does not require this assumption.

Learning stable dynamics Learning dynamics from observation data is the first step in model-based
RL. Recent works considered learning deterministic Kolter & Manek (2019) and stochastic Umlauft
& Hirche (2017); Lawrence et al. (2020) system dynamics with a specified stabilizing region.

Safe exploration RL Safe exploration RL restricts exploration of model-free RL algorithms in a
way that ensures that given safety constraints are satisfied. This is typically ensured by learning
the system dynamics’ uncertainty and limiting exploratory actions within a high probability safe
region via Gaussian Processes (Koller et al., 2018; Turchetta et al., 2019), linearized models Dalal
et al. (2018), deep robust regression (Liu et al., 2020), and Bayesian neural networks (Lechner et al.,
2021).

Probabilistic program analysis Ranking supermartingales were originally proposed for proving
a.s. termination in probabilistic programs (PPs) (Chakarov & Sankaranarayanan, 2013). Since then,
they have been used for termination (Chatterjee et al., 2016; Abate et al., 2021b) and safety (Chat-
terjee et al., 2017; Takisaka et al., 2021) analysis in PPs, and the work of (Chakarov et al., 2016)
considers recurrence and persistence with the latter being equivalent to stability. However, the per-
sistence certificate of (Chakarov et al., 2016) is numerically challenging for learning and it differs
substantially from our notion of sRSMs.

2

Under review as a conference paper at ICLR 2023

3 PRELIMINARIES

We consider a discrete-time stochastic dynamical system of the form

xt+1 = f(xt, π(xt), ωt),

where f : X × U ×N → X is a dynamics function, π : X → U is a control policy and ωt ∈ N is
a stochastic disturbance vector. Here, we use X ⊆ Rn to denote the state space, U ⊆ Rm the action
space and N ⊆ Rp the stochastic disturbance space of the system. In each time step, ωt is sampled
according to a probability distribution d over N , independently from the previous samples.

A sequence (xt,ut, ωt)t∈N0
of state-action-disturbance triples is a trajectory of the system, if ut =

π(xt), ωt ∈ support(d) and xt+1 = f(xt,ut, ωt) hold for each t ∈ N0. For each state x0 ∈ X ,
the system induces a Markov process and defines a probability space over the set of all trajectories
that start in x0 Puterman (1994), with the probability measure and the expectation operators Px0

and Ex0 .

Assumptions The state space X ⊆ Rn, the action space U ⊆ Rm and the stochastic disturbance
space N ⊆ Rp are all assumed to be Borel-measurable. Furthermore, we assume that the system
has a bounded maximal step size under any policy π, i.e. that there exists ∆ > 0 such that for every
x ∈ X , ω ∈ N and policy π we have ||x − f(x, π(x), ω)||1 ≤ ∆. Note that this is a realistic
assumption that is satisfied in many real-world scenarios, e.g. a self-driving car can only traverse a
certain maximal distance within each time step whose bounds depend on the maximal speed that the
car can develop. For our learning procedure in Section 5, we also assume that X ⊆ Rn is compact
and that f is Lipschitz continuous, which are common assumptions in control theory and RL.

Almost-sure asymptotic stability There are several notions of stability in stochastic systems. In this
work, we consider the notion of almost-sure asymptotic stability (Kushner, 1965), which requires
the system to eventually converge and stay within the stabilizing set. In order to define this formally,
for each x ∈ X let d(x,Xs) = infxs∈Xs ||x− xs||1, where || · ||1 is the l1-norm on Rm.

Definition 1. A non-empty Borel-measurable set Xs ⊆ X is said to be almost-surely (a.s.) asymp-
totically stable, if for each initial state x0 ∈ X we have Px0

[limt→∞ d(xt,Xs) = 0] = 1.

The above definition slightly differs from that of (Kushner, 1965) which considers the special case of
Xs being a singleton set consisting only of the origin, i.e. Xs = {0}. The reason for this difference
is that, analogously to (Lechner et al., 2022) and to the existing works on learning stabilizing poli-
cies in deterministic systems (Berkenkamp et al., 2017; Richards et al., 2018; Chang et al., 2019),
we need to consider stability with respect to an open neighborhood of the origin for our learning
method to be stable. Note that we do not assume that the stabilizing set Xs is closed under system
dynamics so that the system cannot leave Xs once it is reached, which contrasts the previous works
on stability in deterministic (Berkenkamp et al., 2017; Richards et al., 2018; Chang et al., 2019) and
stochastic (Lechner et al., 2022) systems.

4 THEORETICAL RESULTS

In this section, we introduce our novel notion of stabilizing ranking supermartingales (sRSMs). We
then show that sRSMs can be used to formally certify a.s. asymptotic stability with respect to a
fixed policy without requiring that the stabilizing set is closed under system dynamics. Note, in
this section only, we assume that the policy π is fixed. In the next section, we will present our
algorithm for learning policies that guarantee a.s. asymptotic stability together with an sRSM as a
formal certificate of a.s. asymptotic stability.

Overview of ranking supermartingales In order to motivate our sRSMs and to explain their nov-
elty, we first recall ranking supermartingales (RSMs) of (Lechner et al., 2022). RSMs were in-
troduced for certifying a.s. asymptotic stability under a given policy π, when the stabilizing set is
assumed to be closed under system dynamics. Note that, if the stabilizing set is assumed to be closed
under system dynamics, then a.s. asymptotic stability of Xs is equivalent to a.s. reachability since
the agent cannot leave Xs once entered. In what follows, we define RSMs and explain why they are
insufficient for certifying a.s. asymptotic stability when the stabilizing set is not closed under system
dynamics.

3

Under review as a conference paper at ICLR 2023

a) b) c)f(x,u, ω) = x+ u+ ω

ω ∼ U(−1, 1)

π(x) = − 1
2

Xs = (−∞, 0]

V (x) = softplus(x+ 3)

M=1, LV =1, ∆=1.5, δ=0.5 −∞∞ 0

xtxt+1

π

ωt ∼ U −∞∞ 0

V

V ≤ M + LV ·∆+ δ

Figure 1: Example of a 1-dimensional stochastic dynamical system for which the stabilizing set Xs

is not closed under system dynamics since from every system state any other state is reachable with
positive probability. a) System definition and an sRSM that it admits. b) Illustration of a single time
step evolution of the system. c) Visualization of the sRSM and the corresponding level set used to
bound the probability of leaving the stabilizing region.

Intuitively, an RSM is a non-negative continuous function V : X → R that maps system states to
non-negative real numbers and whose value at each state in X\Xs strictly decreases in expected
value by some ϵ > 0 upon every one-step evolution of the system under the policy π.
Definition 2 (Ranking supermartingales (Lechner et al., 2022)). A continuous function V : X → R
is said to be a ranking supermartingale (RSM) for Xs if V (x) ≥ 0 holds for each x ∈ X and if there
exists ϵ > 0 such that Eω∼d[V (f(x, π(x), ω))] ≤ V (x)− ϵ holds for each x ∈ X\Xs.

It was shown that, if a system under policy π admits an RSM and the stabilizing set Xs is assumed
to be closed under system dynamics, then Xs is a.s. asymptotically stable. The intuition behind
this result is that V needs to strictly decrease in expected value until Xs is reached while remaining
bounded from below by 0. Results from martingale theory can then be used to prove that the agent
must eventually converge and reach Xs with probability 1, due to a decrease in expected value by
ϵ > 0 outside of Xs being strict which prevents convergence to any other state. However, apart from
nonnegativity, the defining conditions on RSMs do not impose any conditions on the RSM once the
agent reaches Xs. In particular, if the stabilizing set Xs is not closed under system dynamics, then
the defining conditions of RSMs do not prevent the agent from leaving and reentering Xs infinitely
many times and thus never stabilizing. In order to formally ensure stability, the defining conditions
of RSMs need to be strengthened and in the rest of this section we solve this problem.

Stabilizing ranking supermartingales We now define our sRSMs, which may be used to certify
a.s. asymptotic stability even when the stabilizing set is not assumed to be closed under system
dynamics and thus overcome the limitation of RSMs of (Lechner et al., 2022) that was discussed
above. Recall we use ∆ to denote the maximal step size of the system.
Definition 3 (Stabilizing ranking supermartingales). Let ϵ,M, δ > 0. A Lipschitz continuous func-
tion V : X → R is said to be an (ϵ,M, δ)-stabilizing ranking supermartingale ((ϵ,M, δ)-sRSM) for
Xs if the following three conditions hold:

1. Nonnegativity. V (x) ≥ 0 holds for each x ∈ X .
2. Strict expected decrease if V ≥M . For each x ∈ X , if V (x) ≥M then

Eω∼d

[
V
(
f(x, π(x), ω)

)]
≤ V (x)− ϵ.

3. Lower bound outside Xs. V (x) ≥ M + LV ·∆+ δ holds for each x ∈ X\Xs, where LV

is a Lipschitz constant of V .

An example of an sRSM for a 1-dimensional stochastic dynamical system is shown in Fig. 1. The
intuition behind our new conditions is as follows. Condition 2 in Definition 3 requires that, at
each state in which V ≥ M , the value of V decreases in expectation by ϵ > 0 upon one-step
evolution of the system. As we show below, this ensures probability 1 convergence to the set of
states S = {x ∈ X | V (x) ≤ M} from any other state of the system. On the other hand,
condition 3 in Definition 3 requires that V ≥ M + LV · ∆ + δ outside of the stabilizing set Xs,
thus S ⊆ Xs. Moreover, if the agent is in a state where V ≤ M , the value of V in the next state
has to be ≤ M + LV · ∆ due to Lipschitz continuity of V and ∆ being the maximal step size of
the system. Therefore, even if the agent leaves S, for the agent to actually leave Xs the value of V
has to increase from a value ≤ M + LV · ∆ to a value ≥ M + LV · ∆ + δ while satisfying the
strict expected decrease condition imposed by condition 2 in Definition 3 at every intermediate state

4

Under review as a conference paper at ICLR 2023

that is not contained in S. The following theorem is the main result of this section and it shows that
sRSMs indeed certify a.s. asymptotic stability of Xs.

Theorem 1. Suppose that there exist ϵ,M, δ > 0 and an (ϵ,M, δ)-sRSM for Xs. Then Xs is
a.s. asymptotically stable.

The proof of the theorem and an overview of results from probability and martingale theory that
we use in the proof are provided in Appendix A and B. In what follows, we outline the main ideas
behind our proof. For each state x0 ∈ X , we consider the probability space of all trajectories of the
system that start in x0. We first show that the (ϵ,M, δ)-sRSM V for Xs gives rise to an instance of
the mathematical notion of supermartingales in this probability space. Next, we use Supermartingale
Convergence Theorem (Williams, 1991) to show that Conditions 1 and 2 in Definition 3 ensure that
the agent with probability 1 converges to the set of states S = {x ∈ X | V (x) ≤ M} ⊆ Xs

from any other state in the system. Finally, we use a known concentration bound on the supremum
value of a supermartingale process to show that the probability of the value of V increasing from
≤ M + LV · ∆ to ≥ M + LV · ∆ + δ is bounded from above by p = M+LV ·∆

M+LV ·∆+δ . Hence, the
agent with probability 1 converges to S ⊆ Xs from any state, upon which by Conditions 2 and 3
in Definition 3 it leaves Xs with probability at most p < 1. The probability of this happening N
times is at most pN so by letting N → ∞ we conclude that the probability of the agent leaving Xs

infinitely many times is 0. Therefore, the agent with probability 1 eventually stabilizes in Xs.

Bounds on stabilization time We conclude this section by showing that our sRSMs not only certify
a.s. asymptotic stability of Xs, but also provide bounds on the number of time steps that the agent
may spend outside of Xs. This is particularly relevant for safety-critical applications in which the
goal is not only to ensure stabilization but also to ensure that the agent spends as little time outside
the stabilization set as possible. For each trajectory ρ = (xt,ut, ωt)t∈N0 , let OutXs(ρ) = |{t ∈ N0 |
xt ̸∈ Xs}| ∈ N0 ∪ {∞}.
Theorem 2. Let ϵ,M, δ > 0 and suppose that V : X → R is an (ϵ,M, δ)-sRSM for Xs. Let
Γ = supx∈Xs

V (x) be the supremum of all possible values that V can attain over the stabilizing set
Xs. Then, for each initial state x0 ∈ X , we have that

1. Ex0
[OutXs

] ≤ V (x0)
ϵ + (M+LV ·∆)·(Γ+LV ·∆)

δ·ϵ .
2. Px0

[OutXs
≥ t] ≤ V (x0)

t·ϵ + (M+LV ·∆)·(Γ+LV ·∆)
δ·ϵ·t , for any time t ∈ N.

Proof. See Appendix B.

5 LEARNING STABLE POLICIES AND SRSMS ON COMPACT STATE SPACES

In this section, we present our method for learning a stabilizing policy together with an sRSM that
certifies a.s. asymptotic stability. As stated in Section 3, our method assumes that the state space
X ⊆ Rn is compact and that f is Lipschitz continuous with Lipschitz constant Lf .

We parameterize the policy and the sRSM via two neural networks πθ : X → U and Vν : X → R.
To enforce condition 1 in Definition 3, which requires the sRSM to be a nonnegative function,
our method applies the softplus activation function x 7→ log(exp(x) + 1) to the output of Vν .
The remaining layers of πθ and Vν apply ReLU activation functions, therefore πθ and Vν are also
Lipschitz continuous (Szegedy et al., 2014). Our method draws insight from the algorithms of Chang
et al. (2019); Žikelić et al. (2022) for learning policies together with Lyapunov functions or RSMs
and it comprises of a learner and a verifier module that are composed into a loop. In each loop
iteration, the learner module first trains both πθ and Vν on a training objective in the form of a
differentiable approximation of the sRSM conditions 2 and 3 in Definition 3. Once the training
has converged, the verifier module formally checks whether the learned sRSM candidate satisfies
conditions 2 and 3 in Definition 3. If both conditions are fulfilled, our method terminates and returns
a policy together with an sRSM witnessing stability. If at least one sRSM condition is violated, the
verifier module enlarges the training set of the learner module by system states that violate the
condition in order to guide the learner towards fixing the policy and the sRSM in the next learner
iteration. The pseudocode of the algorithm is shown in Algorithm 1. In what follows, we provide
details on initialization, the learner and the verifier modules.

5

Under review as a conference paper at ICLR 2023

Algorithm 1 Procedure for learning a stabilizing policy and an sRSM

Input Dynamics function f , distribution d, stabilizing region Xs ⊆ X , Lipschitz constant Lf

Parameters τ > 0, Ncond 2 ∈ N, Ncond 3 ∈ N, M = 1, ϵtrain, δtrain
πθ ← policy trained by using PPO Schulman et al. (2017) on MDP (X ,U , f, x 7→ 1[x ∈ Xs])

X̃ ← centers of grid cells of a discretization of X with mesh τ

B ← centers of grid cells of a subgrid of X̃
while timeout not reached do
πθ, Vν ← jointly trained by minimizing the loss function in eq. equation 1 on dataset B
Lπ, LV ← Lipschitz constants of πθ, Vν

K ← LV · (Lf · (Lπ + 1) + 1)

X̃≥M ← centers of grid cells whose at least one vertex x satisfies Vν(x) ≥M

Xce ← counterexamples to condition 2 in Definition 3 on X̃≥M

if Xce = {} then
CellsX\Xs

← grid cells that intersect X\Xs

∆θ ← the maximal step size of the system with the policy π
if V ν(cell) > M + LV ·∆θ for all cell ∈ CellsX\Xs

then
return Xs is a.s. asymptotically stable under policy πθ

end if
else
B ← (B \ {x ∈ B|Vν(x) < M}) ∪ Xce

end if
end while
Return Unknown

Initialization We initialize the policy πθ by running several iterations of the proximal policy opti-
mization (PPO) Schulman et al. (2017) RL algorithm. In particular, we induce a Markov decision
process (MDP) from the given system by using the reward function x 7→ 1[x ∈ Xs]) in order to
learn an initial policy that drives the system toward the stabilizing set. The importance of initializa-
tion was observed in (Chang et al., 2019). As for the training set B used by the learner, we discretize
the state space X by using a rectangular grid and define B to be the set of all centers of grid cells
(discretization is defined formally below). Finally, note that we may always rescale an sRSM by a
strictly positive constant factor. Therefore, without loss of generality, we assume the value M = 1
in Definition 3 for our sRSM.

Learner The policy and the sRSM candidate are learned by minimizing the loss

L(θ, ν) = Lcond 2(θ, ν) + Lcond 3(θ, ν). (1)

The two loss terms guide the learner toward an sRSM candidate that satisfies conditions 2 and 3 in
Definition 3. In particular, we set

Lcond 2(θ, ν) =
1

|B|
∑
x∈B

(
max

{ ∑
ω1,...,ωNcond 2∼d

Vν

(
f(x, πθ(x), ωi)

)
Ncond 2

− Vν(x) + ϵtrain, 0
})

.

Intuitively, for each x ∈ B, the corresponding term in the sum incurs a loss whenever condition 2
is violated at x. Since the expected value of Vν at a successor state of x does not admit a closed
form expression due to Vν being a neural network, we approximate it as the mean of values of Vν

at Ncond 2 independently sampled successor states of x, with Ncond 2 being an algorithm parameter.
For condition 3, the loss term samples Ncond 3 system states from X\Xs with Ncond 3 an algorithm
parameter and incurs a loss whenever condition 3 is not satisfied at some sampled state:

Lcond3(θ, ν) = max{(M + LVν
+∆θ + δtrain)− min

x1,...xNcond 3∼X\Xs

Vν(xi), 0}.

In our implementation, we also add two regularization terms to the loss function used by the learner.
The first term favors learning an sRSM candidate whose global minimum is within the stabilizing
set. The second term penalizes large Lipschitz bounds of the networks πθ and Vν by adding a
regularization term. While these two loss terms do not directly enforce any particular condition in
Definition 3, we observe that they help the learning and the verification process. Details on the
regularization terms can be found in the Supplementary Material.

6

Under review as a conference paper at ICLR 2023

Verifier The verifier checks whether the learned sRSM candidate satisfies conditions 2 and 3 in
Definition 3 (condition 1 is satisfied due to the softplus function applied to the outputs of Vν). The
key challenge is checking the expected decrease condition imposed by condition 2. To check this
condition, following the idea of Berkenkamp et al. (2017) and (Lechner et al., 2022) our method
computes a discretization X̃ of X with mesh τ > 0 so that for every x ∈ X there exists x̃ ∈ X̃ such
that ||x̃ − x||1 < τ . The discretization is computed by considering centers of cells of a rectangular
grid of sufficiently small cell size. Then, due to the assumptions that the state space is compact
and f , πθ and Vν are all Lipschitz continuous, we show that it suffices to verify a slightly stricter
condition at discretization points.

To verify condition 2 in Definition 3, the verifier first collects the set X̃≥M of centers of all grid
cells whose at least one state x satisfies Vν(x) ≥ M . This set is computed via interval arithmetic
abstract interpretation (IA-AI) (Cousot & Cousot, 1977; Gowal et al., 2018), which for each grid cell
propagates interval bounds across neural network layers in order to bound from below the minimal
value that Vν attains over that cell and adds the center of a cell to X̃≥M whenever this lower bound
is smaller than M . Once X̃≥M is computed, the verifier checks for each x̃ ∈ X̃≥M whether the
following inequality holds

Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
< Vν(x̃)− τ ·K, (2)

where Lπ and LV are the Lipschitz constants of πθ and Vν and K = LV · (Lf · (Lπ + 1) + 1). We
use the method of (Szegedy et al., 2014) to compute Lπ and LV . The reason behind checking this
stronger constraint is that, due to Lipschitz continuity of all involved functions and due to τ being the
mesh of the discretization, we can show (formally done in Theorem 3) that this condition being sat-
isfied for each x̃ ∈ X̃≥M implies that the expected decrease condition Eω∼d[Vν(f(x, πθ(x̃), ω))] <
Vν(x) is satisfied for all x ∈ X with V (x) ≥ M . Then, due to both sides of the inequality being
continuous functions and {x ∈ X | Vν(x) ≥ M} being a compact set, their difference admits a
strictly positive global minimum ϵ > 0 so that Eω∼d[Vν(f(x, πθ(x̃), ω))] ≤ Vν(x) − ϵ is satisfied
for all x ∈ X with V (x) ≥ M . If eq. equation 2 is satisfied for each x̃ ∈ X̃≥M , the verifier con-
cludes that Vν satisfies condition 2 in Definition 3. Otherwise, any computed counterexample to this
constraint is added to B to help the learner fine-tune an sRSM candidate in the following learning
iteration.

To formally check eq. equation 2 at some x̃ ∈ X̃≥M , we need to compute an upper bound on the
expected value Eω∼d[Vν(f(x̃, πθ(x̃), ω))]. Note that this expected value does not admit a closed
form expression due to Vν being a neural network function. Thus, we again employ IA-AI to com-
pute an upper bound on the expected value of a neural network function over a probability distri-
bution. First, we partition the disturbance space N ⊆ Rp into a grid of a finite amount of cells
cell(N) = {N1, . . . ,Nk}. We denote maxvol = maxNi∈cell(N) vol(Ni) the maximal volume of
any cell in the partition. The expected value can then be bounded via

Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
≤

∑
Ni∈cell(N)

maxvol · sup
ω∈Ni

F (ω)

where F (ω) = Vν(f(x̃, πθ(x̃), ω) and the supremum values are obtained by using the IA-AI-based
method of Gowal et al. (2018). Note that maxvol is infinite in caseN is unbounded. To compute the
expected value of an unboundedN when assuming that d is a product of univariate distributions, we
apply the probability integral transform Murphy (2012) to each univariate probability distribution in
d. As a result, the problem is reduced to the case of a probability distribution of bounded support.

To verify condition 3 in Definition 3, the verifier collects the set CellsX\Xs
of all grid cells that

intersect X\Xs. Then, for each cell ∈ CellsX\Xs
, it uses IA-AI to check

V ν(cell) > M + LV ·∆θ, (3)
with V ν(cell) denoting the lower bound on Vν over cell computed by IA-AI. If this holds, then the
verifier concludes that Vν satisfies condition 3 in Definition 3 with δ = mincell∈CellsX\Xs

{V ν(cell)−
M − LV · ∆θ}. Otherwise, it proceeds to the next learning iteration. The following theorem
establishes the correctness of the verifier module.
Theorem 3. Suppose that the verifier shows that Vν satisfies eq. equation 2 for each x̃ ∈ X̃≥M and
eq. equation 3 for each cell ∈ CellsX\Xs

. Then Vν is an sRSM and Xs is a.s. asymptotically stable
under πθ.

7

Under review as a conference paper at ICLR 2023

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

x2

0.5
0.0

0.5 0.5
0.0

0.5

0.0005

0.0010

Iteration 1

0.5
0.0

0.5 0.5
0.0

0.5

1

2

Iteration 5

0.00025

0.00050

0.00075

0.00100

0.5

1.0

1.5

2.0

2D system
Kernel

Figure 2: Visualization of the sRSM candidate after 1 and 5 iterations of our algorithm for the 2D
system task. The candidate after 1 iteration does not fulfill all sRSM conditions, while the function
after 5 learning iterations is a valid sRSM. The plot on the right shows the learned stabilizing subset
(kernel) in green.

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x2

2
0

2
2

0
2

0.0005

0.0010

0.0015

Iteration 1

2
0

2
2

0
2

5

10

Iteration 4

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

2

4

6

8

Inverted pendulum
Kernel

Figure 3: Visualization of the sRSM candidate after 1 and 4 iterations of our algorithm for the
inverted pendulum task. The candidate after 1 iteration does not fulfill all sRSM conditions, while
the function after 4 learning iterations is a valid sRSM. The plot on the right shows the learned
stabilizing subset (kernel) in green.

Proof. See Appendix D.

6 EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the effectiveness of our learning algorithm. We focus
on the two benchmarks studied in Lechner et al. (2022). In particular, the authors could prove the
stability of both systems when assuming that the stabilizing set is closed under system dynamics.
However, both environments violate this assumption. Here, we aim to prove stability without as-
suming a given set that is closed under the system dynamics. We parameterize both πθ and Vν

by two fully-connected networks with 2 hidden ReLU layers with 128 units each. The first task
is a two-dimensional linear dynamical system with non-linear control bounds and is of the form
xt+1 = Axt + Bg(ut) + ω, where ω is a disturbance vector sampled from a zero-mean triangular
distribution. The function g clips the action to stay within the interval [1, -1]. The state space is
X = {x | |x1| ≤ 0.7, |x2| ≤ 0.7} and we want to learn a policy for the stabilizing set

Xs = X\({x | −0.7 ≤ x1 ≤ −0.6,−0.7 ≤ x2 ≤ −0.4} ∪ {x | 0.6 ≤ x1 ≤ 0.7, 0.4 ≤ x2 ≤ 0.7}).

Environment Iterations Mesh (τ) p Runtime

2D system 5 0.0007 0.80 3660 s
Inverted pendulum 4 0.003 0.97 2619 s

Table 1: Runtime statistics of our algorithm for both benchmarks.

The second benchmark is
a modified version of the
inverted pendulum problem
adapted from the OpenAI
gym Brockman et al. (2016).
The system is expressed by
two state variables that repre-
sent the angle and the angu-

8

Under review as a conference paper at ICLR 2023

lar velocity of the pendulum.
Contrary to the original task, the problem considered here introduces triangular-shaped random noise
to the state after each update step.

The state space is define as X = {x | |x1| ≤ 3, |x2| ≤ 3}, and objective of the agent is to stabilize
within the set

Xs = X\({x | −3 ≤ x1 ≤ −2.9,−3 ≤ x2 ≤ 0} ∪ {x | 2.9 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3}).

Further details for both tasks as well as additional plots are provided in the Supplementary Material.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

x2

800
800

825

825

850

850

875

875

900

900

925

925

950 950

950 950

2 1 0 1 2
x1

2

1

0

1

2

x2

44500

44600

44600

44700

4470044800

44800

44900

44900

45000

45000

45100

45100

2D system Inverted pendulum

Figure 4: Contour lines of the expected stabilization time
implied by Theorem 2 for the 2D system task on the left and
the inverted pendulum task on the right.

For both tasks, our algorithm could
find valid sRSMs and prove stability.
The runtime characteristics, such as
the number of iterations and total run-
time, is shown in Table 4. In Figure 2
we plot the sRSM found by our al-
gorithm for the 2D system task and
in Figure 3 we plot the sRSM found
for the inverted pendulum task. We
also visualize in Figure 2 and Fig-
ure 3 in green the subset of Xs im-
plied by the learned sRSM in which
the system stabilizes for both of our
example tasks. Finally, in Figure 4
we show the contour lines of the ex-
pected stabilization time bounds that
are obtained by applying Theorem 2
to the learned sRSMs.

Limitations Verification of neural networks is inherently a computationally difficult problem Katz
et al. (2017); Berkenkamp et al. (2017); Sälzer & Lange (2021). Our method is subject to this
barrier as well. In particular, the complexity of the grid decomposition routine for checking the
expected decrease condition is exponential in the dimension of the system state space. However, a
key advantage of our approach is that the complexity is only linear in the size of the neural network
policy. Consequently, our approach allows learning and verifying networks that are of the size
of typical networks used in reinforcement learning Schulman et al. (2017). Moreover, our grid
decomposition procedure runs entirely on accelerator devices, including CPUs, GPUs, and TPUs,
thus leveraging future advances in these computing devices. A technical limitation of our learning
procedure is that it is restricted to compact state spaces. However, this is a standard assumption
in control theory and reinforcement learning. Our theoretical results are applicable to arbitrary
(potentially unbounded) state spaces, as shown in Fig. 1.

7 CONCLUSION

In this work, we developed a method for learning policies for stochastic control systems with formal
guarantees about the systems’ a.s. asymptotic stability over the infinite time horizon. Compared to
the existing literature, which assumes that the stabilizing set is closed under system dynamics and
cannot be left once entered, our approach does not impose this assumption. Our method is based on
the novel notion of stabilizing ranking supermartingales (sRSMs) that serve as a formal certificate
of a.s. asymptotic stability. We experimentally showed that our learning procedure is able to learn
stabilizing policies and stability proof certificates in practice.

REFERENCES

Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo. Formal synthesis of
lyapunov neural networks. IEEE Control. Syst. Lett., 5(3):773–778, 2021a. doi: 10.1109/LCSYS.
2020.3005328. URL https://doi.org/10.1109/LCSYS.2020.3005328.

9

https://doi.org/10.1109/LCSYS.2020.3005328

Under review as a conference paper at ICLR 2023

Alessandro Abate, Mirco Giacobbe, and Diptarko Roy. Learning probabilistic termination proofs. In
Alexandra Silva and K. Rustan M. Leino (eds.), Computer Aided Verification - 33rd International
Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II, volume 12760 of
Lecture Notes in Computer Science, pp. 3–26. Springer, 2021b. doi: 10.1007/978-3-030-81688-9\
_1. URL https://doi.org/10.1007/978-3-030-81688-9_1.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané.
Concrete problems in AI safety. CoRR, abs/1606.06565, 2016. URL http://arxiv.org/
abs/1606.06565.

Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause. Safe model-
based reinforcement learning with stability guarantees. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pp. 908–918, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
766ebcd59621e305170616ba3d3dac32-Abstract.html.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Aleksandar Chakarov and Sriram Sankaranarayanan. Probabilistic program analysis with martin-
gales. In Natasha Sharygina and Helmut Veith (eds.), Computer Aided Verification - 25th Inter-
national Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, vol-
ume 8044 of Lecture Notes in Computer Science, pp. 511–526. Springer, 2013. doi: 10.1007/
978-3-642-39799-8_34. URL https://doi.org/10.1007/978-3-642-39799-8_
34.

Aleksandar Chakarov, Yuen-Lam Voronin, and Sriram Sankaranarayanan. Deductive proofs of al-
most sure persistence and recurrence properties. In Marsha Chechik and Jean-François Raskin
(eds.), Tools and Algorithms for the Construction and Analysis of Systems - 22nd International
Conference, TACAS 2016, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, vol-
ume 9636 of Lecture Notes in Computer Science, pp. 260–279. Springer, 2016. doi: 10.1007/
978-3-662-49674-9_15. URL https://doi.org/10.1007/978-3-662-49674-9_
15.

Ya-Chien Chang and Sicun Gao. Stabilizing neural control using self-learned almost lyapunov
critics. In IEEE International Conference on Robotics and Automation, ICRA 2021, Xi’an, China,
May 30 - June 5, 2021, pp. 1803–1809. IEEE, 2021. doi: 10.1109/ICRA48506.2021.9560886.
URL https://doi.org/10.1109/ICRA48506.2021.9560886.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. In Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 3240–3249, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/2647c1dba23bc0e0f9cdf75339e120d2-Abstract.html.

Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. Algorithmic anal-
ysis of qualitative and quantitative termination problems for affine probabilistic programs. In
Rastislav Bodík and Rupak Majumdar (eds.), Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pp. 327–342. ACM, 2016. doi: 10.1145/2837614.2837639. URL
https://doi.org/10.1145/2837614.2837639.

Krishnendu Chatterjee, Petr Novotný, and Ðord̄e Žikelić. Stochastic invariants for probabilistic
termination. In Giuseppe Castagna and Andrew D. Gordon (eds.), Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pp. 145–160. ACM, 2017. doi: 10.1145/3009837.3009873. URL https:
//doi.org/10.1145/3009837.3009873.

10

https://doi.org/10.1007/978-3-030-81688-9_1
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
https://proceedings.neurips.cc/paper/2017/hash/766ebcd59621e305170616ba3d3dac32-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/766ebcd59621e305170616ba3d3dac32-Abstract.html
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1007/978-3-662-49674-9_15
https://doi.org/10.1109/ICRA48506.2021.9560886
https://proceedings.neurips.cc/paper/2019/hash/2647c1dba23bc0e0f9cdf75339e120d2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2647c1dba23bc0e0f9cdf75339e120d2-Abstract.html
https://doi.org/10.1145/2837614.2837639
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3009837.3009873

Under review as a conference paper at ICLR 2023

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analy-
sis of programs by construction or approximation of fixpoints. In Robert M. Graham, Michael A.
Harrison, and Ravi Sethi (eds.), Conference Record of the Fourth ACM Symposium on Princi-
ples of Programming Languages, Los Angeles, California, USA, January 1977, pp. 238–252.
ACM, 1977. doi: 10.1145/512950.512973. URL https://doi.org/10.1145/512950.
512973.

Luis G. Crespo and Jian-Qiao Sun. Stochastic optimal control via bellman’s principle. Autom.,
39(12):2109–2114, 2003. doi: 10.1016/S0005-1098(03)00238-3. URL https://doi.org/
10.1016/S0005-1098(03)00238-3.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerík, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. ArXiv, abs/1801.08757, 2018.

Luis María Ferrer Fioriti and Holger Hermanns. Probabilistic termination: Soundness, com-
pleteness, and compositionality. In Sriram K. Rajamani and David Walker (eds.), Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, January 15-17, 2015, pp. 489–501. ACM, 2015. doi:
10.1145/2676726.2677001. URL https://doi.org/10.1145/2676726.2677001.

Javier García and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res., 16:1437–1480, 2015. URL http://dl.acm.org/citation.cfm?
id=2886795.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Relja Arandjelovic, Timothy A. Mann, and Pushmeet Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. CoRR, abs/1810.12715, 2018. URL
http://arxiv.org/abs/1810.12715.

Didier Henrion and Andrea Garulli. Positive polynomials in control, volume 312. Springer Science
& Business Media, 2005.

Wanxin Jin, Zhaoran Wang, Zhuoran Yang, and Shaoshuai Mou. Neural certificates for safe control
policies. CoRR, abs/2006.08465, 2020. URL https://arxiv.org/abs/2006.08465.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In International conference on computer
aided verification, pp. 97–117. Springer, 2017.

H.K. Khalil. Nonlinear Systems. Pearson Education. Prentice Hall, 2002.

T. Koller, Felix Berkenkamp, Matteo Turchetta, and A. Krause. Learning-based model predictive
control for safe exploration. 2018 IEEE Conference on Decision and Control (CDC), pp. 6059–
6066, 2018.

J. Zico Kolter and Gaurav Manek. Learning stable deep dynamics models. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 11126–11134, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/0a4bbceda17a6253386bc9eb45240e25-Abstract.html.

Harold J Kushner. On the stability of stochastic dynamical systems. Proceedings of the National
Academy of Sciences of the United States of America, 53(1):8, 1965.

Harold J. Kushner. A partial history of the early development of continuous-time nonlinear stochas-
tic systems theory. Autom., 50(2):303–334, 2014. doi: 10.1016/j.automatica.2013.10.013. URL
https://doi.org/10.1016/j.automatica.2013.10.013.

Nathan P. Lawrence, Philip D. Loewen, Michael G. Forbes, Johan U. Backström, and
R. Bhushan Gopaluni. Almost surely stable deep dynamics. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),

11

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1016/S0005-1098(03)00238-3
https://doi.org/10.1016/S0005-1098(03)00238-3
https://doi.org/10.1145/2676726.2677001
http://dl.acm.org/citation.cfm?id=2886795
http://dl.acm.org/citation.cfm?id=2886795
http://arxiv.org/abs/1810.12715
https://arxiv.org/abs/2006.08465
https://proceedings.neurips.cc/paper/2019/hash/0a4bbceda17a6253386bc9eb45240e25-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0a4bbceda17a6253386bc9eb45240e25-Abstract.html
https://doi.org/10.1016/j.automatica.2013.10.013

Under review as a conference paper at ICLR 2023

Advances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
daecf755df5b1d637033bb29b319c39a-Abstract.html.

Mathias Lechner, Ðord̄e Žikelić, Krishnendu Chatterjee, and Thomas Henzinger. Infinite time hori-
zon safety of bayesian neural networks. In Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Processing Systems 2021, 2021.

Mathias Lechner, Ðord̄e Žikelić, Krishnendu Chatterjee, and Thomas A. Henzinger. Stability ver-
ification in stochastic control systems via neural network supermartingales. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pp. 7326–7336, Jun. 2022. doi: 10.
1609/aaai.v36i7.20695. URL https://ojs.aaai.org/index.php/AAAI/article/
view/20695.

Anqi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, and Yisong Yue. Robust regression
for safe exploration in control. In L4DC, 2020.

Kevin P. Murphy. Machine learning - a probabilistic perspective. Adaptive computation and ma-
chine learning series. MIT Press, 2012. ISBN 0262018020.

Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robust-
ness and optimization. California Institute of Technology, 2000.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wi-
ley Series in Probability and Statistics. Wiley, 1994. ISBN 978-0-47161977-2. doi: 10.1002/
9780470316887. URL https://doi.org/10.1002/9780470316887.

Spencer M. Richards, Felix Berkenkamp, and Andreas Krause. The lyapunov neural network:
Adaptive stability certification for safe learning of dynamical systems. In 2nd Annual Confer-
ence on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceedings,
volume 87 of Proceedings of Machine Learning Research, pp. 466–476. PMLR, 2018. URL
http://proceedings.mlr.press/v87/richards18a.html.

Marco Sälzer and Martin Lange. Reachability is np-complete even for the simplest neural networks.
In International Conference on Reachability Problems, pp. 149–164. Springer, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and
Yann LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http:
//arxiv.org/abs/1312.6199.

Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo. Ranking and repulsing super-
martingales for reachability in randomized programs. ACM Trans. Program. Lang. Syst., 43(2):
5:1–5:46, 2021. doi: 10.1145/3450967. URL https://doi.org/10.1145/3450967.

Matteo Turchetta, Felix Berkenkamp, and A. Krause. Safe exploration for interactive machine learn-
ing. In NeurIPS, 2019.

Jonas Umlauft and Sandra Hirche. Learning stable stochastic nonlinear dynamical systems. In Doina
Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pp. 3502–3510. PMLR, 2017. URL http://proceedings.
mlr.press/v70/umlauft17a.html.

12

https://proceedings.neurips.cc/paper/2020/hash/daecf755df5b1d637033bb29b319c39a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/daecf755df5b1d637033bb29b319c39a-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/20695
https://ojs.aaai.org/index.php/AAAI/article/view/20695
https://doi.org/10.1002/9780470316887
http://proceedings.mlr.press/v87/richards18a.html
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.1145/3450967
http://proceedings.mlr.press/v70/umlauft17a.html
http://proceedings.mlr.press/v70/umlauft17a.html

Under review as a conference paper at ICLR 2023

Umesh Vaidya. Stochastic stability analysis of discrete-time system using lyapunov measure. In
American Control Conference, ACC 2015, Chicago, IL, USA, July 1-3, 2015, pp. 4646–4651.
IEEE, 2015. doi: 10.1109/ACC.2015.7172061. URL https://doi.org/10.1109/ACC.
2015.7172061.

David Williams. Probability with Martingales. Cambridge mathematical textbooks. Cambridge
University Press, 1991. ISBN 978-0-521-40605-5.

Ðord̄e Žikelić, Mathias Lechner, Krishnendu Chatterjee, and Thomas A. Henzinger. Learn-
ing stabilizing policies in stochastic control systems. CoRR, abs/2205.11991, 2022. doi:
10.48550/arXiv.2205.11991. URL https://doi.org/10.48550/arXiv.2205.11991.

A OVERVIEW OF PROBABILITY AND MARTINGALE THEORY

Probability theory A probability space is an ordered triple (Ω,F ,P) consisting of a non-empty
sample space Ω, a σ-algebra F over Ω (i.e. a collection of subsets of Ω that contains the empty
set ∅ and is closed under complementation and countable union), and a probability measure P over
F which is a function P : F → [0, 1] that satisfies the three Kolmogorov axioms: (1) P[∅] = 0,
(2) P[Ω\A] = 1−P[A] for each A ∈ F , and (3) P[∪∞i=0Ai] =

∑∞
i=0 P[Ai] for any sequence (Ai)

∞
i=0

of pairwise disjoint sets in F . Given a probability space (Ω,F ,P), a random variable is a function
X : Ω→ R∪ {±∞} that is F-measurable, i.e. for each a ∈ R we have {ω ∈ Ω | X(ω) ≤ a} ∈ F .
E[X] denotes the expected value of X . A (discrete-time) stochastic process is a sequence (Xi)

∞
i=0

of random variables in (Ω,F ,P).

Conditional expectation Let (Ω,F ,P) be a probability space and X be a random variable in
(Ω,F ,P). Given a sub-sigma-algebra F ′ ⊆ F , a conditional expectation of X given F ′ is an
F ′-measurable random variable Y such that, for each A ∈ F ′, we have

E[X · IA] = E[Y · IA].
Here IA : Ω→ {0, 1} is an indicator function of A, defined via IA(ω) = 1 if ω ∈ A, and IA(ω) = 0
if ω ̸∈ A. If X is real-valued and nonnegative, then a conditional expectation of X given F ′ exists
and is almost-surely unique, i.e. for any two F ′-measurable random variables Y and Y ′ which are
conditional expectations of X given F ′ we have that P[Y = Y ′] = 1 (Williams, 1991). Therefore,
we may pick any such random variable as a canonical conditional expectation and denote it by
E[X | F ′].

Stopping time A sequence of sigma-algebras {Fi}∞i=0 with F0 ⊆ F1 ⊆ · · · ⊆ F is a filtration in
the probability space (Ω,F ,P). A stopping time with respect to a filtration {Fi}∞i=0 is a random
variable T : Ω → N0 ∪ {∞} such that, for every i ∈ N0, we have {ω ∈ Ω | T (ω) ≤ i} ∈ Fi.
Intuitively, T may be viewed as the time step at which some stochastic process should be “stopped”,
and since {ω ∈ Ω | T (ω) ≤ i} ∈ Fi the decision to stop at the time step i is made solely by using
the information available in the first i time steps.

Supermartingales and ranking supermartingales We now define the mathematical notion of rank-
ing supermartingales. Let (Ω,F ,P) be a probability space, let ϵ ≥ 0 and let T be a stopping time
with respect to a filtration {Fi}∞i=0. An ϵ-ranking supermartingale (ϵ-RSM) with respect to T is a
stochastic process (Xi)

∞
i=0 such that

• Xi is Fi-measurable, for each i ≥ 0,
• Xi(ω) ≥ 0, for each i ≥ 0 and ω ∈ Ω, and
• E[Xi+1 | Fi](ω) ≤ Xi(ω)− ϵ · IT>i(ω), for each i ≥ 0 and ω ∈ Ω.

The name comes since RSMs are a special instance of classical supermartingale processes Williams
(1991). A supermartingale with respect to a filtration {Fi}∞i=0 is a stochastic process (Xi)

∞
i=0 which

satisfies conditions 1 and 3 above with ϵ = 0 (thus we define supermartingales only with respect to
the filtration and not the stopping time). We conclude this overview with two results on RSMs and
supermartingales that will later be used in our proofs. The first is a result on ranking supermartin-
gales that was originally presented in works on termination analysis of probabilistic programs Fioriti
& Hermanns (2015); Chatterjee et al. (2016). The second result (see Kushner (2014), Theorem 7.1)
is a concentration bound on the supremum value of a nonnegative supemartingale.

13

https://doi.org/10.1109/ACC.2015.7172061
https://doi.org/10.1109/ACC.2015.7172061
https://doi.org/10.48550/arXiv.2205.11991

Under review as a conference paper at ICLR 2023

Proposition 1. Let (Ω,F ,P) be a probability space, let (Fi)
∞
i=0 be a filtration and let T be a

stopping time with respect to (Fi)
∞
i=0. Suppose that (Xi)

∞
i=0 is an ϵ-RSM with respect to T , for

some ϵ > 0. Then

1. P[T <∞] = 1,

2. E[T] ≤ E[X0]
ϵ , and

3. P[T ≥ t] ≤ E[X0]
ϵ·t , for each t ∈ N.

Proposition 2. Let (Ω,F ,P) be a probability space and let (Fi)
∞
i=0 be a filtration. Let (Xi)

∞
i=0 be

a nonnegative supermartingale with respect to (Fi)
∞
i=0. Then, for every λ > 0, we have

P
[
sup
i≥0

Xi ≥ λ
]
≤ E[X0]

λ
.

B PROOFS OF THEOREM 1 AND THEOREM 2

We now prove Theorem 1 and Theorem 2 from the main text of the paper. For each initial state x0 ∈
X , denote by (Ωx0

,Fx0
,Px0

) probability space over the set of all system trajectories that start in the
initial state x0 that is induced by the Markov decision process semantics of the system (Puterman,
1994). The key idea behind both proofs is to show that, for every state x0 ∈ X\Xs, the sRSM V for
the set Xs gives rise to a mathematical RSM in the probability space (Ωx0 ,Fx0 ,Px0). We then use
Proposition 1 and Proposition 2 to prove the claims of both theorems.

Canonical filtration and stopping time In order to formally show that V can be instantiated as a
mathematical RSM in this probability space, we first define the canonical filtration in this probability
space and the stopping time with respect to which the mathematical RSM is defined.

Let x0 ∈ X and consider the probability space (Ωx0 ,Fx0 ,Px0). For each i ∈ N0, define Fi ⊆ F
to be the σ-algebra containing the subsets of Ωx0 that, intuitively, contain all trajectories in Ωx0

whose first i states satisfy some specified property. Formally, we define Fi as follows. For each
j ∈ N0, let Cj : Ωx0

→ X be a map which to each trajectory ρ = (xt,ut, ωt)t∈N0
∈ Ωx0

assigns
the j-th state xj along the trajectory. Then Fi is the smallest σ-algebra over Ωx0

with respect to
which C0, C1, . . . , Ci are all measurable, where X ⊆ Rm is equipped with the induced Borel-
σ-algebra (Williams, 1991, Section 1). Clearly F0 ⊆ F1 ⊆ We say that the sequence of
σ-algebras (Fi)

∞
i=0 is the canonical filtration in the probability space (Ωx0

,Fx0
,Px0

).

We then define TS : Ωx0 → N0 ∪ {∞} to be the first hitting time of the set S = {x ∈ X | V (x) ≤
M}, i.e. TS = inf{t ∈ N0 | xt ∈ S}. Since whether TS(ρ) ≤ i depends solely on the first i states
along ρ, we clearly have {ρ ∈ Ωx0 | TS(ρ) ≤ i} ∈ Fi for each i and so TS is a stopping time with
respect to (Fi)

∞
i=0.

We now prove the theorems.
Theorem. Suppose that there exist ϵ,M, δ > 0 and an (ϵ,M, δ)-sRSM for Xs. Then Xs is
a.s. asymptotically stable.

Proof. In order to prove that Xs is a.s. asymptotically stable we need to show that, for each x0 ∈ X ,

Px0

[
lim
t→∞

d(xt,Xs) = 0
]
= 1.

We prove the theorem statement by proving the following two claims. First, we show that, from
each initial state x0 ∈ X , the agent with probability 1 converges to and reaches S = {x ∈ X |
V (x) ≤ M} which is a subset of Xs by condition 3 in Definition 3 of sRSMs. Second, we show
that once the agent is in S it may leave Xs with probability at most p = M+LV ·∆

M+LV ·∆+δ < 1. We then
prove that the two claims imply the theorem statement.

Claim 1. For each x0 ∈ X , Px0
[∃ t ∈ N0 s.t. xt ∈ S] = 1.

To prove Claim 1, let x0 ∈ X . If x0 ∈ S, then the claim trivially holds. Thus suppose without loss
of generality that x0 ̸∈ S so V (x0) > M , and consider the probability space (Ωx0

,Fx0
,Px0

), the
canonical filtration (Fi)

∞
i=0 and the stopping time TS with respect to it.

14

Under review as a conference paper at ICLR 2023

Define a stochastic process (Xi)
∞
i=0 in (Ωx0

,Fx0
,Px0

) via

Xi(ρ) =

{
V (xi), if i < TS(ρ)

V (xTS(ρ)), otherwise

for each i ≥ 0 and ρ = (xt,ut, ωt)t∈N0
∈ Ωx0

. In other words, Xi is equal to the value of V at the
i-th state along the trajectory until the stopping time TS is exceeded, after which Xi is equal to the
value of V at the time step TS at which the process was stopped.

We prove that (Xi)
∞
i=0 is an ϵ-RSM with respect to the stopping time TS . To prove this claim, we

check each defining property of ϵ-RSMs:

• Each Xi is Fi-measurable. The value of Xi is determined by the first i states along a
trajectory, so by the definition of the canonical filtration we have that Xi is Fi-measurable
for each i ≥ 0.

• Each Xi(ρ) ≥ 0. Since each Xi is defined in terms of V and since we know that V (x) ≥ 0
for each state x ∈ X by condition 1 in Definition 3 of sRSMs, it follows that Xi(ρ) ≥ 0
for each i ≥ 0 and ρ ∈ Ωx0 .

• Each E[Xi+1 | Fi](ρ) ≤ Xi(ρ) − ϵ · ITXs>i(ρ). First, we remark that the conditional
expectation exists since Xi+1 is nonnegative for each i ≥ 0. In order to prove the desired
inequality, we distinguish between two cases. Let ρ = (xt,ut, ωt)t∈N0 .

First, consider the case TS(ρ) > i. We have that Xi(ρ) = V (xi). On the other
hand, we have E[Xi+1 | Fi](ρ) = Eω∼d[V (f(xi, π(xi), ω)]. To see this, observe that
Eω∼d[V (f(xi, π(xi), ω)] satisfies all the defining properties of conditional expectation
since it is the expected value of V at a subsequent state of xi, and recall that conditional
expectation is a.s. unique whenever it exists. Hence,

E[Xi+1 | Fi](ρ) = Eω∼d[V (f(xi, π(xi), ω)]

≤ V (xi)− ϵ = Xi(ρ)− ϵ,

where the inequality holds by condition 2 in Definition 3 of sRSMs and since xi ̸∈ S as
TS(ρ) > i. This proves the desired inequality.

Second, consider the case TS(ρ) ≤ i. We have Xi(ρ) = V (xTS(ρ)) and E[Xi+1 |
Fi](ρ)] = V (xTS(ρ)), so the desired inequality follows.

Thus, we may use the first part of Proposition 1 to conclude that Px0
[TS < ∞] = 1, equivalently

Px0
[∃ t ∈ N0 s.t. xt ∈ S] = 1. This concludes the proof of Claim 1.

Claim 2. For each x0 ∈ S, Px0
[∃ t ∈ N0 s.t. xt ̸∈ Xs] = p < 1 with p = M+LV ·∆

M+LV ·∆+δ .

To prove Claim 2, recall that S = {x ∈ X | V (x) ≤ M}. Thus, as V is Lipschitz continuous
with Lipschitz constant LV and as ∆ is the maxmial step size of the system, it follows that the value
of V upon the agent leaving the set S is ≤ M + LV · ∆. Hence, for the agent to leave Xs from
x0 ∈ S, it first has to reach a state x1 with M < V (x1) ≤ M + LV · ∆ and then also to reach
a state x2 ̸∈ Xs from x1 without reentering S. By condition 3 in Definition 3 of sRSMs, we must

15

Under review as a conference paper at ICLR 2023

have V (x2) ≥M + LV ·∆+ δ. Therefore,

Px0

[
∃ t ∈ N0 s.t. xt ̸∈ Xs

]
=Px0

[
∃ t1, t2 ∈ N0 s.t. t1 < t2 and M < V (xt1) ≤M + LV ·∆ and V (x2) ≥M + LV ·∆+ δ

with xt ̸∈ S for all t1 ≤ t ≤ t2

]
=Px0

[
∃ t1 ∈ N0 s.t. M < V (xt1) ≤M + LV ·∆

]
· Px0

[
∃ t1, t2 ∈ N0 s.t. t1 < t2 and M < V (xt1) ≤M + LV ·∆ and V (x2) ≥M + LV ·∆+ δ

with xt ̸∈ S for all t1 ≤ t ≤ t2 | ∃ t1 ∈ N0 s.t. M < V (xt1) ≤M + LV ·∆
]

≤Px0

[
∃ t1 ∈ N0 s.t. M < V (xt1) ≤M + LV ·∆

]
· sup
x1∈X ,M<V (xt1

)≤M+LV ·∆
Px1

[
∃ t2 ∈ N0 s.t. V (xt2) ≥M + LV ·∆+ δ and xt ̸∈ S for all 0 ≤ t ≤ t2

]
≤ sup

x1∈X ,M<V (xt1
)≤M+LV ·∆

Px1

[
∃ t2 ∈ N0 s.t. V (xt2) ≥M + LV ·∆+ δ and xt ̸∈ S for all 0 ≤ t ≤ t2

]
.

The first equality follows by the above observations. The second equality follows by Bayes’ rule.
The third inequality follows by observing that the trajectory satisfies the Markov property and there-
fore that the supremum value of V upon visiting a state does not depend on previously visited states.
Finally, the fourth inequality follows since the value of the first probability term is ≤ 1.

Thus, to prove that Px0
[∃ t ∈ N0 s.t. xt ̸∈ Xs] = p < 1 with p = M+LV ·∆

M+LV ·∆+δ and therefore
conclude Claim 2, it suffices to prove that, for each x1 ∈ X with M < V (xt1) ≤M + LV ·∆, we
have

Px1

[
∃ t2 ∈ N0 s.t. V (xt2) ≥M +LV ·∆+ δ and xt ̸∈ S for all 0 ≤ t ≤ t2

]
≤ M + LV ·∆

M + LV ·∆+ δ
.

To prove Claim 1, consider the probability space (Ωx1
,Fx1

,Px1
), the canonical filtration (Fi)

∞
i=0

and the stopping time TS with respect to it, and define a stochastic process (Xi)
∞
i=0 in the probability

space via

Xi(ρ) =

{
V (xi), if i < TS(ρ)

V (xTS(ρ)), otherwise

for each i ≥ 0 and a trajectory ρ that starts in x1. The argument analogous to the proof of Claim 1
shows that it is an ϵ-RSM with respect to the stopping time TS . But note that supi≥0 Xi is equal to
the supremum value attained by V until the first hitting time of the set S. Hence the above inequality
follows immediately from Proposition 2 by observing that Ex1 [X0] = V (x1) ≤ M + LV ·∆ and
plugging in λ = M + LV ·∆+ δ. This concludes the proof of Claim 2.

Proof that Claim 1 and Claim 2 imply Theorem 1. By Claim 1, the agent with probability 1 converges
to S ⊆ Xs from any initial state. On the other hand, by Claim 2, upon reaching a state in S the
probability of leaving Xs is at most p < 1. Finally, by Claim 1 again the agent is guaranteed to
converge back to S even upon leaving Xs. Hence, due to the system dynamics under a given policy
satisfying Markov property, the probability of the agent leaving and reentering S more than N times
is bounded from above by pN . Hence, by letting N → ∞, we conclude that the probability of the
agent leaving Xs and reentering infinitely many times is 0, so the agent with probability 1 eventually
enters and S and does not leave Xs after that. This implies that Xs is a.s. asymptotically stable.

Theorem. Let ϵ,M, δ > 0 and suppose that V : X → R is an (ϵ,M, δ)-sRSM for Xs. Let
Γ = supx∈Xs

V (x) be the supremum of all possible values that V can attain over the stabilizing set
Xs. Then, for each initial state x0 ∈ X , we have that

1. Ex0 [OutXs] ≤
V (x0)

ϵ + (M+LV ·∆)·(Γ+LV ·∆)
δ·ϵ .

16

Under review as a conference paper at ICLR 2023

2. Px0
[OutXs

≥ t] ≤ V (x0)
t·ϵ + (M+LV ·∆)·(Γ+LV ·∆)

δ·ϵ·t , for any time t ∈ N.

Proof. We start by proving the first item in Theorem 2. Let ρ = (xt,ut, ωt)t∈N0
be a system

trajectory. Recall that S = {x ∈ X | V (x) ≤ M} ⊆ Xs and that TS(ρ) = inf{t ∈ N0 | xt ∈ Xs}
is the first hitting time of S. Let us also denote by OutAfterXs

(ρ) = |{t > TS(ρ) | xt ̸∈ Xs}| the
number of time-steps that the trajectory ρ is in states outside of the stabilizing set Xs after the first
hitting time of S. Then, since S ⊆ Xs, for each system trajectory ρ = (xt,ut, ωt)t∈N0 we have that

OutXs
(ρ) ≤ TS(ρ) + OutAfterXs

(ρ).

Therefore, for each initial state x0 ∈ X , we have

Ex0 [OutXs] ≤ Ex0 [TS] + Ex0 [OutAfterXs]

≤ Ex0 [TS] + sup
x∈X

Ex[OutAfterXs
]. (4)

Now, by defining an ϵ-RSM (Xi)
∞
i=0 with respect to the stopping time TS analogously as in the

proof of Theorem 1 and by applying the second item in Proposition 1 to it, we can immediately
deduce that

Ex0 [TS] ≤
Ex0 [X0]

ϵ
=

V (x0)

ϵ
. (5)

On the other hand, by Claim 2 in the proof of Theorem 1 we know that the probability of leaving Xs

once in S is at most p = M+LV ·∆
M+LV ·∆+δ < 1. Furthermore, once the stabilizing set Xs is left, we know

that the value of V is at most supx∈Xs
V (x) +LV ·∆ = Γ+LV ·∆ due to LV being the Lipschitz

constant of V and ∆ being the maximum step size of the system. Thus, we have

sup
x∈X

Ex[OutAfterXs
] ≤ p ·

(
sup

x∈X s.t. V (x)≤Γ+LV ·∆
Ex[TS] + sup

x∈X
Ex[OutAfterXs

]
)

≤ p ·
(Γ + LV ·∆

ϵ
+ sup

x∈X
Ex[OutAfterXs

]
)
,

where in the second inequality we again use the second item in Proposition 1 but now applied to the
ϵ-RSM (Xi)

∞
i=0 with respect to the stopping time TS defined in the probability space of all system

trajectories that start in the initial state x. Hence, by deducting p · supx∈X Ex[OutAfterXs] from
both sides of the inequality and then dividing both sides of the resulting inequality by 1− p > 0, we
conclude that

sup
x∈X

Ex[OutAfterXs
] ≤ p · (Γ + LV ·∆)

(1− p) · ϵ
.

Therefore, since p = M+LV ·∆
M+LV ·∆+δ , we deduce that

sup
x∈X

Ex[OutAfterXs
] ≤ (M + LV ·∆) · (Γ + LV ·∆)

δ · ϵ
. (6)

By comgining eq. equation 4, equation 5 and equation 6, we deduce the first item in Theorem 2.

The second item in Theorem 2 follows immediately from the first item in Theorem 2 and an appli-
cation of Markov’s inequality which implies that Px0 [OutXs ≥ t] ≤ Ex0 [OutXs]

t for any t > 0.

C REGULARIZATION TERMS

Here, we provide details on the two regularization objectives that we add to the training loss.

Global minimum regularization We add the term L< M(θ, ν) to the loss function, which is an
auxiliary loss guiding the learner towards learning an sRSM candidate Vν that attains the global
minimum in the set {x ∈ X | V (x) < M}. In particular, we impose a set T ⊆ Xs to have value
< M and the global minimum of the sRSM being in T . While this loss term does not enforce any

17

Under review as a conference paper at ICLR 2023

of the conditions in Definition 3 directly, we observe that it helps our learning process. It is defined
via

L<M (θ, ν) = max{ max
x1,...xN3

∈D<M

Vν(x)−M, 0}+max{ min
x1,...xN4

∈X
Vν(x)− min

x1,...xN3
∈D<M

Vν(x), 0}.

where D<M is a set of states at which the sRSM canidate learned in the previous learning iteration
is < M and N3 and N4 are algorithm parameters.

Lipschitz regularization We regularize Lipschitz bounds of Vν and πθ during trainin by adding the
regularization term

λ(LLipschitz(θ) + LLipschitz(ν)) + αL′
Lipschitz(ν), (7)

to the training objective, with

LLipschitz(ϕ) = max
{ ∏

W,b∈ϕ

max
j

∑
i

|Wi,j | − ρ, 0
}

and
L′

Lipschitz(ϕ) = min
{ ∏

W,b∈ϕ

max
j

∑
i

|Wi,j | − ρ′, 0
}
.

D PROOF OF THEOREM 3

Theorem. Suppose that the verifier shows that Vν satisfies eq. (2) for each x̃ ∈ X̃≥M and eq. (3)
for each cell ∈ CellsX\Xs

. Then Vν is an sRSM and Xs is a.s. asymptotically stable under πθ.

Proof. To prove the theorem, we first need to show that Vν satisfies the three conditions in Defini-
tion 3.

Condition 1 in Definition 3 is satisfied by default since Vν applies the softplus activation function to
its output which ensures nonnegativity.

To deduce condition 2 in Definition 3, we need to show that there exists ϵ > 0 such that for each
x ∈ X with Vν(x) ≥M we have

Eω∼d

[
Vν

(
f(x, π(x), ω)

)]
≤ V (x)− ϵ.

We show that
ϵ = min

x̃∈X̃≥M

(
V (x̃)− τ ·K − Eω∼d

[
V
(
f(x̃, π(x̃), ω)

)])
satisfies this requirement. Fix x ∈ X with Vν(x) ≥ M and let x̃ ∈ X̃ be such that ||x − x̃||1 ≤ τ .
Such x̃ exists by definition of a discretization. Furthremore, since Vν(x) ≥M , the center of the cell
that contains x must be contained in X̃≥M so therefore we may pick such x̃ ∈ X̃≥M (the correctness
of the computation of X̃≥M follows from the correctness of IA-AI (Cousot & Cousot, 1977; Gowal
et al., 2018)). Then, by Lipschitz continuity of f , πθ and Vν , we have that

Eω∼d

[
Vν

(
f(x, πθ(x), ω)

)]
≤ Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
+ ||f(x̃, πθ(x̃), ω)− f(x, π(x), ω)||1 · LV

≤ Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
+ ||(x̃, πθ(x̃), ω)− (x, π(x), ω)||1 · LV · Lf

≤ Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
+ ||x̃− x||1 · LV · Lf · (1 + Lπ)

≤ Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
+ τ · LV · Lf · (1 + Lπ),

(8)

On the other hand, by Lipschitz continuity of Vν we have

Vν(x) ≥ Vν(x̃)− ||x̃− x||1 · LV ≥ Vν(x̃)− τ · LV . (9)

18

Under review as a conference paper at ICLR 2023

Thus combining eq.(8) and (9) we get that

Vν(x)− Eω∼d

[
Vν

(
f(x, πθ(x), ω)

)]
≥ Vν(x̃)− τ · LV − Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
− τ · LV · Lf · (1 + Lπ)

= Vν(x̃)− τ ·K − Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
≥ ϵ,

(10)

The last inequality holds by our definition of ϵ, therefore we conclude that Vν satisfies condition 2
in Definition 3.

Finally, to deduce condition 3 in Definition 3, we need to show that there exists δ > 0 such that
Vν(x) ≥M + LV ·∆+ δ holds for each x ∈ X\Xs. But the fact that

δ = min
cell∈CellsX\Xs

{V ν(cell)−M − LV ·∆θ}

satisfies the claim follows immediately from correctness of IA-AI and the fact that eq. (3) holds for
each cell ∈ CellsX\Xs

.

Thus, this concludes the proof that Vν satisfies the three conditions in Definition 3. Then, by Theo-
rem 1 on sRSMs, we know that Xs is a.s. asymptotically stable under πθ.

E EXPERIMENTAL EVALUATION DETAILS

We implemented our algorithm in JAX. All experiments were run on a 4 CPU-core machine with
64GB of memory and an NVIDIA A10 with 24GB of memory.

Benchmark environments The dynamics of the two-dimensional dynamical system (2D system)
are defined as

xt+1 =

(
1 0.0196
0 0.98

)
xt +

(
0.002
0.1

)
g(ut) +

(
0.002 0
0 0.001

)
ω, (11)

where ω is a disturbance vector and ω[1], ω[2] ∼ Triangular. The function g bounds the range of
admissible actions by g(u) = max(min(u, 1),−1).
The probability density function of Triangular is defined by

Triangular(x) :=


0 if x < −1
1− |x| if − 1 ≤ x ≤ 1

0 otherwise
. (12)

The dynamics function of the inverted pendulum task is defined as

xt+1[2] := (1− b)xt[2]

+ d ·
(−1.5 ·G · sin(xt[1] + π)

2l
+

3

ml2
2g(ut)

)
+ 0.002ω[1]

xt+1[1] := xt[1] + d · xt+1[2] + 0.005ω[2],

where the parameters d,G,m, l, b are defined in Table 2. For training a policy on the inverted
pendulum task, we used a reward rt at time t defined by rt := 1− xt[1]

2 − 0.1xt[2]
2.

The hyperparameters we used in the experiments for learning the policy and the sRSM are listed in
Table 3. For each of the tasks, we consider T = {x | |x1| ≤ 0.2, |x2| ≤ 0.2}.
We observed a better convergence and more stable training when training only the sRSM candidate
and keep the weights of the policy frozen for the first three iterations of our algorithm. For the second
task we replaced ϵtrain with Kθ,ν · τ during the training. Specifically, instead of using Lcond 2(θ, ν),
we set

19

Under review as a conference paper at ICLR 2023

Parameter Value

d 0.05
G 10
m 0.15
l 0.5
b 0.1

Table 2: Parameters of the inverted pendulum task.

Parameter Value

Learning rate 0.0005
λ 0.001
α 10
ρθ 4
ρν 8
ρ′ 0.01
δtrain 0.1
Ncond 2 16
Ncond 3 256
N3 256
N4 512
ϵtrain 0.1

Table 3: Hyperparameters used in our experiments.

L′
cond 2(θ, ν) =

1

|B|
∑
x∈B

(
max

{ ∑
ω1,...,ωNcond 2∼d

Vν

(
f(x, πθ(x), ωi)

)
Ncond 2

− Vν(x) +Kθ,ν · τ, 0
})

.

For the inverted pendulum task, the plots and the results in Table 1 in the main paper are obtained by
training with L′

cond 2(θ, ν) as the loss function. Here, we performed an ablation study to test whether
using L′

cond 2(θ, ν) can improve the results, i.e., whether the number of iterations is decreased. The
results in Table 3 show that the effectiveness of using L′

cond 2(θ, ν) on the particular system.

Grid refinement

We implemented two types of grid refinement procedures to refine the mesh of the discretization
used by the verifier. The first refinement is scheduled to multiply τ by 0.5 every second iteration
starting at iteration 5 if no hard violation is encountered by the verifier module. A violation is a
counterexample to condition 2 in Definition 3 in the main paper. Hard violations are violations that
also violate the condition

Eω∼d

[
V
(
f(x, π(x), ω)

)]
< V (x).

Environment Use L′
cond 2(θ, ν) Iterations Mesh (τ) p Runtime

2D system No 5 0.0007 0.80 3660 s
Yes 7 0.0007 0.78 4405 s

Inverted pendulum No 8 0.003 0.97 7004 s
Yes 4 0.003 0.97 2619 s

Table 4: Ablation analysis of the impact of the loss term L′
cond 2(θ, ν). Number of learner-verifier

loop iterations, mesh of the discretization used by the verifier, p, and total algorithm runtime (in
seconds).

20

Under review as a conference paper at ICLR 2023

Our second refinement procedure is invoked when there are violations but no hard violations. In this
case, our procedure tries to verify grid cells where violations were observed using a mesh of 0.5τ .

E.1 PPO DETAILS

The settings used for the PPO Schulman et al. (2017) pre-training process are as follows. In each
PPO iteration, 30 episodes of the environment are collected in a training buffer. Stochastic is in-
troduced to the sampling of the policy network πµ using a Gaussian distributed random variable
added to the policy’s output, i.e., the policy predicts a Gaussian’s mean. The standard deviation
of the Gaussian is dynamic during the policy training process according to a linear decay starting
from 0.5 at first PPO iteration to 0.05 at PPO iteration 50. The advantage values are normalized by
subtracting the mean and scaling by the inverse of the standard deviation of the advantage values of
the training buffer. The PPO clipping value ε is 0.2 and γ is set to 0.99. In each PPO iteration, we
train the policy for 10 epochs, except for the first iteration where we train the policy for 30 epochs.
An epoch accounts to a pass over the entire data in the training buffer, i.e., the data from the the
rollout episodes. We train the value network 5 epochs, expect in the first PPO iteration, where we
train the value network for 10 epochs. The Lipschitz regularization is applied to the learning of the
policy parameters during the PPO pre-training.

21

	Introduction
	Related Work
	Preliminaries
	Theoretical Results
	Learning Stable Policies and sRSMs on Compact State Spaces
	Experimental Results
	Conclusion
	Overview of Probability and Martingale Theory
	Proofs of Theorem 1 and Theorem 2
	Regularization Terms
	Proof of Theorem 3
	Experimental evaluation details
	PPO Details

