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ABSTRACT

The efficacy of Multi-Agent Systems (MASs) in finance is fundamentally con-
strained by their reliance on static workflows and simplistic learning paradigms,
which fail to address the complex, often contradictory signals inherent in dynamic
markets—a reality well-described by the Adaptive Markets Hypothesis (AMH).
To bridge the gap between prevailing agent architectures and this market real-
ity, we introduce FinThink, an novel MAS framework grounded in AMH, de-
signed specifically to master this dynamic adaptation. FinThink’s novelty lies in
three synergistic components: (1) A Context-aware Workflow for Reasoning
(CWRM), which enables architectural adaptivity by dynamically adjusting rea-
soning depth based on signal complexity; (2) A Reasoning-Driven Hierarchical
Memory (R-Mem), which facilitates evolutionary adaptivity by allowing the sys-
tem to learn optimal strategies for resolving signal conflicts under varying market
conditions; and (3) A Sentiment-To-Logic (STL) Prompt Protocol, which en-
sures reasoning stability by preventing the multi-agent process from degenerating
into simplistic voting. In extensive backtests on five major technology stocks
(AAPL, GOOG, MSFT, TSLA, and AMZN), FinThink demonstrates significant
improvements over contemporary LLM-based agents, achieving a median advan-
tage of a 9.2% higher Sharpe Ratio, a 113.1% higher Calmar Ratio, and a 46.3%
reduction in Maximum Drawdown.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning (Brown
& et al., 2020; Wang et al., 2023; Wei et al., 2022; Yao et al., 2023b), planning (Hao et al., 2023;
Zhao et al., 2023; Wang et al., 2024; Kokel et al., 2025), and tool use (Gao et al., 2024; Yang et al.,
2023; Wen et al., 2025; Gao et al., 2023) across diverse domains (Sanh et al., 2022; Wang et al.,
2022; Raffel et al., 2020). This has sparked interest in deploying LLM-based agents for complex
real-world tasks that require multi-step reasoning and decision-making under uncertainty (Schick
et al., 2023; Zhou et al., 2024; Deng et al., 2023). Multi-agent systems (MASs) have emerged as
a natural extension, where specialized agents collaborate to decompose complex problems, cross-
validate findings, and leverage diverse perspectives.

In finance, this paradigm is particularly appealing. However, its application faces a fundamental
challenge well-captured by the Adaptive Markets Hypothesis (AMH) (Lo, 2004), which posits
that markets are not static arenas of rational actors but evolving ecosystems of competing strategies.
This inherent market dynamism—where signals are frequently conflicting and core profitability fac-
tors shift over time—places extreme demands on the adaptability of any intelligent system. Financial
decision-making thus inherently involves synthesizing heterogeneous information streams (TET-
LOCK, 2007; DA et al., 2011), managing uncertainty (Baker et al., 2016; Pástor & Veronesi, 2010),
and adapting to these rapidly changing market conditions (Lo, 2004). For a trading agent, at each
daily time step t, this means observing a set of market information It and producing a trading action
at ∈ {BUY, SELL, HOLD} with a position size qt.

Early work has explored domain-tuned foundation models (Lee et al., 2019; cha; Gu et al., 2021;
Feng & Guo, 2020) and multi-agent frameworks that emulate human analyst teams (Xiao et al.,
2025). However, these systems often exhibit brittle performance when deployed in real market en-
vironments. Their failure stems from an architectural mismatch with the market reality described by
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AMH: they are ill-equipped to handle the adaptive and evolving nature of financial markets (Bailey
et al., 2013; Goyal et al., 2024; Khandani & Lo, 2011). Their static reasoning pipelines and reactive,
noisy memory mechanisms fail to capture shifting market regimes and distill durable knowledge
from transient market signals.

To bridge this gap between existing agent architectures and market reality, we introduce FinThink,
an AMH-grounded MAS designed for dynamic adaptation. We instantiate this challenge within the
well-defined problem of tactical single-asset stock trading (Almgren & Chriss, 2000; Deng et al.,
2017), where the goal is to maximize risk-adjusted returns (Ding et al., 2015; Sharpe, 1994). By
operationalizing the principles of AMH (Lo, 2004; Kim et al., 2011; Urquhart & McGroarty, 2016;
Neely et al., 2009), we can build a robust multi-agent system along two dimensions: architectural
adaptivity, where the reasoning workflow reconfigures in response to market context, and evolution-
ary adaptivity, where the agent distills durable knowledge from experience. This perspective reveals
two critical gaps in existing systems that FinThink aims to address:

• Gap 1: Static Control Under Dynamic Regimes. Fixed pipelines like “search → reason →
act” or Finite State Machines (FSM) with hard-coded transitions lack the ability to modulate
reasoning depth when evidence conflicts or to branch to meta-cognition when uncertainty spikes.
This creates a need for context-aware depth control, in which the agent dynamically adjusts its
reasoning depth in proportion to the magnitude of the uncertainty signal (Schuster et al., 2022).

• Gap 2: Reactive and Noisy Memory. Trigger-based memory systems, for example FinCon,
record events and perform reflection when a drop in Profit and Loss (PnL) occurs (Yu et al.,
2024). However, if such a drop merely results from a temporary technical rebound following
an overbought/oversold condition, while the overall trend remains intact, this mechanism risks
misencoding short-term market noise as structural experience. In contrast, an ideal memory should
span the complete life cycle and demonstrate forward-looking utility (Li et al., 2024). Therefore, a
critical gap exists for a mechanism capable of distilling generalizable heuristics from entire trading
cycles. This requires a process that systematically filters transient market noise to build a robust
knowledge base that reliably informs future reasoning.

To tackle the above challenges, we introduce FinThink, a MAS designed to fill these gaps by explic-
itly operationalizing the principles of the AMH. FinThink’s novelty lies in the holistic integration of
three components, each designed to address a core requirement for success in adaptive markets:

• To achieve architectural adaptivity, we introduce a Context-aware Workflow for Reasoning
(CWRM), which decouples dynamic planning from static validation: an LLM-based planner pro-
poses the next reasoning step and depth based on real-time market signals, while a deterministic
FSM validates this proposal against formal rules. This symbiotic architecture allows FinThink to
flexibly modulate its reasoning depth, deepening analysis during uncertainty and streamlining it
during clear trends, thus directly addressing the AMH’s call for adaptive behavior.

• To enable evolutionary adaptivity, where the system learns from experience, we design a
Reasoning-Driven Hierarchical Memory (R-Mem). Instead of reacting to simple triggers, R-
Mem performs post hoc analysis on entire trade lifecycles to distill structured corrective heuris-
tics. Crucially, we introduce a methodology for organizing these heuristics into Narrative Driver
Clusters based on empirically-derived asset similarities. This allows FinThink to generalize
lessons learned from one asset to its peers, mimicking the expert behavior of evolving a trading
“style” rather than just memorizing isolated events.

• To maintain reasoning stability in the conflicting and noisy signals characteristic of adaptive mar-
kets, we develop a Sentiment-To-Logic (STL) Prompt Protocol. The protocol mitigates “Rea-
soning Collapse” by strictly decoupling cognitive functions: It constrains analytical agents to
produce evidence-grounded, logical assessments while prohibiting premature trade recommenda-
tions. This ensures that final decisions are the output of a deep, structured reasoning process,
rather than a superficial vote, enhancing the system’s robustness under pressure.

We evaluate FinThink in challenging open-world tasks, including tactical single-asset trading and
cross-asset memory transfer. It consistently achieves superior risk-adjusted returns, driven by its
core innovations: a novel context-aware workflow that dynamically generates reasoning paths, and
a hierarchical memory that enables evolutionary adaptation. To our knowledge, this work is the
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Figure 1: Overview of FinThink’s Framework.

first to explore training based on asset-style clustering, which enables a novel form of memory
generalization absent in prior work.

2 RELATED WORK

2.1 MULTI-AGENT SYSTEMS

Recent advancements in LLMs (OpenAI, 2023; OpenAI & et al., 2024; DeepSeek-AI & et al.,
2025; Team & et al., 2024; Yao et al., 2023a; Asai et al., 2024) have catalyzed the development
of multi-agent systems (MASs). Early approaches focused on collective calibration, using tech-
niques like multi-agent debate (Kim et al., 2024; Hu et al., 2025) and consensus aggregation (Kim
et al., 2024) to improve the reliability of single-agent reasoning through redundancy. However, these
methods primarily address error correction rather than enabling adaptive collaboration for complex,
open-ended problems. To enhance autonomy, subsequent research has explored workflow manage-
ment. For instance, StateFlow (Wu et al., 2024b) and MetaAgent (Zhang et al., 2025) introduced
structured mechanisms like Finite State Machines (FSMs) to orchestrate agent behavior. Similarly,
MetaGPT (Hong et al., 2024) and AutoGen (Wu et al., 2024a) developed architectures for auto-
mated task decomposition. While advancing structured collaboration, these systems often rely on
static, predefined workflows, limiting their adaptability in dynamic environments. Our proposed
multi-agent system addresses this gap by introducing a dynamic, context-aware planning layer.

2.2 LLM-BASED FINANCIAL AGENTS

In finance, initial research focused on domain-specific models like BloombergGPT (Wu et al., 2023)
or fine-tuning open-source LLMs (Liu et al., 2023). To handle complexity, single-agent systems
evolved into multi-module architectures like FinAgent (Zhang et al., 2024). Building on this, multi-
agent paradigms emerged, with systems like FinCon (Yu et al., 2024) simulating trading teams and
HedgeAgents (Li et al., 2025) developing operational risk controls.

Despite these advances, existing financial MAS often suffer from two critical limitations: (1) their
static reasoning pipelines struggle to adapt to rapidly changing market conditions, leading to cogni-
tive overload and suboptimal performance (Shang et al., 2025); and (2) risk management is treated
as a separate, operational module rather than being integrated into the core strategic reasoning pro-
cess. In contrast, FinThink directly tackles these challenges by internalizing risk awareness within
an adaptive reasoning framework.
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Figure 2: CWRM Routing Process.

3 METHODOLOGY

In this section, we present the details of FinThink, which involves the following modules, includ-
ing Context-Aware Workflow for Reasoning (CWRM), reasoning-driven memory (R-Mem), and
Sentiment-To-Logic (STL) prompt protocol.

3.1 CONTEXT-AWARE WORKFLOW FOR REASONING (CWRM)

The Context-Aware Workflow for Reasoning (CWRM) framework serves as FinThink’s central ner-
vous system (i.e., illustrated in Figure 1), responsible for the dynamic planning, task decomposition,
and iterative execution of complex financial decision-making tasks. It deconstructs the intricate
financial decision process into a dynamically orchestratable, iterative loop comprising four core
workflows: Search Workflow, Reasoning Workflow, Meta Workflow, and Exit Workflow (decision-
making). In contrast to traditional frameworks that employ fixed procedures, the essence of CWRM
lies in its context-aware dynamic scheduling capability. It intelligently determines which type of
workflow to execute next step based on the context of past executions, current market information,
ensuring that each action addresses the most pressing cognitive requirement at any given moment.

Planning - RouterBackbone: At the commencement of each reasoning node, the Routing Agent,
functioning as the system’s “decision-making brain”, is initially activated. It comprehensively as-
sesses the current context, encompassing: (i) Historical Context: Outputs and conclusions from
preceding workflows (e.g., Search Workflow, Reasoning Workflow). (ii) Market Context: The latest
market snapshot and investment portfolio status. (iii) Current State: The current state as recorded by
the Finite State Machine (FSM). Based on this comprehensive evaluation, the Routing Agent plans
and proposes the most appropriate workflow to execute the next step.

This dynamic scheduling capability is visually demonstrated in Figure 2 (see Appendix A.10 for
a detailed walkthrough of a single reasoning cycle), which illustrates how the Routing Agent or-
chestrates distinct reasoning pathways in response to varying market conditions. For instance, in a
clear, trending market (top panel), the agent can propose a streamlined and efficient workflow, such
as Search→ Reasoning→ Exit, conserving computational resources. However, when faced
with a more ambiguous or sideways market where signals may be conflicting (middle and bottom
panels), the agent intelligently deepens the reasoning process. It initiates iterative loops involving
the Meta workflow to scrutinize assumptions, resolve contradictions, and refine the analysis—as
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Figure 3: FSM Validation Process.

exemplified by the case where information retrieved during a search workflow contains contra-
dictions, prompting a Meta review rather than directly proceeding to Reasoning. This adaptive
mechanism ensures that the system’s cognitive effort is dynamically calibrated to the complexity of
the situation, enabling both efficiency in simple scenarios and robustness in complex ones.

Validation - FSM Controller: The Routing Agent’s proposal is not immediately executed. Instead,
it is submitted to the FSM Controller, which acts as the “rule enforcer”. The FSM internally defines
a set of legitimate state transition diagrams, explicitly outlining permissible workflow transitions
and the exit conditions for various states. The FSM Controller then validates whether the proposed
transition is legitimate. The primary objectives of this validation are twofold: (i) Ensuring Logi-
cal Coherence: It prevents illogical transition, such as selecting Reasoning Workflow without first
conducting a Search Workflow. (ii) Preventing Infinite Loops: By setting constraints like maximum
execution iterations, it mitigates the system endlessly oscillating between two states (e.g., select-
ing Search Workflow repeatedly), thereby ensuring the ultimate convergence of the entire inference
process(see Figure 3).

Figure 4: Interaction between TSLA Price Trajectories and
Multi-Round FinThink Inference.

Execution - WorkflowBack-
bone: Once a plan is approved
by the FSM Controller, the
WorkflowBackbone (the “exe-
cution unit”) executes the cor-
responding workflow, allocating
agents for the task. The output
becomes the historical context
for the next planning step, form-
ing a closed-loop inference sys-
tem. This tight coordination of
planning, validation, and execu-
tion enables FinThink to adap-
tively decide whether to deepen
its search (Search Workflow),
reinforce reasoning (Reasoning
Workflow), initiate refinement
(Meta Workflow), or proceed to
a decision (Exit Workflow).

This structured adaptivity is empirically validated. As shown in Figure 4, the system’s reasoning
depth increases with market complexity: during stable periods it converges in few steps, while at crit-
ical inflection points—such as January, March, April and May 2023—it consistently reached max-
imum reasoning rounds. These episodes, marked by strong signal conflicts, highlight that CWRM
is not a fixed linear process but a flexible framework that dynamically scales its cognitive effort to
situational challenges.
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Figure 5: Overview of FinThink’s Workflow Modules.

The WorkflowBackbone executes one of four modular workflows, the building blocks for the rea-
soning pipeline, as illustrated in Figure 5: Search Workflow acquires and synthesizes raw data;
Reasoning Workflow forms the system’s core analytical judgment; Meta Workflow acts as an
internal quality inspector; and Exit Workflow transforms the final analysis into a trading action.
Detailed descriptions are provided in Appendix A.7.

3.2 REASONING-DRIVEN HIERARCHICAL MEMORY SYSTEM (R-MEM)

One of the core advantages that differentiates FinThink from existing frameworks lies in its
Reasoning-Driven Hierarchical Memory (R-Mem), which is designed in conjunction with the
CWRM architecture to endow the system with a human-like capacity for reflective memory. In
contrast, traditional LLM-based agents such as FinAgent (Zhang et al., 2024) and FinCon (Yu et al.,
2024) typically rely on trigger-based or fragmented memory records, for example, passively invok-
ing reflection only when PnL declines. Such memory lacks contextual completeness, preventing the
formation of systematic cognition and meaningful lessons.

To achieve evolutionary adaptivity, R-Mem moves beyond reactive triggers and instead generates
structured memories from deep reflection on entire trade cycles. Memories are stored in a structured
vectorized format and retrieved using a Maximum Marginal Relevance (MMR) strategy to promote
relevance and diversity. Critically, unlike prior work focusing on single-asset memory, we organize
R-Mem by Narrative Driver Clusters—groups of assets sharing fundamental drivers.

This design is inspired by a crucial observation from real-world trading: expert traders rarely confine
their knowledge to a single stock. Instead, they develop a “style” or expertise applicable to an entire
class of assets (e.g., commodity sector stocks, large-cap tech stocks), allowing them to generalize
experiences across their domain. This is particularly relevant under the AMH, where market-wide
regime shifts mean that a lesson learned from one asset is often directly applicable to its peers. Our
work represents a first attempt to operationalize this principle by partitioning memory based on as-
sets’ fundamental characteristics, enabling powerful cross-asset experiential transfer (e.g., applying
insights from MSFT to GOOG) and drastically improving memory generalization.

The success of this approach is empirically validated through a qualitative analysis of the reflection
memories.

As visualized in Figure 6, a semantic clustering of memories reveals that R-Mem develops special-
ized, context-aware reasoning patterns tailored to the unique dynamics of each asset cohort. What
is particularly striking is that these distinct clusters emerged autonomously. The memory texts were
vectorized without any explicit categorical labels, meaning the clear four-category separation is a re-
sult of the system’s own emergent understanding of the underlying reasoning structures—a finding
that we found highly compelling.

For the stable Platform & Blue-Chip Cohort (AAPL, GOOG, MSFT), memory clusters correspond
to different external drivers, with keywords separating signals like ‘macro’ from ‘fundamental’.
This indicates a diversified and multi-faceted playbook. In stark contrast, for the volatile High-Beta
& Narrative-Driven Cohort (TSLA, AMZN), the memory clusters reveal a playbook of trading
tactics, dominated by keywords like ‘oversold’, ‘short’, and ‘long’. At the same time, the Platform
& Blue-Chip Cohort exhibits a dispersed geometric structure, while the Narrative-Driven Cohort
forms distinctly compact geometries. This stark geometric contrast visually confirms that R-Mem
has developed two fundamentally different cognitive models for the two asset classes.
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Figure 6: 3D visualization of semantic memory clustering for two distinct asset cohorts. The clusters
emerged autonomously without any explicit labeling, revealing distinct reasoning patterns. (a) For
the stable Platform & Blue-Chip Cohort, clusters are separated by external drivers (e.g., macro vs.
fundamentals). (b) For the volatile High-Beta & Narrative-Driven Cohort, clusters reflect an action-
oriented playbook (e.g., momentum and volatility management).

This emergent capability to adapt its reasoning methodologies, rather than just its knowledge base, is
the core mechanism that engenders robust, nuanced decision-making and superior risk control. This
is quantitatively demonstrated by our state-of-the-art results for the Sharpe Ratio, Calmar Ratio, and
Maximum Drawdown in experiments.

3.3 MITIGATING REASONING COLLAPSE: COGNITIVE FUNCTION DECOUPLING VIA STL
PROMPT PROTOCOL

While FinThink’s CWRM handles dynamic scheduling, a deeper challenge in multi-agent systems
is maintaining deep reasoning fidelity without falling into “Reasoning Collapse into Voting”. This
common failure mode occurs when unconstrained agents prematurely converge on conclusions, by-
passing intermediate analytical steps and introducing biases (Liu et al., 2025b;a). To prevent this,
we introduce the STL (Sentiment-To-Logic) Prompt Protocol, a cognitive scaffolding that ensures
the quality and depth of FinThink’s inference.

STL’s core innovation is the strict decoupling of cognitive functions: analysis agents are constrained
to generate objective scenario analyses, strictly prohibiting direct trading recommendations. This
structural delineation of “analysis” from “decision-making” preserves logical integrity and hierar-
chical depth, crucial for robust multi-agent collaboration. Aligned with the Adaptive Market Hy-
pothesis (AMH), STL systematically structures the Reasoning Workflow into key analytical pillars,
as illustrated in Figure 7. This framework enables dynamic weight adjustment of attentional focus
on different market drivers by dynamically adjusting the signal strength from macroeconomic, fun-
damental, and technical indicators based on market signal intensity, and facilitates proactive risk
aversion when uncertainty is high. By embedding risk mechanisms directly into the reasoning pro-
cess and preventing cognitive overload, STL ensures FinThink achieves high-quality, adaptive, and
risk-controlled decision-making in complex financial markets. (For detailed mechanisms and exam-
ples, see Appendix A.8; for prompt templates, see Appendix A.9).
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Figure 7: STL Protocol.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate FinThink by backtesting its trading decisions on five major equities (AAPL, TSLA,
MSFT, GOOG, AMZN) from October 5, 2022, to June 30, 2023. This specific period was delib-
erately chosen as it encapsulates a critical market cycle, transitioning from “rate hike panic” to a
“market bottom”, and finally to a “macro-driven rebound”. This timeframe exhibits significant tem-
poral and cross-sectional heterogeneity: some assets were highly sensitive to geopolitical events and
interest rate shifts, while blue-chip stocks demonstrated greater resilience. Such diversity in market
conditions and asset behaviors provides a robust environment for evaluating the model’s stability
and generalization capabilities. Our approach leverages a Reasoning-Driven Hierarchical Memory
(R-Mem), pre-trained on data from June 1, 2022, to October 4, 2022, using a cross-asset learning
strategy based on Narrative Driver Clusters, enabling the agent to generalize experiences across
behaviorally similar assets. To mitigate the impact of random fluctuations, we report the median
outcomes across five independent trials.

Importantly, all experiments are conducted with Gemini-2.0-flash, a lightweight and cost-optimized
model, and thus fully reproducible via standard API access. By deliberately avoiding reliance on
large, resource-intensive base models, we highlight that the observed gains stem from the architec-
ture of FinThink itself, rather than the raw capacity of the underlying LLM.

For comparison, we benchmark against several recent multi-agent trading systems. We note that
some state-of-the-art models, such as FinCon (Yu et al., 2024) and FinAgent (Zhang et al., 2024),
present valuable methods but do not provide publicly available codebases. Furthermore, certain
mechanisms, like FinCon’s text-based gradient descent for memory enhancement, depend on highly
customized experimental environments, making full replication challenging. Therefore, instead of
attempting a strict baseline reproduction, we compare against their publicly reported metrics. To
ensure a direct and fair comparison, their reported metrics are taken from the identical October 5,
2022, to June 30, 2023 backtesting period. A comprehensive description of our dataset, the cross-
asset pre-training protocol, and simulation environment is provided in Appendix A.5.

4.2 EVALUATION METRICS

To ensure diagnostic clarity and directly assess our model’s core reasoning and memory mecha-
nisms, our evaluation focuses on a single-asset trading task. This approach avoids the confound-
ing effects common in portfolio-level analysis, allowing for a rigorous inspection of the agent’s
decision-making process. We evaluate performance using four standard financial metrics: Sharpe
Ratio (SR): Quantifies risk-adjusted returns. Total Return (TR): Measures overall profitability.
Maximum Drawdown (MDD): Assesses the largest peak-to-trough decline, indicating downside
risk. Calmar Ratio (CR): Evaluates the strategy’s robustness by comparing return to its maximum
drawdown. This selection of metrics provides a comprehensive view of both profitability and risk
management. Detailed definitions and mathematical formulations are provided in Appendix A.4.
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Table 1: Comprehensive performance comparison on AAPL, GOOG, and MSFT.

Categories Models AAPL GOOG MSFT

TR%↑ SR↑ MDD%↓ CR↑ TR%↑ SR↑ MDD%↓ CR↑ TR%↑ SR↑ MDD%↓ CR↑

Market B&H 22.315 1.107 20.659 1.080 22.420 0.891 21.191 1.058 27.856 1.230 15.010 1.856

Our Model FinThink 11.640 1.630 3.050 3.816 23.840 1.620 5.910 4.034 17.800 1.680 8.060 2.208

LLM-based

GA 5.694 0.372 14.161 0.402 -1.515 -0.192 8.210 -0.185 -31.821 -1.414 39.808 -0.799
FINGPT 20.321 1.161 16.759 1.213 0.242 0.011 26.984 0.009 21.535 1.315 16.503 1.305
FINMEN 12.397 0.994 11.268 1.100 0.311 0.018 21.503 0.014 -22.036 -1.247 29.435 -0.749
FINAGENT 20.757 1.041 19.896 1.043 -7.440 -1.024 10.360 -0.718 -27.534 -1.247 39.544 -0.696
FINCON 27.352 1.597 15.266 1.792 25.077 1.052 17.530 1.183 31.625 1.538 15.010 2.107

DRL-based
A2C 13.781 0.683 14.226 0.969 8.562 0.340 21.191 0.404 21.397 0.962 21.458 0.997
PPO 14.041 0.704 22.785 0.616 2.434 0.097 25.202 0.097 -4.761 -0.214 30.950 -0.154
DQN 21.125 1.048 16.131 1.310 20.690 0.822 21.191 0.976 27.021 1.216 21.458 1.259

Table 2: Comprehensive performance comparison on TSLA and AMZN.

Categories Models TSLA AMZN

TR%↑ SR↑ MDD%↓ CR↑ TR%↑ SR↑ MDD%↓ CR↑

Market B&H 6.425 0.145 58.150 0.110 2.030 0.072 34.241 0.059

Our Model FinThink 76.500 2.140 12.790 5.981 32.220 1.800 11.450 2.810

LLM-based

GA 16.535 0.391 54.131 0.305 -5.631 -0.199 37.213 -0.151
FINGPT 1.549 0.044 42.400 0.037 -29.811 -1.810 29.671 -1.005
FINMEN 34.624 1.552 15.674 2.209 -18.011 -0.773 36.825 -0.489
FINAGENT 11.960 0.271 55.734 0.215 -24.588 -1.493 33.074 -0.743
FINCON 82.871 1.972 29.727 2.788 24.848 0.904 25.889 0.960

DRL-based
A2C -35.644 -0.805 61.502 -0.580 -12.560 -0.444 37.106 -0.338
PPO 1.409 0.032 49.740 0.028 3.863 0.138 28.085 0.138
DQN -1.296 -0.029 58.150 -0.022 11.171 0.398 31.174 0.358

Our primary objective is to maximize risk-adjusted returns, a more critical measure of a strategy’s
long-term viability than raw profitability. The experimental results strongly validate FinThink’s suc-
cess in this regard. Across all five tech stocks, FinThink consistently achieves the highest Sharpe Ra-
tios and state-of-the-art Calmar Ratios, demonstrating superior performance where it matters most.

This outperformance is driven by its exceptional risk management, evidenced by dramatically lower
Maximum Drawdowns (MDD). For example, on AAPL, FinThink reduces the MDD to a mere
3.050% from the B&H benchmark’s 20.659%, while simultaneously boosting the Sharpe Ratio to
1.630 (vs. 1.107). While this disciplined, risk-first approach means FinThink does not always maxi-
mize Total Return (TR), it can still capture significant upside when market conditions are favorable.
On TSLA, it delivered an impressive 76.500% TR—outperforming most benchmarks—paired with
an exceptional Sharpe Ratio of 2.140 and a low MDD of 12.790%. In summary, FinThink success-
fully prioritizes stable, risk-adjusted growth over volatile, high-risk gains. This validates that its
core design—the adaptive CWRM and reflective R-Mem—is highly effective at constructing robust
strategies capable of navigating complex market dynamics.

5 CONCLUSION

In this paper, we introduced FinThink, a multi-agent system grounded in the Adaptive Markets Hy-
pothesis. Its core innovations—a Context-aware Workflow for Reasoning (CWRM) for dynamic
adaptation and a Reasoning-Driven Memory (R-Mem) that leverages Narrative Driver Clusters
for cross-asset learning—enable superior risk-adjusted performance even with a lightweight LLM.
Backtests confirm that FinThink significantly improves Sharpe Ratios while drastically reducing
drawdown. While excelling at risk management, limitations include a trade-off between maximiz-
ing Sharpe Ratio and Total Return, and the need to validate our cross-asset memory mechanism
in a full portfolio context. Future work will focus on extending FinThink to multi-asset portfolio
optimization and developing more sophisticated memory fusion and retrieval algorithms for this
complex setting. See Appendix A.11 for ethics and LLM disclosure.
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A APPENDIX

A.1 ABLATION STUDY

To quantitatively assess the individual contributions of our core components, we conducted a rigor-
ous ablation study. We focused on two pivotal innovations within FinThink: the Reasoning-Driven
Hierarchical Memory (R-Mem) and the Sentiment-To-Logic (STL) Prompt Protocol. We system-
atically removed each component and evaluated the resulting model’s performance on the volatile

14

https://arxiv.org/abs/2303.17564
https://openreview.net/forum?id=3nTbuygoop
https://openreview.net/forum?id=4QPrXwMQt1
https://doi.org/10.18653/v1/2023.findings-acl.321
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=dG1HwKMYbC
https://doi.org/10.1145/3637528.3671801
https://arxiv.org/abs/2507.22606
https://arxiv.org/abs/2507.22606
https://openreview.net/forum?id=FDeV7BOcob
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

TSLA dataset, which provides a challenging environment to test adaptability and risk management.
The results are summarized in Table 3.

Model Variant TR (%) ↑ SR ↑ MDD (%) ↓ CR ↑
FinThink (Full Model) 76.50 2.14 12.79 5.98
w/o R-Mem -17.49 -0.99 25.36 -0.68
w/o STL Protocol 13.60 1.61 6.44 2.11

Table 3: Ablation study results on the TSLA dataset. We compare the full FinThink model against
variants with R-Mem and the STL protocol removed. TR, SR, and CR are “higher is better” (↑),
while MDD is “lower is better” (↓).

The analysis of the ablation results reveals two critical insights:

1. The Indispensable Role of R-Mem in Evolutionary Learning. The most striking result is
the catastrophic performance degradation upon removing the R-Mem module. The model’s Total
Return plummeted from 76.50% to -17.49%, and the Sharpe Ratio turned sharply negative (-0.99).
This demonstrates that without the ability to reflect on entire trade cycles and distill structured,
corrective heuristics, the agent is condemned to repeat its past errors. R-Mem provides the crucial
mechanism for long-term, evolutionary adaptation, preventing the system from making the same
costly mistakes in similar market conditions and thereby safeguarding capital.

2. The Effectiveness of STL in Ensuring Deep Reasoning. Removing the STL Prompt Protocol
also led to a significant decline in performance, although the model remained marginally profitable.
The Total Return dropped to 13.60%, and more importantly, the Sharpe Ratio fell drastically to
1.61, indicating a poor risk-return trade-off. This validates the STL’s critical function in preventing
“Reasoning Collapse”. Without its structured, decoupled cognitive process, the multi-agent system’s
reasoning becomes shallow and susceptible to biases, failing to conduct the deep, logical analysis
required to navigate market complexity and capture significant returns. The STL protocol is thus
essential for maintaining the fidelity and depth of the reasoning process at each decision point.

In summary, this study confirms that FinThink’s superior performance is not attributable to a single
element but to the synergistic interplay of its core components. R-Mem enables the system to learn
and evolve over time, while the STL protocol ensures the quality and robustness of its reasoning in
the present moment. Both are vital for achieving stable, risk-adjusted returns in dynamic financial
markets.
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A.2 QUALITATIVE ANALYSIS OF CUMULATIVE RETURN CURVES

In this section, we provide a qualitative analysis of the cumulative return curves for the five tech-
nology stocks in our backtesting period: TSLA, AAPL, AMZN, GOOG, and MSFT. These visual-
izations offer further insight into the behavioral patterns of the FinThink agent compared to other
models.

A primary design philosophy of FinThink is the prioritization of risk-adjusted returns, with a specific
focus on minimizing Maximum Drawdown (MDD) and maximizing the Sharpe Ratio (SR). This
strategic choice means that the cumulative return (Total Return, TR) of FinThink may not always
be the highest among all compared agents, particularly in periods of high market volatility where
high-risk, high-reward strategies might temporarily outperform. As can be observed in Figures 8c,
the FinThink curve (light blue) often appears less volatile and is typically positioned in the middle
of the pack, demonstrating a consistent and stable appreciation of capital. This behavior underscores
its ability to navigate uncertainty and avoid significant downturns, which is a critical aspect of long-
term, sustainable trading strategies.

However, FinThink’s adaptive nature allows it to capitalize decisively on clear market trends. For
instance, in the backtests for TSLA (Figure 8d) and AMZN (Figure 8e), which exhibited strong di-
rectional trends during the evaluation period, FinThink’s performance was notably more aggressive
and highly profitable. When trading signals are clear and convergent, the agent acts with greater
conviction, leading to superior returns that outperform most benchmarks.

Conversely, for large-cap blue-chip stocks such as MSFT (Figure 8c), GOOG (Figure 8a), and AAPL
(Figure 8b), the market in Q4 2022 was characterized by range-bound, sideways movements. Under
these ambiguous conditions, FinThink adopted a conservative, capital-preservation stance. It en-
gaged in smaller-sized trades, prioritizing risk management while awaiting a clearer trend to emerge.

As the market direction became more apparent in Q1 2023, FinThink began to take more decisive
positions. This strategy was exemplified in the trading of GOOG. During market oscillations, it ef-
fectively controlled risk, avoiding losses in uncertainty; and at the critical juncture of a trend reversal,
it precisely seized opportunities, achieving significant returns. From the cumulative return curve, it
is clear that FinThink initially performed steadily, then steadily climbed, gradually surpassing and
ultimately outperforming almost all comparable models. This “defend first, then counter-attack”
success highlights the exceptional adaptability and robustness of FinThink’s strategy, demonstrating
its advanced ability to dynamically switch between different market environments, being proficient
in both offense and defense.
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(a) GOOG (b) AAPL

(c) MSFT (d) TSLA

(e) AMZN

Figure 8: Cumulative Return comparison for GOOG, AAPL, MSFT, TSLA, and AMZN.
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A.3 CWRM PSEUDOCODE

Algorithm 1 The FinThink Context-Aware Workflow for Reasoning (CWRM) Algorithm

Global Components:
RoutingAgent: An LLM-based planner that proposes the next workflow.
FSMController: A deterministic finite state machine that validates workflow transitions.
WorkflowBackboneExecutor: Executes specific workflows (Search, Reasoning, Meta, Exit).
GlobalMemory: A repository storing the outputs of all executed workflows.
procedure FINTHINK TRADING CYCLE(MarketInfot, Portfoliot) ▷ Main procedure for a
single trading decision at time step t.

fsm← InitializeFSMController()
initialContext← PrepareInitialContext(MarketInfot, Portfoliot)

▷ Execute the core iterative inference loop to derive a final decision.
finalDecision, finalContext← CWRM INFERENCE LOOP(fsm, initialContext)

▷ Execute the trade based on the final decision from the inference loop.
Portfoliot+1 ← ExecuteTrade(Portfoliot, finalDecision)
return Portfoliot+1

end procedure
procedure CWRM INFERENCE LOOP(fsm, initialContext)

Require: Nmax rounds: Maximum number of reasoning iterations.
historicalContext← initialContext
for i← 1 to Nmax rounds do

▷ Phase 1: Planning
proposedPlan← RoutingAgent.planNextStep(fsm.state, historicalContext)

▷ Phase 2: Validation
if FSMController.validateTransition(fsm.state, proposedPlan.goal) then

fsm.state← proposedPlan.goal ▷ Transition is valid, update state.
▷ Phase 3: Execution

result←WorkflowBackboneExecutor.execute(proposedPlan)
▷ Phase 4: Context Update

GlobalMemory.append(result)
historicalContext← GlobalMemory.getRecentHistory()
if proposedPlan.goal = “Exit” then

decision← ParseDecision(result)
return decision, historicalContext ▷ Terminal state reached.

end if
else

log(“Invalid transition proposed by RoutingAgent”)
break ▷ Loop is terminated.

end if
end for
return “HOLD”, historicalContext ▷ Default action if max rounds reached.

end procedure

A.4 FORMULA

To ensure diagnostic clarity and directly assess FinThink’s core reasoning and memory mecha-
nisms, our evaluation focuses on a single-asset trading task. This approach avoids the confound-
ing effects common in portfolio-level analysis, allowing for a rigorous inspection of the agent’s
decision-making process. We evaluate performance using four standard financial metrics. For base-
line comparison, we adopt the reported and reproducible results from FinCon (Yu et al., 2024) , as
it is the only system that provides evaluation over the same backtesting period (October 5, 2022 to
June 30, 2023).
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(i) Total Return (TR): This metric calculates the percentage change in the portfolio’s value
over the entire backtesting period.

TR =
Ending Value− Beginning Value

Beginning Value
× 100%

(ii) Sharpe Ratio (SR): Measures the risk-adjusted return, quantifying the excess return per
unit of risk. A higher Sharpe Ratio indicates a better return for the amount of risk taken.

SR =
E[Rp −Rf ]

σp

(iii) Calmar Ratio (CR): Evaluates the risk-reward profile by comparing the average annual
return to the maximum drawdown, assessing the strategy’s robustness. Given that our back-
testing period is less than one year, we approximate the Calmar Ratio using the total return
and maximum drawdown over the 9-month period. Notably, while FinCon (Yu et al., 2024)
did not report Calmar Ratio in their paper, their reported return and maximum drawdown
over the identical backtesting window permit a consistent computation of this metric. In
both cases, the Calmar Ratio is derived by dividing the 9-month total return by the corre-
sponding 9-month maximum drawdown, ensuring methodological parity and a strictly fair
comparison.

CR =
Total Return (over 9 months)

Maximum Drawdown (over 9 months)

(iv) Maximum Drawdown (MDD): Measures the largest peak-to-trough decline in account
value during a specified period, reflecting the system’s potential downside risk. A lower
MDD indicates greater portfolio stability.

MDD = max
t1<t2

Portfolio Value(t1)− Portfolio Value(t2)
Portfolio Value(t1)

× 100%

A.5 DETAILED EXPERIMENTAL SETUP

A.5.1 DATASET AND SIMULATION ENVIRONMENT

Our evaluation spans the period from June 1, 2022, to June 30, 2023, and is explicitly divided into
two phases: a memory training period (June 1, 2022 – October 4, 2022) used for constructing and
calibrating the reflection memory, and a subsequent real backtesting period (October 5, 2022 – June
30, 2023) used for performance evaluation. This design ensures that memory construction and eval-
uation are temporally separated, thereby preventing information leakage across phases. All trading
decisions are simulated using daily closing prices and are conditioned strictly on news available up
to that day to prevent data snooping. To maintain methodological consistency with the FinCon (Yu
et al., 2024) benchmark, our simulation permits both long and short positions, thereby aligning our
experimental setup with prior work and ensuring direct comparability of results.

Equity news data are obtained from public financial feeds such as Alpaca and Benzinga, while
macroeconomic releases including CPI, Federal Reserve announcements, and unemployment reports
are sourced directly from Federal Reserve’s official repository.

To ensure statistical reliability and reflect real-world conditions, we report the median outcome
across 5 independent trials. For decision generation, we set the temperature parameter to 0.3 to
balance determinism and flexibility. No random seed configuration is required. Table 4 summarizes
the data composition.

A.5.2 CROSS-ASSET LEARNING PROTOCOL VIA NARRATIVE DRIVER CLUSTERS

A core limitation of traditional agent memory systems in finance is their inability to generalize
learned experiences across diverse assets. Our Reasoning-Driven Hierarchical Memory (R-Mem)
addresses this gap by introducing Narrative Driver Clusters. This paradigm organizes memories
based on underlying economic and behavioral factors driving asset prices, rather than by individual
ticker symbols, to enable cross-asset experiential transfer.
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Table 4: Summary of News Articles and Macroeconomic Data.

Category Count
Equity-Specific News (May 2022 - Jun 2023)
Apple (AAPL) 4,916
Amazon (AMZN) 3,696
Google (GOOG) 2,439
Microsoft (MSFT) 2,930
Tesla (TSLA) 6,831

Macroeconomic Signals (May 2022 - Jun 2023)
CPI Releases 13
Federal Reserve Announcements 10
Unemployment Reports 16

Based on the distinct characteristics of the five assets in our experiments, we partitioned the memory
repository into two logically cohesive cohorts:

• High-Beta & Narrative-Driven Cohort: Includes Tesla (TSLA) and Amazon (AMZN),
which share heightened sensitivity to macroeconomic liquidity and compelling industry
narratives. Memories focus on navigating high-volatility regimes.

• Platform Ecosystem & Blue-Chip Cohort: Comprises Microsoft (MSFT), Apple
(AAPL), and Google (GOOG), characterized by large market caps and resilient business
models. Memories concentrate on long-term value assessment and defensive strategies.

To validate this approach, we designed a specific “warm-up” protocol involving pre-training and
backtesting.

*Memory Pre-training Phase

• Period: To ensure the rigor of our evaluation, our memory training was strictly confined
to the period from June 1, 2022, to October 4, 2022. This deliberate temporal separation
ensures that the model cannot access any future market information during the subsequent
live backtesting period (after October 5, 2022), thereby effectively preventing implicit look-
ahead bias.

• Process: The agent operated in a simulated environment, iterating through the historical
data for 3 epochs. After each simulated trade cycle for an asset, a reflection memory was
generated and stored in its corresponding cluster, building a foundational set of structured
memories. This process, specifically, is what we refer to as the memory pre-training phase.

• Training Configuration: The High-Beta & Narrative-Driven Cohort was trained on a
mixed dataset of TSLA and AMZN. The Platform Ecosystem & Blue-Chip Cohort was
trained on a concentrated dataset of MSFT, AAPL, and GOOG.

*Backtesting Phase

• Process: Following pre-training, we conducted separate backtests for each of the five assets
over the main evaluation period (October 5, 2022, to June 30, 2023).

• Cohort-Specific Application: Crucially, assets only leveraged the R-Mem instance pre-
trained on their own cohort. For example, the backtest for TSLA utilized the R-Mem
instance pre-trained on the mixed TSLA/AMZN dataset, as did the backtest for AMZN.

This experimental design directly tests our central hypothesis regarding cross-asset generalization.
By co-training on clustered assets, we compel R-Mem to learn generalizable heuristics rather than
asset-specific idiosyncrasies. For instance, a lesson about misinterpreting momentum signals during
a market-wide liquidity contraction, learned from a TSLA trade, becomes immediately available to
inform a subsequent trading decision on AMZN under similar conditions.
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A.5.3 FURTHER DISCUSSION ON NARRATIVE DRIVER CLUSTERS

As stated in the main text, our partitioning of R-Mem into Narrative Driver Clusters is fundamen-
tally a heuristic design, inspired by observations of real-world traders and our interpretation of the
Adaptive Markets Hypothesis (AMH). We acknowledge this approach is rooted in human-centric ob-
servation, but we argue that its significance lies in this very characteristic. It represents a pioneering
attempt to structure an agent’s memory in a manner analogous to human experts—by style, sector,
or shared economic drivers—rather than by isolated ticker symbols, a path previously untrodden in
this domain.

Intuitively, this paradigm is both scalable to a larger number of assets and extensible to more granular
categories. The trading behavior of human experts provides compelling real-world evidence for this.
For example, a trader active in the oil and gas industry does not confine their focus to a single stock.
Instead, their portfolio often encompasses numerous companies across the upstream, midstream,
and downstream segments of the value chain. Their ability to navigate this complex ecosystem
effectively would be difficult to explain without some form of consensus experience transfer, where a
lesson learned from one asset is generalized and applied to its peers under similar market conditions.

Due to space limitations, a full exploration of this concept could not be undertaken in the present
work. However, we believe this is a promising direction for future research, which could investigate
more dynamic or data-driven methods for defining and evolving these memory clusters.

A.5.4 R-MEM VIA MMR

To ensure that the agent can effectively leverage its accumulated experiences, memories generated
by R-Mem are stored in a structured vectorized format. We then implement a sophisticated two-stage
retrieval mechanism based on Maximum Marginal Relevance (MMR) to promote both relevance
and diversity in the retrieved information. Unlike prior work focusing on single-asset memory, our
approach partitions memory based on assets’ fundamental characteristics to enable cross-asset trans-
fer. This process is initiated when a meta leader or reasoning leader generates a query instruction
to search for relevant past memories. The goal is to retrieve memories that are not only highly
relevant to the current market context but also sufficiently diverse to prevent cognitive fixation and
encourage robust decision-making.

The retrieval process is structured as follows:

1. Coarse-grained Recall: This initial stage is designed for rapid, broad filtering. The query
instruction generated by the leader is matched against the reflection title of all
active memories using a high-performance FAISS (Facebook AI Similarity Search) index.
This step efficiently identifies a candidate pool of the top-30 most relevant memories. If
the total number of active memories is less than 30, all available memories are included in
the candidate pool.

2. Fine-grained Reranking and Diversification: The candidate pool from the first stage un-
dergoes a more precise reranking using the MMR algorithm. In this phase, a detailed rel-
evance score is computed by combining two similarity metrics: (1) the similarity between
the query title and the memory’s reflection title, and (2) the similarity between the
query’s descriptive component and the memory’s assessment description. These
two scores are weighted equally (α = 0.5) to form a final relevance score. Finally, the
top-3 memories after MMR reranking are selected and returned to the workflow.
Subsequently, the MMR algorithm iteratively selects the top-3 memories from the can-
didate pool. The selection criterion balances relevance with diversity, governed by the
formula where relevance is weighted by λ = 0.7 and a diversity penalty (calculated as the
maximum similarity to already selected memories) is weighted by 1− λ = 0.3. This con-
figuration ensures that the final retrieved memories are both highly applicable and varied,
providing a rich set of heuristics for the agent’s subsequent reasoning steps.

A.6 MARKET COGNITION MODULE

The Market Cognition module acts as a crucial bridge between raw market information and the so-
phisticated reasoning processes of FinThink. Specifically, the Market Cognition module processes
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Figure 9: Market Cognition

the key macroeconomic, fundamental, and news data extracted by the Search Workflow. Every
14 days, it synthesizes this information into a comprehensive market summary, which is then pro-
vided to the Reasoning Workflow for in-depth analysis. This periodic summarization ensures that
the agent’s analytical foundation is consistently updated with a stable, long-term market worldview,
rather than being overly influenced by transient daily noise. This structured aggregation of market
context is vital for maintaining the depth and breadth of the subsequent reasoning and decision-
making processes.

A.7 DETAIL OF WORKFLOW

CWRM decomposes financial analysis tasks into four highly cohesive core workflows, which col-
lectively form a complete cognitive pipeline from raw information to final trading decisions.

Search Workflow: This workflow acquires necessary data (macroeconomic, technical, fundamen-
tal) from the external environment. Critically, it leverages the MarketCognitionTracker Module (see
Appendix Figure 9) to synthesize market reports, interpreting short-term signals within a long-term
market worldview to provide multi-scale context for subsequent stages.

Reasoning Workflow: As the core analytical engine, this workflow uses specialized agents to de-
duce and integrate the collected data into a structured report. The report crystallizes the system’s
judgment into four key components: Market Regime, Core Narrative, Key Conflict, and Alignment
Check.

Meta Workflow: Functioning as an internal quality inspector, this workflow scrutinizes prior in-
ferences for logical flaws, unverified assumptions, or contradictions. Upon detecting deficiencies,
the Routing Agent initiates corrective actions by re-invoking the Search or Reasoning workflows,
ensuring the inference process continually converges toward higher-quality conclusions.

Exit Workflow: As the final inference stage, this workflow transforms the consolidated analytical
report into an executable action. It synthesizes the Narrative strength, Market Regime robustness,
and signal validation to compute a confidence level (High, Medium, Low, N/A). Based on this level,
it determines the final action (e.g., BUY, SELL, HOLD) and position size, outputting a transparent,
traceable JSON instruction.

A.8 DETAILED DESCRIPTION OF THE STL (SENTIMENT-TO-LOGIC) PROMPT PROTOCOL

A critical challenge in multi-agent systems is “Reasoning Collapse into Voting”, a failure mode
where hierarchical reasoning degrades into a superficial chain-of-voting. FinThink mitigates this
through the STL (Sentiment-To-Logic) Prompt Protocol, which enforces a strict decoupling of an-
alytical and decision-making functions. The impact of this protocol is starkly illustrated in Figure
10. As shown in the right panel, a system without STL is paralyzed by conflicting market signals.
The reasoning process collapses into a simple voting mechanism (BUY vs. SELL), resulting in a
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Figure 10: STL vs. Non-STL Reasoning Outcomes — Structured Refinement vs. Collapse into
Voting

HOLD state born from indecision, not strategy. This cognitive paralysis demonstrates a failure to
learn, as no heuristic memory is referenced. In stark contrast, the left panel shows how the STL
protocol transforms this conflict into a productive refinement loop. The Meta Workflow identifies
a flaw in the initial analysis by explicitly citing heuristic memory of past errors. This triggers a
second reasoning cycle that re-evaluates the evidence and produces a confident, well-justified con-
trarian decision. By enforcing structure and leveraging memory, STL prevents system failure and
enables robust, adaptive reasoning.

A.9 AGENT PROMPT TEMPLATES

This appendix provides the detailed prompt templates that steer the core agents within the FinThink
framework. These templates enforce structured reasoning, mandate the use of historical heuristics,
and decouple analytical tasks from decision-making to prevent cognitive collapse.

A.9.1 FINAL REASONING SYNTHESIS AGENT

This agent performs the final comprehensive synthesis based on multi-source information to
form a structured, unbiased market judgment. Its output serves as the core basis for subse-
quent decision-making.

Prompt: Final Reasoning Synthesis
• Overall Goal: [Goal Description]
• Task Context: [Question/Problem Statement for the Asset]
• Current Portfolio: [Portfolio Summary]
• Agent Role: Final Synthesizer
• Input Context: [Chain history from upstream agents]
• Memory Heuristics: [List of retrieved corrective heuristics]

Core Task: Comprehensive Synthesis for [Target Symbol]
Based strictly on the provided input context and historical wisdom (corrective heuristics),
synthesize a refined and objective analysis. Your output must be purely analytical and MUST
NOT provide a direct BUY, SELL, or HOLD recommendation.

Heuristic Usage & Inline Citation Rule (Tiered Approach)
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You must support your reasoning with historical wisdom when applicable, using one of the
following citation formats.
1. Tier 1: Contextual Citation (For high-level warnings or pattern recognition): Cite when

a memory’s theme provides crucial context, but its specific heuristic is not directly appli-
cable.

2. Tier 2: Prescriptive Citation (For direct application of corrective actions): Cite when
a memory’s heuristic is directly and logically applicable to justify your reasoning (e.g.,
adjusting signal weights).

Analysis Steps & Output Structure (Strictly Adhere)
1. Best Narrative Construction

• Best Narrative Thesis: A concise summary of the core narrative (max 50 words).
• Causal Narrative Synthesis: A detailed paragraph synthesizing how macro, fun-

damental, sentiment, and technical factors interact.
• Structured Narrative Components:

– SentimentPulse: [Strongly Bullish — ... — Strongly Bearish]
– ImpactLevel: [High — Moderate — Low]
– Expected Positioning Response: A description of anticipated market behavior.
– Observed Technical Confirmation: Bullet points on Price Action, Momentum,

Volume/Flow.
– Factual Anchor Points: 2-3 critical facts from Search findings underpinning the

narrative.
2. Market Regime Classification

• Classification Result: [Strong Bullish — ... — Strong Bearish]
• Regime Polity: A one-sentence characterization of the regime’s nature.
• Regime Synthesis Explanation: Explain how macro, technical, and fundamental

signals were integrated and reconciled to derive the classification.
3. Overall Synthesis & Assessment: Summarize the current state and dominant narra-

tive/bias.
4. Key Bullish Factors (Evidence-Based): List the 2-3 most significant positive factors

with their evidence source and weighted significance.
5. Key Bearish Factors (Evidence-Based): List the 2-3 most significant negative factors

with their evidence source and weighted significance.
6. Significant Conflicting Factors & Uncertainty Assessment: Identify high-weight

conflicting signals, explain the nature of the conflict, and describe the resulting un-
certainty.

7. Risk/Reward Profile – STL-II: From Sentiment to Dynamics
• 7.1. Structural Alignment Check: Compare the implied behavior from the Best

Narrative with the Market Regime. Outcome: Aligned or Misaligned.
• 7.2. Structure-Violation Justification (Only if Misaligned): Determine if the mis-

alignment is a calculated tactical opportunity or an unsupportable violation. Out-
come: Justified Violation, Unjustified Violation, or N/A.

• 7.3. Sentiment–Outcome Transition (STL-II Path Analysis): Determine the rea-
soning path’s integrity. Outcome: Robust (Structural), Vulnerable (Tactical), or
Broken.

• 7.4. Final Qualitative Risk Synthesis: Classify the final risk posture. Choice:
High-Conviction Action — ... — Conflicted/Neutral Stance.

8. Timescale Considerations: Identify and discuss any divergence between short-term
and long-term signals and its implications.
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A.9.2 FINAL META AGENT (DIRECTIVE FORMULATION)
This agent acts as a Strategic Review Officer, responsible for reviewing defects found in the
previous reasoning cycle. Its task is to generate a clear, actionable ’Analytical Directive’ for
the next reasoning agent based on historical experience and the current snapshot.

Prompt: Meta Directive
• Overall Goal: Formulate an Analytical Directive to correct a reasoning flaw.
• Primary Input: [Defect Analysis Report from the initial Meta-agent]
• Reference Input 1: [Original Reasoning Output and Search Data Snapshot]
• Reference Input 2: [Historical Wisdom/Reflections linked to cited Memory IDs]
• Agent Role: Strategic Review Officer

Guiding Philosophy & Core Constraints
Your goal is to issue a clear, actionable Analytical Directive for the next reasoning cycle,
correcting the paradigm flaw identified in the defect report.

1. Critical Instruction: You must actively integrate the lessons from [Historical Wisdom]
into your directive in natural language, demonstrating a deep understanding of the par-
allel between the past situation and the current one. Do not explicitly cite UUIDs in the
final output.

2. The Snapshot Principle: All directives must be actionable based only on currently
known information. Do not formulate plans requiring future observation.

Task: Generate a Structured, Actionable Directive
1. Central Thesis for the Next Reasoning Cycle

• Thesis Statement: A single, concise, falsifiable question or conflict statement.
• Origin & Historical Link: Explain why this thesis is critical by connecting the

current situation to a historical parallel provided in the reflections.
• Causal Context: Indicate where this thesis sits within the causal chain (e.g., struc-

tural bias).
• Task Allocation Intent: Specify what the downstream agent must investigate based

on this thesis.
• Risk-Opportunity Anchor: Define the primary risk if the thesis holds true and the

potential opportunity if it is falsified.
2. Key Conflicting Evidence from Current Snapshot

• Evidence For Side A: Specific data point(s) supporting one side of the conflict.
• Evidence For Side B: Opposing data point(s), especially what was previously

missed.
3. Proposed Analytical Adjustment (Heuristic)

• The Rule: Propose a clear rule or focus shift for the next reasoning cycle, directly
inspired by a historical lesson.

• Justification from Historical Wisdom: Explain why this adjustment is the correct
response. State the principle learned from a past event and argue for its applicability
now by comparing the historical context with the current snapshot.

• Constraint: The Snapshot Principle in Action
Your heuristic must be a rule for interpreting current, known data. It must not be
a plan requiring future data.

– Allowed Heuristics (Current Snapshot Interpretation):
* “Given elevated macro uncertainty in the current snapshot, downgrade tech-

nical signal weights by one tier for this cycle.”
* “In a confirmed structural breakdown (per current data), de-weight short-

term oversold oscillators as noise.”
– Forbidden Heuristics (Requires Future Observation):...
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A.9.3 DECISION PROTOCOL AGENT

This agent is responsible for synthesizing the final analytical outputs into a quantifiable trad-
ing action. It follows a strict protocol to ensure decisions are logical, risk-managed, and
consistent with the framework’s principles.

Objective This protocol aims to make trading decisions by establishing the strategic di-
rection via Market Regime and integrating the STL-II action validation module as a decisive
tactical filter. STL-II is used not only to assess the reasonableness of actions but also pos-
sesses robust risk control capabilities, thereby enabling flexible trading and effective risk
management. In cases where the signals from the Market Regime and STL-II are inconsis-
tent or misaligned, this protocol shall prioritize Cover over Hold.

Decision Terminology & Confidence Levels
• Decision Action: BUY, SELL, HOLD, COVER LONG, COVER SHORT
• Confidence Level: High, Medium, Low, Very Low

Guiding Principles

1. Alignment Principle:
Complete consistency between the directional signals of the Market Regime and STL-II
is the primary prerequisite for initiating a trade. This signifies a high-quality signal. In
this context, opening a position is encouraged; if a position already exists and the risk
assessment is appropriate, adding to the position is permissible.

2. Conflict Principle:
Any directional inconsistency (misalignment) between the Market Regime and STL-II,
unless explicitly labeled as ”Justified Contrarian,” should be treated as a strong risk warn-
ing signal. The following rules apply:

• If a position contrary to the regime’s direction is held: It should be immediately
covered.

• If a position aligned with the regime’s direction is held: Reducing or covering the
position should be considered.

• If no position is held: Opening a new position is strictly prohibited.

3. Exception Principle:
A signal explicitly labeled by STL-II as ”Justified Contrarian” is the only scenario where
opening a position is allowed amidst conflicting signals. Such trades are classified as
high-risk and must utilize a ”Very Low” confidence level, with the position opened
strictly according to the direction indicated by STL-II.

Decision Process

1. Extract Core Inputs
• Regime Direction
• STL-II Direction
• Qualitative Tag (e.g., ”Justified Contrarian”)
• Current Position

2. Evaluate Signal Consistency (Alignment Check)
• Scenario A: Alignment

The Regime Direction is perfectly consistent with the STL-II Direction. This is a
high-quality trading signal.

– If no position is held or an aligned position exists, prepare to BUY/SELL or add
to the position. Proceed to Step 3.

– If a contrary position is held, immediately cover and consider a reverse position
(”cover and reverse”).
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• Scenario B: Misalignment
The Regime Direction is inconsistent with the STL-II Direction.

– Check for Exception: Is the STL-II Qualitative Tag ”Justified Contrarian”?
* Yes (Exception applies): Prepare to open a position with Very Low confi-

dence, strictly following the STL-II direction. Proceed to Step 4.

* No (Dangerous signal): If any position is held, execute COVER LONG or
COVER SHORT. Otherwise, strictly HOLD. The process ends.

3. Assign Confidence Level for ”Aligned Signals”
This step applies only to ”Alignment” signals from Step 2.

• Base Confidence: A Strong Regime sets a High base confidence; a Weak Regime
sets a Medium base confidence.

• Confidence Adjustment:
– If the STL-II tag is Aligned and Sustainable or High-Conviction, elevate the

confidence level (e.g., Medium→ High).
– If the STL-II tag is Aligned but Cautious, the confidence level remains un-

changed.
– If a comprehensive assessment reveals significant concerns, downgrade the con-

fidence level (e.g., Medium→ Low).
– If the STL-II tag is Structurally Unsound, this has veto power; the decision is

downgraded to HOLD.

4. Calculate Final Quantity
• Base Quantity: Assume Total Assets = $1,000,000. The Base Quantity is defined

as 40% of total assets, representing $400,000 worth of stock.
• Confidence Multiplier: High: 1.0, Medium: 0.8, Low: 0.5, Very Low: 0.2.
• Signal Multiplier: For BUY/SELL/COVER, the multiplier is 1.0; for HOLD, it is

0.
• Final Formula:

Final Quantity = Base Quantity× Signal Multiplier× Confidence Multiplier

5. Generate Final Output (JSON Only)

{
"Reasoning": "<Within 400 words. Must clearly

explain the decision process: 1. State Inputs: Re-
port the Market Regime and the STL-II analysis re-
sult. 2. Declare Logical State: State ’Alignment’
or ’Misalignment’. 3. Trace Reasoning Link: Ex-
plain how the inputs map to the final decision by
referencing the triggered protocol principle. 4.
State Final Action: Clearly state the final ’Deci-
sion’ and ’Confidence’.>",

"Decision": "<BUY | SELL | HOLD | COVER LONG |
COVER SHORT>",

"Quantity": "<Integer>",

"Confidence": "<High | Medium | Low | Very Low |
N/A>"

}
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A.10 DETAILED WALKTHROUGH OF A SINGLE REASONING CYCLE (GOOG, 2023-02-06)

This appendix provides a step-by-step breakdown of the FinThink system’s reasoning process for a
single trading decision concerning Google (GOOG) on February 6, 2023. It showcases the iterative
loop of information gathering (Search), analysis (Reasoning), self-critique (Meta), and final action
(Exit), demonstrating the system’s dynamic and reflective capabilities.

Step 1: Search Workflow

Agent Role: Lead Search Coordinator
Objective: Synthesize raw market data into structured, sentiment-driven signal chains.

1. DETAILED FACTUAL LIST

• Macro: US Unemployment Rate drops to 3.4% (stronger economy). Fed raises rates
by 25bps.

• Technical: GOOG at $105.20, above key SMAs/EMAs. MACD is positive. Overall
technical momentum is strong, but Stochastic Oscillator is overbought.

• Fundamental: YouTube ad revenue $7.96B. GOOG shares declined post-earnings due
to AI competition fears (Microsoft/ChatGPT). Google is testing its own AI chatbot and
conducting layoffs.

2. SENTIMENT-DRIVEN SIGNAL CHAINS (STL)
• Chain 1 (Bullish Macro): Resilient labor market reduces recession fears, potentially

leading to a market rally.
• Chain 2 (Bearish Fundamental): AI competition from Microsoft threatens Google’s

search dominance.

Step 2: Initial Reasoning

• Chain 3 (Mild Bearish Fundamental): Layoffs and cost-cutting signal uncertainty
about future growth.

3. INITIAL ASSESSMENT

The market regime is identified as Tentative Bullish based on technical strength. How-
ever, a significant conflict exists between the bullish macro narrative and the bearish fun-
damental narrative centered on AI competition. The overbought Stochastic Oscillator
signals a potential for a short-term pullback.
Agent Role: Lead Reasoning Strategist
Objective: Construct a coherent narrative from the search results and classify the market
regime.

Best Narrative Thesis: The narrative suggests a period of macro-driven stabil-
ity, where a resilient labor market and moderating inflation provide a supportive
backdrop for GOOG’s AI adaptation and growth initiatives.

MARKET REGIME CLASSIFICATION

• Classification: Weak Bullish
• Synthesis: The classification is derived from supportive macro data and positive sen-

timent around GOOG’s AI advancements. Technicals show price consolidating above
key support levels.
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RISK/REWARD PROFILE (STL-II)
• Structural Alignment Check: Aligned. The implied behavior is LEANING LONG,

which matches the Weak Bullish regime.
• Final Qualitative Synthesis: Aligned but Cautious Action.

Heuristic Reference (2b53...5792): Cognitive Flaw: Over-reliance on short-
term technical alignment, underweighting persistent fundamental and compet-
itive bearish signals. Corrective Heuristic: IF STL-II indicates ’Aligned but
Cautious’ in a Weak Bullish regime, THEN before initiating a long position,
conduct a weighted analysis of conflicting signals... reduce the position size
by at least 50% or avoid the trade entirely, regardless of short-term technical
alignment.

Step 3: Meta & Critique

Agent Role: Reviewer
Objective: Scrutinize the previous reasoning for logical flaws, biases, or overlooked con-
flicts, and propose an analytical adjustment.

Central Thesis for Next Cycle: Is the current “Weak Bullish” market regime
assessment for GOOG overly optimistic, given the persistent fundamental head-
winds and the conflicting technical signals (strong momentum vs. overbought
indicators), mirroring past instances where macroeconomic vulnerabilities were
underestimated?

KEY CONFLICTING EVIDENCE

• For (Bullish): Strong unemployment data, price above SMAs, positive MACD.
• Against (Bearish): Post-earnings stock decline due to AI fears, ongoing layoffs, over-

bought Stochastic Oscillator.

PROPOSED ANALYTICAL ADJUSTMENT

Downgrade the confidence in the “Weak Bullish” regime. Apply a position sizing scaling
factor based on a risk-reward ratio that is heavily weighted against the identified structural
tensions (Macro vs. Fundamental). This is based on historical wisdom where similar
regimes led to losses when macro uncertainty was underestimated.

The Meta Agent’s critique triggers a corrective reasoning loop. The system now re-evaluates its
assessment with a focus on the identified conflicts.

Step 4: Refined Reasoning (Post-Critique)

Agent Role: Lead Reasoning Strategist
Objective: Re-assess the narrative, incorporating the Meta Agent’s directive to weigh
fundamental concerns more heavily.

Revised Narrative Thesis: The market resilience, driven by positive sentiment
and technical strength, is temporarily masking underlying fundamental concerns
about GOOG’s long-term growth prospects and competitive pressures.

MARKET REGIME CLASSIFICATION

• Classification: Weak Bullish (Maintained, but with lower confidence).
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• Synthesis: The regime is maintained due to strong technical momentum and macro
support, but the synthesis now explicitly acknowledges that this is tempered by signifi-
cant fundamental headwinds.

RISK/REWARD PROFILE (STL-II)
• Structural Alignment Check: Aligned.
• Final Qualitative Synthesis: Aligned but Cautious Action.

Heuristic Reference (a333...0fe6): Prioritizing fundamental catalysts over
short-term technical overbought signals. Corrective Heuristic: IF the mar-
ket regime is neutral or weakly bullish AND high-impact positive fundamental
catalysts are present AND technical indicators show overbought conditions,
THEN prioritize the fundamental catalysts as dominant signals. Down-weight
the short-term overbought signals.

Step 5: Final Meta & Directive

Agent Role: Reviewer
Objective: Perform a final check, focusing on the tactical implementation and signal
priority.

Central Thesis for Next Cycle: Is the current market’s strong upward momen-
tum a more reliable indicator of GOOG’s short-term price movement than the
overbought Stochastic Oscillator, and should position sizing be adjusted accord-
ingly?

PROPOSED ANALYTICAL ADJUSTMENT (HEURISTIC)
Given the conflicting signals of strong upward momentum and an overbought Stochastic
Oscillator in a Weak Bullish regime, prioritize the overall market momentum as the
dominant short-term signal. Reduce the weighting of the Stochastic Oscillator in the
final assessment. Adjust position sizing to reflect higher confidence in the upward trend,
but still apply a risk-reduction factor due to the persistent fundamental concerns (AI com-
petition, etc.). This balances seizing the opportunity with prudent risk management, as
learned from historical cases.
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Step 6: Exit Workflow & Final Decision

Agent Role: Active Alpha Trader
Objective: Execute a final, quantifiable trading action based on the full reasoning process.

{
"Reasoning": "The current situation is 'Perfect Alignment'.

The Market Regime is Weak Bullish, and STL-II indicates

a leaning long position. This alignment suggests a

high-quality trading signal. The base confidence is set

to Medium due to the Weak Bullish regime. STL-II's tag

'Aligned but Cautious Action' means confidence remains

Medium. The final decision is based on a high-quality

aligned signal, but with 'Cautious' tag.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Decision": "BUY",

"Quantity": 6580,

"Confidence": "Medium"

}

SUMMARY OF ACTION
The system concludes that despite underlying risks, the alignment of the market regime with
the implied long behavior, backed by strong momentum indicators, constitutes a valid trading
signal. It issues a BUY order with medium confidence, with the quantity likely scaled down
due to the “Cautious” flag raised during the reasoning process.

A.11 ETHICS STATEMENT AND AI USAGE DISCLOSURE

• Ethics and Societal Impact: The FinThink framework presented in this paper is an academic
research prototype, designed to explore the capabilities of LLM-based multi-agent systems in fi-
nancial reasoning within a controlled, simulated environment. It is crucial to emphasize that Fin-
Think is not intended for real-world deployment as a financial advisory tool or automated trading
system. Financial markets are subject to extreme complexity, volatility, and unpredictable events
that may not be fully captured by the historical data used in our backtests. Therefore, any outputs
generated by the system should be considered illustrative and should under no circumstances be
interpreted as investment advice. Using this system for actual trading could lead to significant
financial loss, and we strongly advise against it.

• Use of Large Language Models in Paper Preparation: In accordance with the ICLR 2026
policy, we disclose that Large Language Models (LLMs) were utilized to aid and polish the writing
of this manuscript. The primary use was to improve grammatical correctness, clarity, and overall
readability. The core scientific contributions, including the proposed framework, experimental
design, data analysis, and conclusions, are entirely the original work of the authors. The authors
take full responsibility for the final content of this paper.
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