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Abstract

Detecting Al-involved text is essential for combating misinformation, plagiarism,
and academic misconduct. However, Al text generation includes diverse collabora-
tive processes (Al-written text edited by humans, human-written text edited by Al,
and Al-generated text refined by other Al), where various or even new LLMs could
be involved. Texts generated through these varied processes exhibit complex char-
acteristics, presenting significant challenges for detection. Current methods model
these processes rather crudely, primarily employing binary classification (purely
human vs. Al-involved) or multi-classification (treating human-AlI collaboration as
a new class). We observe that representations of texts generated through different
processes exhibit inherent clustering relationships. Therefore, we propose DETree,
a novel approach that models the relationships among different processes as a
Hierarchical Affinity Tree structure, and introduces a specialized loss function that
aligns text representations with this tree. To facilitate this learning, we developed
RealBench, a comprehensive benchmark dataset that automatically incorporates a
wide spectrum of hybrid texts produced through various human-Al collaboration
processes. Our method improves performance in hybrid text detection tasks and
significantly enhances robustness and generalization in out-of-distribution scenar-
i0s, particularly in few-shot learning conditions, further demonstrating the promise
of training-based approaches in OOD settings. Our code and dataset are available
athttps://github.com/heyongxin233/DETree.

1 Introduction

With the widespread deployment of large language models (LLMs) [}, 12} [3} 14} 5], Al-involved text
generation has become increasingly diverse, encompassing LLM-assisted refinement of human drafts,
human revision of LLM outputs, and collaborative generation involving multiple LLMs, among
other strategies. In practice, tolerance for Al involvement varies across scenarios. For example,
LLM-based editing may be acceptable in copywriting, whereas it is strictly prohibited in originality-
focused contexts. This necessitates detection methods that can identify not only whether Al is
involved, but also how it is involved and to what extent. Despite this need, existing Al-text detection
methods [6} [7, (8 9] are typically developed and evaluated on specific datasets, focusing on binary
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classification between purely human-written and purely machine-generated content. However, such
approaches often struggle to generalize to complex scenarios involving human—AlI collaborative text.

Although recent studies have attempted to detect human—AI collaborative text, such as by regressing
the degree of LLM involvement [[10] or classifying text based on content and style features from
predefined prompts [ 1]. However, these methods rely on coarse-grained estimation of Al involvement
or shallow statistical representations, thereby limiting their applicability to real-world detection tasks.

To address these issues, we construct RealBench, a large-scale benchmark designed to reflect practical
hybrid text detection settings, which encompasses diverse human—AlI collaboration modes, spanning
1,204 text categories (e.g., Llama3_polish_ GPT-4o [2| [12]], human_polish_Geminil.5 [13]) and
approximately 16.4 million text samples. The dataset covers a wide range of generation types, and its
distribution closely reflects real-world usage patterns. We investigate the categorization of hybrid
texts and find that, in human—AlI collaborative writing, traces of Al involvement tend to be more
prominent than human characteristics.

We propose a novel representation learning-based approach, which incorporates structured source
modeling, going beyond traditional flat classification. We observe that texts produced by different
generation mechanisms naturally exhibit varying degrees of relational similarity. For example, the
similarity between texts labeled as “Llama3_polish_GPT-40” and “Claude3.5_paraphrase_GPT-
40” [14] is higher than their similarity with “human_polish_Geminil.5”, and lowest when compared
to purely human-written text. To model this structure, we propose an adaptive algorithm that
constructs a Hierarchical Affinity Tree (HAT) from the inter-class similarity matrix, with the
flexibility to incorporate task-specific structural adjustments. HAT captures intrinsic affinities across
arbitrary categories and offers strong interpretability and scalability. Building upon HAT, we develop
a Tree-Structured Contrastive Loss (TSCL) that explicitly aligns the embedding space with the
hierarchical structure. This alignment enhances representation quality.

Moreover, with the rapid emergence of new LLMs, an effective detector should exhibit generalization
ability to identify Al involvement from previously unseen LLMs under out-of-distribution (OOD)
settings. While many detectors achieve high accuracy on training distributions or under minor domain
shifts, their performance degrades under more severe distribution changes [|L5]]. To address this, we
propose a retrieval-based few-shot adaptation paradigm that reformulates cross-domain detection as a
matching problem under low-resource conditions. The proposed method adjusts the classification
decision boundary using limited support samples and demonstrates strong adaptability in the presence
of severe distribution shifts, achieving improvements in AUROC under OOD settings, including
+15.55 on MAGE-Paraphrase [16], an average of +7.94 on DetectRL [17], and +10.39/+15.01 on the
GPT40-Edited and Llama3.1-Edited subsets of Beemo [18]].

In summary, our contributions are threefold: (I) proposing a novel representation learning-based
classification paradigm that constructs a Hierarchical Affinity Tree among text categories; (II)
constructing a realistic benchmark dataset that simulates human—Al collaborative writing scenarios
and conducting a systematic analysis of hybrid texts; (III) providing an effective solution and a
promising direction for training-based strategies to detect Al-generated content under OOD settings.

2 Related Works

Detection of Purely-Generated Text. Transformers and language models have advanced rapidly in
recent years, giving rise to a variety of techniques for detecting Al-generated text. Prior work in this
area explores multiple paradigms. Watermarking methods [19, 201 21} 22} 23] 24] embed identifiable
patterns into generated content, which can be identified during downstream detection using specialized
algorithms. Statistical methods [25) 26} 27, 28, 129, 130, 31]] exploit the characteristic probabilistic
distributions inherent in the text generation process of language models. These methods employ
manually crafted statistical features to differentiate machine-generated text from human-written
content. With the growing availability of large-scale datasets, data-driven approaches [6} 32, [33]]
have achieved notable progress. Ghostbuster [34] extracts token-level features from multiple weak
language models, conducts structured feature selection, and uses the selected signals to train a
classifier for Al text detection. T5-Sentinel [35]] leverages intermediate hidden representations from
the TS5 model [8] to perform classification. DeTeCtive [36] proposes a supervised detection framework
based on stylistic feature learning. To improve the generalization of detectors to emerging models and
unseen domains, recent work has explored few-shot learning approaches for detection. OUTFOX [37]]



employs in-context learning by incorporating a small number of examples into the prompt, enabling
the model to perform both classification and adversarial example generation. UAR [38] leverages a
limited set of text samples generated by a specific LLM to quickly localize the model’s position in
the stylistic space for detection purposes.

Detection of Hybrid or Collaborative Text. With the widespread adoption of Al-assisted writing
tools, an increasing amount of text is now collaboratively authored by both humans and machines,
resulting in "hybrid" content. Several studies [39} 40, 4 1] have explored sentence-level and boundary-
level detection of such human—AlI collaborative text. MIXSET [42] reveals the failure of mainstream
detectors in reliably identifying hybrid content. APT-Eval [[15] shows that existing detectors often
suffer from high false positive rates, limited discrimination ability, and strong biases toward older
and smaller models when faced with lightly Al-polished text. HART [L1] proposes a hierarchical
detection framework based on decoupling content and expression, enabling multi-level identification
of Al involvement, such as distinguishing between Al-assisted refinement (low-risk) and fully Al-
generated text (high-risk). Unlike Hierarchical Text Classification (HTC) [43] 44, 45]], where the
label hierarchy is predefined and multi-path annotation is explicitly supported, hybrid text detection
involves inherently ambiguous and dynamically evolving labels that lack fixed structural definitions.
Therefore, the strong structural assumptions of HTC, like rigid tree taxonomies, are poorly suited to
the flexible and ambiguous nature of hybrid text categories.

3 Method

An overview of the proposed DETree framework is provided in Figure|l} which outlines the key
components of our method. Section presents the motivation and construction of RealBench.
Section[3.2]introduces the construction of the Hierarchical Affinity Tree (HAT) based on class-level
representation similarities. Section formulates the Tree-Structured Contrastive Loss (TSCL),
which leverages the learned HAT to guide representation learning. Section [3.4]further describes the
implementation details of the inference with DETree.

3.1 Motivation and RealBench Construction

In this work, we focus on the detection of human—AlI collaborative text. Given an input text sequence
x = {wy,wa,...,wr}, the goal is not only to determine whether LLMs were involved in the
generation process, but also to identify the specific form of involvement, such as single LLM
generation, multi-LLM collaboration, human-written text edited by LLMs, LLM-generated text
revised by a human. Variations in text generation processes can introduce semantic and stylistic
signatures that reflect the underlying generation source. For example, the similarity between samples
labeled as "Llama3_polish_GPT-40" [2,[12] and "Claude3.5_paraphrase_ GPT-40" [14]] is expected to
be higher than their similarity with "DeepSeek-V3" [4], since both involve refinement using GPT-4o.
Meanwhile, their similarity to human-written text should be the lowest, as their generation processes
are fundamentally different. These interactions give rise to a hierarchical similarity structure among
generation sources. However, existing approaches predominantly rely on flat class modeling, failing
to capture and exploit this structurally informative signal.

Meanwhile, given that existing datasets focus on purely human-written or Al-generated text, we
construct a large-scale hybrid text benchmark, RealBench, by aggregating original samples from
MAGE [16], M4 [46,47]], TuringBench [48], OUTFOX [37], and RAID [49]. Based on these samples,
RealBench introduces a range of hybrid text construction strategies that reflect real-world human—Al
collaboration patterns, including paraphrasing, extension, polishing, and translation. For example, a
human-written text polished by Geminil.5 is labeled as “human_polish_Geminil.5”. Additionally,
RealBench integrates 11 perturbation-based attack types. See Appendix [I] for more details.

3.2 Hierarchical Affinity Tree Construction

We propose a Hierarchical Affinity Tree Construction Algorithm to formalize and leverage latent rela-
tional structures among text categories. Specifically, we fine-tune an encoder fp(+) using supervised
contrastive learning [S0], treating each category as an independent class. The expected inter-class
similarity between any pair (X, Y") is computed as the dot product of their corresponding centroid
vectors, where each centroid is computed as the mean embedding across all samples within that
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Figure 1: The overall framework of DETree. Class similarity matrix is computed from representations
learned via supervised contrastive learning, with each class treated independently. Based on the
similarity matrix, Hierarchical Affinity Tree (HAT) is constructed. Guided by the HAT, Tree-
Structured Contrastive Loss is introduced to retrain the text encoder, aligning the representation space
with the hierarchical relations defined by the HAT.

category, as shown in equation[9] Although the encoder is trained to maximize inter-class separability,
it still exhibits latent clustering tendencies among related categories in the embedding space, as shown
in Figure[TT] suggesting the presence of hierarchical relations.

Motivated by the observed latent structure in the embedding space, we construct Hierarchical Affinity
Tree (HAT) to explicitly represent inter-category relationships. In the HAT, leaf nodes correspond to
specific categories, while internal nodes capture their associations. The depth of the lowest common
ancestor between two nodes reflects the degree of similarity between the corresponding categories.

The initial HAT is constructed based on a class similarity matrix £ € RV*N_ We employ a
agglomerative hierarchical clustering algorithm [51]] to generate an initial binary tree structure. Since
hierarchical clustering enforces a strictly binary tree structure, closely related categories may be
unnecessarily split across branches.

In response, we introduce an editable top-down subtree reorganization algorithm. We first predefine
three prior heads according to whether hybrid texts belong to the human category, the Al category,
or form an independent category, and then use these heads to guide subtree restructuring. See
Appendix [B] for details. For each subtree = under reconstruction, we enumerate all possible partitions
of the subtree, assess their clustering quality using the Silhouette Score [52], and select the partition
with the highest score. This process is recursively applied until a predefined stopping criterion is met.
The overall computational complexity of the algorithm is O(N? log N), and further implementation
details are provided in Appendix [C|

3.3 Tree-Structured Contrastive Learning

To align the learned representations with the hierarchical structure defined by the HAT, we propose
a Tree-Structured Contrastive Loss (TSCL) that explicitly models the hierarchical relations among
categories in the representation space. Formally, let 7 denote the HAT constructed over the full set of
categories. Each category label y corresponds to a leaf node ¢ in 7, where d. denotes its depth. The
1-th ancestor of node ¢, counting from the bottom (with ¢ = 0 corresponding to c itself), is denoted by

fc(i). Starting from ¢, we partition all categories into d,. disjoint sets based on their lowest common
ancestor (LCA) with c. The i-th hierarchical partition set associated with node c is defined as:

Hc(i) _ {x ‘ = leaf(fc(i)) \leaf(fc(iil))} ’ v

where leaf(z) denotes the set of leaf nodes under the subtree rooted at node x. Thus, H, O contains
all categories whose nearest common ancestor with c is exactly fc(l). By definition, HC(O) = {c}.
Under the tree T, categories sharing a closer common ancestor with ¢ are expected to exhibit higher

similarity and lie closer in the embedding space. To formalize this intuition, we introduce the
following hierarchical similarity constraint.



Theorem 3.1 [Hierarchical Similarity Constraint] Ifin the tree T, for any leaf class X corresponding
to node c, the following holds:

E[sim(X,Y)] > E[sim(X,2)], VY0<i<j<d.,YecHY, ZecHYD. 2)
Then, for any leaf classes X, Y, Z, the following inequalities holds:
E[sim(X,Y)] > E[sim(X, Z)], ifdicacx,y) > dLca(x,2)- (3)

Where E[sim(-, -)] denotes the expected similarity between categories.

By Theorem [3.1] inequalities 2] and [3| are equivalent. The proof is provided in Appendix

To encourage the embedding space to better align with the hierarchical structure modeled by the HAT,
we aim to optimize the inequalities [3|during training, such that categories that are closer in the HAT
structure are mapped to more similar representations, while those farther apart are pushed away.

However, directly optimizing inequalities [3]is challenging. Therefore, based on the equivalence in
Theorem 3.1] we transform the objective to the more tractable inequalities[2} Accordingly, we adopt
the following training objective:

max E,p[G(:0)], “

Glz;0)= Y (EMHS-)) [sim (fo (@), fo)] = E __yyq00, [sim(fo(a), fg(z))D. )

0<i<j<d.

Here in equation |4 D denotes the distribution of text samples z, ¢ denote its corresponding leaf
node in the HAT, and d.. its depth. In equation |5} the function fy(z) € R denotes the embedding
of x computed by the encoder fy. The sets Hc(l) are defined as in equation m and U (Héz)) denotes
the distribution over Hél). The similarity function sim(-, -) measures the pairwise similarity between
embeddings. The objective G(x; #) computes the expected similarity gap between all hierarchical
pairs (4, j) of categories associated with node c.

Motivated by contrastive learning, we reformulate the hierarchical similarity constraint into a struc-
tured positive—negative sampling scheme tailored to the tree hierarchy. For each hierarchical level

i (0 < i < d.), we define the positive set P; = Héi) and the negative set N; = Ud“ Héj). The

j=i+1
complete Tree-Structured Contrastive Loss (TSCL) is defined as:
] de=l
L0y — (1) (-
Lrscn(:6) = o- ; £0(:0), (©)

where each hierarchical contrastive loss £% (x;0) is computed as:

exp (17 Siep, sm(fole), fo(k))/7)

exp (\Tﬂ 2kep, sim( fy(x), fe(k))/T) +2 ken, P (sim(fo(@), fo(k))/T) -

(N
Where 7 > 0 is a temperature parameter, and sim(+, -) denotes the similarity function (e.g., cosine
similarity) between embeddings. This formulation reflects a hierarchy-aware similarity structure,

encouraging representations to be increasingly similar to categories with closer shared ancestors in
the tree, and more dissimilar to those located further apart in the hierarchy.

LY (x;0) = —log

In practice, due to the large number of categories C, a single training mini-batch 5 may not contain
sufficient instances to fully cover all categories. Consequently, We introduce the Virtual Class
Prototype (VCP) mechanism: for each class c, a learnable prototype vector v. € R? is introduced
to participate in contrastive learning as a persistent anchor, without incurring additional memory
overhead. The entire TSCL training process supports parallel computation and incurs similar runtime
to standard contrastive learning.



3.4 Inference with DETree

K-Means Based Database Compression. In the task of Al-generated text detection, samples
typically originate from multiple domains. Even when the source is the same, substantial variation
in domain may lead to multi-cluster distributions (see Figure @]) In such scenarios, K-Nearest
Neighbors (KNN) classification methods [S3[] naturally adapt to complex distributions and allow
flexible modification of the retrieval database according to task-specific requirements. However, their
computational and storage costs grow linearly with the size of the database. Moreover, when class
sizes are imbalanced or spatial distributions are non-uniform, decision boundaries tend to become
distorted. To address this, we propose a database compression method aimed at reducing the number
of retrieval candidates while maintaining a balanced class representation. Specifically, for each class,
we apply K-means [54] clustering to partition its instances into K clusters. The normalized direction
of the mean vector of each cluster is then used as its representative, resulting in a compact class
representation. More details are provided in Appendix [E]

Retrieval-Based Few-Shot Adaptation. Distributional discrepancies arise between datasets due to
differences in text sources, prompt types, and generation model configurations, reflecting domain
shifts. Conventional binary classification methods tend to rely on superficial features, which limits
their ability to generalize across domains. As a structured source modeling approach, DETree relies on
a retrieval database constructed from training data. However, when this data lacks sufficient coverage,
the resulting database fails to generalize to target domains, leading to performance bottlenecks under
out-of-distribution (OOD) scenarios. To address this, we incorporate a small number of target-
domain samples to rebuild the retrieval database, enabling more accurate decision boundaries in the
embedding space and significantly improving detection performance under domain shift.

4 Experiments

4.1 Experimental Setup

Dataset. We conduct in-distribution supervised experiments on the MAGE [16], M4 [46| 47,
TuringBench [48]], OUTFOX [37]], and RAID [49] datasets. Given substantial differences across
benchmarks in terms of generation models, human text sources, domain distributions, and prompting
configurations, we treat unseen benchmarks (DetectRL [17]], Beemo [18]], HART [11], and the OOD
setting of MAGE) as out-of-distribution test sets for evaluating model generalization. Detailed dataset
specifications are provided in Appendix [H|and

Comparison Methods and Metrics. We evaluate zero-shot methods including Fast-DetectGPT [28]
(shortly Fast-Detect), Binoculars [29]], and Glimpse [55]]; hybrid text classification via HART [[L1];
few-shot classification via UAR [38]]; and data-driven methods including SCL [56], MAGE [16]],
T5-Sentinel [35], DeTeCTive [36]], and RADAR [9]]. Since large language models in real-world
scenarios are often black-box and inaccessible, we exclude watermarking methods. Evaluation metrics
include F1, AvgRec (mean recall of human and machine text), and AUC-ROC. We additionally report
TPR@5% FPR to assess detection performance under low false positive constraints.

Implementation Details. We fine-tune RoBERTa-large [57] using LoRA [58]], with AdamW [359],
cosine annealing, a 3e-5 initial learning rate, and 2000 step linear warm-up. Training runs for 10
epochs on 8xRTX 4090 GPUs with a batch size of 64 and a maximum input length of 512 tokens. For
inference, we use Faiss-GPU [60] for efficient K-means and K-Nearest Neighbors. The representation
layer is selected from layers 17-19, and the number of neighbors & is set to 5 or 50 based on validation
performance. To compute class probabilities, we follow DINOv2 [61] and replace majority voting
with similarity-weighted scoring over the retrieved neighbors. The contrastive-learning temperature 7
is set to 0.07.

4.2 Results

We explore our method across five key dimensions: (I) HAT Analysis: effectiveness of TSCL and
interpretability of the HAT structure; (II) Supervised Detection: model performance on in-distribution
binary classification tasks; (III) Out-of-Distribution Generalization: model performance on binary



Table 1: Comparison of supervised detection performance. w/ per dataset denotes DETree trained
individually on each dataset. w/ priorl/2/3 indicates DETree trained on RealBench under prior
assumptions prior 1/2/3 (see Figure[7). w/o TSCL refers to supervised contrastive learning performed
independently for each class, without the TSCL. All baseline methods, except Binoculars, are trained
in a fully supervised manner on the corresponding datasets. Best results are bolded.

Method MAGE M4-monolingual M4-multilingual TuringBench Average
AvgRec F1 AvgRec F1 AvgRec F1 AvgRec F1 AvgRec F1

SCL 90.59 89.83 91.92 91.21 86.27 84.75 99.46 99.22 92.06 91.25
RoBERTa-Base 87.30 88.37 88.70 88.44 80.01 84.44 99.59 99.29 88.90 90.14
MAGE 90.53 89.76 80.99 81.42 84.68 83.00 99.40 98.95 88.90 88.28
T5-Sentinel 93.49 93.30 84.01 81.08 76.21 68.99 99.39 97.43 88.28 85.20
Binoculars 64.96 70.58 89.89 89.89 80.63 82.43 51.24 9.98 71.68 63.22
DeTeCTive 96.15 96.16 98.44 98.38 93.42 93.05 99.74 99.35 96.94 96.74

DETree (Ours)
w/ per dataset  96.97 9698  98.96 98.92 93.62 93.35 99.62  99.39 9729  97.16

w/ priorl 96.87 96.96  99.86 99.85 95.05 94.85 99.74 9932 9788  97.75
w/ prior2 95.45 95.63 98.17 98.02 91.77 91.72 99.29  98.75 96.17 96.03
w/ prior3 96.15 96.28 99.52 99.47 95.53 95.33 99.52  98.88 97.68 97.49
w/o TSCL 95.65 9582  98.84 98.73 92.11 91.89 99.39  98.83 96.50 96.32

classification under OOD settings; (IV) Hybrid Text Detection: the ability to identify varying forms of
Al involvement in collaborative text generation; (V) Practical Robustness and Deployability: model
performance under real-world constraints, including adversarial perturbations, database compression,
and limited category coverage.

HAT Analysis. A total of 99.32% of triplets satisfy the constraint defined in Theorem [3.T] after
training with TSCL, confirming the effectiveness of the proposed loss. Appendix [J| provides an
intuitive visualization of the intermediate clustering structures in the HAT construction process. We
observe that HAT is capable of autonomously capturing correlations among text sources: within
hybrid texts, samples from the same model using the same transformation strategy (e.g., paraphrasing,
extension, translation) tend to cluster together. Within such clusters, texts based on the same model
family exhibit further aggregation, forming terminal leaf nodes. Moreover, some non-family models
(e.g., LLaMA [62] and GLM-130B [63]], FLAN-T5 [64] and TO [65]]) are also grouped together,
potentially reflecting similarities in their pretraining data or pretraining model (T5) [8]. Models from
different datasets cluster separately, suggesting distributional discrepancies.

Supervised Detection. As shown in Table[I] our method demonstrates superior performance in
supervised settings. Training with the Tree-Structured Contrastive Loss (TSCL) leads to the best
performance under priorl, while removing TSCL results in a noticeable performance drop. We
additionally investigate the impact of different prior assumptions on model performance. Among the
tested priors, priorl yields the best results, followed by prior3, while prior2 performs the worst. This
outcome aligns with the intrinsic nature of hybrid text: categorizing human—Al collaborative texts as
Al-involved proves to be more appropriate. Once Al is introduced into the generation process, even
minimally, its stylistic signals tend to dominate and are often more salient than human-authored traits.
This observation is further supported by the dimensionality reduction visualizations in Figure 2]

Out-of-Distribution Generalization. As shown in Table under the zero-shot setting, evaluation
metrics vary across different database configurations, indicating distributional discrepancies among
the datasets. RAID and RealBench yield relatively strong results. The model performs well on
MAGE’s Unseen setting and the DetectRL scenarios but shows weaker performance on Beemo,
primarily due to mismatches between the retrieval database and the test distribution under OOD
scenarios. To mitigate this issue, we incorporate a small number of target-domain samples to
adjust the decision boundaries. Under the few-shot setting, the inclusion of such samples improves
classification performance, particularly on datasets where zero-shot accuracy is low. Beemo’s No
Attack setting remains challenging; however, detection performance improves substantially on texts
that have undergone further LLM editing. This may be because the additional editing amplifies
LLM-specific stylistic features, resulting in a more concentrated distribution that is easier to detect.



Table 2: OOD evaluation results, measured by AUROC. All methods are evaluated in a zero-shot
setting without any training. DETree (database) denotes evaluations where different datasets are
used as the retrieval database. DETree (few-shot) and UAR denote few-shot evaluations, where 5
or 10 samples are randomly drawn for each source type from the target validation or test set. Each
experiment is repeated five times, and the average performance is reported. Best results are bolded.

Dataset  Setting Fast-Detect Binoculars MAGE RADAR DETree (database) UAR DETree (few-shot)
RealBench MAGE M4 RAID | 5/10 shot 5/10 shot
MAGE Unseen 80.76 96.84 95.20 87.37 99.13 97.78 94.92 98.98 | 72.07/74.22 99.58/99.81
Paraphrase 53.34 75.87 83.35 71.11 90.80 8829 88.36 92.66 | 59.54/58.18 98.90/98.77
Multi-Domain 58.52 83.95 86.67 92.15 98.74 98.15 98.09 98.94 | 73.84/75.39 99.62/99.88
DetectRL  Multi-LLM 59.58 83.30 86.26 91.86 98.62 98.11 98.08 98.92 | 69.97/73.92 99.52/99.87
Multi-Attack 60.70 85.05 88.52 91.80 98.88 98.21 98.15 99.00 | 73.49/69.91 99.65/99.87
No-Attack 75.46 83.90 73.72 51.41 81.59 7576 79.09 79.99 | 62.73/64.40 79.32/81.64
Beemo GPT4o-Edited 62.64 78.15 67.79 60.16 82.07 75.01 7744 83.79 | 65.52/66.36 88.23 /88.54
Llama3.1-Edited 65.43 79.90 65.37 62.65 87.16 75.02 81.74 83.04 | 63.61/67.57 93.81/94.91

Hybrid Text Detection. Table[3|reports the results on the three-level Al risk detection task proposed
by HART, with details in Appendix[H] Level-1 identifies whether the text involves any Al participation,
Level-2 distinguishes whether the base content is human-written or Al-generated, and Level-3 detects
whether the text is solely produced by a single AI model. Results show that, given a well-defined
database split corresponding to each task, DETree consistently achieves effective discrimination across
all three levels, demonstrating the fine-grained discriminative power of the learned representations.

Table 3: AUROC and TPR@5%FPR (shortly TPR5%) results for the Al risk detection tasks on HART.
The column labeled ALL aggregates results across multiple English subdomains, including Essay,
ArXiv, Writing, and News. DETree is trained on RealBench under different prior assumptions and
evaluated using the HART development set as the retrieval database. HART(Fast-Detect / Binoculars)
employs the development set to fit its two-dimensional binary classifier. Best results are bolded.

Detector Level-3 Level-2 Level-1
Essay ArXiv Writing ALL(TPR5%) Essay ArXiv Writing ALL(TPR5%) Essay ArXiv Writing ALL(TPR5%)

RADAR 0.692 0.849  0.647 0.728 (14%)  0.566 0.814  0.630 0.687 (10%)  0.705 0.857  0.700 0.758 (20%)
Log-Perplexity 0.868  0.850 0.811 0.799 (33%) 0.364  0.485 0.438 0.473 (11%) 0.769  0.530 0.625 0.576 (6%)
Log-Rank 0.867 0.874 0.813 0.814 (39%) 0.380 0.460 0.441 0.465 (11%) 0.739  0.542 0.611 0.573 (8%)
LRR 0.835 0909  0.797 0.840 (50%)  0.560 0.616  0.551 0.573 (25%)  0.616  0.576  0.558 0.568 (19%)
Glimpse 0.929  0.869 0.819 0.849 (58%) 0.754  0.737 0.625 0.676 (30%) 0.878 0.719 0.618 0.688 (22%)
Fast-Detect 0.883 0.877 0.840 0.862 (60%) 0.734  0.718 0.692 0.711 (47%) 0.877  0.769 0.740 0.778 (55%)
Binoculars 0.897 0.882 0847  0.870(62%) 0735 0715 0693 0711 (44%) 0879 0769 0740  0.780 (55%)

HART (Fast-Detect) 0.864 0.896  0.890 0.876 (61%)  0.785 0915  0.890 0.855(59%)  0.907 0.849  0.836 0.843 (59%)
HART(Binoculars) ~ 0.854  0.904  0.905 0.883 (61%) 0.746 0913  0.895 0.848 32%)  0.900 0.840  0.828 0.838 (58%)

DETree (Ours)
w/ priorl 0.984 0991 0983 0.988(953%) 0.994 0.998 0990 0.992(98.5%) 1.00 0.999 0.996  0.998 (99.5%)
w/ prior2 0976 0986 0959  0.972(88.7%) 0.981 0.992 0973 0.982(93.6%) 0.989 0.997 0.994  0.994 (98.9%)
w/ prior3 0.983  0.991 0.973 0.979 (92.2%) 0.993 0.997 0.988 0.992 (96.8%) 0.999 0.998 0.998  0.998 (99.7%)

To further investigate the interrelations among various types of hybrid texts and evaluate DETree’s
ability to distinguish them, we perform a comprehensive analysis on the HART dataset, as shown in
Figure 2] Figure [3|and Figure[§]

Based on the dimensionality-reduced representations, although the training objective encourages
clustering of all human-written texts, the model still separates human texts from different domains.
This indicates that semantic information implicitly influences the modeling of text provenance; even
without explicit supervision, the model is able to autonomously capture and leverage such distinctions.

Except for the machine humanized human category, the other five types of texts exhibit well-formed
clusters in the embedding space and are clearly separable in binary classification tasks. An interesting
observation is that although the training data does not include samples humanized by commercial
tools, the model successfully identifies such texts. Machine humanized human texts tend to be
indistinguishable from those based on machine-generated base texts, but are distinguishable when
the base text is human-written. Human edits may preserve machine-originated styles or reflect
refinement patterns resembling tools or LLMs. This suggests that human editing is diverse but does
not fundamentally alter the characteristics of the base text.

In summary, DETree can detects Al-involved content, identifies the provenance of the base text
(human or machine), and identifies whether and how it has been humanized by specific methods. We
provide further analysis of hybrid texts on HART, including multilingual settings, visualizations, and



HAT construction in Appendix [F} we additionally present the detection of hybrid texts involving
three authors in Appendix
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Figure 2: UMAP-based unsupervised visualization of Figure 3: Pairwise binary classification per-
the HART dataset in the representation space of the formance heatmap on the HART dataset, eval-
DETree. Colors indicate different text source types, uated by TPR@5%FPR. Rows and columns
with type indices corresponding to the hierarchical represent the two text types involved in each
categorization defined in HART. Abbreviations of cat- detection pair. In the legend, MT denotes

egory names are defined in FigureEl machine-generated text humanized by tools.
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Figure 4: Robustness evaluation of different detection methods on the attack-augmented MAGE test
set, measured by TPR@5%FPR. The x-axis denotes perturbation types. “No Attack” indicates that
the model was trained without adversarial samples, while others were trained with all attack types.
DETree is evaluated using a compressed 10K-sample version of RealBench as the database.
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Figure 5: Detection performance (F1) on the Figure 6: Detection performance on the
MAGE test set using MAGE (~500K) and Real- MAGE test set (TPR@5%FPR) when training
Bench (~12M) as the database under different com- on RealBench with randomly selected subsets
pression sizes. "ALL" indicates no compression.  of classes at different proportions.

Practical Robustness and Deployability. As shown in Figure 4] incorporating adversarial samples
during training improves model performance under various perturbations. DETree demonstrates
stable performance across all attack types when trained with such examples, while RoOBERTa-large
still suffers substantial degradation under Synonym, Perplexity, and Homoglyph attacks. Without
adversarial training, ROBERTa-large becomes highly vulnerable to perturbations. In comparison,



DETree maintains strong performance even without adversarial exposure, consistently outperforming
the adversarially trained RoBERTa-large in most attack scenarios.

As shown in Figure[5] we investigate the impact of K-means based database compression on detection
performance. On the RealBench dataset, compressing the full set of training samples into 10K
learnable representatives not only reduces storage and computational overhead, but also leads to a
slight improvement in detection accuracy. To further assess the influence of category coverage on
model performance, we conduct experiments under varying proportions of training categories. As
illustrated in Figure [6] increasing the number of training categories enhances model performance.
Notably, when trained on only 10% of the full category set, the performance drop remains within 3%.

5 Conclusion

In this study, we propose DETree, a novel representation learning-based detection framework
designed to address the challenges of identifying human-Al hybrid text in complex real-world
scenarios. We construct RealBench, a large-scale benchmark dataset that encompasses diverse modes
of human—AlI collaborative writing. By explicitly modeling the hierarchical relationships among text
sources, DETree reveals that hybrid texts generated through human—AlI collaboration exhibit stronger
Al traces than human characteristics. Extensive experiments demonstrate that our method achieves
state-of-the-art performance across multiple benchmark tasks and maintains strong generalization
capabilities under low-supervision conditions and severe distribution shifts.

6 Limitations

While our method demonstrates strong adaptability to real-world detection scenarios, it still exhibits
minor limitations in certain aspects. We have not explored adversarial evasion via model fine-tuning
intended to bypass detection. While this work focuses on hybrid texts involving three authors,
extending the analysis to scenarios with more collaborators remains an interesting direction for future
investigation. Furthermore, when encountering entirely unseen and rare domains, the model still
requires a small number of in-domain samples to effectively adjust the decision boundaries.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope of the paper are summarized in the last paragraph
of section[T}

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in section [6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The proof of Theorem 3.1]is provided in Appendix

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details are provided in Section f.I] And we commit to
open-source our code, model weights and dataset.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We describe the external datasets used in Section[Hland the construction of
our own dataset in Section[I] and we will publicly release both our dataset and code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental details are illustrated in section d.T}
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Given the massive amount of experiments conducted in this paper, providing
error bars would be computationally prohibitive. For the few-shot experiments in Table 2]
we report the average over five independent runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute resources are described in section d.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The paper conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Potential societal impacts of the work are discussed in Appendix [A]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve models or datasets that pose a high risk of misuse.
All data is constructed from publicly available sources and does not include sensitive or
potentially unsafe content.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite and credit the code, data, models and vital libraries we used in the
paper, such as implementation details in section4.1]

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new dataset in this paper. The dataset is constructed based on
publicly available sources, and we will release it under the MIT license with accompanying
documentation that includes construction details, data sources, licensing information, and
usage instructions. No personal data is involved, and an anonymized download link will be
provided at submission.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The development of the core methodology did not involve the use of large
language models.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broader Impacts

This study aims to improve the detection of Al-involved text, particularly by enabling more fine-
grained distinction in human—AI hybrid text scenarios. We believe that this technology can play a
positive role in enhancing text transparency and safeguarding academic integrity and media credibility.
However, we also recognize that its application may carry certain potential risks. For example, if used
for excessive surveillance or content censorship, it could negatively impact legitimate information
expression and freedom of speech. On the other hand, stronger detection capabilities may drive the
development of generative models that are designed to evade detection. Therefore, when applying
this method, we recommend taking the specific usage context into account, paying attention to
the boundaries of its application, and promoting its development within an open and transparent
framework to ensure that it produces positive social outcomes.

B Prior

To obtain a prior structure suited to the task characteristics, we consider all possible similarities
between hybrid texts and other generation types, and propose three prior assumptions: prior 1 assumes
that hybrid texts are closer to Al-generated content; prior 2 assumes that human features are more
prominent; prior 3 treats hybrid texts as a distinct category, separate from both Al and human texts.
The three priors are illustrated in Figure [7]

Root Root Root
ATI- Human- AI-
Involved Human AL Involved AL Human Human
priorl prior2 prior3

Figure 7: Illustration of three prior assumptions used during training, each defining a different
hierarchical placement for human—AlI collaborative texts. prior I assigns them as a subtree under
Al-generated texts; prior 2 places them under human-written texts; and prior 3 treats them as an
independent branch parallel to both AI and human texts.

C HAT Construction

C.1 Preliminaries

Agglomerative Hierarchical clustering Agglomerative hierarchical clustering [51] is a bottom-up
unsupervised method that constructs a binary tree to capture the hierarchical relationships among
samples. Starting with each sample as an individual cluster, the algorithm iteratively merges the two
most similar clusters based on a predefined distance metric until a single cluster remains. At each
merge step, a new parent node is created to link the two child clusters, and the corresponding merge
similarity (denoted as the merge_score) is recorded. Common inter-cluster distance metrics include
minimum, maximum, and average linkage; we adopt average linkage to encourage a more balanced
tree structure.

Silhouette Score Silhouette Score [52] is a standard metric for evaluating clustering quality by
assessing the balance between intra-cluster cohesion and inter-cluster separation. For each sample,
let a denote the average distance to other points within the same cluster, and b the average distance to
points in the nearest neighboring cluster. The silhouette score is defined as s = m, with values
ranging from —1 to 1. Higher scores indicate that the sample is well-matched to its own cluster and
well-separated from others.
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C.2 Similarity Matrix

To capture inter-class similarity, we first apply supervised contrastive learning by treating each class
independently. Specifically, for a given sample z, the contrastive loss is defined as:

®)

exp ( co k))/T
L(z;0) = —log p(i | Zvep oslfol@), fo(R)/ )

exp (11 Liep cos(fa(@), fo(k)/7) + L exp (cos(fo(), falk))/7)

where fy(+) is a parameterized encoder, cos(-, -) denotes cosine similarity, 7 is a temperature pa-
rameter, P is the set of positive samples sharing the same label as x, and NN is the set of negatives
from other classes. This objective encourages intraclass compactness and interclass separation in the
representation space.

We use the trained encoder fy to compute the expected similarity between any pair of classes (X,Y)
based on their sample representations

T M
E[sim(X,Y)] = N M ZZfe ()" foly;) ( Zfe (i ) %Zfe(yj) ©
j=1

=1 j=1

where class X contains N samples x; and class Y contains M samples y;. As shown in equation
the expected similarity can be simplified as the inner product between the mean embeddings of the
two classes.

Algorithm 1 Hierarchical Affinity Tree Construction Algorithm

1: Input:

2: similarity matrix S € R™*¥ end score s

3: QOutput:

4: Hierarchical Affinity Tree 7

5: Definitions:

6: SilhouetteScore: Clustering quality metric. Partition: Divide the subtree of node into subgroups

whose root merge_score is bounded below by 7. AgglomerativeClustering: Hierarchical clustering
method. node .merge_score: Subtree similarity at merge.

7: Stepl Hierarchical Clustering :

8: Build dendrogram 7. < AgglomerativeClustering(.S)

9: Step2 Tree Reconstruction :

10: function RECONSTRUCTION(node)

11: T + node

12: if node.is_leaf or node.merge_score > s then
13: return 7

14: end if

15: T < set of merge_scores from all descendant nodes of node.
16: Initialize tracker 7% < (), score® + —oco

17: for each 7’ € 7 do

18: Compute the partition C' < Partition(node, ')
19: score < SilhouetteScore(C, S)

20: if score > score™ then

21: T < 7', score® <+ score

22: end if

23: end for

24: children < Partition(node, 7*)

25: for each child € children do

26: subtree < Reconstruction(child)

27: T .add_edge(node, subtree)

28: end for

29: return 7
30: end function
31: T < Reconstruction(7xc.root, 0)
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C.3 HAT Construction Algorithm

Algorithm Details We first extract the set of categories to be merged within each prior-defined
subtree based on the task-specific prior knowledge, along with their corresponding similarity matrix.
Using this matrix, we then construct an initial binary tree via Agglomerative Clustering, where
each internal node stores the similarity score at which its child subtrees were merged (denoted as
merge_score). Since binary tree structures may forcefully separate classes that should reside at
the same hierarchical level, we recursively reconstruct the tree in a top-down manner. A stopping
threshold s is introduced to prevent further partitioning of nodes with high internal similarity.

Specifically, for each node, we collect the merge_scores of all its descendant nodes as a set of
candidate thresholds. For each candidate threshold 7, we extract all subtrees within the current
subtree whose root merge_scores are exactly no less than 7, and treat them as partition. We then
compute the Silhouette Score for each partition and select the one with the highest score as the optimal
structure. The node is then divided into multiple substructures accordingly, and the reconstruction
process is applied recursively to each child. This results in a multiway tree structure, forming the
final Hierarchical Affinity Tree (HAT). The detailed algorithm can be found in Algorithm|T]

Time Complexity of HAT Construction For the hierarchical clustering step, heap-based opti-
mization reduces the time complexity to O(N? log N). The top-down reconstruction process has a
complexity of O(max_dep x N?), where max_dep denotes the maximum depth of the constructed
HAT tree and N is the number of categories. Since the resulting tree is typically balanced, max_dep
can be regarded as a constant or at most O (log V). Therefore, the overall construction complexity is
O(N?log N).

C.4 HAT Depth Ablation

We control the granularity of HAT construction with a silhouette-based termination threshold 7: a
smaller threshold encourages further node splitting and thus deeper trees. To quantify its impact, we
sweep 7 € {0.30,0.25,0.20}, which in our implementation correspond to maximum subtree depths
of 3, 6, and 9, respectively. We train DETree on RealBench and evaluate on MAGE.

Experimental results in Table d]indicate that DETree is robust across different depths. When the tree
is too shallow, fine-grained category structure is lost and accuracy drops; increasing depth improves
performance and peaks around a maximum depth of 6. Pushing the depth further brings only a slight
decline. Unless otherwise stated, the main paper reports results using a maximum depth of 6 (i.e.,
7=0.25).

Table 4: Effect of maximum HAT depth on DETree performance.
Max depth 3 6 9

F1 9648 96.96 96.84
AvgRecall 9638 96.87 96.76

D Proof of Hierarchical Similarity Constraint
In this section, we prove Theorem 3.1

D.1 Restatement of the Theorem

Theorem (Hierarchical Similarity Constraint) Let 7 be a tree, and let X, Y, Z be arbitrary leaf
classes (corresponding to leaf nodes). Define dy,ca(x,y) as the depth of the lowest common ancestor
of X and Y (assume the root node has depth 0, and a larger depth value means closer to the leaf
nodes). Then the following two inequalities are equivalent:

1. For any leaf class X (corresponding node c),

E[sim(X,Y)] > E[sim(X,2)], V0<i<j<d.,YeH" ZecHD. (10)

where d, is the depth of ¢, and H, éi) is the i-th hierarchical partition set of ¢ (definition see Section|3.3).
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2. For any leaf classes X, Y, Z,
E[snn(X, Y)] >E [sma(X, Z)] , if dLCA(X,Y) > dLCA(X,Z)' an

D.2 Proof

To prove that inequalities [T0]and inequalities [TT| are equivalent, it is necessary to prove the two-way
implication: inequalities[10|= inequalities[T1|and inequalities[IT|= inequalities

Based on the tree 7, for any fixed leaf node ¢, we denote its ancestor sequence { féi) | i =

0,1,...,d.} satisfying féo) = c (depth d.), fél) is its parent node (depth d. — 1), and so on, fc(d“) is
the root node (depth 0).

D.2.1 Part I: inequalities 10| = inequalities [TT]

Assume inequalitiesholds. Itis required to prove that for any leaf classes X, Y, Z, if dr,ca(x,y) >
dr.ca(x,z). then E[Sim(X, Y)] >E [sim(X, Z)} .

Fix any leaf X, its corresponding node is c.

Let LCA(X,Y) = £ then Y € H™™, and dyca(x.v) = depth(f) = d. — k.
Let LCA(X, Z) = ™, then Z € H™, and dpca(x.z) = depth(f™) = d. — m.
From the condition dy,ca(x,y) > drca(x,z), We get:

de—k>d.—m — —k>-m = k<m.

_Sincek <mandY € H®, 7 ¢ g™, according to equation (x) (take i = k, j = m), we have:
E[sim(X,Y)] > E[sim(X, Z)].

This is exactly the conclusion required by inequalities [T T]

In summary, inequalities [T0] = inequalities[T1] holds.

D.2.2 Part II: inequalities [T1) = inequalities [10]

Assume inequalities [T 1] holds. It is required to prove that for any leaf class X (corresponding node c),
andany 0 < i < j<d.,Y € H", Z € HY, we have E[sim(X,Y)] > E[sim(X, Z)].

Fix any leaf X, its corresponding node is c.
By the definition of Y € H{”, LCA(X,Y) = £, hence dyca(x.y) = depth(f{”) = d,. — .
By the definition of Z € HY), LCA(X, Z) = &), hence dyca(x.z) = depth(f7)) = d.. — j.
From ¢ < j, we obtain:

de —1>d.—j = droa(x,y) > dLca(x,2)-
According to inequalities [T T} we have:

E[sim(X,Y)] > E[sim(X, Z)].

This is exactly the conclusion required by inequalities [T0}

In summary, inequalities[TT| = inequalities [I0] holds.

E K-Means Based Database Compression

The inference time and memory consumption of KNN-based classification scale linearly with the size
of the retrieval database, making it increasingly costly as the database grows. Moreover, we observe
a large number of redundant or highly similar samples within the database, which not only increases

27



storage and computation costs, but also biases the decision boundary toward sample-dense regions,
resulting in distorted classification surfaces.

To address this issue, we introduce a database compression strategy based on K-Means clustering.
The goal is to replace original class-specific samples with a small number of representative vectors,
thereby reducing computational overhead while smoothing the decision boundary. We assume each
representative sample approximates a local spherical region within the original data distribution.
Specifically, we apply K-Means clustering to each class independently, partitioning its samples into &
clusters.

Consider one such cluster C; = {z1,z2,...,2,} C R, where all samples x € C; are {3-normalized
embeddings (i.e., [|z|| = 1). We aim to find a representative vector &; € R that maximizes the total
cosine similarity with all samples in the cluster. The objective is formulated as:

~ :%;'—x
max cos(Zj,x) = Z — . (12)
RS 125
eC; zeC
Since we only care about the direction of Z;, we constrain it to lie on the unit sphere, i.e., ||Z; | =1
This simplifies the optimization to:
=T ~T
max me:m» Zx . (13)
Pl J J
lI2511=1 zeC; zeC;

The optimum is achieved when Z; is aligned with the direction of the sum vector, yielding:
By = SEEG T (14)
[eec, =]

We thus use the normalized mean vector of each cluster as its representative. As shown in Figure[3] this
compression strategy not only reduces classification cost but also improves performance, particularly
in scenarios with highly imbalanced class distributions such as RealBench.

F More Results on Hybrid Text Detection

Table[3]presents the model’s performance on hybrid text detection under OOD settings across different
languages in the HART dataset. Despite being trained primarily on English data, with only limited
multilingual samples from M4, the model demonstrates strong cross-lingual generalization. This
suggests that modeling the generation mechanism helps overcome the limitations of language scarcity.

Figure 8 presents the domain-wise visualization, where pure human-written texts consistently cluster
within each domain. In contrast, Figure [2] shows the joint projection across all domains, where
human-written texts form four distinct clusters, while Al-generated texts form two clusters. This
suggests that text semantics influence generation patterns, with a stronger effect on human writing
than on Al generation.

Figure 9 shows the visualization of the HAT structure for fine-grained categories in the essay domain
of the HART dataset. Even on the OOD dataset HART, the HAT retains the properties observed
in Section f.2] Moreover, the HAT structure provides an intuitive and interpretable view of the
relationships among categories.

G Three-Author Text Detection

To better align with realistic scenarios involving more than two authors, we have expanded the HART
dataset to include three authors and conducted the following experiments.

We used models not seen during training, such as gemma-3-12b [66] and deepseekv2 [67]], along
with new prompts to introduce a third author for text editing in the HART dataset. We designed
experiments to explore the impact of different editor sequences on the final text. DETree is trained on
RealBench and evaluated using the development set as the retrieval database.
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Figure 8: UMAP-based unsupervised visualization illustrating the distribution of four distinct domains
(Arxiv, Essay, News, Writing) from the HART dataset in the representation space of DETree. Colors
indicate different text source types, with type indices corresponding to the hierarchical categorization
defined in HART. Abbreviations of category names are defined in FigureEl
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Figure 9: Visualization of the Hierarchical Affinity Tree (HAT) for the detailed categories in the essay
domain of the HART dataset. In the figure, Level x represents the corresponding depth level within
the HAT. If the current classes have not been split at a particular level, they are colored uniformly.
For a class that has already become a leaf node at an earlier level and thus has no corresponding label
at a subsequent level in the actual HAT, it inherits both the label and color from its immediate parent
node.
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Table 5: Results in CCNews of HART, covering five languages. The best AUROC and TPR5%
are marked in bold. The column ‘ALL’ denotes a mixture of languages. DETree is trained on
RealBench under priorl and evaluated using the HART development set as the retrieval database.
HART (Fast-Detect / Binoculars / Glimpse) employs the development set to fit its two-dimensional
binary classifier.

Detector English Chinese French Spanish Arabic ALL (TPR5%)
Level-3

LRR 0.8466  0.8625 0.8706  0.8744 0.6117 0.7651 (21%)

Fast-Detect 0.8551 0.8655 0.8662  0.8310  0.5871 0.8118(48%)

Binoculars 0.8698  0.8698  0.8814  0.8474  0.5754 0.7990(48%)

Glimpse 0.8310  0.8868 0.8793  0.8382  0.7950 0.8323(51%)

Hart(Fast-Detect) 0.8600  0.8459  0.8538  0.8397  0.5879 0.8065 (48%)
Hart(Binoculars)  0.8698  0.8495  0.8587  0.8548  0.5476  0.7924 (49%)
Hart(Glimpse) 0.8257 0.8681  0.8853  0.8729  0.8031 0.8481 (53%)
DETree(Ours) 09888  0.8513  0.9525 0.9468 0.9026  0.9305 (74%)

Level-2
LRR 0.5296 0.8748 0.7118 0.7644 04777 0.6380 (11%)
Fast-Detect 0.6665 0.8361 0.7728 0.6961 0.4658 0.7007 (37%)
Binoculars 0.6770 0.8383 0.7779  0.7115  0.4543 0.6929 (37%)
Glimpse 0.5953 0.8123 0.7511 0.7269  0.6813 0.6921 (33%)

Hart(Fast-Detect)  0.8242  0.8295  0.8344  0.7837  0.5867  0.7793 (42%)
Hart(Binoculars) ~ 0.8310  0.8234  0.8464  0.7955 0.4978  0.7515 (38%)
Hart(Glimpse) 0.7094  0.8258  0.8257  0.8083  0.7969  0.7776 (41%)
DETree(Ours) 0.9940 09538 09806 0.9832 09374  0.9702 (82%)

Level-1
LRR 0.5009 0.8309 0.6480 0.7288  0.4760 0.6070 (08%)
Fast-Detect 0.6897 0.8349 0.7510  0.7331 0.4359 0.7032 (30%)
Binoculars 0.6969 0.8394 0.7484  0.7461 0.4286 0.7053 (33%)
Glimpse 0.5600 0.7928 0.6933 0.7034  0.6673 0.6596 (24%)

Hart(Fast-Detect)  0.7770  0.7997  0.7749  0.7669  0.4798  0.7288 (32%)
Hart(Binoculars)  0.7843  0.8041  0.7637  0.7657  0.4639  0.7264 (33%)
Hart(Glimpse) 0.6386  0.7904 0.7336  0.7634  0.7638  0.7302 (24%)
DETree(Ours) 09961 09964 0.9945 0.9968 0.9875  0.9936 (99%)

First, we investigated the influence of the first author on the final text, while keeping the second and
third authors constant. The results in the first author impact section of Table [f] show that when the
third author is introduced, the model’s ability to distinguish the first author is reduced. However, the
model can still effectively differentiate between the two text types.

Second, we also examined the influence of the middle editor on the final text. The results in the
second author impact section of Table [6] show a significant decline in detection accuracy when the
third author is introduced.

Finally, the third editor is easily distinguishable.

The initial creator of the text sets the general direction and ideas, so these features are difficult to
mask through editing. However, the middle editor’s features, which are based on rephrasing the initial
text, are easily masked by the third editor, leading to a significant decrease in detection accuracy.

This demonstrates that the DETree’s encoder is capable of capturing fine-grained, generalizable
features. Even when three authors are introduced into the test text (while the model was only exposed
to two authors during training), and the third author’s model, and prompt are unseen, the encoder can
still extract key features to distinguish between different authors.
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Table 6: Three-author detection results on the expanded HART dataset using DETree. Each row
reports the AUC-ROC of DETree when distinguishing Sourcel from Source2. Results are grouped
by scenario: (i) First author impact—second and third editors are fixed while the first editor varies ;
(ii) Second author impact—first and third editors are fixed while the middle editor varies ; (iii) Third
author impact—first and second editors are fixed while the third editor differs.

Sourcel

Source2

DETree(AUC-ROC)

First author impact (GPT-40 vs human)

gpt-40_humanize_gpt-3.5-turbo_ human_rephrase_gpt-3.5-turbo_ 96.99
polish_gemma-3 polish_gemma-3
gpt-4o_humanize_gpt-3.5-turbo_ human_rephrase_gpt-3.5-turbo_ 96.21
polish_deepseekv2 polish_deepseekv2
gpt-4o_humanize_gpt-3.5-turbo human_rephrase_gpt-3.5-turbo 100.00
gpt-4o_polish_gemma-3-12b human_polish_gemma-3-12b 99.43
gpt-4o_polish_deepseekv2 human_polish_deepseekv2 99.37
First author impact (Claude-3.5-sonnet vs human)
claude-3-5-sonnet_humanize human_rephrase_gemini-1.5-pro_ 84.17
gemini-1.5-pro_polish_gemma-3 polish_gemma-3
claude-3-5-sonnet_humanize human_rephrase_gemini-1.5-pro_ 84.05
gemini-1.5-pro_polish_deepseekv2 polish_deepseekv2
claude-3-5-sonnet_humanize_gemini-1.5-pro human_rephrase_gemini-1.5-pro 98.14
claude-3-5-sonnet_polish_gemma-3-12b human_polish_gemma-3-12b 98.81
claude-3-5-sonnet_polish_deepseekv2 human_polish_deepseekv2 98.98
Second author impact (GPT-3.5-turbo vs Claude-3.5-sonnet)
gpt-40_humanize_gpt-3.5-turbo_ gpt-40o_humanize_claude-3-5-sonnet_ 76.50
polish_gemma-3 polish_gemma-3-12b
gpt-4o_humanize_gpt-3.5-turbo_ gpt-40_humanize_claude-3-5-sonnet_ 82.05
polish_deepseekv2 polish_deepseekv2
gpt-4o_humanize_gpt-3.5-turbo gpt-4o_humanize_claude-3-5-sonnet 98.78
Second author impact (GPT-40 vs Gemini-1.5-Pro)
human_rephrase_gpt-40_ human_rephrase_gemini-1.5-pro_ 68.71
polish_gemma-3 polish_gemma-3
human_rephrase_gpt-40 human_rephrase_gemini-1.5-pro_ 68.02
polish_deepseekv2 polish_deepseekv2
human_rephrase_gpt-40 human_rephrase_gemini-1.5-pro 99.49
Third author impact (Deepseekv2 vs Gemma-3)
qwen2.5-72b_humanize_ qwen2.5-72b_humanize_ 100.00
claude-3-5-sonnet_polish_gemma-3 claude-3-5-sonnet_polish_deepseekv2
llama-3.3-70b_humanize_ llama-3.3-70b_humanize_ 97.69
gemini-1.5-pro_polish_gemma-3 gemini-1.5-pro_polish_deepseekv2
human_rephrase_gpt-40_ human_rephrase_gpt-40_ 99.60

polish_gemma-3

polish_deepseekv2
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H Benchmark
In this section, we provide a detailed overview of the benchmark datasets used in our experiments.

MAGE [16] MAGE is a large-scale benchmark for Al-generated text detection, comprising texts
from 27 diverse large language models, including families such as OpenAl GPT [68]], LLaMA [62],
GLM-130B [63], FLAN-TS [64], OPT [69], BigScience [70], and EleutherAl [71]. It spans 10
domains and includes 332K training samples and 57K test samples. Additionally, MAGE provides a
subset for out-of-domain generalization testing, generated by GPT-4 [12]] across four new domains
(CNN/DailyMail, DialogSum, PubMedQA, and IMDb), to evaluate model performance in the
"Unseen Domains & Unseen Model" scenario. Based on this OOD text, a paraphrasing attack test set
was also created using GPT-3.5-turbo [72].

M4, M4GT [46,47] The M4 dataset is a large-scale collection spanning multiple domains, models,
and languages, consisting of text generated by 8 large language models across 6 domains and 9
languages. Built upon M4, the M4GT benchmark is designed for Al-generated text detection, with its
test set paraphrased using the OUTFOX method to increase task complexity. M4GT defines two task
settings: monolingual and multilingual. The monolingual setting contains 120K training and 34K test
samples, while the multilingual setting includes 157K training and 42K test samples. In this study,
we adopt the M4GT splits for training and evaluation.

RAID [49] RAID is a large-scale benchmark dataset for robust machine-generated text detection,
comprising over 600K original texts generated by 11 language models across 8§ domains. These texts
are further expanded to 6.2M samples through 11 types of adversarial attacks. In this study, we use
the 605K unperturbed samples released by RAID to construct the training and validation splits for
our RealBench dataset.

TuringBench [48] TuringBench, released in 2021, is one of the earlier datasets for Al-generated
text detection. It focuses on political news headlines and content within a single domain, incorpo-
rating texts generated by 19 large language models, including the GPT series [68]], GROVER [73],
CTRL [74], XLM [73]], and XLNet [[76]. The dataset consists of 112K training samples and 37K test
samples.

OUTFOX [37] OUTFOX constructs a student essay detection dataset comprising 15.4K human-
written essays and 15.4K LLM-generated essays. It also includes adversarially paraphrased samples
generated using DIPPER [77]] and OUTFOX attack methods.

DetectRL [17] DetectRL is a benchmark designed to evaluate Al-generated text detection in
real-world scenarios. It covers four domains with high LLM usage and includes texts generated by
GPT-3.5 [[72]], Claude [78], PaLM-2 [[79], and LLaMA-2 [62]], along with four types of attacks. We
use DetectRL to study the generalization performance of detection models.

Beemo [18] Beemo serves as an evaluation benchmark, consisting of 19,683 texts, including edited
versions produced by experts, Llama3.1-70B [2]], and GPT-4o0 [12]. It covers five representative task
types: open-ended generation, rewriting, summarization, open-domain QA, and closed-domain QA.

HART [11] HART is a multi-level test set for hybrid text detection, covering four domains (student
essays, arXiv introductions, creative writing, and news) and five languages (English, Chinese, French,
Spanish, Arabic). It consists of 32K samples generated by six recent LLMs: GPT-3.5-Turbo [72],
GPT-4o [12], Claude 3.5 Sonnet [/8], Gemini 1.5 Pro [13[], LLaMA 3.3-70B-Instruct [2], and Qwen
2.5-72B-Instruct [3]. HART categorizes samples based on the extent of Al involvement in text
generation into four types: human-written (Type 0), human content rephrased by Al (Type 1), Al-
generated content humanized through various methods (including LLM paraphrasing, human editing,
and commercial tools) (Type 2), and fully Al-generated content (Type 3).

Based on this labeling scheme, HART defines three detection task levels: Level 1 detects Al
involvement (Type O vs. Type 1/2/3), Level 2 detects whether the core content is Al-generated (Type
0/1 vs. Type 2/3), and Level 3 detects whether the text is fully generated by Al (Type 0/1/2 vs. Type
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3). In this study, we strictly adhere to these task definitions to evaluate the model’s out-of-domain
generalization and performance in hybrid text detection scenarios.

I RealBench

RealBench is constructed from the unperturbed samples of MAGE, RAID, TuringBench, and OUT-
FOX, with additional augmentation via Hybrid Texts. We further apply various perturbation attacks
to enhance training and assess model robustness during evaluation. Section [[.Tintroduces the con-
struction of Hybrid Texts, and Section [[.2] details the perturbation attack strategies.The category
composition and statistics of RealBench are summarized in Table[7} and the distribution of sample
counts across different augmentation types is provided in Table [§]

Table 7: Composition of the RealBench dataset, where Basic text and Hybrid text represent the
number of texts in basic and hybrid categories respectively, Basic categories and Hybrid categories
denote the number of basic and hybrid categories. In the test set, the number of categories is presented
as "x/y", with x being the corresponding category number and y representing the number of categories
that only exist in the test set but not in the validation and training sets.

Dataset Name ~ Split Basic Hybrid Total Bas1c. Hybrl(.i Total.
text text text categories categories categories
train 1,433,025 4,128,555 5,561,580 28 419 447
MAGE valid 255,164 809,730 1,064,894 28 419 447
test 257,232 412,137 669,369 29/1 223/140 252
train 735,497 1,714,893 2,450,390 6 74 80
M4 valid 25,879 71,122 97,001 4 29 33
test 199,419 209,768 409,187 9/3 48/31 57
train 548,756 414,293 963,049 20 299 319
TuringBench valid 93,036 53,087 146,123 20 299 319
test 182,714 169,884 352,598 20/0 139/80 159
RAID train 1,553,366 1,943,413 3,496,779 12 191 203
valid 173,269 218,985 392,254 12 191 203
train 166,808 624,319 791,127 4 56 60
OUTFOX test 2,956 1,956 4912 12 an 5
Total all 5,627,121 10,772,142 16,399,263 66 1,138 1,204

Table 8: Composition of adversarial attack samples in RealBench. Each column represents the amount
of text generated by different adversarial attacks (including synonym replacement, perplexity attacks,
paraphrase generation, etc.), excluding simple format attacks which are dynamically incorporated
during training via on-the-fly augmentation.

Dataset Name Split No Attack Synonym Perplexity Paraphrase Extend Polish Translate Total
train 319,071 261,089 852,865 156,467 1,679,724 1,679,724 612,640 5,561,580
MAGE valid 56,792 46,218 152,154 19,333 340,752 340,752 108,893 1,064,894
test 58,381 46,359 152,492 19,075 170,457 113,638 108,967 669,369
train 292,174 113,532 329,791 50,045 718,542 718,542 227,764 2,450,390
M4 valid 9,000 4,587 12,292 1,795 30,000 30,000 9,327 97,001
test 76,650 26,500 96,269 15,388 59,976 68,544 65,360 409,187
train 112,204 110,794 325,758 38,981 107,352 107,352 160,608 963,049
TuringBench  valid 19,051 18,833 55,152 5,718 17,550 17,550 12,269 146,123
test 37,357 36,944 108,413 11,178 74,714 74,714 9,278 352,598
RAID train 544,929 511,376 372,989 856,726 215,964 215,964 778,831 3,496,779
valid 60,781 57,054 41,781 95,887 24,714 24,714 87,323 392,254
train 57,600 56,433 52,725 - 259,200 259,200 105,919 791,127
OUTFOX o5t 1,000 988 968 ; : 1,956 4912
Total 1,644,990 1,290,757 2,553,649 1,271,093 3,698,945 3,650,694 2,289,135 16,399,263
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I.1 Hybrid Text Construction

The construction of Hybrid Texts involves four main approaches: paraphrasing, translation, continua-
tion, and polishing.

DIPPER Paraphraser Using a fine-tuned T5-11B model (DIPPER [80]) for paraphrasing. The
output is labeled as {orgname}_paraphrase_dipper, where orgname denotes the original source.

Adversarial Paraphraser We adopt a paraphrasing strategy similar to that proposed in OUT-
FOX [37] to perform adversarial rewriting of LLM-generated texts. For each input, we first use the
encoder model trained by Detective [36] as a retriever to retrieve the top 5 most similar LLM and
Human texts from its database. We then construct adversarial prompts using the template shown in
Figure[I0] and generate the rewritten texts with Qwen2.5-7B-Instruct [3]. The output is labeled as
{orgname}_paraphrase_qwen2.5_7b.

Translation Paraphraser Texts are first translated into Chinese using Qwen2.5-7B-Instruct and
into German using Aya-23-8B [81], then translated back into English. The output is labeled as
{orgname}_translate_{transname}, where transname indicates the translation model used.

Text Continuation We retain the first 128 tokens of each text, constrained to no more than half
of the original length, and use them as the prefix for continuation. The prompt templates shown in
Figure[I0are used to guide generation. Three templates are used for training and validation, while two
additional templates are reserved for testing to enhance generalization. Continuations are generated
using LLaMA-3.1-8B [2], Mistral-8B [82]], InternLM2-5-7B [83]], Olmo2-7B [84]], GLM4-9B [83],
and Qwen2.5-7B for training and validation, and Gemma-2-9B [86] and DeepSeekV2 [67] for
testing. The output is labeled as {orgname}_extend_{extendname}, where extendname denotes
the continuation model used.

Text Polish We apply the prompt templates shown in Figure[I0[to polish the texts. Each sample in
the training and validation sets is processed with one of 13 randomly selected templates, while two
distinct templates are used in the test set for evaluation. The polishing models are identical to those
used in the Text Continuation setting. The output is labeled as {orgname}_polish_{polishname},
where polishname denotes the polish model used.

1.2 Perturbation Attack

Perturbation attacks are categorized into two types: Word Attack and Format Attack. For Word
Attack, perturbed samples are pre-generated as part of the dataset. In contrast, Format Attack samples
are generated on-the-fly during training due to their lower computational overhead.

Word Attack This strategy perturbs words that are potentially influential to the detection model by
performing targeted replacements. We implement the following two methods:

* Synonym Attack: Synonym substitution is performed using a BERT-based [87]] language
model. For each selected token, we replace it with a candidate word from the top-ranked
synonyms based on semantic similarity.

* Perplexity Attack: Inspired by the hypothesis in DetectGPT [27]—that model-generated
texts reside near local minima of the language model’s loss surface—we generate adversarial
samples by perturbing tokens to increase the negative log-likelihood (NLL). Specifically,
we use GPT-Neo-2.7B [[88] to compute token-wise probabilities, suppress high-probability
tokens, and resample from the modified distribution to produce higher-NLL variants.

To constrain semantic drift, we compute the semantic similarity between the original and perturbed
texts using a BERT-based model, and discard low-similarity samples.

Format Attack This strategy perturbs textual formats rather than content. We adopt attack schemes
primarily derived from the RAID dataset, including:

* Alternative Spelling: Replacing American English spellings with their British equivalents.
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* Article Deletion: Removing articles (e.g., “the”, “a”, “an”).

* Add Paragraph: Inserting paragraph delimiters (e.g., “\n”’) between sentences.

» Upper-Lower: Swapping the case of letters within words.

* Zero-Width Space: Inserting zero-width spaces (Unicode U+200B) between characters.
* Whitespace: Adding whitespace between characters.

* Homoglyph: Replacing characters with visually similar Unicode homoglyphs (e.g., replac-
ing “e” with Cyrillic “e” (U+0435)).

* Number Shuffle: Randomly shuffling digits in numeric tokens.
* Misspelling: Introducing common spelling errors.

Prompt Type Prompt Description

Here are the results of detecting whether each essay from each problem statement is generated by a

Human or a Language Model(LM).
Text: {LLM_textl} Answer: LLM
Text: {Human_textl}  Answer: Human

Adversarial
Paraphraser :
Your Task: Please rephrase the input LLM-generated text to ensure it is indistinguishable from human-
written content. It is essential to maintain the original meaning, tone, and details of the text, while keeping
the word count within {input_text_len} words and expressing a clear opinion.
Input Text: {input_text}
English to 154 NHUSCAR NIRRT S0, ANEAAAEMESMAS . SR {input_text}
Chinese A
Chinese to Please translate the following text from Chinese to English without any additional output.
English Chinese text: {input_text}  English text:
Translation o . w1 . .
. Bitte iibersetzen Sie den folgenden Text ohne zusétzliche Ausgabe vom Englischen ins
Paraphraser  English to
Deutsche.
German . .
Englischer Text: {input_text}  Deutscher Text:
German to Please translate the following text from German to English without any additional output.
English German text: {input_text}  English text:
Here is a piece of text. Please continue writing from where it ends, maintaining the same
Train&Valid = tone, style, and context while making the continuation coherent and engaging.
Input Text: {input_text}
Please continue the following text, expanding on its ideas in a way that maintains a
Text consistent tone and style. The expansion should be coherent, logically structured, and
Continuation serve to enrich the original content. Avoid using transitional phrases such as 'firstly,'
Test 'secondly,’ or 'then.' Instead, opt for smoother transitions that flow naturally from one
thought to the next. Use punctuation carefully, particularly minimizing the overuse of
commas.
Input Text: {input_text}
Please refine the following paragraph to improve its flow and clarity. Ensure that the
Train& Valid = original meaning and structure are preserved, while enhancing sentence construction and
expression for better readability: {input_text}
Text Polish Please adjust the language style of the following paragraph to make it more informal.

Test Maintain the core meaning and structure while ensuring that the tone aligns with a more
es
casual audience.

Input Text: {input_text}
Figure 10: Prompt templates used for Hybrid Text construction, covering four strategies: Adversarial

Paraphraser, Translation Paraphraser, Text Continuation, and Text Polish. For Text Continuation and
Text Polish, only one representative template is shown.
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J HAT Visualization

This section presents the intermediate and final results of the HAT construction. After the first
stage of supervised contrastive learning, we compute pairwise class similarities using equation 9]
Figure [TT] visualizes the similarity matrix for all 1,109 classes in the RealBench dataset. While the
training objective aims to separate class representations, certain classes remain highly similar due to
overlapping textual styles—such as shared sources or common post-editing models. This underscores
the importance of modeling inter-class stylistic relationships in Al-generated text detection.

Using the similarity matrix, we apply a hierarchical clustering algorithm [89] to construct an initial
dendrogram (binary tree), as shown in Figure[I2]under Prior 1. We then incorporate task-specific
priors via Algorithm [I] to transform the binary tree into a semantically coherent multiway HAT
structure. Figures[I3}[14} and[T3]illustrate the resulting HAT trees under Priors 1, 2, and 3, respectively.
Due to space limitations, we retain all human-related classes and randomly sample 20% of the
remaining classes for HAT construction and visualization.

In Figures [I3] [T4] and [I3] each Level represents a depth layer in the HAT tree. At each level, all
categories belonging to the same node are shown in the same color. For nodes that became leaf nodes
at earlier levels and are not further split, we replicate their information in subsequent levels and retain
their original color for consistency. For illustration purposes, only the top 5 levels are shown.

Figure 11: Similarity matrix of 1,109 classes in the RealBench training set after Stage 1 supervised
contrastive learning. Brighter regions indicate higher similarity.
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Figure 12: Dendrogram constructed from the similarity matrix under Prior 1, based on a randomly
selected 20% subset of categories from the RealBench training set.
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Bench training categories.
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Figure 14: Visualization of the HAT constructed under Prior2 using 20% randomly sampled Real-
Bench training categories.
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Figure 15: Visualization of the HAT constructed under Prior3 using 20% randomly sampled Real-
Bench training categories.
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