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ABSTRACT

The rapid advancements of Text-to-Image (T2I) models have ushered in a new
phase of Al-generated content, marked by their growing ability to interpret and
follow user instructions. However, existing T2I model evaluation benchmarks fall
short in limited prompt diversity and complexity, as well as coarse evaluation met-
rics, making it difficult to evaluate the fine-grained alignment performance between
textual instructions and generated images. In this paper, we present TIIF-Bench
(Text-to-Image Instruction Following Benchmark), aiming to systematically as-
sess T2I models’ ability in interpreting and following intricate textual instructions.
TIIF-Bench comprises a set of 5000 prompts organized along multiple dimensions,
which are categorized into three levels of difficulties and complexities. To rigor-
ously evaluate model robustness to varying prompt lengths, we provide a short and
a long version for each prompt with identical core semantics. Two critical attributes,
i.e., text rendering and style control, are introduced to evaluate the precision of text
synthesis and the aesthetic coherence of T2I models. In addition, we collect 100
high-quality designer level prompts that encompass various scenarios to compre-
hensively assess model performance. Leveraging the world knowledge encoded
in large vision language models, we propose a novel computable framework to
discern subtle variations in T2I model outputs. Through meticulous benchmarking
of mainstream T2I models on TIIF-Bench, we analyze the pros and cons of current
T2I models and reveal the limitations of current T2I benchmarks. All evaluation
data and metrics of TIIF-Bench will be made publicly available.

1 INTRODUCTION

Text-to-Image (T2I) generation has emerged as a cornerstone of multimodal Al, enabling the trans-
lation of abstract textual concepts into detailed visual content, advancing applications from digital
art to scientific visualization. Recent T2I models can be categorized into two main paradigms.
Diffusion-based methods—exemplified by Stable Diffusion (Esser et al.| 2024)), Qwen-Image (Wu
et al.;,2025a), BAGEL(Deng et al.| 2025)), PixArt (Chen et al., [2024a)), Playground (Li et al.| 2024b),
FLUX (Labsl 2024), and others(Betker et al.; Imagen-Team-Google et al.,[2024} Zhuo et al.| 2024}
Li et al.| 2024¢} |Chen et al.| 2025} Xie et al., [2025; [2024a)—leverage U-Net or DiT backbones to
iteratively denoise Gaussian noises into photorealistic images, delivering superior visual fidelity. On
the other hand, autoregressive (AR) approaches such as LlamaGen (Sun et al.,[2024)), Janus (Chen
et al.;[Wu et al.| [20244a)), Infinity/VAR (Han et al., 2024; Tian et al., [2024)) and other influential open-
source efforts (Liu et al., 2025} Jiang et al.| 2025} |Guo et al., [2025)) treat images as token sequences,
employing next-token prediction or scale-progressive generation to synthesize images. Very recently,
commercial T2I models such as GPT-40 (Hurst et al.,|2024), Imagen 3 (Baldridge et al., [2024) and
MidJourney v7 (Team, [2025) have propelled T2I to a new level. In particular, GPT-40 demonstrates
powerful instruction-following capability, which can understand highly intricate prompts and return
visually precise, stylistically coherent images in a single conversational loop.

With the rapid development of T2I models, how to comprehensively evaluate their performance,
especially the instruction-following capability, has become an important issue. Existing research
on the performance evaluation of T2I models generally falls into two complementary categories.
Preference alignment approaches, such as VQASCORE (Lin et al.} 2024), HPSv2 (Wu et al.,
2023)), and VISIONREWARD (Xu et al., |2025)), leverage learned reward models to align with human
preferences. Benchmark-driven approaches, exemplified by COMPBENCH++ (Huang et al.,[2025)),
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Figure 1: Prompt diversity/complexity of TIIF-Bench compared to prior benchmarks. (Left)
Semantic uniqueness after de-duplication using a cosine similarity threshold of 0.85: less than
30% and 60% prompts in COMPBENCH++ and GENAI BENCH are unique, while more than 90%
prompts in TIIF-Bench are unique. (Middle) t-SNE visualization of CLIP text embeddings shows
that TIIF-Bench spans a much broader semantic space than existing benchmarks. (Right) Prompts
length in COMPBENCH++ and GENAI BENCH are fixed and short, while TIIF-Bench covers a much
wider range. As shown in the lower-left corner, the longest prompts in COMPBENCH++ and GENAI
BENCH are less than 50 words, while TIIF-Bench contains complex prompts exceeding 500 words.

GENEVAL (Ghosh et al., 2023) and GENAI BENCH (Li et al., [2024a), employ structured prompt sets
across compositional dimensions (e.g., object attributes, relations, numeracy, efc.) and CLIP-based
metrics for evaluation. Other works, such as ConcepMix (Wu et al.|[2024b), DSG-Bench (Cho et al.|
2024])), and TIFA (Hu et al., 2023)), adopt a VQA-style framework to assess T2I models.

While existing benchmarks have advanced T2I evaluation, they exhibit several limitations. First,
prompts are typically short and of fixed length, as illustrated in Fig[I| (right). However, some T2I
models are sensitive to prompt length (see Fig.[AT), a factor that current benchmarks fail to account.
Second, current benchmarks suffer from semantic redundancy, as shown in Fig. E] (left), limiting their
ability to test generalization across diverse concepts. Third, they often lack syntactic variety and
exhibit narrow lexical coverage, as illustrated in Fig. [1|(middle). Finally, with regard to evaluation
methodology, commonly used expert scorers, such as CLIP, are insufficient for capturing the fine-
grained alignment between images and instructions (see Fig.[AZ). While some benchmarks leverage
large vision—language models (VLMs) as evaluators, their queries are overly coarse-grained (Huang
et al| 2025), failing to fully exploit the rich semantic embedded in VLMs (see Fig. [A3)), or they
restrict the evaluation to simple object- or attribute-level questions (Wu et al., 2024b; |Cho et al., [2024;
Hu et al.| |2023), limiting the ability to comprehensively assess modern T2I models.

To remedy these gaps, we introduce TIIF-Bench (Text-To-Image Instruction Following Benchmark),
a benchmark built for the fine-grained assessment of T2I models. We extract ten concept pools
from existing benchmarks and define 36 novel combinations of them with six compositional prompt
dimensions. Each dimension incorporates multiple attributes, ensuring that every prompt is seman-
tically distinct and exhibits diverse sentence structures. Additionally, two important dimensions
previously overlooked, fext rendering and style control, are introduced as dedicated categories
in our TIIF-Bench. We also collect 100 real-world designer-level prompts that encode rich hu-
man priors and aesthetic judgment. For each prompt, we provide a concise version and an ex-
tended version to assess the sensitivity of T2I models to prompt length. In total, the benchmark
offers 6combined7dimension X (3003hort + 300long) + lteztfgeneration X (3005hort + 300[0ng) +
1stylefcont7‘ol X (3005hort + 3oolong) + 1designer7level X (looshort + 1001071_1]) = 5000 prompts. In
evaluation, each prompt is accompanied by a set of attribute-specific yes/no questions, enabling
VLMs to judge at a more granular level than a coarse score. Text rendering accuracy is further
quantified by the proposed GNED metric (see Section [3.3]for details).

We benchmark popular closed-source models, including GPT-4o0 (Hurst et al., [2024)), FLUX.1-Pro
(Labs| [2024)), DALLE-3 (Betker et al., [2023), MidJourney V6 and V7 (Teaml 2025), alongside
leading open-source models, including Qwen-Image (Wu et al.| 2025a), BAGEL (Deng et al., [2025),
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Stable Diffusion (SD) series (Rombach et al., [2022; [Esser et al., [2024), PixArt series (Chen et al.}
2023), SANA series (Xie et al., 2025)), Playground series (Li et al., [2024bj Liu et al.| 2024}, and
autoregressive pipelines (Sun et al., 2024; [Han et al., [2024; Tian et al., [2024; Wu et al.| |2025b;
Fan et al.| 2024). Our findings indicate that, with the exception of GPT-40, both open-source and
closed-source models perform relatively well on prompts involving object attributes (e.g., color,
texture, shape), yet consistently struggle with reasoning tasks and compound tasks such as logical
instructions and complex layouts. Moreover, models that achieve higher overall scores on TIIF-Bench
tend to be more robust to prompt length, whereas lower-performing models exhibit greater sensitivity.
This suggests a positive correlation between a model’s instruction comprehension and its image
generation quality. Finally, although AR-based models generally produce lower-fidelity images,
their instruction-following performance is comparable to that of advanced diffusion-based models,
highlighting the inherent advantage of autoregressive architectures in semantic understanding. The
contributions of this paper are summarized as follows:

(i) Prompt-design methodology. We identify critical limitations of existing benchmarks (fixed-
length prompts, high semantic redundancy, and limited syntactic diversity) and propose a novel
attribute-composition strategy to address these issues. Additionally, we introduce new evaluation
dimensions and vary prompt length to test T2I model robustness.

(ii) Fine-grained evaluation protocol. Our evaluation framework leverages VLMs’ world knowledge
to pose attribute-specific yes/no queries that often involve logical reasoning or complex spatial
relations, thereby achieving finer-grained semantic alignment with human preference.

(iii) Important empirical insights. Through extensive experiments on TIIF-Bench, we uncover
consistent patterns in how T2I models of different architectures follow instructions during image
generation, providing important insights for future research.

2 RELATED WORK

T2I models have achieved remarkable progress in generating high-quality images. However, how to
evaluate their performance, particularly in terms of the instruction-following capability, remains a
challenging task. Existing work in T2I evaluation generally falls into two streams: (i) scoring models
aligned with human visual preferences, and (ii) benchmarks for structured evaluation.

Scoring Methods Aligned with Human Preferences. CLIPSCORE (Hessel et al., [2022)), a widely
adopted metric, fails to provide reliable judgments on complex prompts due to CLIP’s inherent
bag-of-words behavior. To address this, VQASCORE (Lin et al., [2024)) finetunes a CLIP-FlanT5
architecture specifically for the task of T2I image quality evaluation. Similarly, HPDv2 (Wu et al.,
2023) mitigates the collection bias in human image preference data. When used to fine-tune CLIP, it
results in HPSv2, a model with enhanced alignment to human judgments. However, these approaches
remain fundamentally constrained by CLIP’s limitation, i.e., it can assess high-level image—text
alignment but struggle with fine-grained semantic correspondence. VISIONREWARD (Xu et al.| [2025)
attempts to address this by learning a fine-grained, multi-dimensional reward model via hierarchical
visual assessment and interpretable weighting. Yet, its primary focus lies in video quality evaluation,
limiting its applicability to static T2I tasks.

Benchmark-Driven Evaluation Frameworks. Some early works (Wu et al. |2024b; |Cho et al.
2024; Hu et al., [2023) generate binary questions directly from the objects and attributes mentioned in
the prompt and employ VQA models for evaluation. However, these methods are limited to basic
dimensions and therefore fall short in adequately testing the full capabilities of modern T2I models.
COMPBENCH++ (Huang et al.l 2025) provides an 8k prompts suite across more compositional
dimensions (attribute binding, object relations, numeracy, complex scenes) and augments it with
detection-based 2D-/3D-spatial/numeracy metrics plus VLM-assisted scoring. GENAI-BENCH (Lin
et al., [2024) adds 1.6k prompts aiming for broader reasoning coverage, while GENEVAL (Ghosh
et al.,[2023)) uses object-detection signals to dissect co-occurrence, layout, counts and colors.

Despite their scope, these benchmarks share key drawbacks: many prompts are short, templated, and
highly repetitive, limiting semantic and linguistic diversity; and their evaluation protocols, including
rule-based object detection and single-score VLM judgments, struggle to capture semantic fidelity
and often correlate poorly with human preference. Motivated by these observations, we introduce
TIIF-Bench, a hierarchically structured benchmark featuring semantically rich prompts, broader
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length variation, expanded lexical scope, and a suite of fine-grained evaluation metrics, offering a
more comprehensive and reliable assessment of T2I models’ instruction-following capabilities.

3 CONSTRUCTION OF TIIF-BENCH

3.1 LIMITATIONS OF CURRENT T2I EVALUATION BENCHMARKS

As T2I models evolve, how to accurately evaluate their ability to follow instructions has become an
increasingly important problem. Some works (Wu et al., 2024b; |Cho et al., |2024; Hu et al., [2023)
use VQA-based binary questions on simple objects and attributes, but these basic dimensions cannot
sufficiently evaluate modern T2I models. Mainstream benchmarks (Huang et al., 2025} |Ghosh et al.,
2023} |L1 et al., |2024a) decompose evaluation into interpretable dimensions, covering object attributes,
inter-object relations, and various reasoning skills (e.g., counting, comparison, logical inference).
However, we observe that these benchmarks still suffer from several key limitations, which can be
categorized as prompt-design flaws and evaluation-protocol flaws.

Prompt Design Flaws. The prompt-design flaws can be classified into three main types. First, fixed
and short prompt lengths. In COMPBENCH++, the 2D and 3D dimensions include a total of 2,000
prompts; however, these prompts span only four lengths (5, 6, 7, and 8 words). As illustrated in
Fig.[AT] some T2I models show sensitivity to prompt length. Second, high semantic redundancy. We
extract CLIP text embeddings for all prompts and compute their pairwise cosine similarity. Prompts
with similarity above a threshold of 0.85 are considered semantically duplicated. As shown in Fig.[I]
(right), less than 30% of the prompts in COMPBENCH++ and 60% in GENAI BENCH are unique
after removal of duplication. This indicates a substantial degree of semantic redundancy, significantly
limiting their coverage of instruction semantic space. Third, poor lexical diversity. Fig.[I] (middle)
visualizes prompt embeddings projected into R? via t-SNE. Due to the widespread use of templated
phrasing in COMPBENCH++, for example, the 2D relationship dimension consistently uses fixed
expressions such as “on the left of”’, exhibiting low syntactic diversity.

Evaluation Protocol Flaws. The evaluation-protocol flaws can be classified into two main types.
First, reliance on weak expert models. Most benchmarks use CLIP to score image—text alignment,
but CLIP is known to behave like a “bag of words” (Lin et al.} 2024), conflating semantically distinct
prompts like “a boy is on the bottom of a bee” and “a bee is on the bottom of a boy” (see Fig.[AZ).
Other expert models like BLIP offer no significant improvement in fine-grained alignment, while
object detectors such as UniDet often fail for complex generated images. Second, coarse use of VLMs.
Some works (Wu et al.| 2024b; |Cho et al., 2024} |[Hu et al., [2023) adopt VQA-based binary questions
on objects and attributes, yet such elementary dimensions and the employed weak VLMs cannot
capture the full capabilities of modern T2I models. Some benchmarks query strong VLMs through
a single generic prompt such as “According to the image and your previous answer, evaluate how
well the image aligns with the text prompt: {xxx}.” Such coarse queries fail to decompose the rich,
multi-attribute semantics present in modern T2I prompts. Moreover, including the full T2I prompt
(i.e., the image caption) in the question often induces VLM hallucinations, pushing models to rely on
text rather than visual evidence and leading to overly optimistic evaluations, as illustrated in Fig.[A3]

3.2 ProwmpTS OF TIIF-BENCH

To address the limitations of existing T2I evaluation benchmarks, we build upon the hierarchical
prompt taxonomies of prior work by introducing a two-stage process: concept pool construction
followed by attribute composition. This process generates new prompts that continue to target
core capabilities such as object-attribute binding and spatial layout. To more comprehensively
assess instruction-following performance, we further introduce three new evaluation dimensions: text
rendering, style control, and real-world designer-level prompts. Each prompt is also processed by a
length augmentation module that generates both concise and verbose versions, enabling evaluation
across varying linguistic lengths. The full data generation pipeline is illustrated in Fig.[2]

Concept Pool Construction. We first group the prompts in existing benchmarks based on their
semantics and leverage GPT-4o to extract the underlying object—attribute/relation pairs, forming
a set of dimension-specific concept pools. In total, we construct 10 concept pools from existing
benchmarks, categorized them into three groups, as summarized in Tab.
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Figure 2: (Top): Prompt-construction and evaluation pipeline of TIIF-Bench. The example depicts a
“Color + 3D Perspective” pairing, one of the 36 distinct attribute-pool combinations defined in our
framework. (Bottom): In addition to systematically reusing prompts from existing benchmarks, we
gather text-generation prompts from Lex-Art (Zhao et al.,[2025) and curate style control and real-
world designer-level prompts. All prompts are further expanded to produce long-form counterparts.

Attribute Composition. Building upon concept pools, we generate prompts by randomly combining
attributes from each pool, leveraging GPT-40 to compose them into natural instructions. As illustrated
in Tab. [T} we define 36 distinct combinations, each paired with a dedicated meta-prompt to guide
GPT-40 to assemble instructions. This sampling strategy ensures that the resulting prompts are both
semantically unique and compositionally diverse. Prompts that combine elements drawn from a single
concept-pool group are classified as Basic Following. In contrast, Advanced Following prompts
intertwine elements taken from different concept-pool groups, yielding more intricate compositions.

New Dimensions. To extend evaluation beyond conventional instruction-following skills, we intro-
duce three novel dimensions: text rendering, style control, and real-world scenario prompts. (i) Text
rendering evaluates a model’s ability to accurately reproduce complex typographic elements, using
prompts sourced from the Lex-Art corpus (Zhao et al.| [2025). (ii) Style control assesses the model’s
capacity to adhere to high-level artistic directives, with prompts manually curated from leading AIGC
creator communities. (iii) Designer-level prompts involve complex instructions that incorporate
practical constraints and domain-specific knowledge, also collected through manual annotation. The
text rendering and style control dimensions are included in the Advanced Following set, while the
designer-level prompts constitute the Designer Level Following set.

Length Augmentation. Finally, for each generated prompt, we leverage GPT-40 to construct a
corresponding long-form variant by expanding the content through natural language paraphrasing
and stylistic elaboration, while faithfully preserving its original semantics.
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Table 1: Based on difficulty, we define 36 attribute-pool combinations, grouped into three levels:
Basic Following, Advanced Following, and Designer Level Following. Basic Following prompts
are constructed by combining attributes/relations and objects from a single attribute group, while
Advanced Following prompts involve cross-group composition, as well as two specialized dimen-
sions—text rendering and style control—to evaluate text rendering and aesthetic coherence. Finally,
100 real-world Designer Level Following prompts are manually curated. The rightmost column
reports the number of prompts per subclass, all of which are further expanded into long-form variants.

Level ‘ Dimension ‘ Combination Policy ‘ Count
. Attribute Shape+Color, Color+Texture, Texture+Color, Shape+Texture {100,50,50,100}
g(‘;‘fl‘(fwing Relation 2D Spatial, 3D Perspective, Action+2D, Action+3D {75,75,75.75}
Reasoning Numeracy, Negation, Differentiation, Comparison {75,75,75,75}
Attribute Action+Color, Action+Texture, Color+2D, Color+3D, {50, 50, 33, 33,
+ Relation Shape+2D, Shape+3D, Texture+2D, Texture+3D 33,33, 33,33}
Advanced Attribute Numeracy+{Color, Texture}, Comparision+{Color, Texture}, {40, 40, 40, 40,
Following + Reasoning Differentiation+{ Color, Texture}, Negation+{Color, Texture} 40, 40,40, 40}
Relation Numeracy+{2D, 3D}, Comparision+{2D, 3D}, {40, 40, 40, 40,
+ Reasoning Differentiation+{2D, 3D}, Negation+{2D, 3D} 40, 40, 40,40}
Text Generation | — {150}
Style Control — {150}
Designer Level o
Following Complex {100}

3.3 EVALUATION METHOD OF TIIF-BENCH

To overcome the limitations of expert scorers, such as CLIP, and open-set object detectors in evaluating
the generated images, we propose an attribute-specific, fine-grained evaluation protocol. Our method
leverages the vast world knowledge encoded in VLMs to assess the alignment between textual
instructions and generated images, while additionally incorporating comprehensive dimensions such
as logical reasoning and complex spatial relationships. As illustrated in Fig.2} given an input prompt,
we first extract its N core concepts C' = {¢;}¥, from the constructed concept pools. For each
concept ¢;, we generate a corresponding yes/no question q;, resulting in a set of evaluation questions
Q = {¢:}, and the associated ground-truth answers A = {a;}}¥_;. The generated image, along
with the questions (), is then input into a VLM (e.g., GPT-40, Qwen2.5-VL-72B), which produces N

predicted answers. The final evaluation score s for the generated image is computed as:

1 N R
SZNZZ_ZI]I[(M:CQ],

where I[-] denotes the indicator function, and a, represents the VLM’s answer to question ¢;. By
leveraging attribute-specific questions, our approach does not require the full T2I prompt during
evaluation, thus mitigating hallucinations induced by language bias in previous methods.

For style control dimension, we directly utilize “Is this image in the {Style} style?” as the evaluation
question. For designer-level prompts which are inherently complex and encode deep human priors,
we manually construct a set of evaluation questions for each prompt to ensure a reliable assessment.

For text rendering evaluation, we propose a Global Normalized Edit Distance (GNED) metric. Let
P = {p1,...,pm} be the set of text-rendering words from then prompt and G = {g1, ..., gn} the
set of OCR-extracted words from the generated image. GNED calculates the minimal character-level
normalized edit distance (NED) between words in P and G via the Hungarian algorithm for optimal
bipartite matching M, then adds a penalty |m — n| for unmatched words (e.g., missing/hallucinated
text) and normalizes the total cost by max(m,n):

(e NED(p;, g;) + |m — n) /max(mm),

GNED(P,G) = (Z
where NED(p;, g;) quantifies character-level discrepancies between matched word pairs. GNED
is bounded within [0, 1], where 0 indicates perfect alignment and 1 indicates maximal deviation.
Unlike metrics such as OCR Recall and PNED (Zhao et al.| 2025), which are sensitive to text length
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Table 2: Performance of closed-source models and state-of-the-art open-source models on TIIF-
Bench. Evaluated systems are grouped into (i) diffusion-based open-source models, (ii) autoregressive
(AR) open-source models, and (iii) closed-source models; within each group, the highest score is
shown in bold and color-coded for that group.

‘ Overall ‘ Basic Following ‘ Advanced Following ‘ Designer
Model ‘ ‘ ‘ Avg ‘ Attribute Relation Reasoning‘ Avg ‘ G:crll;ll‘:; +RA:“:2::zg +l§:z1|2:r?::13 Style ‘ Text ‘ ‘szl]ld

‘ short ‘ long ‘ short ‘ long ‘ short‘ long ‘ short ‘ long ‘ short ‘ long ‘ short ‘ long ‘ short‘ long ‘ short ‘ long ‘ short‘ long ‘ shon‘ long ‘ shon‘ long ‘ short ‘ long

Diffusion based Open-Source Models

SD XL 54.96 | 42.13 | 65.72| 53.28| 59.33| 50.83 | 77.57| 62.57 | 60.32| 46.57 | 49.73 | 36.22 | 47.82| 35.57 | 56.22| 45.34| 52.59| 36.09 | 73.33| 60.00| 16.83 | 0.83 | 50.92 | 41.59
SD3 67.46 | 66.09 | 78.32| 77.75| 83.33| 79.83 | 82.07| 78.82| 71.07 | 74.07 | 61.46 | 59.56| 61.07 | 64.07 | 68.84 | 70.34 | 50.96| 57.84| 66.67 | 76.67 | 59.83| 20.83 | 63.23 | 67.34
SD3.5 71.15 | 66.96 | 78.34| 79.56| 79.50| 76.50 | 80.96 | 83.21 | 72.46| 78.71 | 67.67 | 61.18 | 66.46 | 61.89 | 73.53 | 74.15| 60.03| 61.53 | 73.33| 63.33 | 70.52| 42.52 | 64.43 | 66.39
SANA Sprint 63.68 | 58.50 | 76.58 | 71.00| 75.33| 71.33 | 81.82| 72.07 | 72.57 | 69.57| 57.67 | 51.80| 55.32| 54.94| 68.46 | 66.72| 62.59| 63.46| 80.00| 60.00| 8.83 | 5.83 | 66.96 | 58.01
SANA 1.5 67.15 | 65.73 | 79.66 | 77.08| 79.83 | 77.83 | 85.57 | 83.57 | 73.57 | 69.82| 61.50 | 60.67 | 65.32| 56.57 | 69.96 | 73.09| 62.96| 65.84 | 80.00| 80.00| 17.83 | 15.83 | 71.07 | 68.83

Playground v2 | 45.64 | 52.78 | 59.83 | 69.58| 51.33 | 66.33| 70.57 | 76.07 | 57.57 | 66.32 | 38.43 | 44.75| 41.57 | 45.57 | 48.96| 59.97| 41.72| 53.84 | 53.33| 60.00| 0.00 | 0.83 | 45.32| 46.44
Playground v2.5 | 47.73 | 54.82 | 63.08 | 68.08 | 57.83 | 73.83| 71.82| 77.32| 59.57 | 53.07 | 40.73 | 48.17| 39.70 | 45.82| 49.59 | 64.22| 44.22| 46.72| 60.00| 80.00| 0.00 | 4.83 | 47.19| 47.56
PixArt-delta 41.01 | 48.24 | 53.83 | 59.25| 46.33 | 52.83| 62.07 | 71.32| 53.07 | 53.57 | 34.60 | 42.77 | 32.44| 37.44| 53.59 | 56.59| 36.96 | 49.46 | 46.67 | 73.33| 0.00 | 0.00 | 38.23 | 40.10
PixArt-alpha 44.37 | 50.50 | 55.50 | 61.00 | 52.33 | 56.33 | 63.82 | 74.07 | 50.32 | 52.57 | 38.71 | 44.90| 37.82| 41.32| 58.84 | 52.46| 40.22| 47.09 | 50.00 | 76.67| 0.00 | 0.83 | 45.70| 53.16
PixArt-sigma 62.00 | 58.12 | 70.66 | 75.25| 69.33 | 78.83 | 75.07| 77.32 | 67.57| 69.57 | 57.65 | 49.50| 65.20| 56.57 | 66.96 | 61.72| 66.59| 54.59 | 83.33| 70.00| 1.83 | 1.83 | 62.11 | 52.41
LUMINA-Next | 50.93 | 52.46 | 64.58 | 66.08 | 56.83 | 59.33| 67.57 | 71.82| 69.32| 67.07 | 44.75| 45.63 | 51.44| 43.20| 51.09| 59.72| 44.72| 54.46 | 70.00| 66.67 | 0.00 | 0.83 | 47.56| 49.05
Hunyuan-DiT 51.38 | 53.28 | 69.33] 69.00| 65.83| 69.83 | 78.07| 73.82 | 64.07| 63.32 | 42.62 | 45.45| 50.20| 41.57 | 59.22| 61.84 | 47.84| 51.09| 56.67| 73.33| 0.00 | 0.83 | 40.10| 44.20
FLUX.1 dev 71.09 | 71.78 | 83.12| 78.65 | 87.05| 83.17 | 87.25| 80.39 | 75.01| 72.39 | 65.79 | 68.54 | 67.07| 73.69 | 73.84| 73.34| 69.09| 71.59 | 66.67 | 66.67 | 43.83 | 52.83| 70.72 | 71.47
BAGEL 71.50 | 71.70 | 81.79| 80.05 | 82.50| 83.50 | 82.96| 79.89 | 79.89| 76.77 | 70.24 | 72.19 | 74.38| 75.00 | 67.35| 70.07 | 72.03 | 74.89 | 86.67| 83.33| 29.41 | 33.94| 68.28 | 67.91
Qwen-Image 86.14 | 86.83 | 86.18 | 87.22| 90.50| 91.50 | 88.22| 90.78 | 79.81| 79.38 | 79.30 | 80.88 | 79.21| 78.94 | 78.85| 81.69 | 75.57 | 78.59| 100.0| 100.0| 92.76 | 89.14| 90.30 | 91.42

AR based Open-Source Models

Llamagen 41.67 | 38.22 | 53.00 | 50.00 | 48.33 | 42.33| 59.57 | 60.32| 51.07 | 47.32| 35.89 | 32.61 | 38.82| 31.57| 40.84 | 47.22| 49.59 | 46.22 | 46.67 | 33.33| 0.00 | 0.00 | 39.73 | 35.62
LightGen 5322 43.41 | 66.58 | 47.91| 55.83| 47.33 | 74.82| 45.82| 69.07 | 50.57 | 46.74 | 41.53 | 62.44| 40.82 | 61.71 | 50.47 | 50.34| 45.34| 53.33| 53.33| 0.00 | 6.83 | 50.92 | 50.55
Show-o 59.72 | 58.86 | 73.08 | 75.83 | 74.83| 79.83 | 78.82| 78.32| 65.57| 69.32 | 53.67 | 50.38 | 60.95| 56.82 | 68.59 | 68.96 | 66.46| 56.22| 63.33| 66.67 | 3.83 | 2.83 | 55.02| 50.92
Infinity 62.07 | 62.32 | 73.08 | 75.41| 74.33| 76.83 | 72.82| 77.57 | 72.07| 71.82 | 56.64 | 54.98 | 60.44 | 55.57 | 74.22| 64.71| 60.22| 59.71| 80.00| 73.33| 10.83 | 23.83 | 54.28 | 56.89
JanusPro 66.50 | 65.02 | 79.33| 78.25| 79.33| 82.33 | 78.32| 73.32| 80.32| 79.07 | 59.71 | 58.82| 66.07| 56.20 | 70.46 | 70.84 | 67.22| 59.97| 60.00| 70.00 | 28.83 | 33.83| 65.84 | 60.25
T2I-R1 68.59 | 67.19 | 82.90 | 81.63| 86.50 | 83.00 | 83.47 | 79.43 | 78.73 | 82.46 | 69.05| 68.00 | 71.64 | 69.47 | 72.43 | 69.95| 69.40| 70.40 | 60.00| 63.33 | 27.60| 26.24 | 67.54| 60.45

Closed-Source Models

DALL-E 3 75.13 | 70.98 | 78.89| 78.67 | 79.67| 80.00 | 81.00| 79.00 | 76.00| 77.00 | 73.56 | 67.44 | 73.63| 67.38 | 72.17| 71.50| 63.75| 60.88 | 89.66| 86.67 | 67.00| 55.00| 73.13 | 61.19
MidJourney v6 | 70.95 | 67.87 | 76.17 | 69.25| 78.00 | 69.50| 81.50 | 73.25| 69.00 | 65.00 | 68.71 | 67.79| 58.00 | 62.13| 70.00 | 64.12| 57.62| 60.50 | 83.33| 73.33 | 76.00 | 74.00 | 65.30 | 68.66
MidJourney v7 | 68.91 | 65.86 | 77.58 | 76.17| 77.75 | 82.00| 82.25| 77.00 | 72.75 | 69.50 | 64.83 | 60.70| 67.38 | 62.88 | 81.38 | 71.75| 60.88 | 64.75 | 83.33| 80.00| 25.00| 21.00 | 69.03 | 63.81
FLUX.1 Pro 67.49 | 70.06 | 79.25| 79.08 | 79.00| 81.50 | 83.00| 84.00 | 75.75| 71.75 | 61.27 | 65.54 | 62.50| 65.75 | 70.00| 71.63 | 66.12| 67.88 | 63.00| 63.00 | 36.00| 56.00 | 72.00 | 69.00
GPT-40 89.32 | 88.46 | 90.92| 89.83| 91.50 | 87.25 | 84.75| 84.75 | 96.50 | 97.50 | 88.72 | 88.52 | 87.25| 89.62 | 87.38 | 84.12| 85.75| 83.37| 90.00| 93.33| 90.00 | 87.00 | 89.93 | 93.66

and word count imbalance, GNED robustly penalizes both over-generation and omission, enabling
consistent and comparable evaluation across samples of varying lengths. Illustrative examples of the
GEND metric are provided in Sec.[A4.5]for better understanding.

4 EXPERIMENTS

4.1 PERFORMANCE OF T2I MODELS ON TIIF-BENCH

We benchmarked TIIF-Bench on a suite of widely used closed-source and leading open-source

models, including GPT-4o (Hurst et al.| 2024), FLUX.1-Pro 2024), DALLE-3 (Betker et al.,
2023)), MidJourney V6 and V7 (Team, 2025)), Stable Diffusion series 2022;
et al., [2024), PixArt series (Chen et al.|, 2023} 2024bfa)), SANA series (Xie et al., 2025} (Chen et al.|
2025), Playground series (Li et al., [2024b} 2024) and AR pipelines (Jiang et al.| 2025}, [Han|
et al.l 2024} Tian et al.l [2024; [Wu et al.,[2025b;, [Fan et al.,[2024).

For each of the three difficulty levels (basic following, advanced following, designer-level), we
calculate the average score of its associated dimensions for both short and long versions of the
prompts. We also calculate the overall average scores of all dimensions across all the three difficulty
levels. From Tab. |Z|, we can have a set of key observations, which are detailed below.

4.1.1 DIFFUSION-BASED OPEN-SOURCE MODELS

(i) Overall performance. From the upper panel of Tab.[2] we see that Qwen-Image significantly
outperforms other open-source models and approaches the performance of GPT-40. This can be
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attributed to its large-scale text encoder, which endows it with rich world knowledge, as well as
the MMDIT architecture trained from scratch on massive datasets. An interesting outlier is the
Playground series: despite its relatively modest average image quality, it demonstrates consistent
gains under long-prompt conditions, likely due to its distinctive mechanism for embedding textual
semantics more deeply into the generation pipeline.

(ii) Text Rendering. Qwen-Image demonstrates even stronger text rendering capability than GPT-4o.
Among other diffusion-based open-source models, only FLUX-1 Dev, SANA 1.5 (and Sprint), and
the Stable Diffusion family (SD-XL, SD-3, SD-3.5) provide in-image text rendering support.

(iii) Style Control. Qwen-Image, enriched with broader world knowledge, is the only model that
answers all questions correctly. For other models, prompt length has opposite effects. In systems
like Playground and PixArt-Alpha, style vocabularies are limited (e.g., Ghibli, Cyberpunk), so short
prompts relying solely on these terms often fail. Longer prompts that provide additional visual
context can compensate for this limitation, substantially improving the output quality. In contrast,
models such as SD-3.5 and PixArt-Sigma, trained on datasets with brief label-like style tokens, lose
stylistic fidelity when such cues are diluted in longer descriptive prompts.

(iv) Designer-Level Prompts. The designer-level prompts encompass the densest and most diverse
set of requirements, offering the most comprehensive test of a model’s instruction-following capability.
As aresult, the ranking of models on this dimension closely aligns with that of the overall performance.

(v) Robustness to Prompt Length. Top-performing models like Qwen-Image, BAGEL, FLUX.1 Dev
demonstrate strong robustness to variations in prompt length, producing consistent results across short
and long versions of semantically equivalent prompts. In contrast, weaker models such as SDXL,
SD 3, PixArt-Alpha, and Playground series exhibit large performance discrepancies. This provides
preliminary evidence that the instruction comprehension capability of a T2I model is positively
correlated with its image generation quality.

4.1.2 AR-BASED OPEN-SOURCE MODELS

(i) Overall Performance. From the middle panel of Tab. 2] we see that T2I-R1 achieves the strongest
overall instruction-following performance, largely attributed to its reinforcement learning paradigm.

(ii) Text Rendering. Autoregressive architectures are inherently constrained in their ability to render
text within images. Only Show-o and Janus-Pro support basic text generation. However, Janus-
Pro’s capability declines after reinforcement learning (T2I-R1), primarily because the reward model,
designed to prioritize visual quality, offers little incentive for accurate text rendering.

(iii) Style Control. T2I-R1, Janus-Pro and Infinity outperform diffusion-based models in style control,
as their autoregressive design enables more precise interpretation of complex stylistic semantics.

(iv) Designer-Level Prompts. For designer-level prompts with high visual complexity, AR-based
models remain limited by image fidelity. Still, their rankings align with overall model performance.

(v) Robustness to Prompt Length. As diffusion models, those AR models with stronger overall
performance remain stable across prompt lengths, while weaker models show large gaps. This further
supports the link between instruction understanding and generation.

4.1.3 DIFFUSION-BASED VS. AR-BASED OPEN-SOURCE MODELS

Although AR-based models tend to produce images with lower visual fidelity, their autoregressive
architecture, jointly trained on generation and understanding tasks, grants them strong instruction-
following capabilities. For instance, Janus-Pro outperforms diffusion-based model PixArt-Sigma on
TIIF Bench. We present qualitative examples in Fig.[AT0]to illustrate this finding.

4.1.4 CLOSED-SOURCE MODELS

(i) Overall Performance. From the bottom panel of Tab. |2} we see that GPT-40 demonstrates the
strongest instruction-following ability, largely due to its superior language understanding.

(ii) Text Rendering. Thanks to its robust comprehension capabilities, GPT-40 leads by a wide margin.
Notably, MidJourney V7 shows a significant degradation compared to V6.
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(iii) Style Control. With a vast knowledge base and strong semantic understanding, GPT-40 consis-
tently producing stylistically aligned outputs.

(iv) Designer-Level Prompts. Closed-source models generally perform well on this dimension likely
due to high-quality training data exposure. GPT-40 outperforms other closed-source models.

(v) Robustness to Prompt Length. Closed-source models exhibit strong robustness to length
variations, which further supports correlation between comprehension and generation quality.

4.1.5 CLOSED- VS. OPEN-SOURCE MODELS

While closed-source models generally surpass open-source ones in image quality, their instruction-
following capabilities are not always superior. For example, Qwen-Image outperforms all models
in text rendering and style control, while FLUX.1 Pro actually scores lower than FLUX.1 Deyv,
especially on long-prompt scenarios. We observe that most models exhibit strong instruction-
following capabilities in object attribute dimensions such as color and material. However, their
performance drops significantly when dealing with spatial relations or logical reasoning.

4.2 TIIF-BENCH VS. EXISTING BENCHMARKS

To further assess the effectiveness of our TIIF-Bench evaluation methodology, we select four open-
source models (SD 3.5, SANA 1.5, PixArt-Sigma, and Janus-Pro) and four representative closed-
source models (GPT-40, DALL-E 3, Flux.1 Pro, and MidJourney v6), and evaluate them on three
benchmarks: COMPBENCH++, GENAI BENCH, and our proposed TIIF-BENCH. For each model,
we generate images for all prompts. The resulting images are then scored using the evaluation method
of each benchmark. Full scoring results are provided in Tab. and Tab.

Observing model performance on GENAI BENCH(Tab. [A2)), we find that the CLIP-based VQAScore
fails to capture fine-grained text-image alignment. As a result, multiple models, including SD 3.5,
SANA 1.5, PixArt-Sigma, Flux.1 Pro, MidJourney v6, receive identical scores, hindering precise
evaluation. Similarly, examining COMPBENCH++ results (Tab. @, we notice that several models
achieve identical scores and there exist notable discrepancies between expert model-based and GPT-
based scores. For example, FLUX.1 Pro is rated high by GPT-40 but is rated significantly lower by
expert models. In contrast, TIIF-Bench yields a clear and consistent ordering of the evaluated models.

To further assess how well each benchmark aligns with human preferences, we conduct a user study
as described in Sec.[A4.4] Specifically, ten volunteers are invited and they are asked to rank the
outputs of the eight models for each prompt, without knowing the model identities. We then compute
the Spearman p correlation between the benchmark rankings and human-annotated rankings. As
shown in Tab.[A4] COMPBENCH++ shows only weak alignment with human judgment. In contrast,
TIIF-BENCH exhibits near-perfect correlation with human preferences (see Tab.[A3)), highlighting
the effectiveness of our fine-grained evaluation framework.

5 CONCLUSION

We introduced TIIF-BENCH, a comprehensive and hierarchical benchmark to assess the instruction-
following capabilities of modern T2I models. TIIF-Bench encompassed diverse combinations of
concepts as well as comprehensive evaluation dimensions including text rendering, style control, and
designer-level prompts. Additionally, we proposed a fine-grained evaluation methodology leveraging
the world knowledge embedded in VLMs, along with GNED, a novel metric to assess text rendering
quality. Extensive experiments were conducted to analyze the instruction-following behaviors of
current T2 models, providing valuable insights for future development of T2I systems.

Limitations. With the rapid progress of T2I models, some systems have begun to exhibit more
advanced reasoning capabilities, such as solving mathematical problems directly within generated
images. These emerging abilities are not yet covered in the current version of TIIF-BENCH. In future
updates, we plan to expand the benchmark with new evaluation dimensions that reflect these evolving
capabilities of next-generation T2I models.
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was collected. The annotators were not involved in the development of this paper, avoiding potential
sources of bias. All datasets used are publicly available and contain no sensitive or private data.

REPRODUCIBILITY STATEMENT

‘We have made extensive efforts to ensure the reproducibility of our work. The construction of our
benchmark, including prompt design, evaluation dimensions, and scoring protocol, is described in
Sec.[3.1] with additional implementation details provided in the Appendix. During evaluation, we set
the temperature of the evaluator VLM to 0 to ensure strict consistency. The results reported in this
paper are obtained with the default temperature of 1.0, which still exhibits high stability across runs.
Finally, our code, benchmark data, and partial evaluation results on GPT-40 and QwenVL-2.5-72B
(covering selected models and prompts) are submitted as supplementary materials.
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APPENDIX

In this appendix, we provide the following materials:

and Sec. in main paper);

, referring to Sec. in main paper);

Al] Figs. A1-A3 (referring to Sec.
A2] Details of Concept Pool (Tab.
A3[ Meta Prompts (referring to Sec.[3.2|in main paper);

A4 More Experimental Results (referring to Sec. and Sec. in main paper);
REE

A5| Additional Visualizations (Fig. referring to Sec. d Sec. in main paper);
A6| Experimental Statistics;

A7| Compute Resource;

A8| The Use of Large Language Models (LLMs).

Al Fi1Gs. A1-A3

As illustrated in Fig. [AT] the instruction-following performance of text-to-image (T2I) models is
significantly affected by the prompt length. However, current benchmarks do not consider this factor,
lacking the ability to differentiate between short and long instructions. Furthermore, as shown in
Fig. expert models that are commonly used in existing benchmarks for evaluations often fail
to reliably assess the capabilities of T2I models. Additionally, as depicted in Fig.[A3] benchmarks
that utilize GPT-based evaluation frequently include the image caption within the evaluation prompt,
which can induce hallucinations and introduce bias into the VLM’s judgments.

PixArt-Sigma SD3.5
N
= e
}'3
L 2
AT
TR T
~~ )
e :

long prompt @ long prompt ® long prompt C‘/J short prompt @ long prompt @
Figure Al: Prompt-length sensitivity on the Numeracy attribute (‘“more birds than fish”) from TIIF
Bench. Short prompt: “7he birds are more numerous than the fish.” Long prompt: “The birds, with
their feathers catching the gentle light of dawn, vastly outnumber their aquatic counterparts, the fish,
which glide silently beneath the rippling surface of the water, their sleek forms moving like shadows
in the depths below.” We observe that PixArt-Sigma and SD 3.5 exhibit noticeable sensitivity to
prompt length, with their ability to follow the core semantic instruction varying between the short and
long versions of the same prompt. In contrast, DALL-E 3 and GPT-40 demonstrate strong robustness,
maintaining consistent instruction-following performance regardless of prompt length.
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Prompt: a boy on the bottom of a bee
DALL E 3(%) Flux.1 Pro (%,

MidJourney v6 (%)

CLIP BLIP UNIDet VQAS CLIP-- BLIP UNIDet VQAS | CLIP BLIP UNIDet VQAS | CLIP BLIP UNIDet VQAS

32.08 36.23 69.06 63.81 31.08 71.67 0 83.96 30.25 20.70 0 67.27 33.96 54.36 0 88.77
SANA 1.5 (%) ~ SANA Sprint (%) Pixart Sigma (X) sD 3.5 X

g > # : k- ) r'v 4 -~ L - '\ = 4

- N = 3 0 4
CLIP BLIP UNIDet VQAS | CLIP BLIP UNIDet VQAS | CLIP BLIP UNIDet VQAS CLIP BLIP UNIDet VQAS
33.15 4829 0 71.75 31.79 45.73 0 75.93 31.42  70.44 0 86.20 31.71  78.89 0 88.77

Human: 6PT 40  CLIP: MidT v6 @ BLIP: 5D 3.52 VQA Score: Midj vé6 @ UNIDet: failed in most cases!

Figure A2: Illustration of the limitations of expert scorers widely used in T2I benchmarks such as
COMPBENCH++ and GENAI BENCH. CLIP and BLIP can only assess image-level alignment and
they struggle with evaluating the fine-grained instruction-following capability of T2I models, often
producing scores misaligned with human judgments. UniDet fails in most cases, unable to detect
objects in complex scenes produced by modern T2I models. VQAScore, a variant of CLIP fine-tuned
for image quality assessment, remains limited in addressing the complexity of modern generations.
As aresult, the best models selected by these expert scorers are different from the one selected via
human subjective evaluation (i.e., GPT-40).

According to the image and your previous answer, evaluate how well the image aligns with the text prompt: {xxx}.
Give a score from 0 to 100, according the criteria:
& —

Provide your analysis and explanation in JSON format with the following keys: score (e.g., 85),
explanation (within 20 words).

~

a backpack, three apples, two The black camera was next to eight bottles

strawberries, and a bow! were the white tripod.

on the kitchen counter

“score": 90 @ “score": 90 @ “score": 85 @
"explanation": "The text "explanation": "Camera is black  "explanation": "Image shows ten
correctly identifies all objects  and next to a white tripod, bottles, not eight as mentioned
with an accurate spatial layout matching text description in the text."

but misses multiple accurately."

strawberries on counter."

Figure A3: Failure cases of current T2I evaluation methods under coarse prompt queries. Since the
image caption is used as part of the prompt, these methods can easily induce hallucinations in VLMs
such as GPT-40 and consequently lead to highly optimistic scores.
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Table Al: The 10 dimensions used to build the TIIF-Bench prompt set. We first mine these
dimensions from existing benchmarks and regroup them into three broad categories: attributes,
relations, and reasoning. For concepts mined from COMPBENCH++, we leverage GPT-4o0 to separate
the core objects from their attributes/relations; the two components are stored independently for
later composition (i.e., the red components and blue components are stored separately). In contrast,
concepts extracted from GENAI BENCH are saved as whole phrases because their action links and
logical relations—such as differentiation, comparison, and negation—cannot be cleanly factorized.

Category ‘ Dimension ‘ Source ‘ Example Prompt Extracted Attributes
Color Comp++ AAlan dog W{thA sky blue €yes posing for a picture tan dog, sky blue eyes
with a man sitting on a chair in the background. = ?
The conical salt and pepper shakers with their conical salt and pepper shakers,
Attributes Shape Comp++ | cylindrical bases and spherical tops seasoned food |cylindrical bases, spherical tops,
in the square dining room. square dining room
Texture Compt+t The wooden table is covered with a fabric wooden table, fabric tablecloth,
P tablecloth and adorned with a glass vase. glass vase
2D Spatial Comp++ | A butterfly on the top of a desk. butterfly on top of desk
Relations 3D Perspective  |Comp++ | A key in front of a girl. key in front of girl
Action GenAl ?mdg’lﬁegﬁrz:l::gilrgsjnet;tifany on acraggy, dragon perched on mountain
Three bottles stood next to three printers on the i o L
Numeracy Comp++ shelf three bottles, three printers
A person in uniform pointing out landmarks to a a person in uniform, another person
Differentiation | GenAl person in a window seat wearing noise-canceling | p . g o pers
headphones wearing headphones
Reasoning .
. I jous s he fl s ller th:
Comparison GenAl ﬂr:eatgzssterlous swamp, the flowers are taller than flowers are taller than the trees
Negation GenAl 3:51(%;1 gv;/;ts};egslzitssssei;ésirsgrawmg, and the girl girl without glasses is singing

A2 DETAILS OF CONCEPT PooL

Tab. [AT] details the categories in our concept pools, organized into Attributes, Relations, and

Reasoning across ten dimensions.

A3 META PROMPTS

A3.1

META PROMPT FOR LENGTH AUGMENTATION

For each generated prompt, we use GPT-4o0 to create a longer version of it by paraphrasing and
elaborating in natural language, while preserving the original meaning. The prompt is as follows:

###RAW CAP###

You are a professional writer.

describes a visual scene.

Please expand the sentence by increasing its linguistic richness.
may elaborate with more complex structure,
stylistic details—--however,

entities, or events.

Return only the expanded sentence,

commentary.

Observe the sentence

16
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Table A2: Performance of eight T2I models on GENAI BENCH, evaluated using VQAScore. Results
are reported for both basic and advanced prompt categories, as well as the overall average.

Model Basic Advanced  Overall
SD 3.5 0.88 0.65 0.75
SANA 1.5 0.86 0.66 0.75
PixArt-Sigma 0.86 0.65 0.75
Flux.1 Pro 0.81 0.68 0.75
Janus-Pro 0.80 0.64 0.71
DALLE-3 0.85 0.76 0.81
MidJourney v6 0.85 0.68 0.75
GPT-40 0.86 0.83 0.85

Table A3: Evaluation results on COMPBENCH++. COMPBENCH++ provides both a GPT-based
evaluation method and an expert model-based evaluation method; we report results from both.

‘ AVG ‘ Color ‘ Shape ‘ Texture ‘ Numeracy‘ 2D Spatial‘ 3D Spatial ‘ Non-Spatial‘ Complex
Model |Expert GPT |Expert GPT |Expert GPT |Expert GPT |Expert GPT |Expert GPT |Expert GPT |Expert GPT |Expert GPT
SD3.5 0507 68.89]0.767 83.40|0.596 85.15]0.706 87.44|0.621 45.03]0.277 44.76]0.403 4506|0315 85.03]0.376 75.26
SANA 1.5 0507 69.72|0.755 88.83|0.536 79.59|0.686 78.92|0.611 53.10|0.362 51.03 |0.412 44.26|0.312 84.46|0.382 77.56
PixArt-Sigma 0436 56.92|0.587 82.60 | 0.476 62.45|0.569 71.08|0.549 30.10|0.247 46.83 |0.366 27.00|0.308 67.40 |0.383 67.90
FLUX.1 Pro 0.459 70.48|0.704 85.06|0.529 70.08|0.596 75.83|0.616 72.28|0.276 59.50 |0.344 50.73|0.290 77.29 |0.315 73.10
Janus-Pro 0.285 47.34|0.393 5745|0264 42.34|0.349 48490335 36.90|0.080 17.86|0.209 29.83|0.299 7136 |0.355 74.56
DALLE-3 0511 76.94|0.803 84.03|0.637 85.15|0.774 86.88|0.617 62.90|0.253 63.20|0.353 68.06|0.297 85.73|0.353 79.58
MidJourney v6.1 | 0.507 70.93|0.750 84.33|0.525 72.68|0.787 85.22|0.670 5522|0278 5227|0384 51.06|0.310 89.80 |0.349 76.88
ChatGPT 4o 0572 86.59|0.795 9534 |0.593 84.30|0.831 91.04|0.800 79.86|0.450 85.83|0.406 70.46|0.311 95.50|0.389 90.40

Table A4: Alignment of expert-based and GPT-based evaluations with human preference on COMP-
BENCH++.

Comp++ Color ‘ Shape ‘ Texture ‘ Numeracy ‘ 2D Spatial | 3D Spatial 51::3;1 ‘ Complex
Spearman p

Experts 058 078 | 061 | 024 | 000 | 014 007 036

GPT 036 | 049 | 043 | 060 | 060 079 060 052

A3.2 META PROMPT FOR EVALUATION

For each prompt and its corresponding generated image, we insert the associated list of yes/no
questions into a predefined meta prompt. The resulting prompt, along with the image, is then passed
to VLMs (GPT-40 or Qwen-VL2.5-72B) for evaluation. The meta prompt is as follows:

You are tasked with carefully examining the provided image and
answering the following yes or no questions:

Questions:

##YNQuestions##

Instructions:

1. Answer each question on a separate line, starting with "yes" or
"no", followed by a brief reason.

2. Maintain the exact order of the questions in your answers.
Provide only one answer per question.

Return only the answers—--no additional commentary.

Each answer must be on its own line.

Ensure the number of answers matches the number of questions.

oy U D W
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Table AS: Alignment of TIIF-Bench’s results with human preference. GNED is used as the metric
for the text rendering dimension, while other dimensions are evaluated using VLM-based scoring.

‘ Basic Following ‘ Advanced Following ‘ Real-World
Model . . . Attribute Attribute Relation
‘ Attribute Relation Reasoning ‘ +Relation | + Reasoning | + Reasoning Style ‘ Text ‘ Complex
‘ short ‘ long ‘ short ‘ long ‘ short ‘ long ‘ short ‘ long ‘ short ‘ long ‘ short ‘ long ‘ short ‘ long | short ‘ long ‘ short ‘ long
Spearman p
VLM EVal/PNED‘ 0.81 ‘ 0.88 ‘ 0.88 ‘ 0.91 ‘ 0.93 ‘ 1.00 ‘ 0.93 ‘ 0.95 ‘ 0.93 ‘ 0.98 ‘ 0.95 ‘ 1.00 ‘ 0.81 ‘ 0.81 ‘ 0.98 ‘ 1.00 ‘ 0.85 ‘ 0.81

A4 MORE EXPERIMENTAL RESULTS

A4.1 MODERN T2I MODELS ON GENAI BENCH

We evaluate eight representative T2I models on the full prompt set from GENAI BENCH, using
VQAScore—a CLIP-FlanT5-based model specifically fine-tuned for image quality assessment. The
evaluated models include four leading open-source models—three diffusion-based models (SD
3.5, SANA 1.5, and PixArt-Sigma) and one autoregressive model (Janus-Pro)—as well as four
closed-source models: GPT-40, DALLE 3, Flux.1 Pro, and MidJourney v6. As shown in Tab. @
VQAScore struggles to capture fine-grained image—text alignment, resulting in highly similar
scores across models. It can be concluded that this evaluation method offers limited resolution in
distinguishing instruction-following capabilities.

A4.2 MODERN T2I MODELS ON COMPBENCH++

We then evaluate the eight T2I models on prompts from COMPBENCH++ using both the Experts Eval
and GPT Eval protocols. The results are summarized in Tab. It can be seen that several models
achieve identical scores and there exist notable discrepancies between expert model-based and
GPT-based scores. For example, FLUX.1 Pro is rated high by GPT-40 but significantly lower by
expert models. In contrast, TIIF-Bench yields a clear and consistent ordering of the evaluated models.

Alignment with human preference. To quantify the alignment between evaluation protocol and
human preferences, we compute the Spearman rank correlation (p) between the benchmark scores
and the user study rankings (refer to[A4.4]for details of user study) for each dimension. Spearman p is
a non-parametric statistic analysis method to assess how well the relationship between two variables
can be described using a monotonic function. Specifically, it measures rank-based correlation by
comparing the relative ordering of items rather than their raw values—making it particularly suitable
for evaluating agreement between human-annotated and automatic rankings. Given two rankings of
the same set of items, Spearman p is calculated as:

P= n(n2—1)’

where d; is the difference between the ranks of item ¢ in the two sequences, and n is the total number
of items. A p value of 1 indicates perfect agreement, 0 implies no correlation, and —1 denotes
complete inverse ranking. Here, each d; corresponds to the rank difference for one of the 8 candidate
T2I models being evaluated.

The results are shown in Tab.[A4] In basic dimensions involving attribute binding—such as color,
shape, and texture—expert models like CLIP and BLIP perform reasonably well and achieve higher
agreement with human preferences, while GPT-based evaluation performs worse due to prompt-
induced hallucination caused by overly coarse queries. However, for more complex dimensions, such
as numeracy and spatial reasoning, expert models such as UniDet often fail, resulting in extremely
low alignment with human judgments. Overall, these results highlight a substantial gap between
COMPBENCH++’s evaluation outputs and actual human preferences.
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Prompt: one sink, three camels and two paddles
Model B

) Model F Model 6 Model C Model E Model D Model B Model H Model A
Model F Model 6 Model D Model C Model B Model A Model H Model E

Model F Model 6 Model E Model C Model D Model H Model A Model B

» Model F Model 6 Model C Model D Model E Model B Model A Model H
‘ol' Model A is MidJourney v6, Score = 8+6+7+7 = 28 Model B is SANA Sprint, Score = 6+5+8+6 = 25
[}
Model Cis SANA 1.5, Score = 3+4+4+3 = 14 Model D is Flux.1 Pro, Score = 5+3+5+4 = 17
Model E is PixArt-Sigma, Score = 4+8+3+5 = 20 Model F is GPT-40, Score = 1+1+1+1 = 4
Model G is DALLE-3, Score = 2+2+2+2 =8 Model H is SD3.5, Score = 7+7+6+8 = 28

Figure A4: Illustration of the user study procedure. The figure shows one evaluation set from a
specific dimension in COMPBENCH++. In practice, each dimension involves three such sets, and
users perform a separate ranking for each.

A4.3 ARE BINARY-QUESTION EVALUATIONS RELIABLE FOR NUMERACY AND SPATIAL?

It is intuitive to use VLMs to answer pre-designed questions for evaluating image quality, and this
approach is particularly well suited to the complex content produced by modern T2I models. A
common concern, however, is whether for dimensions such as Numeracy and Spatial reasoning, this
method can still be guaranteed to outperform traditional detection-based evaluation. To address this,
we investigate the comparison between GPT-40 and open-vocabulary detectors.

A4.3.1 GPT-40 vs. UNIDET ON 2D SPATIAL

We selected eight representative T2I models—GPT-40, DALLE-3, SANA-1.5, Midjourney v6,
Midjourney v7, Stable Diffusion 3.5, PixArt-Sigma, and Janus-Pro—and generated 40 images from
5 2-D spatial-relation prompts. A balanced human audit labeled 20 images as correct and 20 as
incorrect. GPT-40 answered three binary questions per prompt:
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Table A6: Confusion matrices comparing GPT-40 and UNIDet on 2D-Spatial evaluation dimension.

(a) GPT-40 vs. Human (b) UNIDet vs. Human
Human Yes Human No Sum Human Yes Human No Sum
GPT-40 Yes TP =20 FP=1 21 UNIDet Yes TP=5 FP=0 5
GPT-40 No FN=0 TN =19 19 UNIDet No FN=15 TN =20 35
Sum 20 20 40 Sum 20 20 40

1. Is Object A in the image?
2. Is Object B in the image?
3. Is Object A on the left of Object B?

The image is considered correct only if all three answers are “yes”.

UNIDet followed the COMPBENCH Spatial protocol: its detection score > 0.5 counts as “yes”,
otherwise “no”. The confusion matrix is then computed as shown in Tab.[A6] GPT-4o0 achieves
0.975 accuracy and 1.00 recall, while UNIDet lags behind with only 0.625 accuracy and 0.25
recall. The high miss rate of UNIDet (15/20) arises from its frequent failure to detect key objects,
leading to a strong bias toward “no.” In contrast, GPT-40 maintains near-perfect accuracy and recall,
demonstrating that the binary-QA paradigm is more reliable for evaluating unfamiliar objects and
atypical spatial relations.

A4.3.2 GPT-40 vSs. UNIDET AND GROUNDING-DINO ON NUMERACY

In addition to UNIDet, we also tested Grounding-DINO (Liu et al., [2023)), a more recent open-
vocabulary detector trained on a wide variety of object categories and capable of performing text-
conditioned detection. We randomly sampled 10 prompts from the Numeracy category, covering 24
binary questions and 14 common object types from detection datasets (apple, banana, book, camera,
cat, chair, cow, desk, dog, frog, rabbit, refrigerator, sofa, television). We generated 80 images using
eight representative T2I models—GPT-40, DALLE-3, SANA-1.5, Midjourney v6, Midjourney v7,
Stable Diffusion 3.5, PixArt-Sigma, and Janus-Pro. Totally, there are 8,,,04e1 * 10prompt = 80 images,
and 8,,0del * 24questions = 192 binary question. Then, two independent human raters counted
each object and answered the 24 binary questions per image. Disagreements were resolved through
re-counting until consensus. The human judgment breakdown was: 113 yes and 79 no.

Binary Question vs. Direct Counting Question. We first tested whether the question formulation
affected VLM performance. For each image, we asked both:

Direct Question: “How many <object> are there in the image?” (compare predicted count with
ground-truth <gt_count>)
Binary Question: “Are there <gt_count> <object> in the image?”

We then computed the confusion matrices for both question types and measured accuracy. Binary
QA achieved 96.4% (185/192), while Direct QA achieved 95.8% (184/192). Notably, the 7 errors in
Binary QA form a subset of the 8 errors in Direct QA, indicating that binary reformulation does not
impair VLM counting ability and, in fact, preserves its reliability.

VLM vs. Open-Vocabulary Detectors. Using the same 192 binary questions, we evaluated
detection-based counting using:

UNIDet: we input each generated image once and retained all detected bounding boxes with
confidence scores exceeding 0.7.

Grounding-DINO: we performed prompt-conditioned detection; for each target object category
in the image, we conducted one separate detection pass, using the category name as text input. We
retained bounding boxes only if both the box confidence and the text grounding score exceeded
0.7.

It is worth noting that the thresholds above were chosen via grid search to maximize overall accuracy.
UNIDet achieved accuracy of 81.3% (156/192), while Grounding-DINO reached 89.1% (171/192),
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Table A7: Confusion matrices comparing GPT-40 and QwenVL-2.5-72B against human annotations.

(a) GPT-40 vs. Human (b) QwenVL-2.5-72B vs. Human
Human Yes Human No Sum Human Yes Human No Sum
GPT-40 Yes TP =91 FP=0 91 Qwen Yes TP =81 FpP=2 83
GPT-40 No FN=1 TN =16 17 Qwen No FN=11 TN =14 25
Sum 92 16 108 Sum 92 16 108

yet both lagged behind GPT-40. Manual inspection revealed that most failures occurred in cases with
severe object occlusion or overlap, as well as non-photorealistic images (e.g., artistic or cartoon-style
generations from T2I models).

Performance on Novel Object Categories. To assess performance on novel concepts, we sampled
two prompts from the real-world category that involve uncommon objects (Bioluminescent sea
creatures, Klein bottles, Tesseracts) and explicit counting. Each prompt was used to generate
images from the same eight T2I models, resulting in 8,041 * 2prompts = 16 images and 8,041 *
3question = 24 binary question. Using the same protocol, GPT-40 (binary QA) achieved 100%
accuracy (24/24), whereas Grounding-DINO reached only 37.5% (9/24) and UNIDet completely
failed (0/24). Detection-based methods thus break down on novel categories, while GPT-40, benefiting
from broad world knowledge and multimodal reasoning, remains highly accurate and aligned with
human judgments.

A4.4 USER STUDY ON VALIDATING THE CONSISTENCY OF HUMAN PREFERENCES IN
EVALUATION

To verify that our evaluation pipeline is free from circularity or bias, we randomly selected 20 prompts
along with their corresponding binary evaluation questions, resulting in a total of 108 queries. We
then recruited two independent human raters (uninvolved in the project) to provide answers for images
generated by GPT-40. For comparison, we also recorded the answers given by GPT-4o itself and by
QwenVL-2.5-72B. The results show that humans answered 92 “yes” and 16 “no,” GPT-40 answered
91 “yes” and 17 “no,” while QwenVL-2.5-72B answered 83 “yes” and 25 “no.” Based on these counts
we obtained the confusion matrices shown in Tab. One can clearly see that GPT-40’s evaluation
results are highly aligned with human judgements, confirming that no circularity or bias is present.
QwenVL2.5-72B, although exhibiting a different answer tendency from GPT-4o, still achieves very
high accuracy. By analysing the disagreement cases between GPT-40 and QwenVL2.5-72B we
find that QwenVL2.5-72B makes errors on a few fine-grained questions, yet this bias does not alter
the relative ranking of T2I models—the conclusion drawn from the QwenVL2.5-72B score table
(Tab. matches the GPT-40-based table (Tab.[2]in the main paper).

To further assess how well the TIIF Bench’s evaluation scores align with human preferences, we
conduct a user study involving ten independent, uninformed participants. These participants are
asked to rank the quality of the images generated by the eight T2I models. For each dimension in the
benchmark, we sample 3 evaluation sets. Each set contains one prompt and 8 corresponding images,
one from each model. The participants are asked to rank the images based on their visual quality.

During ranking, participants are required to consider two criteria: (1) how well the image follows the
prompt; and (2) the overall visual quality, including clarity and aesthetic appeal. For each set, we
compute a ranking based on the aggregated user input. These rankings are then averaged across the 3
sets along each dimension to produce a final ranking of the 8 models for that dimension. Fig.[A4]
illustrates the full user study process for one such set.

To quantify the alignment between benchmark evaluation scores and human preferences, we compute
the Spearman rank correlation coefficient p between the two corresponding ranking sequences. As
shown in Tab. the evaluation results of TIIF Bench exhibit a high degree of alignment with
human preferences across all dimensions.
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Prompt Janus-Pro
A picture of a charming o n
illustration showcasing il A

a teacup and a slice of
cake in warm, inviting
tones, with the text on
it:

"drink", "tea", "eat",
"cake", "relax", "enjoy",
"delight".

peLax_delight

Recall: 0.00 GNED: 0.95 Recall: 1.00 GNED: 0.16 Recall: 0.86 GNED: 0.14

= | SN
. e g Corporate 9"
: - | DISC »
‘ i |! Workshop V
C i THE
' I BIZ
\ s STUDIO )
1 | 1
al

Recall: 0.00 GNED: 0.81 Recall: 0.83 GNED: 0.14 Recall: 1.00 GNED: 0.00

prompt: A picture of a
woman in a green dress
standing near a glass
door, with the text on
it:

"Corporate", "DISC",
"Workshop", "THE",
"BIZ", "STUDIO".

Figure AS: Visualization examples for Recall and GNED. Top row: Janus-Pro fails to generate any
of the required words completely, resulting in a Recall of 0. Additionally, the overall quality of the
generated text is poor, leading to a high GNED score. SD 3.5 successfully generates all target words
from the prompt, yielding a Recall of 1.00; however, the word “enjoy” contains minor distortions,
resulting in a GNED of 0.16. GPT-40 omits the word “cake,” achieving a Recall of 6/7. Despite the
omission, the visual quality of the generated words is higher than that of SD 3.5, thus resulting in a
lower GNED score. Bottom row: GPT-40 generates all required words with excellent typographic
fidelity, achieving both the highest Recall score of 1.00 and the best GNED score of 0.00.

A4.5 ADDITIONAL EXPERIMENTS ON TEXT RENDERING
Fig.[A5| presents illustrative examples for a better understanding of the GNED and OCR Recall. We

conduct additional evaluations on the text rendering capability of T2I models with these metrics. The
results are summarized in Tab. [A8] where GPT-40 shows a great advantage over all other models.

A5 ADDITIONAL VISUALIZATIONS

AS5.1 FAILURE CASES OF STRONG CLOSED-SOURCE MODELS IN THE RELATION DIMENSION
Through extensive experiments on our TITF BENCH, we observe that most models exhibit strong
instruction-following capabilities in object attribute dimensions such as color and material; however,

their performance degrades when handling spatial relations. Fig.[A@]presents several failure cases
from strong closed-source models when generating images for prompts involving spatial relations.

A5.2 ADDITIONAL EXAMPLES OF STYLE CONTROL
Style control, as a key dimension of T2I models’ ability to manage global image quality, content

understanding, and aesthetic coherence, has been largely overlooked in previous T2I benchmarks.
TIIF BENCH introduces this dimension explicitly. Fig.[A7]shows a set of illustrative examples.

A5.3 ADDITIONAL EXAMPLES OF TEXT RENDERING

TIIF BENCH introduces text rendering as a novel evaluation dimension to assess a model’s ability to
generate complex, non-natural textures such as embedded text. We adopt two metrics for this task:
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Table A8: Performance of open-source and closed-source models with text rendering capabilities.
GNED and Recall are used as quantitative evaluation metrics.

Model \ GNED | \ Recall 1

‘ Short Long ‘ Short Long

Diffusion based Open-Source Models
SD XL |Podell et al.|(2023) 0.85 0.97 12.56 1.00
SD 3 [Esser et al.|(2024) 0.48 0.72 57.17 24.78
SD 3.5Esser et al.|(2024) 0.45 0.57 67.71 46.19
SANA 1.5Xie et al.|(2025) 0.66 0.67 19.51 16.91
Infinity |[Han et al.|(2024) 0.77 0.78 14.87 11.90
Flux.1 Dev |Labs|(2024) 0.48 0.45 53.54 58.65
Qwen-Image |Wu et al. |(2025a) 0.19 0.18 84.29 82.15
AR based Open-Source Models
Show-o Xie et al.|(2024b) 0.93 0.86 0.00 0.00
JanusPro|Chen et al. 0.73 0.68 15.42 19.06
Closed-Source Models

DALLE 3 |Betker et al.|(2023) 0.56 0.48 53.02 61.22
Flux.1 Pro|Labs|(2024) 0.71 0.69 29.69 33.08
MidJourney v6 Team|(2025) 0.50 0.63 51.62 39.29
MidJourney v7 Team|(2025) 0.68 0.74 20.23 9.22
GPT 4o Hurst et al.|(2024) 0.21 0.19 82.55 80.84

OCR Recall and the proposed GNED. Visualizations of both metrics are shown in Fig[A3] In addition,
Fig[Ag|presents qualitative examples on how different T2I models perform on this dimension.

A5.4 ADDITIONAL EXAMPLES OF REAL-WORLD PROMPTS

The designer-level prompts feature dense and diverse requirements, providing the most comprehensive
evaluation of a model’s instruction-following capabilities. Fig.[A9]shows examples on how current
T2I models perform on this dimension.

AS5.5 AR-BASED MODELS VS. DIFFUSION-BASED MODELS

As discussed in Sec. 4.1.3 of the main paper, although AR-based models typically generate images
with lower visual fidelity, their autoregressive architecture—jointly trained on both generation and
understanding tasks—enables strong instruction-following capabilities. Fig[AT0] provides visual
examples. Janus-Pro outperforms diffusion-based model PixArt-Sigma on TIIF BENCH, especially
on prompts involving reasoning logic such as differentiation, comparison, and negation.

A6 EXPERIMENTAL STATISTICS

A6.1 DIFFERENT EVALUATION VLMS

To avoid potential evaluation bias from GPT-40 on image quality assessment, we further employ
QwenVL2.5-72B to score all images generated by the evaluated T2I models on TIIF-Bench. The
detailed evaluation results are presented in Tab/A9] Although the exact scores differ from those
evaluated by GPT-40 in the main paper, the overall ranking of models remains nearly identical. To
explicitly illustrate the consistency between these two sets of evaluation results, we computed their
Spearman correlation coefficient p, as shown in TabJAT0] The two evaluation sequences exhibit high
consistency, indicating the robustness of TIIF-Bench’s evaluation questions across different VLMs.
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Model: DALLE 3
}b Prompt: In the scene before us, a radiant, fluffy white cloud, its billowy form
: resembling soft fufts of cotton, is gracefully positioned to the right of a serene
— blue cup, which stands with a quiet dignity, its smooth cerulean surface reflecting a
C - tranquil hue, serving as a vivid contrast to the ethereal cloud beside it.

Model: MidJourney vé6

Prompt: In a serene and tranquil setting, the woman, with an almost
contemplative air about her, is distinctly not perusing the enigmatic and rustic
charm of wooden books that lie upon a similarly crafted wooden surface, whose
rich textures intertwine seamlessly, inviting the observer to ponder the
timeless connection between nhature and artifice.

Model: MidJourney v7

Prompt: Upon observing the setting before me, I noticed that the metallic fork, with
its polished, gleaming tines catching the light ever so slightly, was resting quietly on
the bottom of the fabric shirt, which lay crumpled and soft, its material seeming to
embrace the cool, hard presence of the utensil with a kind of resigned familiarity

Model: GPT40

Prompt: In the scene unfolding before the viewer's eyes, the tall, elegantly conical
chef hat, with its pristine white fabric crisp and unmarred, stands hidden just behind
the large, perfectly round, and glistening spherical snowball, rendering it invisible from
this particular perspective.

Figure A6: Failure cases of strong closed-source models on prompts involving spatial relations.

A7 COMPUTE RESOURCE

A7.1 IMAGE GENERATION

For GPT-40, images are generated by crowdsourcing samples from the official ChatGPT website. For
other closed-source models, images are obtained via their respective official APIs. For open-source
models, inference is performed using a single NVIDIA A800-SXM4 80GB GPU. Detailed model
configurations and total inference time are provided in Tab.[ATI]

A7.2 VLM EVALUATION

We employ two VLMs as evaluators: GPT-40 and Qwen2.5-VL-72B. GPT-40 evaluations are
performed via the official API. For Qwen2.5-VL-72B, we deploy the model locally using vLLM
with a tensor parallelism size of 4 across four NVIDIA A100-SXM4 80GB GPUs. Under this
configuration, evaluating all images generated by a single model with Qwen2.5-VL-72B requires
approximately 4 hours.

A8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we used large language models (LLMs) solely as writing assistants. Specifi-
cally, LLMs were employed to help improve the clarity of language, suggest concise phrasing, and
provide advice on formatting and space reduction during typesetting. The research ideas, methodol-
ogy, experiments, and analysis presented in this paper were entirely conceived and carried out by the
authors, without contribution from LLM:s.
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Prompt: Pirate ship battle with exploding cannonballs and plank-walking in LEGO style

GPT40 DALLE3 MidJourney v7 MidJourney vé

Figure A7: Style Control evaluates a T2I model’s ability to manage global image quality, content
comprehension, and overall aesthetic coherence. We provide illustrative examples for eight represen-
tative T2I models on this dimension.

Prompt: A picture of a charming illustration showcasing a teacup and a slice of cake in warm,

" u "o, u n V/N)

inviting tones, with the text on it: "drink”, "tea”, "eat", “cake”, "relax", "enjoy”, "delight".

GPT40 MidJourney vé6 sD35 DALLE3

drink. Tea

| drink

- light
=% oy, W

" peLax delight .. um
; g WA AN AR A A AR

MidJourney v7 SANAL5 Janus-Pro Pixart-Sigma

drink ‘dinks - Toa | ollurs A 3 \
4 k1 ‘ = il :4,}/ A i@/-ﬁ‘ :ﬁﬁ
Yy |
o, - o :
| adlty oy =

Figure A8: Text Rendering is introduced as a novel evaluation dimension for assessing a model’s
ability to generate complex, non-natural textures—embedded human language text. We present
illustrative examples for eight representative T2I models on this dimension.
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Prompt: a golden-haired, eyeglass-free elderly American man presenting a gold meda/
engraved with "USA’s Best BOY" to a middle-aged man with short dark hair, wearing a yellow
t-shirt with the text "Tarrif is the new trick" written in bold

GPT40 DALLE3 SANALS MidJourney v7

i TRlCY(?
A '

Figure A9: Designer-level prompts comprise complex and diverse requirements, offering the most
comprehensive test of a model’s instruction-following capabilities. We provide illustrative examples
showing how the eight representative T2 models perform on this dimension.

A black cat is perched on the window sill, A larger person wearing yellow clothing stands next
while a white cat rests below it. to a smaller person dressed in a different color.

g7 - <
Janus-Pro (4 Pixart-Sigma (X) Janus-Pro (% Pixart-Sigma (X)

This hat is not providing shade for the

The bed is empty as it lacks a cat resting on it. cat that is currently napping in the sun.

Janus-Pro (%

Pixart-Sigma (%)

Janus-Pro &

Figure A10: We observe that AR-based Janus-Pro outperforms the diffusion-based PixArt-Sigma on
prompts requiring reasoning skills such as differentiation, comparison, and negation.
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Table A9: Performance of closed-source models and state-of-the-art open-source models on TIIF-
Bench evaluated by QwenVL2.5-72B. Evaluated systems are grouped into (i) diffusion-based
open-source models, (ii) autoregressive (AR) open-source models, and (iii) closed-source models;
within each group, the highest score is shown in bold and color-coded for that group.

‘ Overall ‘ Basic Following ‘ Advanced Following ‘ Designer
Model ‘ ‘ ‘ Avg ‘ Attribute Relation ‘ Reasoning ‘ Avg ‘ ﬁ{:ll:[‘:; +RA<:.:ig:liig +§:;§loi‘?;:1g Style ‘ Text ‘ ‘Sg‘:ld
‘ short ‘ long ‘ short ‘ long ‘ short ‘ long | short ‘ long ‘ short ‘ long | short ‘ long short‘ long | short ‘ long | short ‘ long ‘ shorl‘ long | short ‘ long | short ‘ long
Diffusion based Open-Source Models
SD XL 53.40 | 44.97 | 58.9250.77| 62.30| 52.35| 69.87 | 60.55 | 44.58 | 39.41 | 51.02 | 43.25| 57.00| 49.28 | 43.80 | 38.66| 52.70| 44.41| 80.67| 63.00| 17.96| 2.87 | 51.74 | 54.22
SD3 65.84 | 63.30 | 67.89| 67.81| 76.35| 73.95 | 74.06 | 73.50 | 53.24| 55.98 | 62.68 | 62.88 | 67.98| 68.61 | 57.96| 59.04| 61.08 | 63.16 | 74.00| 76.67 | 59.39 | 31.80 | 68.49 | 67.00
SD3.5 67.21 | 63.98 | 68.64| 66.98| 76.80 | 74.40 | 75.88 | 73.25 | 53.24| 53.30 | 63.51| 61.96| 69.76 | 65.87 | 57.73| 57.78 | 61.03| 62.62| 69.33| 67.33 | 73.71| 53.40| 67.37| 67.87

SANA Sprint 59.45 | 56.42 | 65.32| 64.08| 70.00| 68.10| 74.61| 72.30 | 51.36 | 51.85 | 59.06 | 55.85 | 65.88 | 62.06 | 53.64| 51.40| 60.51 | 58.09 | 76.67| 64.33| 18.77 | 15.42| 63.65 | 64.27
SANA 1.5 62.96 | 60.88 | 68.09| 66.00| 73.50| 70.70 | 77.05| 74.49 | 53.71| 52.81 | 62.60 | 59.75 | 67.78 | 64.89 | 58.64| 55.10| 63.78 | 61.75| 79.33| 75.00| 26.63 | 24.47 | 66.25 | 68.73
Playground v2 | 45.51 | 52.73 | 51.89 | 60.88| 53.65 | 63.75| 62.20 | 72.26 | 39.83 | 46.64 | 44.11| 52.28 | 48.32| 58.74| 39.81 | 46.10| 47.24| 55.06 | 61.33| 74.00| 2.54 | 6.03 | 54.71| 51.99
Playground v2.5 | 45.13 | 52.36 | 52.96 | 61.06| 55.90 | 65.90| 62.78 | 72.24 | 40.20 | 45.04 | 44.36 | 52.02| 51.00 | 60.62| 39.96 | 45.94| 45.72| 52.85|58.00| 69.67 | 1.77 | 7.66 | 50.87| 51.36
PixArt-delta 42.33 | 47.18 | 48.53 | 53.66 | 47.65 | 52.50| 60.40 | 66.78 | 37.53 | 41.69 | 41.67 | 45.56 | 45.60 | 50.44 | 38.55 | 40.71| 43.98 | 47.09 | 58.00| 77.00| 0.53 | 1.53 | 48.76 | 46.90
PixArt-alpha 45.55 | 51.11 | 51.42|56.16 | 51.95| 56.60 | 62.80 | 68.62| 39.49 | 43.27| 44.89 | 48.73| 51.02| 53.62| 39.74 | 43.98| 47.00 | 49.65 | 63.33 | 84.33| 1.77 | 4.60 | 52.85| 55.33
PixArt-sigma 56.37 | 56.87 | 62.34| 63.58| 66.75| 69.35 | 71.14 | 71.97 | 49.14 | 49.42 | 55.60 | 55.70| 60.95| 61.95 | 52.47| 53.13 | 56.14| 54.79 | 83.67| 83.00| 5.56 | 6.08 | 61.54| 62.16
LUMINA-Next | 48.77 | 48.78 | 55.09 | 55.76| 55.25 | 58.15| 64.11 | 65.24 | 45.90 | 43.89 | 47.20| 46.04| 50.63 | 51.03 | 43.68 | 41.33| 49.55| 48.25| 71.00| 68.00| 5.17 | 3.98 | 53.60| 59.18
Hunyuan-DiT 48.49 | 53.29 | 61.38 | 62.96| 65.90| 69.50| 71.70 | 72.44 | 46.54 | 46.94| 51.78 | 53.90| 60.66 | 61.47 | 47.96 | 48.87| 53.97 | 54.86 | 44.00| 77.67| 1.53 | 2.16 | 44.17 | 45.66
FLUX.I dev 65.96 | 65.74 | 71.93| 68.43| 79.52| 74.25| 79.46 | 75.90 | 56.82| 55.15 | 60.46 | 63.05 | 70.84| 67.07 | 59.67 | 58.55| 64.06| 63.06| 60.00| 70.00 | 44.49 | 59.82| 67.51 | 67.87

A

R based Open-Source Models

Llamagen 41.21 | 40.35 | 49.92 | 49.58 | 44.50| 47.00| 56.28 | 56.17 | 48.98 | 45.58 | 42.17 | 40.44 | 42.52| 42.70| 43.70 | 38.53| 45.36 | 44.10| 40.00 | 43.33| 3.62 | 5.43 | 45.90| 40.30
LightGen 52.84 | 46.42 | 68.70| 53.99| 61.00| 52.00 | 73.69 | 54.52 | 71.40| 50.52 | 54.10 | 45.76 | 66.82 | 48.37 | 52.22| 42.93 | 51.07| 50.64 | 43.33| 43.33| 2.26 | 10.86| 53.73 | 59.70
Show-o 57.34 | 61.33 | 69.99| 75.30| 66.50| 80.00 | 76.47| 71.88 | 67.00| 74.04 | 58.25 | 58.19| 67.21| 64.33 | 54.26 | 58.86 | 61.38| 56.19 | 46.67| 66.67 | 4.98 | 11.31| 71.64 | 68.66
Infinity 60.65 | 59.66 | 70.90| 71.63 | 73.00| 73.00 | 73.75| 74.44 | 65.96 | 67.44 | 59.80 | 57.81 | 68.92| 63.78 | 60.53 | 56.87 | 55.04| 56.81| 56.67| 73.33| 22.17 | 26.70| 69.78 | 61.19
JanusPro 65.38 | 61.10 | 74.99| 73.19| 74.50| 78.00 | 73.69| 70.51 | 76.77| 71.04 | 61.77 | 56.03 | 65.71| 66.48 | 62.01| 55.62| 61.16| 49.34 | 43.33| 70.00 | 38.46 | 42.08| 79.48 | 73.51
T2I-R1 67.61 | 68.34 | 81.14| 79.45| 80.50| 78.50 | 83.09| 79.49 | 79.81| 80.37 | 67.38 | 65.90 | 69.92| 65.27 | 70.10| 71.62 | 68.69 | 64.68 | 50.00| 63.33 | 32.13 | 37.56 | 74.25 | 74.25

Closed-Source Models

DALL-E 3 74.18 | 72.94 | 77.35| 78.40| 77.62| 75.00 | 80.22| 79.67 | 74.22| 80.54 | 70.01 | 68.45 | 76.65| 75.05 | 68.39 | 68.07 | 63.64 | 59.92| 76.67| 80.00| 74.07 | 75.51| 76.12 | 62.69
MidJourney v6 | 71.46 | 67.84 | 75.09 | 68.51| 71.50 | 64.50| 82.14 | 75.96 | 71.64 | 65.06 | 64.43 | 62.08| 71.53 | 61.08 | 58.97 | 58.72| 58.13 | 63.41 | 90.00| 73.33 | 75.57| 78.73 | 67.54| 73.51
MidJourney v7 | 66.21 | 64.13 | 71.48 | 70.70| 68.25 | 72.00| 78.13 | 75.79 | 68.06 | 64.32 | 66.04 | 64.43| 72.18 | 68.58 | 65.26 | 66.18| 63.69| 62.21 | 76.67 | 70.00 | 31.22| 29.44 | 72.39| 68.66
FLUX.1 Pro 66.04 | 67.30 | 69.60| 69.62| 76.50| 75.45 | 76.88 | 76.17 | 55.42| 57.25 | 63.88 | 65.73 | 66.52| 68.62 | 61.22| 62.51 | 64.25| 66.05| 71.33| 71.67 | 53.78 | 59.77 | 68.49 | 68.24

GPT-40 84.19 | 84.61 | 85.30 | 86.55| 81.00| 81.03 | 86.16 | 84.12 | 88.74 | 94.50 | 81.24 | 79.75| 81.95 | 81.55| 80.03 | 79.85| 80.88 | 75.68 | 76.67 | 86.67 | 92.76 | 90.05 | 89.55 | 88.06
Table A10: Similarity of evaluation re- Table A11: Model settings and inference time.
sults between GPT-40 and QwenVL2.5-
72B. measured by Sp earman p Model ‘Model Size‘ Resolution ‘Steps‘Guidance‘Run Time (h)
, .
FLUX -dev 12B |1024x1024| 50 35 349
SDXL 358 |1024x1024| 50 5.0 75
Overall Performance SD3 2B 1024x1024 28 | 7.0 419
T21 Model Groups _ °" THIF-BENCH SD3.5 8B 1024x1024 28 | 35 69.5
SANA Sprint 1.6B | 1024x1024| 2 45 14
Short Long
Prompts Prompts SANA15 48B  [1024x1024| 20 | 45 6.7
Playground v2 26B  |1024x1024| 50 3.0 79
. X Playground v2.5 2.6B 1024x1024| 50 3.0 8.0
D‘ff“S“’“'basl\eAd s 0.973 0.973 PixArt-delta 0.6B |1024x1024| 4 0.0 0.6
Open-Source Models PixArt-alpha 0.6B  1024x1024| 20 | 45 32
PixArt-sigma 0.6B |1024x1024| 20 | 45 33
AR-based ¢
1.000 1.000 LUMINA-Next | 1.8B  |1024x1024| 30 3.0 242
Open-Source Models
Hunyuan-DiT 15B 1024x1024| 100 | 6.0 51.1
Closed-Source LightGen 08B | 512x512 | 64 | 40 31.0
M 1.000 0.900 ;
odels Show-o 13B | 512x512 | 50 5.0 297
Infinity 8B 1024x1024| 10 3.0 17
Llamagen 775M 512x512 - 7.5 52.2
All Models 0.981 0.979 y
JanusPro 7B 384x384 | - 5.0 154
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