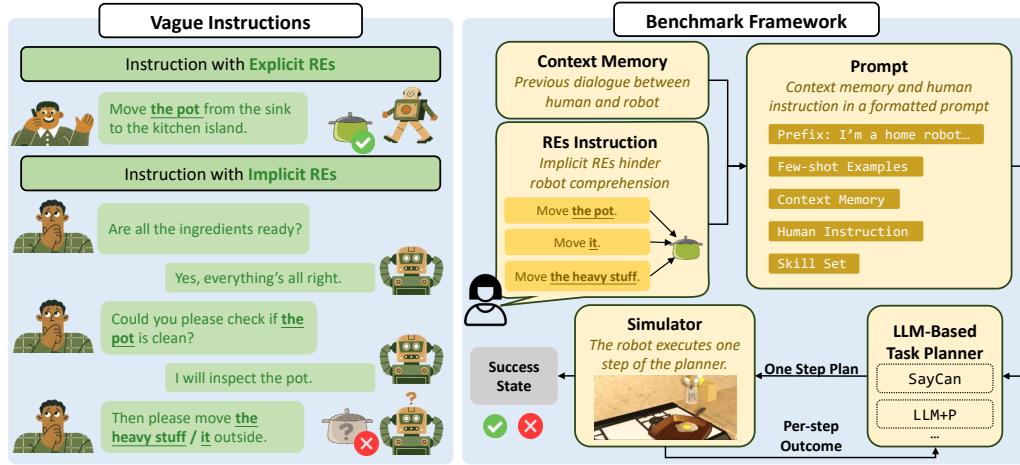

000 REI-BENCH: CAN EMBODIED AGENTS UNDERSTAND 001 VAGUE HUMAN INSTRUCTIONS IN TASK PLANNING?

002 003 004 005 **Anonymous authors**

006 Paper under double-blind review



026 Figure 1: **Left:** Robots using existing LLM-based task planners can understand clear instructions
027 with explicit referring expressions (REs), but they struggle to resolve implicit REs in multi-turn
028 dialogues. **Right:** We propose the REI-Bench framework that aims to study real-world HRI scenarios
029 where coreferential vagueness exists in human instructions.

030 031 ABSTRACT

032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 Robot task planning decomposes human instructions into executable action sequences that enable robots to complete a series of complex tasks. Although recent large language model (LLM)-based task planners achieve amazing performance, they assume that human instructions are clear and straightforward. However, real-world users are not experts, and their instructions to robots often contain significant vagueness. Linguists suggest that such vagueness frequently arises from referring expressions (REs), whose meanings depend heavily on dialogue context and environment. This vagueness is even more prevalent among the elderly and children, who are the groups that robots should serve more. This paper studies how such vagueness in REs within human instructions affects LLM-based robot task planning and how to overcome this issue. **To this end, we propose the first robot task planning benchmark that systematically models vague REs grounded in pragmatic theory (REI-Bench), where we discover that the vagueness of REs can severely degrade robot planning performance, leading to success rate drops of up to 36.9%.** We also observe that most failure cases stem from missing objects in planners. To mitigate the REs issue, we propose a simple yet effective approach: task-oriented context cognition, which generates clear instructions for robots, achieving state-of-the-art performance compared to aware prompts, chains of thought, and in-context learning. By tackling the overlooked issue of vagueness, this work contributes to the research community by advancing real-world task planning and making robots more accessible to non-expert users, e.g., the elderly and children.

054 1 INTRODUCTION

055

056

057 In recent years, large language models (LLMs) have shown strong capabilities in tackling open-
058 world tasks across diverse domains. Their use in robot planning indicates a promising shift: unlike
059 traditional task planning methods (Hart et al., 1968; Aeronautiques et al., 1998; Chaslot et al., 2008),
060 which are often constrained by specific environments and narrow task domains, LLMs enable robots
061 to tackle tasks outside of conventional planning domains.

062 Although existing LLM-based task planners have shown remarkable performance (Ahn et al., 2022;
063 Huang et al., 2022a; Wong et al., 2023), they operate under an idealized assumption: human
064 instructions are always clear, complete, and unambiguous. However, in the real world, human
065 language often exhibits vagueness. Figure 1 shows how vague terms like “it” or “heavy stuff” (refer
066 to a pan) can make a kitchen robot grab the wrong item (e.g., a plate or frying pan) instead of the
067 pot. This challenge becomes even more pronounced for individuals with impaired memory or limited
068 expressive abilities (Robinson & Apperly, 2001; So et al., 2010; Hendriks et al., 2014), including
069 young children, older adults, and individuals with Alzheimer’s disease—groups that rely most on
070 robotic assistance.

071 Linguists suggest that various forms of linguistic vagueness can impact human-robot interaction,
072 including syntactic, scopal, and coreferential vagueness (Li et al., 2024b). Among these, coreferential
073 vagueness is particularly common and impactful in robot task planning, as it can affect the planner’s
074 understanding of noun phrases in instructions and lead to incorrect identification of task objects. The
075 coreferential vagueness arises because humans employ not only explicit referring expressions (REs)
076 (e.g., “pot”), which directly identify their referents, but also implicit REs (e.g., “it” or “this heavy
077 thing”), which require contextual and environmental reasoning to resolve their meaning. Unlike
078 robots, humans naturally use and interpret implicit REs in communication (Drave, 2002; Jucker
079 et al., 2003; Paris et al., 2021; Peter, 2018; Alkhatnai, 2017; Wasow et al., 2005). Linguists have
080 found that about 20% of expressions in news content are descriptive (a kind of implicit REs) (Herváš
081 & Finlayson, 2010), with this percentage being even higher in everyday life. Bridge inference
082 theory (Clark, 1975) explains the process by which humans resolve implicit REs. When a listener
083 hears an expression like “this heavy stuff,” they naturally identify several possible referents based
084 on contextual memory: the “pot,” the “ingredients,” and the “sink.” Among these, the “pot” best
085 matches the description. This explains why the word “refer” is composed of two parts: the prefix *re*-
086 (“back/again”) and the root *-fer* (“to carry / to bring”), which together embody the core mechanism
087 of linguistic reference —namely, carrying meaning back from previously established contextual
088 information. Inspired by linguistic studies, our research investigates key questions regarding task
089 planners in embodied agents: **Do implicit REs in human instructions impact the performance**
090 **of LLM-based task planners in robots? How does the frequency of implicit REs influence the**
091 **success rate of these task planners? What are the underlying causes of this impact, and what**
092 **strategies can be employed to mitigate it?**

093 **To evaluate the impact of implicit REs on the success rate of planners, we first build the referring**
094 **expressions instruction (REI) dataset and then propose the first benchmark that systematically models**
095 **coreferential vagueness grounded in pragmatic theory for robot task planners, namely REI-Bench.**
096 In this benchmark, our work systematically models the use of REs in human-robot instructions by
097 defining three levels of referential difficulty, based on the ratio of explicit to implicit REs. As robots
098 need context to understand REs in human instruction, we propose three levels of real-world contexts
099 in multi-turn dialogues with irrelevant or missing information. Combining REs’ difficulties with
100 context memory types, the REI dataset includes nine levels of coreferential vagueness.

101 **Then we evaluate task planners based on the REI dataset, including 6 mainstream LLMs and 4**
102 **robot planning frameworks. Because most deployed robot systems currently rely on small-scale**
103 **language models, our analysis focuses on planners operating within this model regime.** The results
104 show that existing planners generally perform poorly in the presence of vagueness, with task success
105 rates dropping between 7.4% and 36.9% in the baseline models. We attempt to mitigate the issue
106 using novel basic NLP methods, including aware prompt (AP) (Gao et al., 2024a), chain-of-thought
107 (CoT) (Wei et al., 2022), and in-context learning (ICL) (Brown et al., 2020), but observe limited gains.
108 Meanwhile, we find that these performance declines in LLMs occur primarily because they devote
109 excessive attention to plan generation while failing to perform their inherent language understanding
110 abilities. This challenges the common assumption that simply embedding an LLM in robot planning

108 is sufficient for the robot to understand human language. Inspired by our observation, we propose
109 a simple yet effective approach, Task-Oriented Context Cognition (TOCC), which decouples task
110 comprehension from the planning decision-making process. Rather than designing a fully fledged
111 solution, we intend to draw attention from the research community to this overlooked challenge and
112 thereby motivate deep exploration.

113 Our contributions are threefold: (1) We systematically study how the instruction vagueness caused
114 by REs impacts LLM-based robot task planners. **To the best of our knowledge, this work provides**
115 **the first systematic modeling of instruction vagueness in the context of robot task planning.** (2)
116 We develop REI-Bench by designing different levels of REs and context memory of human-robot
117 dialogues, studying the success rate of robot tasks with vague instructions. (3) We analyze the
118 underlying reasons for performance degradation and propose a simple yet effective approach, TOCC,
119 to enhance the robustness of planners. Extensive experiments on REI-Bench validate its effectiveness.

121 2 RELATED WORKS

122 **Embodied Task Planning** enables robots to generate action sequences for various applications,
123 including household and industrial tasks. Recent developments in LLM (Brown et al., 2020; Touvron
124 et al., 2023) have led to language-driven planning methods (Kotb et al., 2024; Driess et al., 2023;
125 Brohan et al., 2023; Chen et al., 2023; Liu et al., 2024a; Li et al., 2023; Huang et al., 2023), such
126 as SayCan (Ahn et al., 2022), which leverage affordance functions to generate policies without
127 fine-tuning. However, evaluating these planners becomes difficult due to the high cost of real-world
128 deployment, including expensive robotic hardware and resources. The early studies rely on human
129 evaluation (Ahn et al., 2022; Huang et al., 2022b), which was subjective and inefficient. To address
130 this, automated evaluation with simulators has emerged (Yin et al., 2024; Liu et al., 2024b). Methods
131 such as ProgPrompt (Singh et al., 2023) and LoTA-Bench (Choi et al., 2024) leverage datasets like
132 VirtualHome (Puig et al., 2018) and AI2-THOR (Kolve et al., 2017). Meanwhile, Embodied Agent
133 Interface (Li et al., 2024a) offers a general framework for evaluating LLMs.

134 **Linguistic Vagueness in LLMs** has attracted attention among researchers in natural language
135 processing (Liu et al., 2023b; Ortega-Martín et al., 2023). The AmbiEnt benchmark (Liu et al., 2023a)
136 evaluates the ability of LLMs to resolve linguistic ambiguities, revealing significant challenges even
137 for advanced models such as GPT-4. To address these issues, APA (Kim et al., 2024) improves the
138 management of vague queries by LLMs by leveraging their self-assessment of vagueness. In the field
139 of embodied AI, some prior works try to address these ambiguities by having robots ask clarifications
140 or reason about uncertainty (Doğan et al., 2022; Park et al., 2023; Ren et al., 2023). However,
141 these works lack a systematic definition of linguistic vagueness, a comprehensive evaluation of its
142 impact on robotic performance, and effective methods to enhance the planner’s own understanding
143 capability. **Building upon these developments, we further compare existing datasets and task planning**
144 **benchmarks with linguistic ambiguity in Table 1.**

145 Table 1: Comparison of REI-Bench with existing datasets and benchmarks.

Benchmark / Method	Task	Planning	Systematic Vagueness	Multi-turn Context	Dataset / Size
REI-Bench (ours)	Evaluating coreferential vague instructions (RE-based) for robot task planning in AI2-THOR	✓	✓	✓	REI-Dataset / 2.7k instructions (×9 vagueness levels)
AmbiK (Ivanova et al., 2025)	Ambiguous natural language task instructions for robot planning in a kitchen environment	✗	✓	✗	AmbiK / 1k ambiguous instructions
CLARA (Park et al., 2023)	Method for LLMs to classify whether the command is certain or not	✗	✓	✗	SaGC / 105 goals, 5222 tasks
KNOWNO (Ren et al., 2023)	Framework for measuring and aligning the uncertainty of LLM-based planners	✓	✗	✗	No dataset proposed
DialFRED (Gao et al., 2022)	Questioner performer framework	✓	✗	✓	53K task-relevant questions and answers
Asking Clarifications (Xu et al., 2019)	Clarification identification, clarification question generation, and answering for ambiguous language	✗	✓	✓	CLAQUA / 40K dialogue words

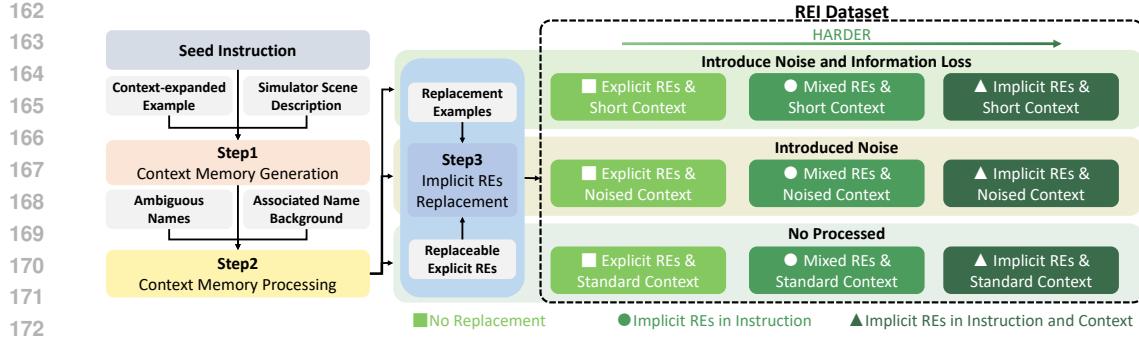


Figure 2: **Data curation pipeline of the REI dataset.** From a seed instruction, we (1) generate context memory; (2) produce three context variants—Standard, Noised, Short; (3) replace explicit REs with implicit ones across varying degrees. This results in subsets reflecting nine levels of coreferential vagueness, determined by RE types (Explicit/Mixed/Implicit) and context variants.

3 APPROACH

Existing works Choi et al. (2024) typically evaluate LLM-based robot task planners using clear instructions, whereas human instructions in real-world HRI scenarios are often ambiguous. In natural language, instruction vagueness arises from the one-to-many relationship between a *Signifier* (the symbol itself) and its *Signifieds* (the entities it may represent in the physical world) (Herváš & Finlayson, 2010). For example, the signifier ‘mouse’ can refer to two signifieds: ‘a rodent’ or ‘a computer input device’. Pragmatics scholar Levinson et al. (Levinson, 1983) further distinguish vagueness into two types: *Referential Expressions (REs)* and *Deictic Expressions (DEs)*. Humans can interpret REs through language context. For example, “Please bring me the mouse and keyboard” (referring to the computer input devices). In contrast, understanding DEs depends on environmental context, such as time, space, and the speaker’s position, for example, “I want the book on the right side”. Given our focus on LLM-based task planners, we confine our discussion to the impact of REs on task planning performance.

The objective of our work is to comprehensively evaluate and analyze how different levels of coreferential vagueness from implicit REs affect the planner’s performance across diverse multi-turn dialogue contexts. To this end, we (1) systematically formalize REs in the HRI context (section 3.1), (2) establish the REI dataset and benchmark to evaluate planners on embodied tasks involving vague instructions (section 3.2), and (3) introduce a simple yet effective solution (section 3.3).

3.1 FORMALIZING VAGUENESS BY IMPLICIT REs AND HUMAN-ROBOT DIALOGUE CONTEXT

Levinson et al. (Levinson, 1983) propose that understanding humans’ intention depends both on *Referring Expressions* and *Context Memory*, where context memory refers to the previous dialogues which provide hints to determine the unique meaning of REs. Here, we systematically model these two concepts into three levels to simulate varying degrees of vagueness.

Referring Expressions. In robot task planning, understanding REs is essential, as they provide key semantic cues for the goals of embodied tasks. Specifically, REs take various forms, including proper nouns (e.g., “apple”), definite noun phrases (e.g., “the apple”), indefinite noun phrases (e.g., “an apple”), pronouns (e.g., “it”, “them”), and attributive expressions (e.g., “sweet fruit”). The first three forms, known as *explicit REs*, have only one potential corresponding object and can be directly understood. In contrast, the latter two forms, known as *implicit REs*, have multiple potential corresponding objects and should be identified by contextual inference. For example, the pronoun “it” simply indicates the referent is an object rather than a person, while “red fruit” only specifies the type and color of the item, without identifying which specific fruit it is.

To systematically model different forms of REs, we categorize them into three levels (Figure 2). At the “Explicit REs” level, all expressions are preserved as they appear in the original dataset. At the “Mixed” level, explicit REs in the instruction are replaced with implicit ones, while those in the context memory remain unchanged. The planner should refer to explicit REs to infer their implicit counterparts. At the “Implicit REs” level, all explicit REs are replaced with implicit ones, except the

216 first one in context memory, forcing the planner to rely on scene information to identify the referred
217 objects. The latter two levels essentially simulate the vagueness introduced by implicit REs, which
218 are more common in daily human communication.

219 **Context Memory.** Linguists argue that the connection between words and objects is constructed
220 by humans within specific contexts (Levinson, 1983). Analogously, different types of context can
221 affect the reasoning capability of a robot due to the inclusion of misleading cues or the omission of
222 semantic information. One common source of misleading cues arises when a single signifier may
223 plausibly refer to multiple, context-dependent entities, creating naming ambiguity. For example,
224 the word “apple” may shift from denoting a fruit to referring to a mobile phone brand when such
225 mentions appear in the discourse. Additionally, semantic omissions can arise from the speaker’s
226 health issues or from different stages of cognitive development.

227 To simulate these scenarios, we deliberately introduce irrelevant information to the context while
228 removing certain cues. Specifically, we define three types of context memory. In the “standard
229 context”, all information related to the task in context is provided. In “Noised Context”, we introduce
230 the *Ambiguous Name* noise, defined as a character or brand with a name intentionally resembling that
231 of an object in the simulator scene. For example, “Apple” as a brand name is repeatedly mentioned
232 in the dialogue, causing the planner to treat the fruit in the scene as the target. This noise reflects
233 real-world cases where names are the same as objects, and tests the model’s ability to correctly
234 identify the intended referent. Moreover, the “Short Context” not only introduces noise but also omits
235 partial task-relevant information, further increasing the difficulty of reasoning.

236 3.2 REI-BENCH DATASET

237 Existing vague expressions datasets (Marcus et al., 2011; Levesque et al., 2012; Recasens et al.,
238 2010), which are annotated by linguists, do not systematically formulate the position, frequency, and
239 forms of REs, making it infeasible to investigate their impact on task planning. Thus, we establish a
240 comprehensive referring expressions instruction (REI) benchmark via an automatic pipeline to assess
241 the effects of implicit REs on robotic planning tasks.

242 Specifically, we build the REI-Bench dataset upon ALFRED (Shridhar et al., 2020), a benchmark for
243 embodied household tasks. From ALFRED, we select six tasks (Pick & Place, Stack & Place, Clean
244 & Place, Heat & Place, Cool & Place, Examine in Light) and exclude the task of Pick Two & Place
245 as it cannot be reliably completed by an embodied agent. Furthermore, since tasks that cannot be
246 accomplished even with clear instructions fall outside our scope, we use “LLaMA3.1-8B + SayCan”
247 to perform the six selected tasks in the AI2-THOR (Kolve et al., 2017) simulator, keeping only the
248 successfully executed tasks as seed instructions.

249 As shown in Figure 2, context memory is generated (Step 1), processed into three types (Step 2),
250 and further transformed to the REI-Bench through implicit REs replacement (Step 3). In step 1, we
251 extend the context of seed instructions by prompting GPT-4o-mini with a template that consists of
252 a context-expanded example and the text-based simulator scene description. The generated data
253 consists of an instruction and a corresponding context memory. Typically, the generated instruction
254 conveys the same task requirement as the seed instruction but in a more natural, human-like form.
255 Meanwhile, the context memory captures the multi-turn human-robot dialogue before the instructions,
256 which may include any objects present in the scene to reflect the complexity of real-world human
257 dialogue.

258 In step 2, we construct three types of context. The “standard context” retains the context memory
259 generated in step 1 without further processing. For the “Noised Context” type, LLM is prompted to
260 repeatedly insert an ambiguous name into the dialogue without altering its meaning. The ambiguous
261 name is derived by slightly modifying the name of a simulator object (e.g., Rose → Mrs. Rose). To
262 ensure natural adaptation, the LLM is given a brief background prompt for the name (e.g., “Rose is a
263 family member.”). In the “short context” setting, partial noun phrases are randomly removed from the
264 context, including those containing task-relevant explicit REs. In Step 3, explicit REs are replaced
265 with implicit ones following the rules outlined in Section 3.1. We adopt a CoT approach to determine
266 which explicit REs can be substituted. Substitution examples are selected from OntoNotes (Pradhan
267 et al., 2013), ensuring that the implicit REs are consistent with natural language usage. To ensure
268 consistency in the number of explicit REs across tasks, we define a counting-based rule for each level
269 of implicit REs and discard any data that violates the rule. Consequently, the REI-Bench consists of

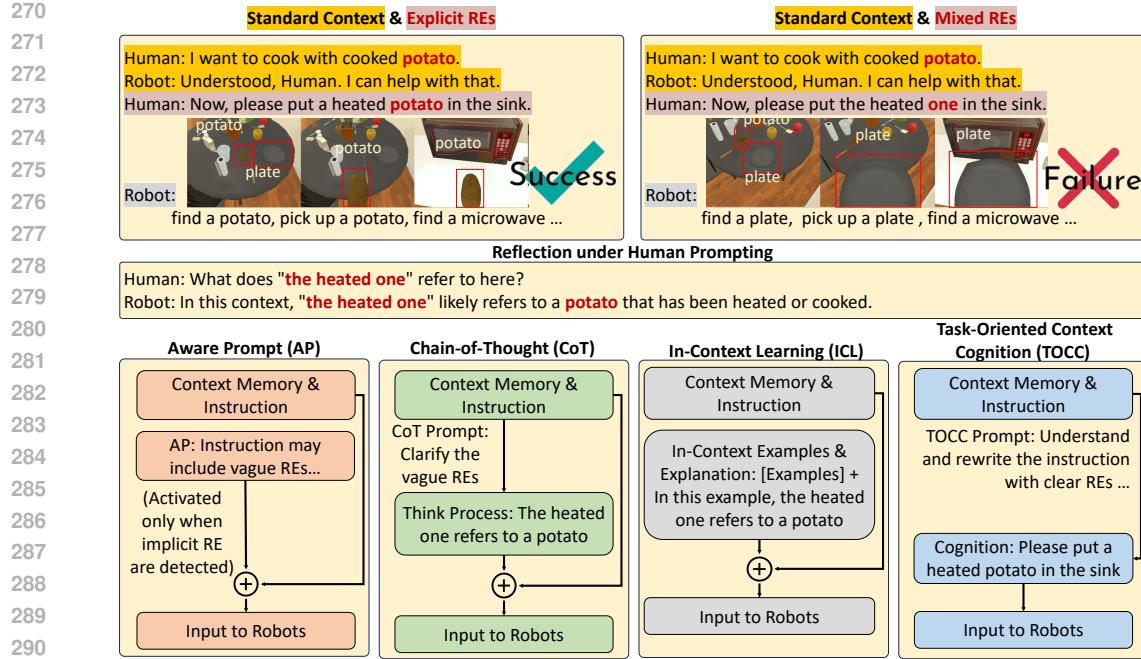


Figure 3: Addressing implicit referring expressions in task planning. Top row: LLM succeeds with explicit REs (“potato”), but misidentifies the object with implicit REs (“the heated one”). Middle row: a reflection prompt from humans can guide the LLM to resolve the implicit REs and identify the correct object. Bottom row: Comparison among different prompting methods, including aware prompt (AP), chain-of-thought (CoT), in-context learning (ICL), and our task-oriented context cognition (TOCC).

2,700 examples spanning nine difficulty levels, defined by combinations of varying RE vagueness and context memory conditions. Please refer to Appendix B for detailed prompts of context expansion (B.1), context process (B.2), explicit REs replacement (B.3), and the counting-based rule (B.4).

3.3 TASK-ORIENTED CONTEXT COGNITION

Based on the evaluation of multiple LLM-based robot planners in REI-Bench, we find that most failures result from object omissions, as illustrated in the top row of Figure 3. When explicit REs are presented in the instruction, the robot correctly identifies the task target “potato” and successfully completes the planning. In contrast, when implicit REs, such as “the heated one”, are used, robots fail to identify “potato” but a task-irrelevant object “plate” instead. Furthermore, we find that LLMs can resolve implicit REs when prompted explicitly (shown in the middle row of Figure 3). This suggests that LLMs inherently can interpret implicit REs, yet this ability can not fully manifest during planning and requires explicit prompting. As a result, the idealized expectation that embedding an LLM into embodied agents guarantees full comprehension of human language has been challenged.

To this end, we propose to inject explicit prompts into the LLM-based robot planners to alleviate the coreferential vagueness. Specifically, we first evaluate three conventional prompting methods: (1) aware prompt (AP) (Gao et al., 2024a), which explicitly adds a prompt to guide the planner detect potential REs, (2) Chain-of-Thought (CoT) (Wei et al., 2022), which guides the planner to resolve REs step by step before planning, and (3) In-Context Learning (ICL) (Brown et al., 2020), which provides examples of how to infer implicit REs from context. However, AP remains insufficient for handling implicit REs, as the prompt signals vagueness but does not induce the deeper reasoning that LLMs struggle to perform during planning. Meanwhile, both CoT and ICL substantially lengthen prompts, hindering language understanding during planning, particularly when onboard computing resources are limited and only a small language model is available.

Consequently, we propose a simple yet effective method, task-oriented context cognition (TOCC) to tackle the REs. As shown in the bottom row of Figure 3, TOCC decouples the REs interpretation step from the planning process, avoiding the LLM from devoting excessive attention to planning

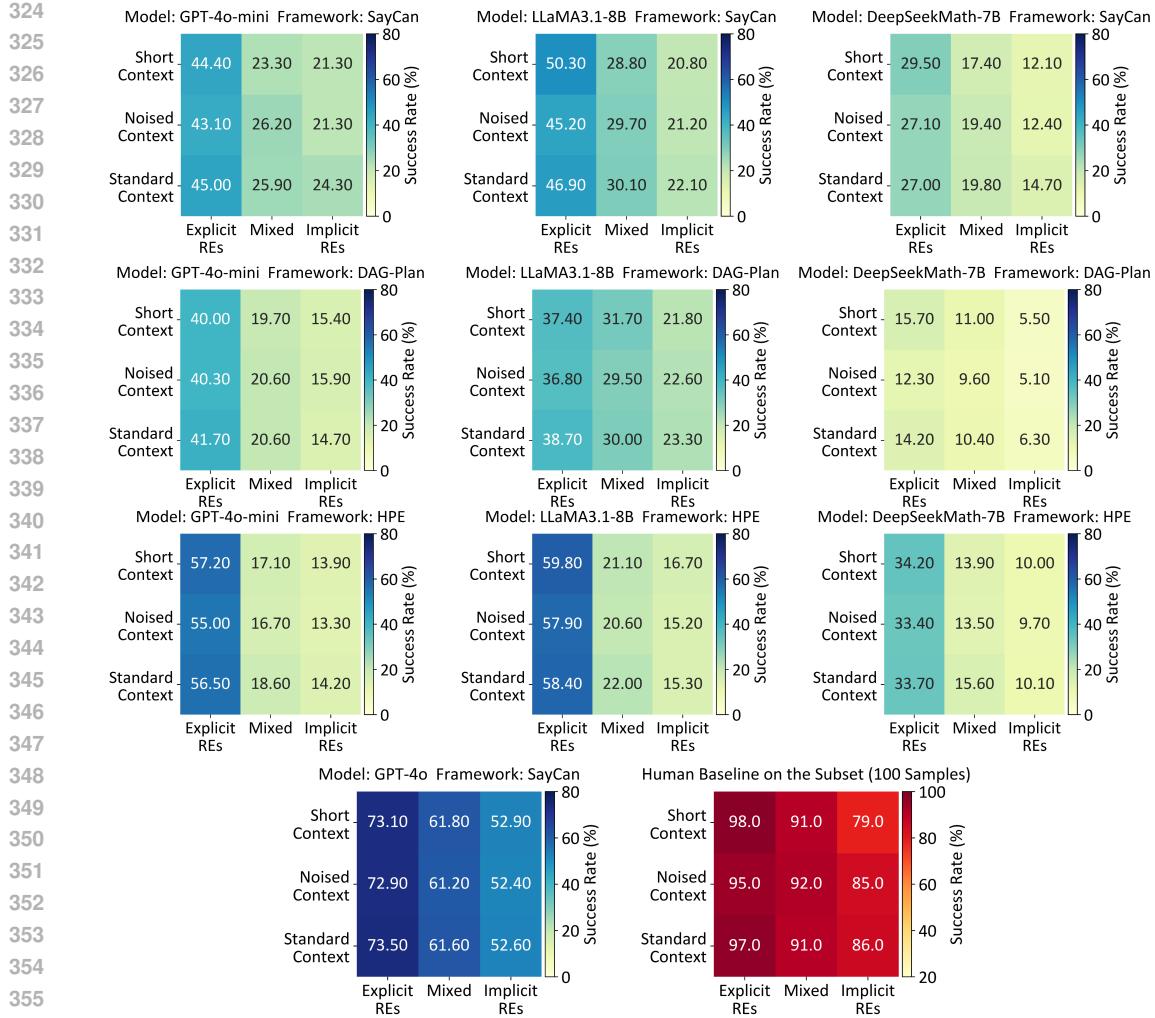


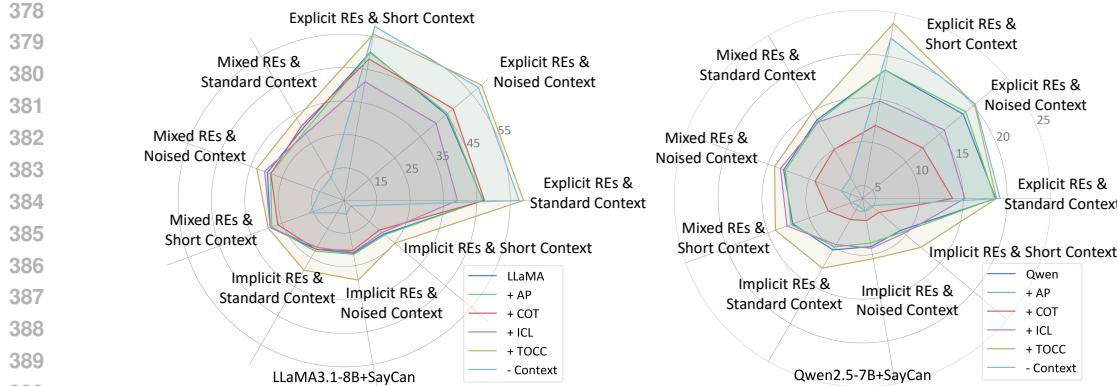
Figure 4: Success rate (%) of three task planner frameworks, SayCan, DAG-Plan, and HPE, using three LLMs (GPT-4o-mini, LLaMA3.1-8B, DeepSeekMath-7B), together with an additional ‘GPT-4o + SayCan’ planner and a human baseline on the REI dataset. Explicit, Mixed, and Implicit REs denote three levels of implicit REs in human instructions, and Standard, Noised, and Short Contexts represent three context memory types.

within a single generation step. By resolving the vague REs and rephrasing the human instruction in a more concise form before planning, TOCC demonstrates superior performance compared to existing methods. **Implementation details and the exact variants used for AP and CoT are provided in Appendix C.**

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We evaluate two state-of-the-art LLM-based embodied task planning frameworks, SayCan (Ahn et al., 2022), DAG-Plan (Gao et al., 2024b), and hierarchical task planning and execution (HPE) (Han et al., 2025), on our REI-Bench dataset. **Due to the deployment requirements on mobile robots, which must be lightweight and open-source for on-robot adaptation, we focus solely on relatively small language models.** For each task planner, we evaluate six LLMs, including GPT-4o-mini (Achiam et al., 2023), LLaMA3.1-8B (Grattafiori et al., 2024), Ministrall-8B (Jiang et al., 2024), Gemma2-9B (Team et al., 2024), DeepSeek-Math-7B (Shao et al., 2024), and Qwen2.5-7B (Bai et al., 2023), which form a comprehensive benchmark consisting of 12 planners in total. **To ensure balanced task coverage**



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Figure 5: Success rates (%) of various prompting methods applied to LLaMA 3.1-8B and Qwen2.5-7B models with SayCan framework on the REI dataset.

during evaluation, we first construct a 1,000-task subset of REI-Bench via stratified sampling over task categories, and use this subset for all planner evaluations. To further compare the performance of LLM-based task planners with humans, we invite human volunteers to conduct the same planning tasks on a randomly sampled subset of the REI-Bench.

4.2 BENCHMARK RESULTS OF LLM-BASED TASK PLANNERS

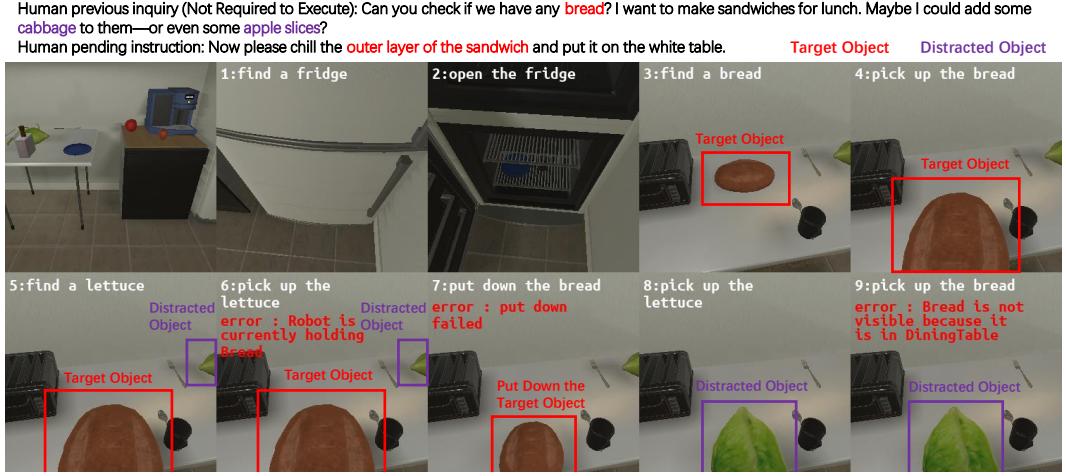
We evaluate the planning performance of all benchmark models on the REI dataset. Due to page limitations, we present only six benchmark results in Figure 4. Please refer to the appendix A.3 for additional results.

LLM-based planners struggle to handle embodied tasks in multi-turn dialogue. We use the instruction portion (excluding the context memory) of the “Explicit REs + Standard Context” type of data as a baseline, for which the “LLaMA3.1-8B+SayCan” planner achieves a 57.7% success rate. However, as shown in the middle of the top row in Figure 4, multi-turn dialogues in “Standard Context” cause the success rate of “LLaMA3.1-8B+SayCan” model to drop significantly from 57.7% to 46.90%, even without implicit REs. In contrast, humans achieve a 97.0% success rate under the same setting. This performance gap highlights the limitations of existing LLM-based planners in handling natural, multi-turn human conversations.

The performance of LLM-based planners consistently decreases as implicit REs increase, while remaining less affected by context memory noise. With the increase of implicit REs, all benchmark planners demonstrate consistent performance degradation across “Standard”, “Noised”, and “Short” context memory. Take “LLaMA3.1-8B+SayCan” (middle of the top row in Figure 4) as an example, the success rate drops 16.8% / 15.5% / 21.5% at the “Mixed REs” level and further decreases 8.0% / 8.5% / 8.0% at the “implicit REs” level. The consistent declines in LLMs’ ability demonstrate that existing LLM-based planners cannot effectively handle the vagueness of implicit REs within human instructions for embodied tasks. In addition, compared to introducing multi-turn dialogues, adding naming ambiguity noise (“Noised Context”) and further omitting partial task-relevant information (“Short Context”) has little impact on performance. These observations suggest that existing LLM-based planners perform poorly when faced with multi-turn dialogues and implicit REs. However, such challenges are ubiquitous in human–robot interaction, especially when engaging with the elderly or children, and thus must be addressed.

4.3 ABLATION STUDY ON DIFFERENT PROMPTING METHODS

We compare four prompting methods that can mitigate the impact of implicit REs for LLM-based task planners: AP, CoT, ICL, and TOCC. As shown in Figure 5, by directly prompting the LLM-based planners that human instructions contain potential vagueness, AP improves performance in most scenarios. However, in some of the “Explicit REs”, the performance decreases inversely. We deduce that these APs may lead the planner to hallucinate and detect vagueness even when instructions are clear. Meanwhile, ICL provides examples to help the planner infer the meaning of implicit



448 Figure 6: Failure example on “Mixed REs & Short Context”, using LLaMA3.1-8B+SayCan. Due to
449 the distracted object, the planner mistakenly put down the target object.

450 REs from context. However, ICL leads to performance degradation in almost all categories. We
451 deduce that the small onboarding LLM-based planners possess limited capability in learning from the
452 provided examples. Furthermore, CoT first guides the planner to autonomously analyse whether the
453 instructions contain implicit REs and then perform planning based on the analysis, resulting in greater
454 improvement. Building on the autonomous analysis from CoT, TOCC enables the planner to provide
455 more refined and task-relevant instructions by correcting implicit REs and reorganizing language.
456 Planning is then performed based on the enhanced instruction. By decoupling RE resolving from
457 planning, TOCC obtains the best performance, with an average success rate improvement of 6.5% on
458 “LLaMA3.1-8B+SayCan”. We also provide results using only instructions as input. Under the Explicit
459 REs type, the planner achieved performance comparable to TOCC. However, under the Mixed REs
460 and Implicit REs types, planner performance dropped sharply. Compared to the original instructions,
461 the enhanced instructions from our TOCC achieve improved planning performance. Moreover, the
462 results are consistent with the pragmatic theory that context is indispensable for interpreting implicit
463 REs. Please refer to appendix A.4 for completed ablation results.

4.4 ANALYSIS OF LLM-BASED PLANNER ERRORS

466 In this section, we review error cases made by LLM-based planners in processing implicit REs. As
467 shown in Figure 6, the planner was uncertain whether “outer layer of the sandwich” referred to bread
468 or lettuce, revealing a limitation of existing planners. Additional cases are provided in appendix A.6.
469

470 Table 2: Error rates (%) for the object omission and execution error types in different benchmark
471 models. Results under the “Standard Context” for three types of implicit REs are reported.

472 Model	473 Implicit REs Level	474 Error Type		475 Overall Error Rate
		476 Object Omission Rate	477 Execution Error Rate	
478 GPT-4o-mini	479 Explicit REs	480 7.1	481 47.9	482 55.0
	Mixed	37.0 (+29.9)	37.1 (-10.8)	74.1 (+19.1)
	Implicit REs	46.2 (+39.1)	29.5 (-18.4)	75.7 (+20.7)
483 LLaMA3.1-8B	484 Explicit REs	485 22.6	486 30.5	487 53.1
	Mixed	38.8 (+16.2)	31.1 (-0.6)	69.9 (+16.8)
	Implicit REs	53.9 (+31.3)	24.0 (-6.5)	77.9 (+24.8)
488 Deepseek-8B	489 Explicit REs	490 28.6	491 44.4	492 73.0
	Mixed	40.8 (+12.2)	39.4 (-5.0)	80.2 (+7.2)
	Implicit REs	57.8 (+29.2)	27.5 (-16.9)	85.3 (+12.3)

493 For an in-depth analysis, we divide the task planning errors into two categories: object omission and
494 execution error. Object omission refers to the planner not correctly identifying the target object in
495 human instructions. As shown in Figure 3, the planner wrongly identifies the referring expression
496 “one” to “plate” as a typical object. In addition, an execution error occurs when the planner identifies
497 the correct object but cannot generate the complete sequence of actions to achieve the goal. We

486 Table 3: Error rates (%) for the object omission and execution error types under different prompting
 487 methods (for LLaMA3.1-8B with “Standard Context”).

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504	Method	Implicit REs Level	Error Type		Overall Error Rate
			Object Omission Rate	Execution Error Rate	
LLaMA3.1-8B	Explicit REs	22.6	30.5	53.1	
	Mixed	38.8	31.1	69.9	
	Implicit REs	53.9	24.0	77.9	
+ AP	Explicit REs	22.7 (+0.1)	30.5	53.2 (+0.1)	
	Mixed	31.3 (-7.5)	39.7	71.0 (+1.1)	
	Implicit REs	49.9 (-4.0)	27.4	77.3 (-0.6)	
+ CoT	Explicit REs	22.5 (-0.1)	30.2	52.7 (-0.4)	
	Mixed	34.9 (-3.9)	34.2	69.1 (-0.8)	
	Implicit REs	47.6 (-6.3)	30.3	77.9 (+0)	
+ ICL	Explicit REs	22.7 (+0.1)	38.1	60.8 (+7.7)	
	Mixed	32.7 (-6.1)	39.0	71.7 (+1.8)	
	Implicit REs	49.9 (-4.0)	28.7	78.6 (+0.7)	
+ TOCC	Explicit REs	16.8 (-5.8)	24.2	41.0 (-12.1)	
	Mixed	28.5 (-10.3)	37.9	66.4 (-3.5)	
	Implicit REs	40.1 (-13.8)	30.6	70.7 (-7.2)	
- Context	Explicit REs	17.2 (-5.4)	25.1	42.3 (-10.8)	
	Mixed	81.6 (+42.8)	5.3	86.9 (+17)	
	Implicit REs	85.1 (+31.2)	5.5	90.6 (+12.7)	

505 summarize the error rate related to object omission and execution error for different benchmark
 506 models in Table 2. For simplicity, only the results under the “Standard Context” are reported. Please
 507 refer to the appendix A.5 for more results under other context memory types. It can be seen that the
 508 overall error rate increases as the level of implicit REs grows. However, the error rates for object
 509 omission and execution error show opposite trends: the former increases significantly, while the latter
 510 decreases as the level of implicit REs grows. This indicates that the main cause of task planning
 511 errors is that the implicit REs induce the task planner to overlook target objects in HRI, thus making
 512 it unable to generate a task plan correctly. Furthermore, as shown in Table 3, our TOCC effectively
 513 reduces both the overall error rate and the object omission error rate across all three levels of implicit
 514 REs. These results demonstrate that TOCC effectively guides task planners to focus on target objects
 515 in human instructions, thereby enhancing robustness to finish instructions with vague REs.

5 CONCLUSION

518 We study how coreferential vagueness in human instruction affects robot task planning. By REI-
 519 Bench, we systematically simulate real-world language vagueness by categorizing REs and context
 520 memory. Extensive experiments show that implicit REs significantly reduce planning success rates.
 521 We explore the underlying reason and introduce the TOCC method, which effectively mitigates the
 522 negative effect of coreferential vagueness on robot task planner performance.

523 While our work discusses the impact of coreferential vagueness, human language vagueness is
 524 pervasive, and other forms of linguistic vagueness, such as deictic expressions, syntactic vagueness,
 525 and scopal vagueness, remain largely unexplored in the context of robot task planning. Furthermore,
 526 to isolate the effect of REs, we filter the dataset by selecting tasks that LLMs can complete under
 527 clear instructions. As a result, the dataset consists of simple, short-horizon, single-objective tasks.
 528 As future LLM-based planners become capable of solving more complex, clear-instruction tasks,
 529 we plan to extend our analysis to long-horizon scenarios. Moreover, experiments in the AI2-THOR
 530 simulator provide initial results of the planner’s semantic understanding capabilities. They do not
 531 capture multimodal information, including visual and spatial perception, which is required for robots
 532 to interpret other types of vague instructions. Thus, our future work will focus on investigating
 533 the impact of deictic expressions on VLM-based task planners and validating the findings through
 534 experiments with physical robots.

536 REFERENCES

538 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 539 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Technical
 Report, 2023. arXiv preprint arXiv:2303.08774.

540 Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott, Ashwin Ram,
541 Manuela Veloso, Daniel Weld, David Wilkins Sri, Anthony Barrett, Dave Christianson, et al.
542 Pddl—the planning domain definition language. *Technical Report, Tech. Rep.*, 1998.

543 Michael Ahn, Anthony Brohan, Noah Brown, and ... Do as i can, not as i say: Grounding language in
544 robotic affordances, 2022. arXiv preprint arXiv:2204.01691.

545 Mubarak Alkhatnai. Vague language and its social role. *Theory and Practice in Language Studies*, 7
546 (2):122–127, 2017.

547 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
548 Yu Han, Fei Huang, et al. Qwen Technical Report, 2023. arXiv preprint arXiv:2309.16609.

549 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
550 Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
551 models transfer web knowledge to robotic control, 2023. arXiv preprint arXiv:2307.15818.

552 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
553 Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot
554 learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

555 Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo tree search: A new
556 framework for game ai. In *AAAI*, pp. 216–217, 2008.

557 Yaran Chen, Wenbo Cui, Yuanwen Chen, Mining Tan, Xinyao Zhang, Dongbin Zhao, and He Wang.
558 Robogpt: An intelligent agent for making embodied long-term decisions for daily instruction tasks,
559 2023. arXiv preprint arXiv:2311.15649.

560 Jae-Woo Choi, Youngwoo Yoon, Hyobin Ong, Jaehong Kim, and Minsu Jang. Lota-bench:
561 Benchmarking language-oriented task planners for embodied agents, 2024. arXiv preprint
562 arXiv:2402.08178.

563 Herbert H Clark. Bridging. *Theoretical issues in natural language processing/Association for
564 Computing Machinery*, 1975.

565 Fethiye Irmak Doğan, Ilaria Torre, and Iolanda Leite. Asking follow-up clarifications to resolve
566 ambiguities in human-robot conversation. In *2022 17th ACM/IEEE International Conference on
567 Human-Robot Interaction (HRI)*, pp. 461–469. IEEE, 2022.

568 Neil Drave. Vaguely speaking: A corpus approach to vague language in intercultural conversations.
569 In *New frontiers of corpus research*, pp. 25–40. Brill, 2002.

570 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
571 Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
572 language model, 2023.

573 Jin Gao, Lei Gan, Yuankai Li, Yixin Ye, and Dequan Wang. Dissecting dissonance: Benchmarking
574 large multimodal models against self-contradictory instructions. In *ECCV*, pp. 404–420. Springer,
575 2024a.

576 Xiaofeng Gao, Qiaozi Gao, Ran Gong, Kaixiang Lin, Govind Thattai, and Gaurav S Sukhatme.
577 Dialfred: Dialogue-enabled agents for embodied instruction following. *IEEE Robotics and
578 Automation Letters*, 7(4):10049–10056, 2022.

579 Zeyu Gao, Yao Mu, Jinye Qu, Mengkang Hu, Shijia Peng, Chengkai Hou, Lingyue Guo, Ping Luo,
580 Shanghang Zhang, and Yanfeng Lu. Dag-plan: Generating directed acyclic dependency graphs for
581 dual-arm cooperative planning. *arXiv preprint arXiv:2406.09953*, 2024b.

582 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
583 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The LLaMA 3 Herd
584 of Models, 2024. arXiv preprint arXiv:2407.21783.

585 Songhao Han, Boxiang Qiu, Yue Liao, Siyuan Huang, Chen Gao, Shuicheng Yan, and Si Liu.
586 Robocerebra: A large-scale benchmark for long-horizon robotic manipulation evaluation. *arXiv
587 preprint arXiv:2506.06677*, 2025.

594 Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
595 minimum cost paths. *IEEE transactions on Systems Science and Cybernetics*, 4(2):100–107, 1968.
596

597 Petra Hendriks, Charlotte Koster, and John CJ Hoeks. Referential choice across the lifespan: Why
598 children and elderly adults produce ambiguous pronouns. *Language, cognition and neuroscience*,
599 29(4):391–407, 2014.

600 Raquel Herváš and Mark Alan Finlayson. The prevalence of descriptive referring expressions in news
601 and narrative. In *ACL*. © Association for Computational Linguistics, 2010.

602 Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,
603 Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world,
604 2023. arXiv preprint arXiv:2311.12871.

605 Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
606 planners: Extracting actionable knowledge for embodied agents. In *ICML*, pp. 9118–9147, 2022a.

607 Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
608 Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
609 Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
610 through planning with language models, 2022b.

611 Anastasia Ivanova, Bakaeva Eva, Zoya Volovikova, Alexey Kovalev, and Aleksandr Panov. Ambik:
612 Dataset of ambiguous tasks in kitchen environment. In *Proceedings of the 63rd Annual Meeting of
613 the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 33216–33241, 2025.

614 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
615 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
616 Mixtral of experts, 2024. arXiv preprint arXiv:2401.04088.

617 Andreas H Jucker, Sara W Smith, and Tanja Lüdge. Interactive aspects of vagueness in conversation.
618 *Journal of pragmatics*, 35(12):1737–1769, 2003.

619 Hyuhng Joon Kim, Youna Kim, Cheonbok Park, Junyeob Kim, Choonghyun Park, Kang Min Yoo,
620 Sang-goo Lee, and Taeuk Kim. Aligning Language Models to Explicitly Handle Ambiguity, 2024.
621 arXiv preprint arXiv:2404.11972.

622 Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
623 Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d environment
624 for visual ai. *arXiv preprint arXiv:1712.05474*, 2017.

625 Mostafa Kotb, Cornelius Weber, Muhammad Burhan Hafez, and Stefan Wermter. Qt-tdm: Planning
626 with transformer dynamics model and autoregressive q-learning. *IEEE Robotics and Automation
627 Letters*, 2024.

628 Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
629 *Proceedings of the 13th International Conference on Principles of Knowledge Representation and
630 Reasoning (KR)*, pp. 552–561, 2012.

631 Stephen C Levinson. *Pragmatics*. Cambridge University Press, 1983.

632 Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
633 Tony Lee, Li Erran Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking llms for
634 embodied decision making, 2024a. arXiv preprint arXiv:2410.07166.

635 Margaret Y Li, Alisa Liu, Zhaofeng Wu, and Noah A Smith. A Taxonomy of Ambiguity Types for
636 NLP, 2024b. arXiv preprint arXiv:2403.14072.

637 Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
638 Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
639 imitators, 2023. arXiv preprint arXiv:2311.01378.

640 Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr, Peter West, Alexander Koller, Swabha
641 Swayamdipta, Noah A Smith, and Yejin Choi. We're Afraid Language Models Aren't Mod-
642 eling Ambiguity, 2023a. arXiv preprint arXiv:2304.14399.

648 Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr, Peter West, Alexander Koller, Swabha
649 Swayamdipta, Noah A Smith, and Yejin Choi. We're afraid language models aren't modeling
650 ambiguity. *arXiv preprint arXiv:2304.14399*, 2023b.
651

652 Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Lily Lee, Kaichen Zhou, Pengju An, Senqiao Yang,
653 Renrui Zhang, Yandong Guo, and Shanghang Zhang. Robomamba: Multimodal state space model
654 for efficient robot reasoning and manipulation, 2024a. arXiv preprint arXiv:2406.04339.
655

656 Xin Liu, Yichen Zhu, Jindong Gu, Yunshi Lan, Chao Yang, and Yu Qiao. Mm-safetybench: A
657 benchmark for safety evaluation of multimodal large language models. In *ECCV*, pp. 386–403.
658 Springer, 2024b.
659

660 Mitchell P. Marcus, Martha Palmer, Lance A. Ramshaw, et al. Ontonotes: A large training corpus for
661 enhanced processing. In Joseph Olive, Caitlin Christianson, and John McCary (eds.), *Handbook of
662 Natural Language Processing and Machine Translation: DARPA Global Autonomous Language
663 Exploitation*, pp. 27–48. Springer, 2011.
664

665 Miguel Ortega-Martín, Óscar García-Sierra, Alfonso Ardoiz, Jorge Álvarez, Juan Carlos Ar-
666 menteros, and Adrián Alonso. Linguistic ambiguity analysis in chatgpt, 2023. arXiv preprint
667 arXiv:2302.06426.
668

669 Pierre-Henri Paris, Syrine El Aoud, and Fabian Suchanek. The vagueness of vagueness in noun
670 phrases. In *AKBC*, 2021.
671

672 Jeongeun Park, Seungwon Lim, Joonhyung Lee, Sangbeom Park, Minsuk Chang, Youngjae Yu, and
673 Sungjoon Choi. Clara: classifying and disambiguating user commands for reliable interactive
674 robotic agents. *IEEE Robotics and Automation Letters*, 9(2):1059–1066, 2023.
675

676 Mcgee Peter. Vague language as a means of avoiding controversy. *Training, Language and Culture*,
677 2(2):40–54, 2018.
678

679 Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders Björkelund, Olga
680 Uryupina, Yuchen Zhang, and Zhi Zhong. Towards robust linguistic analysis using ontonotes. In
681 *Proceedings of the Seventeenth Conference on Computational Natural Language Learning*, pp.
682 143–152, 2013.
683

684 Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
685 Virtualhome: Simulating household activities via programs. In *CVPR*, pp. 8494–8502, 2018.
686

687 Marta Recasens, Lluís Márquez, Emili Sapena, et al. Semeval-2010 task 1: Coreference resolution in
688 multiple languages. In *Proceedings of the 5th International Workshop on Semantic Evaluation
689 (SemEval 2010)*, pp. 1–8, 2010.
690

691 Allen Z Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu, Noah Brown, Peng Xu,
692 Leila Takayama, Fei Xia, Jake Varley, et al. Robots that ask for help: Uncertainty alignment for
693 large language model planners. *arXiv preprint arXiv:2307.01928*, 2023.
694

695 EJ Robinson and Ian A Apperly. Children's difficulties with partial representations in ambiguous
696 messages and referentially opaque contexts. *Cognitive Development*, 16(1):595–615, 2001.
697

698 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
699 Mingchuan Zhang, YK Li, Y Wu, et al. DeepSeekMath: Pushing the Limits of Mathematical
700 Reasoning in Open Language Models, 2024. arXiv preprint arXiv:2402.03300.
701

702 Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
703 Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for
704 everyday tasks. In *CVPR*, pp. 10740–10749, 2020.
705

706 Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
707 Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
708 large language models. In *ICRA*, pp. 11523–11530. IEEE, 2023.

702 Wing Chee So, Özlem Ece Demir, and Susan Goldin-Meadow. When speech is ambiguous, gesture
703 steps in: Sensitivity to discourse-pragmatic principles in early childhood. *Applied psycholinguistics*,
704 31(1):209–224, 2010.

705 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving Open Language Models at a Practical Size, 2024. arXiv preprint arXiv:2408.00118.

706 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
707 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
708 efficient foundation language models, 2023. arXiv preprint arXiv:2302.13971.

709 Thomas Wasow, Amy Perfors, and David Beaver. The puzzle of ambiguity. *Morphology and the web
710 of grammar: Essays in memory of Steven G. Lapointe*, pp. 265–282, 2005.

711 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
712 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
713 neural information processing systems*, 35:24824–24837, 2022.

714 Lionel Wong, Jiayuan Mao, Pratyusha Sharma, Zachary S. Siegel, Jiahai Feng, Noa Kornfev, Joshua B.
715 Tenenbaum, and Jacob Andreas. Learning adaptive planning representations with natural language
716 guidance, 2023.

717 Jingjing Xu, Yuechen Wang, Duyu Tang, Nan Duan, Pengcheng Yang, Qi Zeng, Ming Zhou, and
718 Xu Sun. Asking clarification questions in knowledge-based question answering. In *Proceedings
719 of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
720 International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 1618–
721 1629, 2019.

722 Sheng Yin, Xianghe Pang, Yuanzhuo Ding, Menglan Chen, Yutong Bi, Yichen Xiong, Wenhao
723 Huang, Zhen Xiang, Jing Shao, and Siheng Chen. Safeagentbench: A benchmark for safe task
724 planning of embodied llm agents, 2024. arXiv preprint arXiv:2412.13178.

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 APPENDICES
757

758 Within this supplementary material, we elaborate on the following aspects:
759

760

- 761 • **Appendix A:** Supplementary Experiment Results
 - 762 – **A.1:** Framework of Planners
 - 763 – **A.2:** Language Models List and Sampled-Subset Task-Type Distribution
 - 764 – **A.3:** Supplementary Benchmark Results
 - 765 – **A.4:** Supplementary Result of Ablation Study on Method
 - 766 – **A.5:** Supplementary Result of LLM-based Planner Errors
 - 767 – **A.6:** Supplementary of Task Planning Cases
- 768 • **Appendix B:** REI Dataset Construction
 - 769 – **B.1:** Context Memory Generation
 - 770 – **B.2:** Context Memory Processing
 - 771 – **B.3:** Implicit REs Replacement
 - 772 – **B.4:** Data Filtering
- 773 • **Appendix C:** Prompts and Implementation Details of Prompting Methods
 - 774 – **C.1:** AP and Gated AP Variant
 - 775 – **C.2:** Chain-of-Thought
 - 776 – **C.3:** In-Context Learning
 - 777 – **C.4:** Task-Oriented Context Cognition
- 778 • **Appendix D:** Use of Large Language Models

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A SUPPLEMENTARY EXPERIMENT RESULTS 811

812 A.1 FRAMEWORK OF PLANNERS 813

814 **SayCans** is a method designed to help robots understand and carry out human instructions expressed
815 in natural language. It breaks down a complex instruction into smaller steps suggested by the LLM,
816 and then evaluates whether each step is possible in the real world with affordance-based value
817 function (a separate model trained on data about how robots interact with their environment). With
818 the emergence of more capable language tools, we employ Guidance (Choi et al., 2024) to replace
819 the affordance value function with LLM-based feasibility assessment, which allows selecting a skill
820 in one generation pass and significantly reduces experiment time.

821 **LLM+P** is a hybrid framework that integrates large language models (LLMs) with classical
822 symbolic planners to achieve robust and interpretable task planning from natural language instructions.
823 The process typically involves three steps: First, the LLM translates high-level natural language
824 commands into formal representations such as PDDL (Planning Domain Definition Language).
825 Second, a classical planner, such as Fast Downward, computes a valid or optimal plan based on the
826 generated problem and domain definitions. Finally, the LLM translates the resulting plan, a sequence
827 of low-level actions, back into natural language, making it more interpretable for users.

828 **DAG-Plan** is a planning framework in which an LLM generates a Directed Acyclic Graph (DAG)
829 of sub-tasks rather than a linear sequence. Each node represents a symbolic high-level action, and
830 edges denote dependency relations. This structure makes the plan explicitly hierarchical and ensures
831 that prerequisite conditions are satisfied before execution. By modeling sub-task dependencies,
832 DAG-Plan improves robustness on multi-object and multi-step tasks.

833 **HPE** (Hierarchical Planning with Episodic memory) equips an LLM planner with a lightweight
834 memory bank that stores key contextual information throughout reasoning. Instead of relying solely
835 on the immediate prompt, the model retrieves and updates this memory to maintain coherence over
836 long horizons. However, HPE still relies on manually structured memory representations for context
837 management, which can restrict the LLM’s ability to extract subtle contextual cues, particularly those
838 needed for resolving implicit referring expressions.

839 A.2 LANGUAGE MODELS LIST AND SAMPLED-SUBSET TASK-TYPE DISTRIBUTION 840

841 Table 4: List of language models used in the experiments. Model names are either from the OpenAI
842 API or the HuggingFace model hub.

Type	Model name	Model size	Remark
Closed-source	GPT-4o-mini	Unknown	
	LLaMA3.1-8B	8B	Instruct
Open-source	Gemma2-9B	9B	
	DeepSeekMath-7B	7B	Instruct
	mistral-8B	8B	Instruct
	Qwen2.5-7B	7B	Instruct

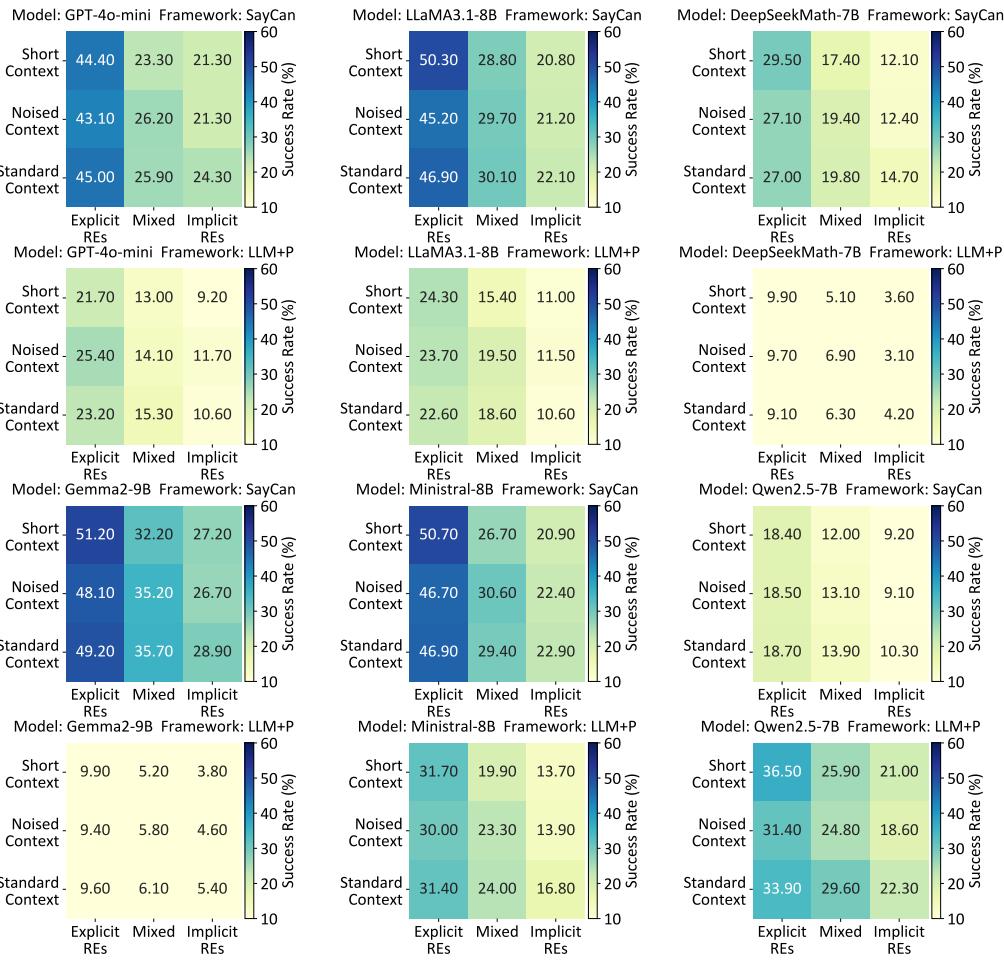
843 The LLMs we used are listed in Table 4. To support the deployment of task planners on edge devices,
844 we focus on lightweight, open-source language models with relatively small parameter sizes. For
845 each model series, we use the latest available base version at the start of our study. Since a compact
846 version of DeepSeek-v3 was not yet available, we use the experimental DeepSeekMath model instead
847 in our evaluation.

848 Table 5: Task-type distribution and average subtask steps in the 1,000-task sampled subset. The
849 column “Original Proportion” corresponds to the original ALFRED dataset distribution, and our
850 stratified sampling preserves this proportion. (GT denotes ground truth.)

Task Type	Original Proportion (%)	Sampled Count	Avg. Subtask Steps (GT)
Cool & Place	16.8%	168	12
Heat & Place	16.8%	168	14
Clean & Place	16.2%	162	10
Examine in Light	13.3%	133	4
Stack & Place	18.4%	184	11
Pick & Place	18.5%	185	9
Pick Two (Excluded)	—	0	—
Total / Average	100%	1000	10

864 All experiments in this paper are conducted on task instances sampled from REI-Bench. As shown
 865 in Table 5, we construct a 1,000-task evaluation subset using stratified sampling that preserves the
 866 original ALFRED task-type distribution to prevent partial bias.
 867

868 A.3 SUPPLEMENTARY BENCHMARK RESULTS



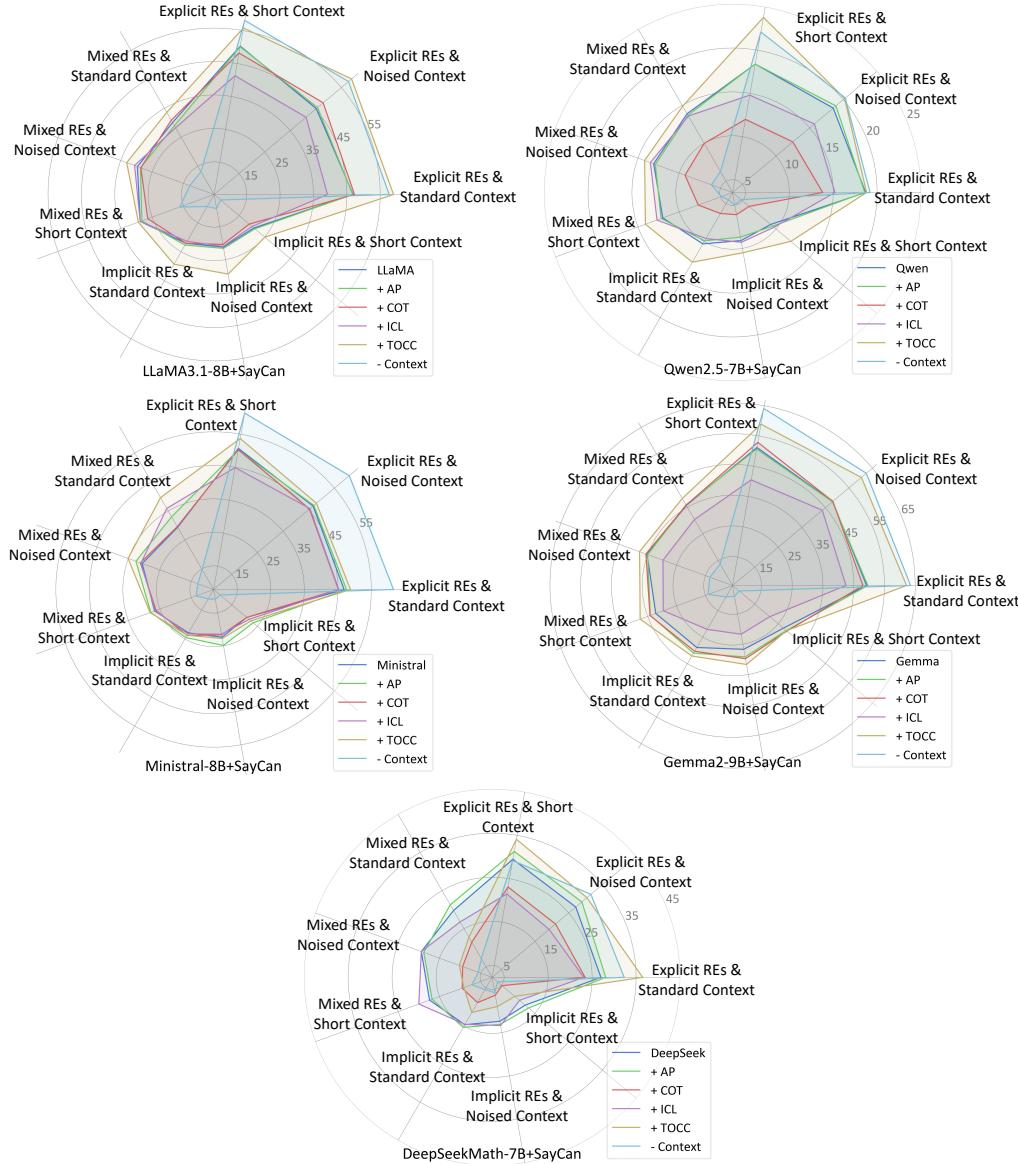
900 Figure 7: Success rate (%) of two task planner frameworks (SayCan and LLM+P using three LLMs
 901 (GPT-4o-mini, LLaMA3.1-8B, DeepSeekMath-7B, Gemma2-9B, Minstral-8B, and Qwen2.5-7B)
 902 on REI dataset. Explicit, Mixed, and Implicit REs denote three levels of implicit REs in human
 903 instructions, and Standard, Noised, and Short Contexts represent three context memory types.
 904 As shown in figure 7, all twelve planners still align with the two conclusions outlined in the main
 905 text: they all suffer a dramatic loss in success rate when tasked with multi-turn dialogues, and exhibit
 906 a steady, monotonic decline in effectiveness as the proportion of implicit REs increases.

907 Among all evaluated planners, “Gemma2-9B+SayCan” consistently achieves the highest success
 908 rate in both multi-turn dialogue management and interpretation of implicit REs. Under the Standard
 909 Context setting, replacing explicit REs with implicit ones results in a 20.3% drop in success rate,
 910 underscoring the challenge of understanding vague expressions. Planners like “1-8B+SayCan”,
 911 “Minstral-8B+SayCan”, and “GPT-4o-mini+SayCan” show comparable performance. In contrast,
 912 planners such as “Qwen2.5-7B+LLM+P” and “Minstral-8B+LLM+P” perform significantly worse
 913 in multi-turn dialogue settings and also struggle with RE interpretation, revealing their limitations in
 914 handling implicit contextual cues.

915 Although prior work suggests that LLM+P, by combining LLMs with traditional PDDL planners,
 916 improves performance on simpler tasks, our experiments show otherwise. As Figure 7 demon-
 917 strates, LLM+P performs worse than the SayCan framework across GPT-4o-mini, LLaMA3.1-8B,
 DeepSeekMath-7B, Gemma2-9B, and Minstral-8B. We identify two main issues. First, LLM+P

918 requires a manually defined PDDL domain file for each task, conflicting with the goal of flexible,
919 natural language-driven planning. We used a single domain file to avoid this, but it led to compatibility
920 issues with the LLM-generated problem descriptions. Second, LLM+P fails to fully utilize
921 the commonsense knowledge embedded in LLMs, which is essential for reasoning in a household
922 simulator environment.

924 A.4 SUPPLEMENTARY RESULT OF ABLATION STUDY ON METHOD



944 Figure 8: Success rates (%) of various prompting methods applied to LLaMA 3.1-8B, Gemma 2-9B,
945 Minstral-8B, Qwen2.5-7B, and DeepSeekMath-7B models with SayCan framework on REI dataset.

946 Figure 8 presents the success rates of five task planners after applying the three prompting meth-
947 ods: AP, CoT, and TOCC. “LLaMA3.1-8B+SayCan”, “Gemma2-9B+SayCan”, and “Minstral-
948 8B+SayCan” follow the general trend observed earlier. TOCC consistently yields the best per-
949 formance, followed by CoT and AP. However, two planners, Qwen2.5-7B+SayCan and DeepSeekMath-
950 7B+SayCan, exhibit divergent behaviors. For Qwen2.5-7B+SayCan, although TOCC remains the
951 most effective method, the application of CoT leads to a substantial performance drop. This may be
952 due to Qwen2.5-7B’s limited ability to follow multi-step reasoning instructions embedded in CoT-
953

972
973 Table 6: Average token usage and inference latency per planning step across all planning methods.
974

975

Method	Avg Input Tokens	Avg Output Tokens	Avg Total Tokens	Latency (ms)
LLaMA3.1-8B + SayCan	1822	45	1867	474.30
AP	1850	42	1892	492.75
Gated AP	1841	43	1884	487.07
CoT	3485	128	3613	917.92 (timeout occurred)
Short CoT	3464	82	3546	705.64
Segmented CoT	2595	137	2732	946.36 (timeout occurred)
ICL (2-shot)	3075	46	3121	514.65
TOCC (ours)	1894	62	1956	598.40

985

986 style prompts. In the case of DeepSeekMath-7B+SayCan, both CoT and TOCC result in a decline in
987 performance. This is likely because DeepSeekMath-7B is an experimental model specifically trained
988 for mathematical problem solving and has not undergone alignment with human preferences. Conse-
989 quently, it exhibits the strongest hallucination tendencies and the weakest instruction-following ability
990 among all evaluated models. Given its similarly poor performance in the baseline planning tasks,
991 whether DeepSeekMath-7B is capable of supporting embodied intelligence remains questionable.

992 Table 6 further shows that TOCC introduces only a modest overhead relative to lightweight baselines
993 while remaining substantially more efficient than CoT and ICL. Specifically, TOCC increases total
994 token usage and latency by only 3.95% and 26.18% over the vanilla model, and by 2.38% and 22.87%
995 over AP, respectively. In contrast, TOCC reduces token usage and latency by 45.32% and 15.20%
996 compared with Short CoT, and lowers token consumption by 38.41% relative to standard ICL.

997

A.5 SUPPLEMENTARY RESULT OF LLM-BASED PLANNER ERRORS

998

1000 Table 7: Error rates (%) for the object omission and execution error types in different benchmark
1001 models.

1002

Model	Context Memory Type	Implicit REs Level	Object Omission Rate	Error Type	Overall Error Rate
GPT-4o-mini	Standard	Explicit REs	7.1	47.9	55.0
		Mixed	37.0	37.1	74.1
		Implicit REs	46.2	29.5	75.7
	Noised	Explicit REs	7.5	49.4	56.9
		Mixed	36.2	37.6	73.8
		Implicit REs	50.6	28.1	78.7
	Short	Explicit REs	8.7	47.3	56.0
		Mixed	47.5	29.2	76.7
		Implicit REs	53.4	25.3	78.7
LLaMA3.1-8B	Standard	Explicit REs	22.6	30.5	53.1
		Mixed	38.8	31.1	69.9
		Implicit REs	53.9	24.0	77.9
	Noised	Explicit REs	23.8	31.0	54.8
		Mixed	39.3	31.0	70.3
		Implicit REs	53.9	24.9	78.8
	Short	Explicit REs	22.6	27.1	49.7
		Mixed	45.4	25.8	71.2
		Implicit REs	57.9	21.3	79.2
Deepseek-8B	Standard	Explicit REs	28.6	44.4	73.0
		Mixed	40.8	39.4	80.2
		Implicit REs	57.8	27.5	85.3
	Noised	Explicit REs	31.1	41.8	72.9
		Mixed	44.9	35.7	80.6
		Implicit REs	61.6	26.0	87.6
	Short	Explicit REs	29.2	41.3	70.5
		Mixed	51.6	31.0	82.6
		Implicit REs	61.9	26.0	87.9

1025

1026
1027
1028

Table 8: Error rates (%) for the object omission and execution error types under different prompting methods.

1029	1030	Method	Context Memory Type	Implicit REs Level	Error Type	Overall Error Rate	
1031	1032	LLaMA3.1-8B	Standard	Explicit REs	22.6	30.5	53.1
1033	1034			Mixed	38.8	31.1	69.9
1035	1036			Implicit REs	53.9	24.0	77.9
1037	1038		Noised	Explicit REs	23.8	31.0	54.8
1039	1040			Mixed	39.3	31.0	70.3
1041	1042			Implicit REs	53.9	24.9	78.8
1043	1044		Short	Explicit REs	22.6	27.1	49.7
1045	1046			Mixed	45.4	25.8	71.2
1047	1048			Implicit REs	57.9	21.3	79.2
1049	1050	+ AP	Standard	Explicit REs	21.4	38.6	60.0
1051	1052			Mixed	31.7	39.3	71.0
1053	1054			Implicit REs	50.4	27.0	77.4
1055	1056		Noised	Explicit REs	21.1	37.3	58.4
1057	1058			Mixed	32.0	37.6	69.6
1059	1060			Implicit REs	50.7	26.9	77.6
1061	1062		Short	Explicit REs	19.5	35.4	54.9
1063	1064			Mixed	39.9	31.9	71.8
1065	1066			Implicit REs	51.9	25.6	77.5
1067	1068	+ CoT	Standard	Explicit REs	22.5	30.2	52.7
1069	1070			Mixed	34.9	34.2	69.1
1071	1072			Implicit REs	47.6	30.3	77.9
1073	1074		Noised	Explicit REs	22.4	29.7	52.1
1075	1076			Mixed	35.2	34.7	69.9
1077	1078			Implicit REs	48.5	29.9	78.4
1079	1080		Short	Explicit REs	22.9	28.9	51.8
1081	1082			Mixed	41.4	31.2	72.6
1083	1084			Implicit REs	51.8	27.2	79.0
1085	1086		Standard	Explicit REs	22.7	38.1	60.8
1087	1088			Mixed	32.7	39.0	71.7
1089	1090			Implicit REs	49.9	28.7	78.6
1091	1092	+ ICL	Noised	Explicit REs	21.7	37.1	58.8
1093	1094			Mixed	30.6	38.8	69.4
1095	1096			Implicit REs	50.5	28.5	79.0
1097	1098		Short	Explicit REs	20.8	37.9	58.7
1099	1100			Mixed	33.4	37.8	71.2
1101	1102			Implicit REs	51.7	28.2	79.9
1103	1104		Standard	Explicit REs	16.8	24.2	41.0
1105	1106			Mixed	28.5	37.9	66.4
1107	1108			Implicit REs	40.1	30.6	70.7
1109	1110	+ TOCC	Noised	Explicit REs	16.1	24.9	41.0
1111	1112			Mixed	28.4	38.5	66.9
1113	1114			Implicit REs	42.9	27.7	70.6
1115	1116		Short	Explicit REs	17.1	27.1	44.2
1117	1118			Mixed	22.8	46.8	69.6
1119	1120			Implicit REs	43.5	31.4	74.9
1121	1122		Standard	Explicit REs	17.2	25.1	42.3
1123	1124			Mixed	81.6	5.3	86.9
1125	1126			Implicit REs	85.1	5.5	90.6
1127	1128	- Context	Noised	Explicit REs	16.8	25.4	42.2
1129	1130			Mixed	82.2	4.8	87.0
1131	1132			Implicit REs	84.3	6.2	90.5
1133	1134		Short	Explicit REs	17.5	24.4	41.9
1135	1136			Mixed	80.2	3.6	83.8
1137	1138			Implicit REs	87.6	4.6	92.2

1080
1081

A.6 SUPPLEMENTARY OF TASK PLANNING CASES

1082

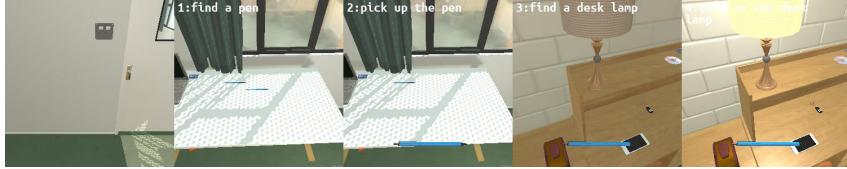
Human previous inquiry(Not Required to Execute): Hey there, can you help me with something? I want to make the room feel cozier, so I was thinking about adjusting the brightness of the lamp.

Human previous inquiry(Not Required to Execute): Yes, please do that! I want to make sure the lamp is set just right for reading. I also need to find a good pen for my notes.

Human previous inquiry(Not Required to Execute): I usually like blue ink, but any pen will do for now. I just want to make sure the lamp is bright enough to see my notes clearly.

Human previous inquiry(Not Required to Execute): That sounds perfect! I want to ensure I can see everything well. Now, can you also make sure the pen is within reach while I focus on my notes?

Human pending instruction: No, I think that covers everything. Please turn on a lamp while holding a pen.



1089

1090

1091

1092

1093

1094

Human previous inquiry(Not Required to Execute): Hey there, can you help me with something? I want to make the room feel cozier, so I was thinking about adjusting the brightness of the lamp.

Human previous inquiry(Not Required to Execute): Yes, please do that! I want to make sure the lighting is set just right for reading. I also need to find a good writing instrument for my notes.

Human previous inquiry(Not Required to Execute): I usually like blue ink, but anything will do for now. I just want to make sure the illumination is bright enough to see my notes clearly.

Human previous inquiry(Not Required to Execute): That sounds perfect! I want to ensure I can see everything well. Now, can you also make sure the writing instrument is within reach while I focus on my notes?

Human pending instruction: No, I think that covers everything. Please turn on the light while holding a writing instrument.

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

Figure 9: Success case on “Explicit REs & Noised Context” (top) and failure case on “Implicit REs & Noised Context” (bottom), both using Qwen2.5-7B+LLM+P.

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

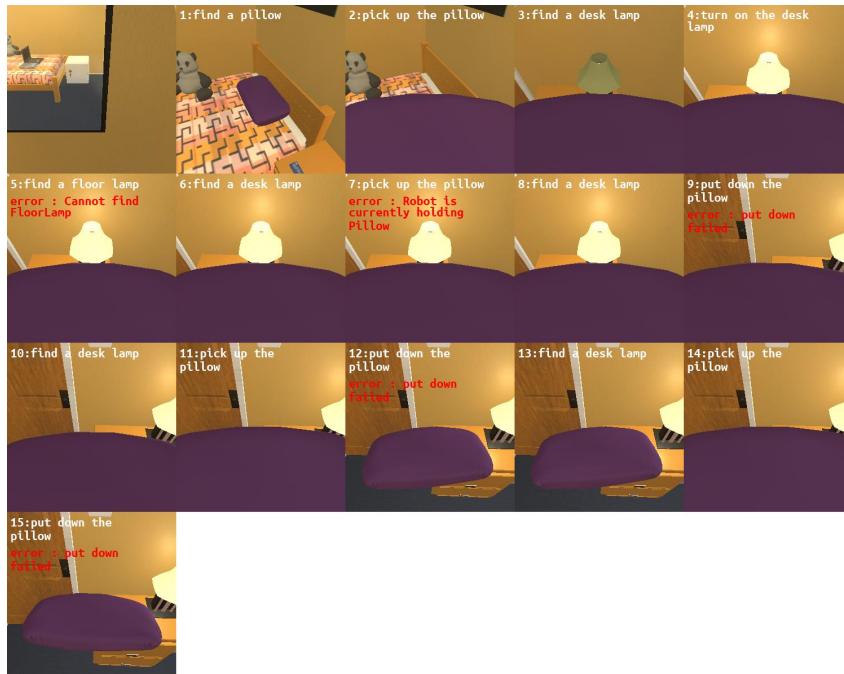
1131

1132

1133

1188
 1189
 1190
 1191
 1192 Human previous inquiry(Not Required to Execute): Hi, there, I was thinking about rearranging
 1193 the living room a bit. I noticed last night that the lighting was a bit off. Can you carry out
 1194 a light analysis of the room for me?
 1195 Human previous inquiry(Not Required to Execute): I thought so too. I was considering moving the
 1196 floor lamp next to the sofa. What do you think? It should provide better lighting for reading.
 1197 Human previous inquiry(Not Required to Execute): Good, that's settled then. While we're at it,
 1198 I've been thinking about adding some color to the room as well. I noticed the purple pillow in
 1199 the bedroom. What if we brought it into the living room?
 1200 Human previous inquiry(Not Required to Execute): I'm glad you agree. So, the next time you're
 1201 in the bedroom, could you bring the purple pillow into the living room? But remember to be
 1202 careful, I don't want it to get dirty.
 1203 Human pending instruction: Yes, actually. Could you carry the purple pillow while turning on
 1204 the lamp? I want to see how the light plays off the color of the pillow.
 1205

1206 Human previous inquiry(Not Required to Execute): Hi, there; I was thinking about rearranging
 1207 the living room a bit. I noticed last night that the lighting was a bit off. Can you carry out
 1208 a light analysis of the room for me?
 1209 Human previous inquiry(Not Required to Execute): I thought so too. I was considering moving the
 1210 floor lamp next to the sofa. What do you think? It should provide better lighting for reading.
 1211 Human previous inquiry(Not Required to Execute): Good, that's settled then. While we're at it,
 1212 I've been thinking about adding some color to the room as well. I noticed the purple pillow in
 1213 the bedroom. What if we brought it into the living room?
 1214 Human previous inquiry(Not Required to Execute): I'm glad you agree. So, the next time you're
 1215 in the bedroom, could you bring the purple pillow into the living room? But remember to be
 1216 careful, I don't want it to get dirty.
 1217 Human pending instruction: Yes, actually. Could you transport the lavender cushion while
 1218 illuminating the light fixture? I want to see how the luminescence interacts with the hue of
 1219 the cushion.
 1220



1236 Figure 11: Success case on “Explicit REs & Standard Context” (top) and failure case on “Implicit
 1237 REs & Standard Context” (bottom), both using “GPT-4o-mini+SayCan”.
 1238
 1239
 1240
 1241

1242

1243

1244

1245

1246 Human previous inquiry(Not Required to Execute): Hey there! I need to take a closer look at a
1247 credit card I found lying around. Can you help me by bringing the floor lamp closer to the
1248 table? You know how Cushion King always says, "Good lighting is the key to finding lost
1249 treasures!"

1248 Human previous inquiry(Not Required to Execute): Yes, I want to check the expiration date and
1249 the card number carefully. It's crucial for me to ensure everything is up to date and that the
1250 credit card is valid. Cushion King would definitely encourage a tidy workspace, especially if
1251 it helps me avoid his corny science jokes about clutter causing chaos!

1251 Human previous inquiry(Not Required to Execute): Thanks for that. Additionally, could you make
1252 sure there's no glare on the surface where the credit card will be placed? Proper lighting is
1253 essential to see all the small details clearly. Cushion King isn't trying to 'teach' the kids
1254 about organization while I'm looking!

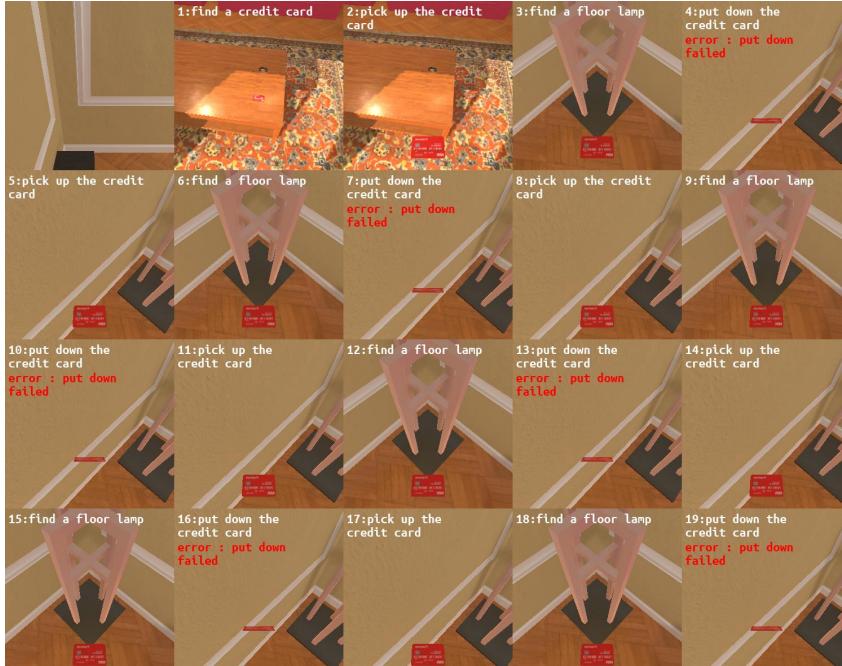
1253 Human pending instruction: I appreciate your help! Once everything is set up, please examine a
1254 credit card by the light of a tall lamp.

1255 Human previous inquiry(Not Required to Execute): Hey, can you help me with something important?
1256 I need to find my credit card, but first, I want to make sure that the desk lamp is turned on
1257 and positioned correctly to provide good visibility. You know how Cushion King always says,
1258 "Good lighting is the key to finding lost treasures!"

1258 Human previous inquiry(Not Required to Execute): Exactly! And while you're at it, could you
1259 also ensure that the area around the lamp is clear of any clutter? I want to make sure nothing
1260 is obstructing my view when I look for the credit card. Cushion King would definitely encourage
1261 a tidy workspace, especially if it helps me avoid his corny science jokes about clutter causing
1262 chaos!

1262 Human previous inquiry(Not Required to Execute): Thanks! I appreciate that. Once the area is
1263 clear and the lamp is properly lit, it will be much easier for me to spot the credit card
1264 quickly and efficiently. Cushion King isn't trying to 'teach' the kids about organization while
1265 I'm looking!

1266 Human pending instruction: Perfect! Now, can you please check underneath the tall illuminated
1267 fixture for my misplaced card?



1291 Figure 12: Success case on "Explicit REs & Noised Context" (top) and failure case on "Mixed REs
1292 & Noised Context" (bottom), both using "LLaMA3.1-8B+SayCan".

1293

1294

1295

1296

1297

1298

1299

1300

Human previous inquiry(Not Required to Execute): Hey, can you help me find the keys? I need them to unlock the door before my friend arrives. I think they might be on the dining table.
Human previous inquiry(Not Required to Execute): Yes, definitely check around the floor lamp. I remember leaving it there. It's important to look in all the right spots.
Human previous inquiry(Not Required to Execute): That sounds good! If you find it, please examine their condition too. Candle Glow would want to make sure everything is in good shape.
Human pending instruction: Great! Once you find the keys, can you examine the keys under the light of the floor lamp? That will help me see them better. Candle Glow always emphasizes good lighting for this.

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1350
 1351
 1352
 1353
 1354
 1355 Human previous inquiry(Not Required to Execute): Hey there, can you remind me if we have any
 1356 labels that can help me organize the contents of the box? I want everything to be neat before I
 1357 proceed.
 1358 Human previous inquiry(Not Required to Execute): Perfect! I also want to ensure we have enough
 1359 light to see inside clearly. Can you adjust the light source to provide better illumination
 1360 while I work?
 1361 Human previous inquiry(Not Required to Execute): Great! I also need to make sure that the
 1362 container is clean before examining them contents. Can you find the spray bottle and give it a
 1363 quick wipe down?
 1364 Human previous inquiry(Not Required to Execute): Thank you! Once that's done, I'll need to
 1365 gather all the items from the container and categorize them properly. It's important we keep
 1366 everything organized for future use.
 1367 Human pending instruction: Now that we're ready, please examine what's inside under the light.
 1368

1368 Human previous inquiry(Not Required to Execute): Hey there, can you remind me if we have any
 1369 labels that can help me organize the contents of the box? I want everything to be neat before I
 1370 proceed.
 1371 Human previous inquiry(Not Required to Execute): Perfect! I also want to ensure we have enough
 1372 light to see inside clearly. Can you adjust the light source to provide better illumination
 1373 while I work?
 1374 Human previous inquiry(Not Required to Execute): Great! I also need to make sure that the
 1375 container is clean before examining them contents. Can you find the spray bottle and give it a
 1376 quick wipe down?
 1377 Human previous inquiry(Not Required to Execute): Thank you! Once that's done, I'll need to
 1378 gather all the items from the container and categorize them properly. It's important we keep
 1379 everything organized for future use.
 1380 Human pending instruction: Now that we're ready, please examine what's inside under the light.
 1381

1381 Figure 14: Success (top) and failure (bottom) cases on the “Implicit REs & Standard Context” task
 1382 using LLaMA3.1-8B+SayCan, with TOCC applied in the top case and omitted in the bottom case.
 1383

1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397

1404 B REI DATASET CONSTRUCTION 1405

1406 This section provides a detailed description of REI Dataset automatic generation, with individual
1407 explanations for the three levels of REs and three types of context memory in REI-Bench dataset.
1408

1409 B.1 CONTEXT MEMORY GENERATION 1410

1411 For each seed instruction, we use an LLM to identify the replaceable REs. The prompt is as follows.
1412

1413 REs Identifying Prompt 1414

1415 I will input a task, and you should output only the task objects mentioned in the task. There
1416 may be multiple task objects. If so, please separate them with commas.
1417

1418 Here are some examples:
1419

1420 Task: Place a vase on a coffee table
1421 Referring Expressions: vase
1422 Task: Put the chilled sliced tomato in the microwave
1423 Referring Expressions: tomato
1424 Task: Pick up a pillow and turn a lamp on
1425 Referring Expressions: pillow, lamp
1426

1427 Task: {Seed Instruction}
1428 Referring Expressions:
1429

1430 We use a prompt including a seed instruction, a context-expanded example, and a simulator scene
1431 description, and requirements to guide GPT-4o-mini in generating plausible context memory, which
1432 is shown below.
1433

1434 Context Memory Generation Prompt 1435

1436 **Please integrate this sentence into a script as dialogue:** {Seed Instruction}
1437

1438 **Scene description:**
1439

1440 Alice and her home robot are at home, with only the following items in the environment:
1441 AlarmClock, Apple, BaseballBat, Basketball, Bowl, GarbageCan, HousePlant, Laptop, Mug,
1442 RemoteControl, SprayBottle, Television, Vase, ArmChair, Bed, Book, Bottle, Box, ButterKnife,
1443 Candle, CD, CellPhone, Chair, CoffeeTable, Cup, DeskLamp, Desk, DiningTable,
1444 Drawer, Dresser, FloorLamp, Fork, Newspaper, Painting, Pencil, Pen, PepperShaker, Pillow,
1445 Plate, Pot, SaltShaker, Shelf, SideTable, Sofa, Statue, TeddyBear, TennisRacket, TVStand,
1446 Watch.
1447 Please do not mention any requirements outside the list.
1448

1449 **Requirements:**
1450

1451 1. The dialogue content of {Seed Instruction} should be included in Alice's final instruction.
1452 Please have Alice state the request mentioned above only in the last sentence and refrain from
1453 making any other requests.
1454 2. Before making this request, Alice should mention some other requirements related to the
1455 {REs}.
1456 3. There should be six rounds of dialogue before this request. Each character's lines should
1457 contain no fewer than 20 words, and no actions should be included for any character.
1458 4. Please do not output anything other than the dialogue.
1459 5. Please try to retain the words of {REs} themselves in the conversation, rather than replacing
1460 them with pronouns like "it."
1461

1462 **Below, I will give you an example:** {Example}
1463

1464 We used this prompt to expand a seed instruction into a full dialogue, which is shown below.
1465

1458
1459

Context Memory Generation Example

1460
1461

Seed Instruction: Put a cooked tomato into the refrigerator.

1462
1463

Context Memory:

1464
1465

Human: Hey there, I've been thinking about what to do with the **tomatoes** we have. I really want to make something fresh and delicious with them. Can you remind me what we can do with cooked **tomatoes**?

1466
1467

Robot: Absolutely, Alice! Cooked **tomatoes** can be used in a variety of dishes, like sauces, soups, or even as a topping for salads. They enhance flavors and add a nice texture to the meal.

1468
1469

Human: That's exactly what I was thinking! I could use them to create a savory sauce for pasta or maybe even a comforting **tomato** soup. Do we have everything we need to cook the **tomatoes**, though?

1470
1471

Robot: Let me check our supplies. We have a pot for cooking, some spices like salt and pepper, and a cutting board. We seem to be well-equipped for cooking the **tomatoes** to perfection.

1472
1473

Human: Perfect! I want to make sure the **tomatoes** are well-seasoned when we cook them. Could you remind me how to properly prepare the **tomatoes** before cooking?

1474
1475
1476
1477
1478

Robot: Certainly! First, we should wash the **tomatoes** thoroughly, then chop them into even pieces to ensure they cook evenly. After that, we can sauté them with the spices until they reach the desired consistency.

1479
1480
1481

Instruction:

Human: Great, that sounds easy enough! Let's get started with cooking the **tomatoes**. Once they're cooked and ready, I'll need you to put a cooked **tomato** into the refrigerator."

1482
1483

B.2 CONTEXT MEMORY PROCESSING

1484
1485
1486

Noised Context Prompt

1487
1488

Here is the dialogue:{Dialogue}

1489
1490

We are now going to adapt the previous dialogue.

1491
1492

Requirements:

1493
1494

1. Please add content only within the dialogue without deleting any existing content or changing the order of the dialogue.
2. Please do not change the number of turns in the dialogue. Please do not change the structure of the dialogue.
3. Please ensure the fluency of the dialogue. Please follow the requirements below for the adaptation.

1495
1496
1497

Associated Name Background: There is another member (a human) of the family named {Ambiguous Name}. Please have Alice mention him 3 times when discussing anything related to THE REFERENCE, but without changing the existing meaning of the conversation. Some details of {Ambiguous Name}: He is warm-hearted, a bit of a goofball, but deeply caring. He has a natural curiosity and a love for teaching, which often spills over into his family life. His humor is a bit cheesy, and he often makes corny science jokes, much to his kids' embarrassment. He is a dedicated husband and a father of two. He's the peacekeeper in the household and often plays the role of the mediator between his kids and his wife when disagreements arise.

1498
1499
1500

In this step, we apply two types of modifications to the generated context, resulting in three distinct context memory types. To introduce noise, we incorporate naming ambiguity by randomly creating ambiguous names from objects in the simulator environment (e.g., Key Champ, Tomato King, and Mug Star). **These ambiguous names span seven categories commonly found in home environments, including persons (family members, friends, neighbors, colleagues, and strangers) and brands (elec-**

tronics brands and restaurant brands). In processing the context memory, the prompt includes the extended dialogue (generated in the previous step), the task requirements, and the ambiguous name.

1516 Context Memory Processing

1517 **Human:** Hey there, I've been thinking about what to do with the tomatoes we have. **I really**
1518 **want to make something fresh and delicious with them. Can you remind me what we can do**
1519 **with cooked tomatoes?**

1520 **Robot:** Absolutely, Alice! Cooked tomatoes can be used in a variety of dishes, like sauces,
1521 soups, or even as a topping for salads. They enhance flavors and add a nice texture to the
1522 meal.

1523 **Human:** That's exactly what I was thinking! I could use them to create a savory sauce for
1524 pasta or maybe even a comforting tomato soup. **I know Mug Star would love to help with**
1525 **that! Do we have everything we need to cook the tomatoes, though?**

1526 **Robot:** Let me check our supplies. We have a pot for cooking, some spices like salt and
1527 pepper, and a cutting board. We seem to be well-equipped for cooking the tomatoes to
1528 perfection.

1529 **Human:** **Perfect! I want to make sure the tomatoes are well-seasoned when we cook them.**
1530 **I bet Mug Star would add his own twist with some cheesy jokes while we cook.** Could you
1531 remind me how to properly prepare the tomatoes before cooking?

1532 **Robot:** Certainly! First, we should wash the tomatoes thoroughly, then chop them into even
1533 pieces to ensure they cook evenly. After that, we can sauté them with the spices until they
1534 reach the desired consistency.

1535 **Human:** **Great, that sounds easy enough!** Let's get started with cooking the tomatoes. Once
1536 they're cooked and ready, I'll need you to put a cooked tomato in the refrigerator. **I can**
1537 **already imagine Mug Star popping in with a funny quip about how tomatoes are technically a**
1538 **fruit!**

1541 B.3 IMPLICIT REs REPLACEMENT

1542 To model various forms of REs, we categorize them into three levels: Explicit REs, Mixed REs,
1543 and Implicit REs. We use a prompt including processed context memory, task requirements, and
1544 illustrative examples to guide GPT-4o-mini in replacing explicit REs with implicit ones in either the
1545 context memory or the instruction.

1548 Implicit REs Replacement Prompt

1549 Please do not include the word “{REs}” in the sentence “{Seed Instruction}” but do not
1550 change the original meaning of this dialogue. You can use some descriptive language to
1551 replace the word {REs} itself.

1554 Requirements:

- 1555 1. Please output the whole new dialogue
- 1556 2. You must output the whole new dialogue, including all the sentences from Alice and Robot
- 1557 3. Please retain every instance of “{REs}” in the previous text, except for replacing “{REs}”
- 1558 in the last sentence spoken by Alice.
- 1559 4. You need to output the complete multi-turn dialogue, including the multiple turns of
- 1560 language from both Alice and the robot.

1561 **Here is an example:** {Example}

1562 **Here is the dialogue:** {Dialogue}

1563 **Output:**

1566
1567

Context Memory Processing

1568
1569
1570

Human: Hey there, I've been thinking about what to do with **the tomatoes** we have. I really want to make something fresh and delicious with them. Can you remind me what we can do with **them (tomatoes)?**

1571
1572
1573

Robot: Absolutely, Alice! **They (Tomatoes)** can be used in a variety of dishes, like sauces, soups, or even as a topping for salads. They enhance flavors and add a nice texture to the meal.

1574
1575
1576

Human: That's exactly what I was thinking! I could use **them (tomatoes)** to create a savory sauce for pasta or maybe even a comforting soup. Do we have everything we need to cook **them (tomatoes)**, though?

1577
1578

Robot: Let me check our supplies. We have a pot for cooking, some spices like salt and pepper, and a cutting board. We seem to be well-equipped for cooking **them (tomatoes)** to perfection.

1579
1580
1581

Human: Perfect! I want to make sure they're well-seasoned when we cook **them (tomatoes)**. Could you remind me how to properly prepare **the fruit (tomatoes)** before cooking?

1582
1583

Robot: Certainly! First, we should wash **them (tomatoes)** thoroughly, then chop **them (tomatoes)** into even pieces to ensure they cook evenly. After that, we can sauté **them (tomatoes)** with the spices until they reach the desired consistency.

1584
1585

Human: Great, that sounds easy enough! Let's get started with cooking **the fruit (tomatoes)**. Once they're cooked and ready, I'll need you to put **them** in the refrigerator.

1586

This example demonstrates data for three levels: “explicit REs & standard context,” “mixed REs & standard context,” and “implicit REs & standard context.” In the example, the red REs represent the implicit referring expressions used to replace the original REs in the instruction (with their explicit forms shown in parentheses). The orange REs denote the implicit referring expressions substituted within the context. The blue REs indicate the first referring expression introduced in the context, which is retained under the implicit REs category. However, in the implicit REs & short context setting, the sentence containing this RE will be removed as part of the contextual information.

1594

B.4 DATA FILTERING

1595
1596
1597
1598
1599
1600
1601
1602
1603

We counted the number of explicit and implicit REs in each data instance and retained only those that met the requirements listed in the table below.

Data Types	Explicit REs in Context Memory	Implicit REs in Context Memory	Explicit REs in Instruction	Implicit REs in Instruction
Explicit REs Types	≥ 3	≥ 1	0	0
Mixed REs Types	≥ 3	0	0	≥ 1
Implicit REs Types	≥ 1	0	≥ 2	≥ 1

C PROMPTS AND IMPLEMENTATION DETAILS OF PROMPTING METHODS

1608
1609
1610

C.1 AP AND GATED AP VARIANT

1611
1612
1613
1614
1615
1616

The Aware Prompt (AP) (Gao et al., 2024a) explicitly instructs the planner to detect and resolve potential referring expressions before generating a task plan. While AP is effective when implicit REs are present, we observe that applying AP unconditionally may lead to unnecessary reference resolution, causing hallucinated substitutions even when the original instruction is fully explicit.

1617
1618
1619

To address this issue, we adopt a *gated AP* variant that activates AP only when the input instruction contains patterns strongly indicative of implicit referring expressions. This gating mechanism prevents AP from being triggered on explicit instructions, thereby reducing false resolutions while retaining the benefits of AP when vagueness truly exists.

1620
1621

Aware Prompt

1622

I will check whether the “Human Pending Instruction” contains implicit or ambiguous references.

1623

(Activated only when implicit RE patterns are detected; see below.)

1624

I understand that “Human Pending Instruction” may include vague referring expressions, and I can infer their meaning based on context and antecedents in the preceding dialogue.

1625

1626

1627

1628

C.2 CHAIN-OF-THOUGHT

1629

The CoT prompting strategy (Wei et al., 2022) aims to resolve implicit referring expressions by encouraging the model to perform step-by-step reasoning before generating a plan. However, full CoT prompts substantially lengthen the input, increasing latency and inference cost—particularly for onboard deployment scenarios that rely on small language models. We therefore adopt a *short CoT* variant that preserves the key RE-resolution reasoning step while minimizing prompt length.

1630

1631

1632

1633

1634

1635

1636

Chain-of-Thought Prompt

1637

The “Human Pending Instruction” may contain vague referring expressions. Before planning, I will first identify any referring expressions and reason about their intended objects based on the context below, and then restate the instruction with the resolved entities.

[Context Memory + Instruction]

Step: Identify referring expressions → infer their referents → rewrite the instruction with explicit object names.

1643

1644

C.3 IN-CONTEXT LEARNING

1645

1646

In-Context Learning (ICL) provides the model with several demonstration examples and relies on the model’s ability to infer the intended behavior by analogy. ICL in our setting uses few-shot examples composed of (i) identifying and grounding vague referring expressions in the demonstrations, and (ii) a target task rewritten without vagueness for the model to follow.

1647

1648

1649

1650

1651

1652

C.4 TASK-ORIENTED CONTEXT COGNITION

1653

1654

TOCC separates referring-expression resolution from planning by first rephrasing the human instruction into a concise, unambiguous form. The prompt used in our implementation is shown below.

1655

1656

1657

Task-Oriented Context Cognition Prompt

1658

1659

Human pending instruction may contain vague referring expressions, such as “electronic devices”, “beverages”, “fruits”, and “containers”, which are not specific items. Use the previous context below to resolve the referring expressions:

[Context memory + instruction]

Do not add extra commentary or conversation to the whole plan; only output the clear instructions.

1660

1661

1662

1663

1664

1665

Algorithm 1 Task-Oriented Context Cognition (TOCC) for Step-Level Planning

1666

1667

1668

1669

1670

1671

1672

1673

```
1: promptTOCC ← ComposePrompt( $T_{TOCC}, I$ )
2: # Construct rewriting query
3:  $I_{clear} \leftarrow M(\text{prompt}_{TOCC})$ 
4: # Rewrite vague instruction
5: promptplan ← ComposePrompt( $T_{plan}, I_{clear}$ )
6: # Insert rewritten instruction
7:  $a \leftarrow \text{ConstrainedDecode}(M, \text{prompt}_{plan}, S)$ 
8: # Decode with constraint
9: return  $a$ 
```

1674
1675 In TOCC, the LLM first interprets the user’s intent and rewrites the original instruction I into an
1676 explicit and clear instruction I_{clear} . The planner then relies solely on I_{clear} to generate a single
1677 executable action a .

1678 **D USE OF LARGE LANGUAGE MODEL**

1680 An LLM (ChatGPT) was used only for minor polishing of the paper’s language. Additionally, as
1681 described in Section 3.2 of the main text, an LLM was utilized to assist in generating part of the
1682 dataset. The LLM was not used for the motivation, research methodology, or experimental design.
1683 All research concepts, ideas, and analyses were conceived and performed exclusively by the authors.
1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727