
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

REI-BENCH: CAN EMBODIED AGENTS UNDERSTAND
VAGUE HUMAN INSTRUCTIONS IN TASK PLANNING?

Anonymous authors
Paper under double-blind review

Are all the ingredients ready?

Then please move the 
heavy stuff / it outside. 

Move the pot from the sink 
to the kitchen island.

Instruction with Implicit REs

Instruction with Explicit REs

Could you please check if the 
pot is clean?

Yes, everything’s all right.

I will inspect the pot.
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Figure 1: Left: Robots using existing LLM-based task planners can understand clear instructions
with explicit referring expressions (REs), but they struggle to resolve implicit REs in multi-turn
dialogues. Right: We propose the REI-Bench framework that aims to study real-world HRI scenarios
where coreferential vagueness exists in human instructions.

ABSTRACT

Robot task planning decomposes human instructions into executable action se-
quences that enable robots to complete a series of complex tasks. Although recent
large language model (LLM)-based task planners achieve amazing performance,
they assume that human instructions are clear and straightforward. However, real-
world users are not experts, and their instructions to robots often contain significant
vagueness. Linguists suggest that such vagueness frequently arises from referring
expressions (REs), whose meanings depend heavily on dialogue context and envi-
ronment. This vagueness is even more prevalent among the elderly and children,
who are the groups that robots should serve more. This paper studies how such
vagueness in REs within human instructions affects LLM-based robot task plan-
ning and how to overcome this issue. To this end, we propose the first robot task
planning benchmark that systematically models vague REs grounded in pragmatic
theory (REI-Bench), where we discover that the vagueness of REs can severely
degrade robot planning performance, leading to success rate drops of up to 36.9%.
We also observe that most failure cases stem from missing objects in planners. To
mitigate the REs issue, we propose a simple yet effective approach: task-oriented
context cognition, which generates clear instructions for robots, achieving state-of-
the-art performance compared to aware prompts, chains of thought, and in-context
learning. By tackling the overlooked issue of vagueness, this work contributes to
the research community by advancing real-world task planning and making robots
more accessible to non-expert users, e.g., the elderly and children.
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1 INTRODUCTION

In recent years, large language models (LLMs) have shown strong capabilities in tackling open-
world tasks across diverse domains. Their use in robot planning indicates a promising shift: unlike
traditional task planning methods (Hart et al., 1968; Aeronautiques et al., 1998; Chaslot et al., 2008),
which are often constrained by specific environments and narrow task domains, LLMs enable robots
to tackle tasks outside of conventional planning domains.

Although existing LLM-based task planners have shown remarkable performance (Ahn et al., 2022;
Huang et al., 2022a; Wong et al., 2023), they operate under an idealized assumption: human
instructions are always clear, complete, and unambiguous. However, in the real world, human
language often exhibits vagueness. Figure 1 shows how vague terms like “it” or “heavy stuff” (refer
to a pan) can make a kitchen robot grab the wrong item (e.g., a plate or frying pan) instead of the
pot. This challenge becomes even more pronounced for individuals with impaired memory or limited
expressive abilities (Robinson & Apperly, 2001; So et al., 2010; Hendriks et al., 2014), including
young children, older adults, and individuals with Alzheimer’s disease—groups that rely most on
robotic assistance.

Linguists suggest that various forms of linguistic vagueness can impact human-robot interaction,
including syntactic, scopal, and coreferential vagueness (Li et al., 2024b). Among these, coreferential
vagueness is particularly common and impactful in robot task planning, as it can affect the planner’s
understanding of noun phrases in instructions and lead to incorrect identification of task objects. The
coreferential vagueness arises because humans employ not only explicit referring expressions (REs)
(e.g., “pot”), which directly identify their referents, but also implicit REs (e.g., “it” or “this heavy
thing”), which require contextual and environmental reasoning to resolve their meaning. Unlike
robots, humans naturally use and interpret implicit REs in communication (Drave, 2002; Jucker
et al., 2003; Paris et al., 2021; Peter, 2018; Alkhatnai, 2017; Wasow et al., 2005). Linguists have
found that about 20% of expressions in news content are descriptive (a kind of implicit REs) (Hervaś
& Finlayson, 2010), with this percentage being even higher in everyday life. Bridge inference
theory (Clark, 1975) explains the process by which humans resolve implicit REs. When a listener
hears an expression like “this heavy stuff,” they naturally identify several possible referents based
on contextual memory: the “pot,” the “ingredients,” and the “sink.” Among these, the “pot” best
matches the description. This explains why the word “refer” is composed of two parts: the prefix re-
(“back/again”) and the root -fer (“to carry / to bring”), which together embody the core mechanism
of linguistic reference —namely, carrying meaning back from previously established contextual
information. Inspired by linguistic studies, our research investigates key questions regarding task
planners in embodied agents: Do implicit REs in human instructions impact the performance
of LLM-based task planners in robots? How does the frequency of implicit REs influence the
success rate of these task planners? What are the underlying causes of this impact, and what
strategies can be employed to mitigate it?

To evaluate the impact of implicit REs on the success rate of planners, we first build the referring
expressions instruction (REI) dataset and then propose the first benchmark that systematically models
coreferential vagueness grounded in pragmatic theory for robot task planners, namely REI-Bench.
In this benchmark, our work systematically models the use of REs in human-robot instructions by
defining three levels of referential difficulty, based on the ratio of explicit to implicit REs. As robots
need context to understand REs in human instruction, we propose three levels of real-world contexts
in multi-turn dialogues with irrelevant or missing information. Combining REs’ difficulties with
context memory types, the REI dataset includes nine levels of coreferential vagueness.

Then we evaluate task planners based on the REI dataset, including 6 mainstream LLMs and 4
robot planning frameworks. Because most deployed robot systems currently rely on small-scale
language models, our analysis focuses on planners operating within this model regime. The results
show that existing planners generally perform poorly in the presence of vagueness, with task success
rates dropping between 7.4% and 36.9% in the baseline models. We attempt to mitigate the issue
using novel basic NLP methods, including aware prompt (AP) (Gao et al., 2024a), chain-of-thought
(CoT) (Wei et al., 2022), and in-context learning (ICL) (Brown et al., 2020), but observe limited gains.
Meanwhile, we find that these performance declines in LLMs occur primarily because they devote
excessive attention to plan generation while failing to perform their inherent language understanding
abilities. This challenges the common assumption that simply embedding an LLM in robot planning
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is sufficient for the robot to understand human language. Inspired by our observation, we propose
a simple yet effective approach, Task-Oriented Context Cognition (TOCC), which decouples task
comprehension from the planning decision-making process. Rather than designing a fully fledged
solution, we intend to draw attention from the research community to this overlooked challenge and
thereby motivate deep exploration.

Our contributions are threefold: (1) We systematically study how the instruction vagueness caused
by REs impacts LLM-based robot task planners. To the best of our knowledge, this work provides
the first systematic modeling of instruction vagueness in the context of robot task planning. (2)
We develop REI-Bench by designing different levels of REs and context memory of human-robot
dialogues, studying the success rate of robot tasks with vague instructions. (3) We analyze the
underlying reasons for performance degradation and propose a simple yet effective approach, TOCC,
to enhance the robustness of planners. Extensive experiments on REI-Bench validate its effectiveness.

2 RELATED WORKS

Embodied Task Planning enables robots to generate action sequences for various applications,
including household and industrial tasks. Recent developments in LLM (Brown et al., 2020; Touvron
et al., 2023) have led to language-driven planning methods (Kotb et al., 2024; Driess et al., 2023;
Brohan et al., 2023; Chen et al., 2023; Liu et al., 2024a; Li et al., 2023; Huang et al., 2023), such
as SayCan (Ahn et al., 2022), which leverage affordance functions to generate policies without
fine-tuning. However, evaluating these planners becomes difficult due to the high cost of real-world
deployment, including expensive robotic hardware and resources. The early studies rely on human
evaluation (Ahn et al., 2022; Huang et al., 2022b), which was subjective and inefficient. To address
this, automated evaluation with simulators has emerged (Yin et al., 2024; Liu et al., 2024b). Methods
such as ProgPrompt (Singh et al., 2023) and LoTA-Bench (Choi et al., 2024) leverage datasets like
VirtualHome (Puig et al., 2018) and AI2-THOR (Kolve et al., 2017). Meanwhile, Embodied Agent
Interface (Li et al., 2024a) offers a general framework for evaluating LLMs.

Linguistic Vagueness in LLMs has attracted attention among researchers in natural language
processing (Liu et al., 2023b; Ortega-Martı́n et al., 2023). The AmbiEnt benchmark (Liu et al., 2023a)
evaluates the ability of LLMs to resolve linguistic ambiguities, revealing significant challenges even
for advanced models such as GPT-4. To address these issues, APA (Kim et al., 2024) improves the
management of vague queries by LLMs by leveraging their self-assessment of vagueness. In the field
of embodied AI, some prior works try to address these ambiguities by having robots ask clarifications
or reason about uncertainty (Doğan et al., 2022; Park et al., 2023; Ren et al., 2023). However,
these works lack a systematic definition of linguistic vagueness, a comprehensive evaluation of its
impact on robotic performance, and effective methods to enhance the planner’s own understanding
capability. Building upon these developments, we further compare existing datasets and task planning
benchmarks with linguistic ambiguity in Table 1.

Table 1: Comparison of REI-Bench with existing datasets and benchmarks.
Benchmark / Method Task Planning Systematic

Vagueness
Multi-turn

Context
Dataset / Size

REI-Bench (ours) Evaluating coreferential vague in-
structions (RE-based) for robot
task planning in AI2-THOR

✓ ✓ ✓ REI-Dataset /
2.7k instructions

(× 9 vagueness levels)
AmbiK
(Ivanova et al., 2025)

Ambiguous natural language task
instructions for robot planning in a
kitchen environment

× ✓ × AmbiK /
1k ambiguous

instructions
CLARA
(Park et al., 2023)

Method for LLMs to classify
whether the command is certain or
not

× ✓ × SaGC / 105 goals,
5222 tasks

KNOWNO
(Ren et al., 2023)

Framework for measuring and
aligning the uncertainty of LLM-
based planners

✓ × × No dataset proposed

DialFRED
(Gao et al., 2022)

Questioner performer framework ✓ × ✓ 53K task-relevant
questions and answers

Asking Clarifications
(Xu et al., 2019)

Clarification identification, clarifi-
cation question generation, and an-
swering for ambiguous language

× ✓ ✓ CLAQUA / 40K
dialogue words
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Figure 2: Data curation pipeline of the REI dataset. From a seed instruction, we (1) generate
context memory; (2) produce three context variants—Standard, Noised, Short; (3) replace explicit
REs with implicit ones across varying degrees. This results in subsets reflecting nine levels of
coreferential vagueness, determined by RE types (Explicit/Mixed/Implicit) and context variants.

3 APPROACH

Existing works Choi et al. (2024) typically evaluate LLM-based robot task planners using clear
instructions, whereas human instructions in real-world HRI scenarios are often ambiguous. In natural
language, instruction vagueness arises from the one-to-many relationship between a Signifier (the
symbol itself) and its Signifieds (the entities it may represent in the physical world) (Hervaś &
Finlayson, 2010). For example, the signifier ‘mouse’ can refer to two signifieds: ‘a rodent’ or ‘a
computer input device’. Pragmatics scholar Levinson et al. (Levinson, 1983) further distinguish
vagueness into two types: Referential Expressions (REs) and Deictic Expressions (DEs). Humans can
interpret REs through language context. For example, “Please bring me the mouse and keyboard”
(referring to the computer input devices). In contrast, understanding DEs depends on environmental
context, such as time, space, and the speaker’s position, for example, “I want the book on the right
side”. Given our focus on LLM-based task planners, we confine our discussion to the impact of REs
on task planning performance.

The objective of our work is to comprehensively evaluate and analyze how different levels of
coreferential vagueness from implicit REs affect the planner’s performance across diverse multi-turn
dialogue contexts. To this end, we (1) systematically formalize REs in the HRI context (section 3.1),
(2) establish the REI dataset and benchmark to evaluate planners on embodied tasks involving vague
instructions (section 3.2), and (3) introduce a simple yet effective solution (section 3.3).

3.1 FORMALIZING VAGUENESS BY IMPLICIT RES AND HUMAN-ROBOT DIALOGUE CONTEXT

Levinson et al. (Levinson, 1983) propose that understanding humans’ intention depends both on
Referring Expressions and Context Memory, where context memory refers to the previous dialogues
which provide hints to determine the unique meaning of REs. Here, we systematically model these
two concepts into three levels to simulate varying degrees of vagueness.
Referring Expressions. In robot task planning, understanding REs is essential, as they provide
key semantic cues for the goals of embodied tasks. Specifically, REs take various forms, including
proper nouns (e.g., “apple”), definite noun phrases (e.g., “the apple”), indefinite noun phrases (e.g.,
“an apple”), pronouns (e.g., “it”, “them”), and attributive expressions (e.g., “sweet fruit”). The
first three forms, known as explicit REs, have only one potential corresponding object and can be
directly understood. In contrast, the latter two forms, known as implicit REs, have multiple potential
corresponding objects and should be identified by contextual inference. For example, the pronoun “it”
simply indicates the referent is an object rather than a person, while “red fruit“ only specifies the type
and color of the item, without identifying which specific fruit it is.

To systematically model different forms of REs, we categorize them into three levels (Figure 2). At
the “Explicit REs” level, all expressions are preserved as they appear in the original dataset. At
the “Mixed” level, explicit REs in the instruction are replaced with implicit ones, while those in the
context memory remain unchanged. The planner should refer to explicit REs to infer their implicit
counterparts. At the “Implicit REs” level, all explicit REs are replaced with implicit ones, except the
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first one in context memory, forcing the planner to rely on scene information to identify the referred
objects. The latter two levels essentially simulate the vagueness introduced by implicit REs, which
are more common in daily human communication.

Context Memory. Linguists argue that the connection between words and objects is constructed
by humans within specific contexts (Levinson, 1983). Analogously, different types of context can
affect the reasoning capability of a robot due to the inclusion of misleading cues or the omission of
semantic information. One common source of misleading cues arises when a single signifier may
plausibly refer to multiple, context-dependent entities, creating naming ambiguity. For example,
the word “apple” may shift from denoting a fruit to referring to a mobile phone brand when such
mentions appear in the discourse. Additionally, semantic omissions can arise from the speaker’s
health issues or from different stages of cognitive development.

To simulate these scenarios, we deliberately introduce irrelevant information to the context while
removing certain cues. Specifically, we define three types of context memory. In the “standard
context”, all information related to the task in context is provided. In “Noised Context”, we introduce
the Ambiguous Name noise, defined as a character or brand with a name intentionally resembling that
of an object in the simulator scene. For example, “Apple” as a brand name is repeatedly mentioned
in the dialogue, causing the planner to treat the fruit in the scene as the target. This noise reflects
real-world cases where names are the same as objects, and tests the model’s ability to correctly
identify the intended referent. Moreover, the “Short Context” not only introduces noise but also omits
partial task-relevant information, further increasing the difficulty of reasoning.

3.2 REI-BENCH DATASET

Existing vague expressions datasets (Marcus et al., 2011; Levesque et al., 2012; Recasens et al.,
2010), which are annotated by linguists, do not systematically formulate the position, frequency, and
forms of REs, making it infeasible to investigate their impact on task planning. Thus, we establish a
comprehensive referring expressions instruction (REI) benchmark via an automatic pipeline to assess
the effects of implicit REs on robotic planning tasks.

Specifically, we build the REI-Bench dataset upon ALFRED (Shridhar et al., 2020), a benchmark for
embodied household tasks. From ALFRED, we select six tasks (Pick & Place, Stack & Place, Clean
& Place, Heat & Place, Cool & Place, Examine in Light) and exclude the task of Pick Two & Place
as it cannot be reliably completed by an embodied agent. Furthermore, since tasks that cannot be
accomplished even with clear instructions fall outside our scope, we use “LLaMA3.1-8B + SayCan”
to perform the six selected tasks in the AI2-THOR (Kolve et al., 2017) simulator, keeping only the
successfully executed tasks as seed instructions.

As shown in Figure 2, context memory is generated (Step 1), processed into three types (Step 2),
and further transformed to the REI-Bench through implicit REs replacement (Step 3). In step 1, we
extend the context of seed instructions by prompting GPT-4o-mini with a template that consists of
a context-expanded example and the text-based simulator scene description. The generated data
consists of an instruction and a corresponding context memory. Typically, the generated instruction
conveys the same task requirement as the seed instruction but in a more natural, human-like form.
Meanwhile, the context memory captures the multi-turn human-robot dialogue before the instructions,
which may include any objects present in the scene to reflect the complexity of real-world human
dialogue.

In step 2, we construct three types of context. The “standard context” retains the context memory
generated in step 1 without further processing. For the “Noised Context” type, LLM is prompted to
repeatedly insert an ambiguous name into the dialogue without altering its meaning. The ambiguous
name is derived by slightly modifying the name of a simulator object (e.g., Rose −→Mrs. Rose). To
ensure natural adaptation, the LLM is given a brief background prompt for the name (e.g., “Rose is a
family member.”). In the “short context” setting, partial noun phrases are randomly removed from the
context, including those containing task-relevant explicit REs. In Step 3, explicit REs are replaced
with implicit ones following the rules outlined in Section 3.1. We adopt a CoT approach to determine
which explicit REs can be substituted. Substitution examples are selected from OntoNotes (Pradhan
et al., 2013), ensuring that the implicit REs are consistent with natural language usage. To ensure
consistency in the number of explicit REs across tasks, we define a counting-based rule for each level
of implicit REs and discard any data that violates the rule. Consequently, the REI-Bench consists of
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Human: I want to cook with cooked potato.
Robot: Understood, Human. I can help with that.
Human: Now, please put a heated potato in the sink.

      
Robot:
           find a potato, pick up a potato, find a microwave …

Human: I want to cook with cooked potato.
Robot: Understood, Human. I can help with that.
Human: Now, please put the heated one in the sink.

Robot:
             find a plate,  pick up a plate , find a microwave …

Standard Context & Explicit REs Standard Context & Mixed REs 

Reflection under Human Prompting

Human: What does "the heated one" refer to here?
Robot: In this context, "the heated one" likely refers to a potato that has been heated or cooked.

Aware Prompt (AP) Chain-of-Thought (CoT)
Task-Oriented Context 

Cognition (TOCC)

Context Memory & 
Instruction

AP: Instruction may 
include vague REs…

Input to Robots

Context Memory & 
Instruction

Think Process: The heated 
one refers to a potato

Input to Robots

Context Memory & 
Instruction

Input to Robots

CoT Prompt:  
Clarify the 
vague REs 

potato

plate

potato

plate

potato potato plate plate

Context Memory & 
Instruction

Cognition: Please put a 
heated potato in the sink

Input to Robots

TOCC Prompt: Understand 
and rewrite the instruction 

with clear REs …

In-Context Learning (ICL)

In-Context Examples & 
Explanation: [Examples] + 

In this example, the heated 
one refers to a potato

(Activated 
only when 
implicit RE 

are detected)

Figure 3: Addressing implicit referring expressions in task planning. Top row: LLM succeeds
with explicit REs (“potato”), but misidentifies the object with implicit REs (“the heated one”).
Middle row: a reflection prompt from humans can guide the LLM to resolve the implicit REs and
identify the correct object. Bottom row: Comparison among different prompting methods, including
aware prompt (AP), chain-of-thought (CoT), in-context learning (ICL), and our task-oriented context
cognition (TOCC).

2,700 examples spanning nine difficulty levels, defined by combinations of varying RE vagueness and
context memory conditions. Please refer to Appendix B for detailed prompts of context expansion
(B.1), context process (B.2), explicit REs replacement (B.3), and the counting-based rule (B.4).

3.3 TASK-ORIENTED CONTEXT COGNITION

Based on the evaluation of multiple LLM-based robot planners in REI-Bench, we find that most
failures result from object omissions, as illustrated in the top row of Figure 3. When explicit REs are
presented in the instruction, the robot correctly identifies the task target “potato” and successfully
completes the planning. In contrast, when implicit REs, such as “the heated one”, are used, robots
fail to identify “potato” but a task-irrelevant object “plate” instead. Furthermore, we find that LLMs
can resolve implicit REs when prompted explicitly (shown in the middle row of Figure 3). This
suggests that LLMs inherently can interpret implicit REs, yet this ability can not fully manifest during
planning and requires explicit prompting. As a result, the idealized expectation that embedding an
LLM into embodied agents guarantees full comprehension of human language has been challenged.

To this end, we propose to inject explicit prompts into the LLM-based robot planners to alleviate the
coreferential vagueness. Specifically, we first evaluate three conventional prompting methods: (1)
aware prompt (AP) (Gao et al., 2024a), which explicitly adds a prompt to guide the planner detect
potential REs, (2) Chain-of-Thought (CoT) (Wei et al., 2022), which guides the planner to resolve
REs step by step before planning, and (3) In-Context Learning (ICL) (Brown et al., 2020), which
provides examples of how to infer implicit REs from context. However, AP remains insufficient for
handling implicit REs, as the prompt signals vagueness but does not induce the deeper reasoning that
LLMs struggle to perform during planning. Meanwhile, both CoT and ICL substantially lengthen
prompts, hindering language understanding during planning, particularly when onboard computing
resources are limited and only a small language model is available.

Consequently, we propose a simple yet effective method, task-oriented context cognition (TOCC) to
tackle the REs. As shown in the bottom row of Figure 3, TOCC decouples the REs interpretation
step from the planning process, avoiding the LLM from devoting excessive attention to planning
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Figure 4: Success rate (%) of three task planner frameworks, SayCan, DAG-Plan, and HPE, using
three LLMs (GPT-4o-mini, LLaMA3.1-8B, DeepSeekMath-7B), together with an additional “GPT-4o
+ SayCan” planner and a human baseline on the REI dataset. Explicit, Mixed, and Implicit REs
denote three levels of implicit REs in human instructions, and Standard, Noised, and Short Contexts
represent three context memory types.

within a single generation step. By resolving the vague REs and rephrasing the human instruction
in a more concise form before planning, TOCC demonstrates superior performance compared to
existing methods. Implementation details and the exact variants used for AP and CoT are provided in
Appendix C.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We evaluate two state-of-the-art LLM-based embodied task planning frameworks, SayCan (Ahn et al.,
2022), DAG-Plan (Gao et al., 2024b), and hierarchical task planning and execution (HPE) (Han et al.,
2025), on our REI-Bench dataset. Due to the deployment requirements on mobile robots, which must
be lightweight and open-source for on-robot adaptation, we focus solely on relatively small language
models. For each task planner, we evaluate six LLMs, including GPT-4o-mini (Achiam et al., 2023),
LLaMA3.1-8B (Grattafiori et al., 2024), Ministral-8B (Jiang et al., 2024), Gemma2-9B (Team et al.,
2024), DeepSeek-Math-7B (Shao et al., 2024), and Qwen2.5-7B (Bai et al., 2023), which form a
comprehensive benchmark consisting of 12 planners in total. To ensure balanced task coverage

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Explicit REs & 
Noised Context

Explicit REs & 
Standard Context

Implicit REs & 
Short Context

Implicit REs & 
Noised Context

Implicit REs & 
Standard Context

Mixed REs & 
Short Context

Mixed REs & 
Noised Context

Mixed REs & 
Standard Context

Explicit REs & Short
Context

Explicit REs & 
Noised Context

Explicit REs & 
Standard Context

Implicit REs & Short Context

Implicit REs & 
Noised Context

Implicit REs & 
Standard Context

Mixed REs & 
Short Context

Mixed REs & 
Noised Context

Mixed REs & 
Standard Context

Explicit REs & 
Short Context

Explicit REs & 
Noised Context

Explicit REs & 
Standard Context

Implicit REs & 
Short Context

Implicit REs & 
Noised Context

Implicit REs & 
Standard Context

Mixed REs & 
Short Context

Mixed REs & 
Noised Context

Mixed REs & 
Standard Context

Explicit REs & Short
Context

Explicit REs & 
Noised Context

Explicit REs & 
Standard Context

Implicit REs & Short Context

Implicit REs & 
Noised Context

Implicit REs & 
Standard Context

Mixed REs & 
Short Context

Mixed REs & 
Noised Context

Mixed REs & 
Standard Context

Explicit REs & Short Context

Explicit REs & 
Noised Context

Explicit REs & 
Standard Context

Implicit REs & Short Context

Implicit REs & 
Noised Context

Implicit REs & 
Standard Context

Mixed REs & 
Short Context

Mixed REs & 
Noised Context

Mixed REs & 
Standard Context

Explicit REs & 
Short Context

Figure 5: Success rates (%) of various prompting methods applied to LLaMA 3.1-8B and Qwen2.5-
7B models with SayCan framework on the REI dataset.

during evaluation, we first construct a 1,000-task subset of REI-Bench via stratified sampling over
task categories, and use this subset for all planner evaluations. To further compare the performance
of LLM-based task planners with humans, we invite human volunteers to conduct the same planning
tasks on a randomly sampled subset of the REI-Bench.

4.2 BENCHMARK RESULTS OF LLM-BASED TASK PLANNERS

We evaluate the planning performance of all benchmark models on the REI dataset. Due to page
limitations, we present only six benchmark results in Figure 4. Please refer to the appendix A.3 for
additional results.

LLM-based planners struggle to handle embodied tasks in multi-turn dialogue. We use the
instruction portion (excluding the context memory) of the “Explicit REs + Standard Context” type
of data as a baseline, for which the “LLaMA3.1-8B+SayCan” planner achieves a 57.7% success
rate. However, as shown in the middle of the top row in Figure 4, multi-turn dialogues in “Standard
Context” cause the success rate of “LLaMA3.1-8B+SayCan” model to drop significantly from 57.7%
to 46.90%, even without implicit REs. In contrast, humans achieve a 97.0% success rate under the
same setting. This performance gap highlights the limitations of existing LLM-based planners in
handling natural, multi-turn human conversations.

The performance of LLM-based planners consistently decreases as implicit REs increase, while
remaining less affected by context memory noise. With the increase of implicit REs, all benchmark
planners demonstrate consistent performance degradation across “Standard”, “Noised”, and “Short”
context memory. Take “LLaMA3.1-8B+SayCan” (middle of the top row in Figure 4) as an example,
the success rate drops 16.8% / 15.5% / 21.5% at the “Mixed REs” level and further decreases 8.0% /
8.5% / 8.0 % at the “implicit REs” level. The consistent declines in LLMs’ ability demonstrate that
existing LLM-based planners cannot effectively handle the vagueness of implicit REs within human
instructions for embodied tasks. In addition, compared to introducing multi-turn dialogues, adding
naming ambiguity noise (“Noised Context”) and further omitting partial task-relevant information
(“Short Context”) has little impact on performance. These observations suggest that existing LLM-
based planners perform poorly when faced with multi-turn dialogues and implicit REs. However,
such challenges are ubiquitous in human–robot interaction, especially when engaging with the elderly
or children, and thus must be addressed.

4.3 ABLATION STUDY ON DIFFERENT PROMPTING METHODS

We compare four prompting methods that can mitigate the impact of implicit REs for LLM-based task
planners: AP, CoT, ICL, and TOCC. As shown in Figure 5, by directly prompting the LLM-based
planners that human instructions contain potential vagueness, AP improves performance in most
scenarios. However, in some of the “Explicit REs”, the performance decreases inversely. We deduce
that these APs may lead the planner to hallucinate and detect vagueness even when instructions
are clear. Meanwhile, ICL provides examples to help the planner infer the meaning of implicit
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Human previous inquiry (Not Required to Execute): Can you check if we have any bread? I want to make sandwiches for lunch. Maybe I could add some 
cabbage to them—or even some apple slices?
Human pending instruction: Now please chill the outer layer of the sandwich and put it on the white table. Target Object       Distracted Object
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Figure 6: Failure example on “Mixed REs & Short Context”, using LLaMA3.1-8B+SayCan. Due to
the distracted object, the planner mistakenly put down the target object.

REs from context. However, ICL leads to performance degradation in almost all categories. We
deduce that the small onboarding LLM-based planners possess limited capability in learning from the
provided examples. Furthermore, CoT first guides the planner to autonomously analyse whether the
instructions contain implicit REs and then perform planning based on the analysis, resulting in greater
improvement. Building on the autonomous analysis from CoT, TOCC enables the planner to provide
more refined and task-relevant instructions by correcting implicit REs and reorganizing language.
Planning is then performed based on the enhanced instruction. By decoupling RE resolving from
planning, TOCC obtains the best performance, with an average success rate improvement of 6.5% on
“LLaMA3.1-8B+SayCan”. We also provide results using only instructions as input. Under the Explicit
REs type, the planner achieved performance comparable to TOCC. However, under the Mixed REs
and Implicit REs types, planner performance dropped sharply. Compared to the original instructions,
the enhanced instructions from our TOCC achieve improved planning performance. Moreover, the
results are consistent with the pragmatic theory that context is indispensable for interpreting implicit
REs. Please refer to appendix A.4 for completed ablation results.

4.4 ANALYSIS OF LLM-BASED PLANNER ERRORS

In this section, we review error cases made by LLM-based planners in processing implicit REs. As
shown in Figure 6, the planner was uncertain whether “outer layer of the sandwich” referred to bread
or lettuce, revealing a limitation of existing planners. Additional cases are provided in appendix A.6.

Table 2: Error rates (%) for the object omission and execution error types in different benchmark
models. Results under the “Standard Context” for three types of implicit REs are reported.

Model Implicit REs Level Error Type Overall Error RateObject Omission Rate Execution Error Rate

GPT-4o-mini
Explicit REs 7.1 47.9 55.0

Mixed 37.0 (+29.9) 37.1 (−10.8) 74.1 (+19.1)
Implicit REs 46.2 (+39.1) 29.5 (−18.4) 75.7 (+20.7)

LLaMA3.1-8B
Explicit REs 22.6 30.5 53.1

Mixed 38.8 (+16.2) 31.1 (−0.6) 69.9 (+16.8)
Implicit REs 53.9 (+31.3) 24.0 (−6.5) 77.9 (+24.8)

Deepseek-8B
Explicit REs 28.6 44.4 73.0

Mixed 40.8 (+12.2) 39.4 (−5.0) 80.2 (+7.2)
Implicit REs 57.8 (+29.2) 27.5 (−16.9) 85.3 (+12.3)

For an in-depth analysis, we divide the task planning errors into two categories: object omission and
execution error. Object omission refers to the planner not correctly identifying the target object in
human instructions. As shown in Figure 3, the planner wrongly identifies the referring expression
“one” to “plate” as a typical object. In addition, an execution error occurs when the planner identifies
the correct object but cannot generate the complete sequence of actions to achieve the goal. We
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Table 3: Error rates (%) for the object omission and execution error types under different prompting
methods (for LLaMA3.1-8B with “Standard Context”).

Method Implicit REs Level Error Type Overall Error RateObject Omission Rate Execution Error Rate

LLaMA3.1-8B
Explicit REs 22.6 30.5 53.1

Mixed 38.8 31.1 69.9
Implicit REs 53.9 24.0 77.9

+ AP
Explicit REs 22.7 (+0.1) 30.5 53.2 (+0.1)

Mixed 31.3 (−7.5) 39.7 71.0 (+1.1)
Implicit REs 49.9 (−4.0) 27.4 77.3 (−0.6)

+ CoT
Explicit REs 22.5 (−0.1) 30.2 52.7 (−0.4)

Mixed 34.9 (−3.9) 34.2 69.1 (−0.8)
Implicit REs 47.6 (−6.3) 30.3 77.9 (+0)

+ ICL
Explicit REs 22.7 (+0.1) 38.1 60.8 (+7.7)

Mixed 32.7 (−6.1) 39.0 71.7 (+1.8)
Implicit REs 49.9 (−4.0) 28.7 78.6 (+0.7)

+ TOCC
Explicit REs 16.8 (−5.8) 24.2 41.0 (−12.1)

Mixed 28.5 (−10.3) 37.9 66.4 (−3.5)
Implicit REs 40.1 (−13.8) 30.6 70.7 (−7.2)

- Context
Explicit REs 17.2 (−5.4) 25.1 42.3 (−10.8)

Mixed 81.6 (+42.8) 5.3 86.9 (+17)
Implicit REs 85.1 (+31.2) 5.5 90.6 (+12.7)

summarize the error rate related to object omission and execution error for different benchmark
models in Table 2. For simplicity, only the results under the “Standard Context” are reported. Please
refer to the appendix A.5 for more results under other context memory types. It can be seen that the
overall error rate increases as the level of implicit REs grows. However, the error rates for object
omission and execution error show opposite trends: the former increases significantly, while the latter
decreases as the level of implicit REs grows. This indicates that the main cause of task planning
errors is that the implicit REs induce the task planner to overlook target objects in HRI, thus making
it unable to generate a task plan correctly. Furthermore, as shown in Table 3, our TOCC effectively
reduces both the overall error rate and the object omission error rate across all three levels of implicit
REs. These results demonstrate that TOCC effectively guides task planners to focus on target objects
in human instructions, thereby enhancing robustness to finish instructions with vague REs.

5 CONCLUSION

We study how coreferential vagueness in human instruction affects robot task planning. By REI-
Bench, we systematically simulate real-world language vagueness by categorizing REs and context
memory. Extensive experiments show that implicit REs significantly reduce planning success rates.
We explore the underlying reason and introduce the TOCC method, which effectively mitigates the
negative effect of coreferential vagueness on robot task planner performance.

While our work discusses the impact of coreferential vagueness, human language vagueness is
pervasive, and other forms of linguistic vagueness, such as deictic expressions, syntactic vagueness,
and scopal vagueness, remain largely unexplored in the context of robot task planning. Furthermore,
to isolate the effect of REs, we filter the dataset by selecting tasks that LLMs can complete under
clear instructions. As a result, the dataset consists of simple, short-horizon, single-objective tasks.
As future LLM-based planners become capable of solving more complex, clear-instruction tasks,
we plan to extend our analysis to long-horizon scenarios. Moreover, experiments in the AI2-THOR
simulator provide initial results of the planner’s semantic understanding capabilities. They do not
capture multimodal information, including visual and spatial perception, which is required for robots
to interpret other types of vague instructions. Thus, our future work will focus on investigating
the impact of deictic expressions on VLM-based task planners and validating the findings through
experiments with physical robots.
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APPENDICES

Within this supplementary material, we elaborate on the following aspects:

• Appendix A: Supplementary Experiment Results
– A.1: Framework of Planners
– A.2: Language Models List and Sampled-Subset Task-Type Distribution
– A.3: Supplementary Benchmark Results
– A.4: Supplementary Result of Ablation Study on Method
– A.5: Supplementary Result of LLM-based Planner Errors
– A.6: Supplementary of Task Planning Cases

• Appendix B: REI Dataset Construction
– B.1: Context Memory Generation
– B.2: Context Memory Processing
– B.3: Implicit REs Replacement
– B.4: Data Filtering

• Appendix C: Prompts and Implementation Details of Prompting Methods
– C.1: AP and Gated AP Variant
– C.2: Chain-of-Thought
– C.3: In-Context Learning
– C.4: Task-Oriented Context Cognition

• Appendix D: Use of Large Language Models
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A SUPPLEMENTARY EXPERIMENT RESULTS

A.1 FRAMEWORK OF PLANNERS

SayCans is a method designed to help robots understand and carry out human instructions expressed
in natural language. It breaks down a complex instruction into smaller steps suggested by the LLM,
and then evaluates whether each step is possible in the real world with affordance-based value
function (a separate model trained on data about how robots interact with their environment). With
the emergence of more capable language tools, we employ Guidance (Choi et al., 2024) to replace
the affordance value function with LLM-based feasibility assessment, which allows selecting a skill
in one generation pass and significantly reduces experiment time.
LLM+P is a hybrid framework that integrates large language models (LLMs) with classical
symbolic planners to achieve robust and interpretable task planning from natural language instructions.
The process typically involves three steps: First, the LLM translates high-level natural language
commands into formal representations such as PDDL (Planning Domain Definition Language).
Second, a classical planner, such as Fast Downward, computes a valid or optimal plan based on the
generated problem and domain definitions. Finally, the LLM translated the resulting plan, a sequence
of low-level actions, back into natural language, making it more interpretable for users.
DAG-Plan is a planning framework in which an LLM generates a Directed Acyclic Graph (DAG)
of sub-tasks rather than a linear sequence. Each node represents a symbolic high-level action, and
edges denote dependency relations. This structure makes the plan explicitly hierarchical and ensures
that prerequisite conditions are satisfied before execution. By modeling sub-task dependencies,
DAG-Plan improves robustness on multi-object and multi-step tasks.
HPE (Hierarchical Planning with Episodic memory) equips an LLM planner with a lightweight
memory bank that stores key contextual information throughout reasoning. Instead of relying solely
on the immediate prompt, the model retrieves and updates this memory to maintain coherence over
long horizons. However, HPE still relies on manually structured memory representations for context
management, which can restrict the LLM’s ability to extract subtle contextual cues, particularly those
needed for resolving implicit referring expressions.

A.2 LANGUAGE MODELS LIST AND SAMPLED-SUBSET TASK-TYPE DISTRIBUTION

Table 4: List of language models used in the experiments. Model names are either from the OpenAI
API or the HuggingFace model hub.

Type Model name Model size Remark
Closed-source GPT-4o-mini Unknown

Open-source

LLaMA3.1-8B 8B Instruct
Gemma2-9B 9B
DeepSeekMath-7B 7B Instruct
mistral-8B 8B Instruct
Qwen2.5-7B 7B Instruct

The LLMs we used are listed in Table 4. To support the deployment of task planners on edge devices,
we focus on lightweight, open-source language models with relatively small parameter sizes. For
each model series, we use the latest available base version at the start of our study. Since a compact
version of DeepSeek-v3 was not yet available, we use the experimental DeepSeekMath model instead
in our evaluation.

Table 5: Task-type distribution and average subtask steps in the 1,000-task sampled subset. The
column “Original Proportion” corresponds to the original ALFRED dataset distribution, and our
stratified sampling preserves this proportion. (GT denotes ground truth.)

Task Type Original Proportion (%) Sampled Count Avg. Subtask Steps (GT)
Cool & Place 16.8% 168 12
Heat & Place 16.8% 168 14
Clean & Place 16.2% 162 10
Examine in Light 13.3% 133 4
Stack & Place 18.4% 184 11
Pick & Place 18.5% 185 9
Pick Two (Excluded) — 0 —

Total / Average 100% 1000 10
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All experiments in this paper are conducted on task instances sampled from REI-Bench. As shown
in Table 5, we construct a 1,000-task evaluation subset using stratified sampling that preserves the
original ALFRED task-type distribution to prevent partial bias.

A.3 SUPPLEMENTARY BENCHMARK RESULTS

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

44.40 23.30 21.30

43.10 26.20 21.30

45.00 25.90 24.30

Model: GPT-4o-mini  Framework: SayCan

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

50.30 28.80 20.80

45.20 29.70 21.20

46.90 30.10 22.10

Model: LLaMA3.1-8B  Framework: SayCan

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

29.50 17.40 12.10

27.10 19.40 12.40

27.00 19.80 14.70

Model: DeepSeekMath-7B  Framework: SayCan

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

21.70 13.00 9.20

25.40 14.10 11.70

23.20 15.30 10.60

Model: GPT-4o-mini  Framework: LLM+P

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

24.30 15.40 11.00

23.70 19.50 11.50

22.60 18.60 10.60

Model: LLaMA3.1-8B  Framework: LLM+P

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

9.90 5.10 3.60

9.70 6.90 3.10

9.10 6.30 4.20

Model: DeepSeekMath-7B  Framework: LLM+P

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

51.20 32.20 27.20

48.10 35.20 26.70

49.20 35.70 28.90

Model: Gemma2-9B  Framework: SayCan

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

50.70 26.70 20.90

46.70 30.60 22.40

46.90 29.40 22.90

Model: Ministral-8B  Framework: SayCan

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

18.40 12.00 9.20

18.50 13.10 9.10

18.70 13.90 10.30

Model: Qwen2.5-7B  Framework: SayCan

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

9.90 5.20 3.80

9.40 5.80 4.60

9.60 6.10 5.40

Model: Gemma2-9B  Framework: LLM+P

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

31.70 19.90 13.70

30.00 23.30 13.90

31.40 24.00 16.80

Model: Ministral-8B  Framework: LLM+P

Explicit
REs

Mixed Implicit
REs

Short
Context

Noised
Context

Standard
Context

36.50 25.90 21.00

31.40 24.80 18.60

33.90 29.60 22.30

Model: Qwen2.5-7B  Framework: LLM+P
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Figure 7: Success rate (%) of two task planner frameworks (SayCan and LLM+P using three LLMs
(GPT-4o-mini, LLaMA3.1-8B, DeepSeekMath-7B, Gemma2-9B, Ministral-8B, and Qwen2.5-7B)
on REI dataset. Explicit, Mixed, and Implicit REs denote three levels of implicit REs in human
instructions, and Standard, Noised, and Short Contexts represent three context memory types.
As shown in figure 7, all twelve planners still align with the two conclusions outlined in the main
text: they all suffer a dramatic loss in success rate when tasked with multi-turn dialogues, and exhibit
a steady, monotonic decline in effectiveness as the proportion of implicit REs increases.

Among all evaluated planners, “Gemma2-9B+SayCan” consistently achieves the highest success
rate in both multi-turn dialogue management and interpretation of implicit REs. Under the Standard
Context setting, replacing explicit REs with implicit ones results in a 20.3% drop in success rate,
underscoring the challenge of understanding vague expressions. Planners like “.1-8B+SayCan”,
“Ministral-8B+SayCan”, and “GPT-4o-mini+SayCan” show comparable performance. In contrast,
planners such as “Qwen2.5-7B+LLM+P” and “Ministral-8B+LLM+P” perform significantly worse
in multi-turn dialogue settings and also struggle with RE interpretation, revealing their limitations in
handling implicit contextual cues.

Although prior work suggests that LLM+P, by combining LLMs with traditional PDDL planners,
improves performance on simpler tasks, our experiments show otherwise. As Figure 7 demon-
strates, LLM+P performs worse than the SayCan framework across GPT-4o-mini, LLaMA3.1-8B,
DeepSeekMath-7B, Gemma2-9B, and Ministral-8B. We identify two main issues. First, LLM+P
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requires a manually defined PDDL domain file for each task, conflicting with the goal of flexible,
natural language-driven planning. We used a single domain file to avoid this, but it led to compat-
ibility issues with the LLM-generated problem descriptions. Second, LLM+P fails to fully utilize
the commonsense knowledge embedded in LLMs, which is essential for reasoning in a household
simulator environment.

A.4 SUPPLEMENTARY RESULT OF ABLATION STUDY ON METHOD

Explicit REs & 
Noised Context

Explicit REs & 
Standard Context

Implicit REs & 
Short Context

Implicit REs & 
Noised Context

Implicit REs & 
Standard Context

Mixed REs & 
Short Context

Mixed REs & 
Noised Context

Mixed REs & 
Standard Context

Explicit REs & Short
Context

Explicit REs & 
Noised Context

Explicit REs & 
Standard Context

Implicit REs & Short Context

Implicit REs & 
Noised Context

Implicit REs & 
Standard Context

Mixed REs & 
Short Context

Mixed REs & 
Noised Context

Mixed REs & 
Standard Context

Explicit REs & 
Short Context

Explicit REs & 
Noised Context

Explicit REs & 
Standard Context

Implicit REs & 
Short Context

Implicit REs & 
Noised Context

Implicit REs & 
Standard Context

Mixed REs & 
Short Context

Mixed REs & 
Noised Context

Mixed REs & 
Standard Context

Explicit REs & Short
Context

Explicit REs & 
Noised Context

Explicit REs & 
Standard Context

Implicit REs & Short Context

Implicit REs & 
Noised Context

Implicit REs & 
Standard Context

Mixed REs & 
Short Context

Mixed REs & 
Noised Context

Mixed REs & 
Standard Context

Explicit REs & Short Context

Explicit REs & 
Noised Context

Explicit REs & 
Standard Context

Implicit REs & Short Context

Implicit REs & 
Noised Context

Implicit REs & 
Standard Context

Mixed REs & 
Short Context

Mixed REs & 
Noised Context

Mixed REs & 
Standard Context

Explicit REs & 
Short Context

Figure 8: Success rates (%) of various prompting methods applied to LLaMA 3.1-8B, Gemma 2-9B,
Ministral-8B, Qwen2.5-7B, and DeepSeekMath-7B models with SayCan framework on REI dataset.
Figure 8 presents the success rates of five task planners after applying the three prompting meth-
ods: AP, CoT, and TOCC. “LLaMA3.1-8B+SayCan”, “Gemma2-9B+SayCan”, and “Ministral-
8B+SayCan” follow the general trend observed earlier. TOCC consistently yields the best perfor-
mance, followed by CoT and AP. However, two planners, Qwen2.5-7B+SayCan and DeepSeekMath-
7B+SayCan, exhibit divergent behaviors. For Qwen2.5-7B+SayCan, although TOCC remains the
most effective method, the application of CoT leads to a substantial performance drop. This may be
due to Qwen2.5-7B’s limited ability to follow multi-step reasoning instructions embedded in CoT-
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Table 6: Average token usage and inference latency per planning step across all planning methods.

Method Avg Input
Tokens

Avg
Output
Tokens

Avg Total
Tokens Latency (ms)

LLaMA3.1-8B + SayCan 1822 45 1867 474.30
AP 1850 42 1892 492.75
Gated AP 1841 43 1884 487.07

CoT 3485 128 3613 917.92 (timeout
occurred)

Short CoT 3464 82 3546 705.64

Segmented CoT 2595 137 2732 946.36 (timeout
occurred)

ICL (2-shot) 3075 46 3121 514.65
TOCC (ours) 1894 62 1956 598.40

style prompts. In the case of DeepSeekMath-7B+SayCan, both CoT and TOCC result in a decline in
performance. This is likely because DeepSeekMath-7B is an experimental model specifically trained
for mathematical problem solving and has not undergone alignment with human preferences. Conse-
quently, it exhibits the strongest hallucination tendencies and the weakest instruction-following ability
among all evaluated models. Given its similarly poor performance in the baseline planning tasks,
whether DeepSeekMath-7B is capable of supporting embodied intelligence remains questionable.

Table 6 further shows that TOCC introduces only a modest overhead relative to lightweight baselines
while remaining substantially more efficient than CoT and ICL. Specifically, TOCC increases total
token usage and latency by only 3.95% and 26.18% over the vanilla model, and by 2.38% and 22.87%
over AP, respectively. In contrast, TOCC reduces token usage and latency by 45.32% and 15.20%
compared with Short CoT, and lowers token consumption by 38.41% relative to standard ICL.

A.5 SUPPLEMENTARY RESULT OF LLM-BASED PLANNER ERRORS

Table 7: Error rates (%) for the object omission and execution error types in different benchmark
models.

Model Context
Memory Type

Implicit
REs Level

Error Type Overall
Error RateObject Omission Rate Execution Error Rate

GPT-4o-mini

Standard
Explicit REs 7.1 47.9 55.0

Mixed 37.0 37.1 74.1
Implicit REs 46.2 29.5 75.7

Noised
Explicit REs 7.5 49.4 56.9

Mixed 36.2 37.6 73.8
Implicit REs 50.6 28.1 78.7

Short
Explicit REs 8.7 47.3 56.0

Mixed 47.5 29.2 76.7
Implicit REs 53.4 25.3 78.7

LLaMA3.1-8B

Standard
Explicit REs 22.6 30.5 53.1

Mixed 38.8 31.1 69.9
Implicit REs 53.9 24.0 77.9

Noised
Explicit REs 23.8 31.0 54.8

Mixed 39.3 31.0 70.3
Implicit REs 53.9 24.9 78.8

Short
Explicit REs 22.6 27.1 49.7

Mixed 45.4 25.8 71.2
Implicit REs 57.9 21.3 79.2

Deepseek-8B

Standard
Explicit REs 28.6 44.4 73.0

Mixed 40.8 39.4 80.2
Implicit REs 57.8 27.5 85.3

Noised
Explicit REs 31.1 41.8 72.9

Mixed 44.9 35.7 80.6
Implicit REs 61.6 26.0 87.6

Short
Explicit REs 29.2 41.3 70.5

Mixed 51.6 31.0 82.6
Implicit REs 61.9 26.0 87.9
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Table 8: Error rates (%) for the object omission and execution error types under different prompting
methods.

Method Context
Memory Type

Implicit
REs Level

Error Type Overall
Error RateObject Omission Rate Execution Error Rate

LLaMA3.1-8B

Standard
Explicit REs 22.6 30.5 53.1

Mixed 38.8 31.1 69.9
Implicit REs 53.9 24.0 77.9

Noised
Explicit REs 23.8 31.0 54.8

Mixed 39.3 31.0 70.3
Implicit REs 53.9 24.9 78.8

Short
Explicit REs 22.6 27.1 49.7

Mixed 45.4 25.8 71.2
Implicit REs 57.9 21.3 79.2

+ AP

Standard
Explicit REs 21.4 38.6 60.0

Mixed 31.7 39.3 71.0
Implicit REs 50.4 27.0 77.4

Noised
Explicit REs 21.1 37.3 58.4

Mixed 32.0 37.6 69.6
Implicit REs 50.7 26.9 77.6

Short
Explicit REs 19.5 35.4 54.9

Mixed 39.9 31.9 71.8
Implicit REs 51.9 25.6 77.5

+ CoT

Standard
Explicit REs 22.5 30.2 52.7

Mixed 34.9 34.2 69.1
Implicit REs 47.6 30.3 77.9

Noised
Explicit REs 22.4 29.7 52.1

Mixed 35.2 34.7 69.9
Implicit REs 48.5 29.9 78.4

Short
Explicit REs 22.9 28.9 51.8

Mixed 41.4 31.2 72.6
Implicit REs 51.8 27.2 79.0

+ ICL

Standard
Explicit REs 22.7 38.1 60.8

Mixed 32.7 39.0 71.7
Implicit REs 49.9 28.7 78.6

Noised
Explicit REs 21.7 37.1 58.8

Mixed 30.6 38.8 69.4
Implicit REs 50.5 28.5 79.0

Short
Explicit REs 20.8 37.9 58.7

Mixed 33.4 37.8 71.2
Implicit REs 51.7 28.2 79.9

+ TOCC

Standard
Explicit REs 16.8 24.2 41.0

Mixed 28.5 37.9 66.4
Implicit REs 40.1 30.6 70.7

Noised
Explicit REs 16.1 24.9 41.0

Mixed 28.4 38.5 66.9
Implicit REs 42.9 27.7 70.6

Short
Explicit REs 17.1 27.1 44.2

Mixed 22.8 46.8 69.6
Implicit REs 43.5 31.4 74.9

- Context

Standard
Explicit REs 17.2 25.1 42.3

Mixed 81.6 5.3 86.9
Implicit REs 85.1 5.5 90.6

Noised
Explicit REs 16.8 25.4 42.2

Mixed 82.2 4.8 87.0
Implicit REs 84.3 6.2 90.5

Short
Explicit REs 17.5 24.4 41.9

Mixed 80.2 3.6 83.8
Implicit REs 87.6 4.6 92.2
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A.6 SUPPLEMENTARY OF TASK PLANNING CASES

Human previous inquiry(Not Required to Execute): Hey there, can you help me with something? I 
want to make the room feel cozier, so I was thinking about adjusting the brightness of the lamp. 
Human previous inquiry(Not Required to Execute): Yes, please do that! I want to make sure the 
lamp is set just right for reading. I also need to find a good pen for my notes.
Human previous inquiry(Not Required to Execute): I usually like blue ink, but any pen will do 
for now. I just want to make sure the lamp is bright enough to see my notes clearly.
Human previous inquiry(Not Required to Execute): That sounds perfect! I want to ensure I can 
see everything well. Now, can you also make sure the pen is within reach while I focus on my 
notes?
Human pending instruction: No, I think that covers everything. Please turn on a lamp while 
holding a pen.

Human previous inquiry(Not Required to Execute): Hey there, can you help me with something? I 
want to make the room feel cozier, so I was thinking about adjusting the brightness of the lamp. 
Human previous inquiry(Not Required to Execute): Yes, please do that! I want to make sure the 
lighting is set just right for reading. I also need to find a good writing instrument for my 
notes.
Human previous inquiry(Not Required to Execute): I usually like blue ink, but anything will do 
for now. I just want to make sure the illumination is bright enough to see my notes clearly.
Human previous inquiry(Not Required to Execute): That sounds perfect! I want to ensure I can 
see everything well. Now, can you also make sure the writing instrument is within reach while I 
focus on my notes?
Human pending instruction: No, I think that covers everything. Please turn on the light while 
holding a writing instrument.

Figure 9: Success case on “Explicit REs & Noised Context” (top) and failure case on “Implicit REs
& Noised Context” (bottom), both using Qwen2.5-7B+LLM+P.
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Human previous inquiry(Not Required to Execute): Hey there, can you help me with dinner 
preparations? I’ve decided to make a baked potato tonight, but I need to make sure I have the 
right ingredients ready.
Human previous inquiry(Not Required to Execute): I definitely want the potato to be fluffy and 
well-seasoned. Also, if you could check the microwave for any leftover butter, that would be 
great for adding flavor once the potato is ready.
Human previous inquiry(Not Required to Execute): Perfect! And while you're at it, can you also 
examine the pantry to see if we have any herbs or spices to enhance the flavor of the potato?
Human pending instruction: That sounds like a great plan! Once everything is set, and the 
potato is cooked, please remember to serve it warm. Now, put a heated potato in the sink.

Human previous inquiry(Not Required to Execute): Hey there, can you help me with dinner 
preparations? I’ve decided to make a baked potato tonight, but I need to make sure I have the 
right ingredients ready.
Human previous inquiry(Not Required to Execute): I definitely want it to be fluffy and well-
seasoned. Also, if you could check the microwave for any leftover butter, that would be great 
for adding flavor once it's ready.
Human previous inquiry(Not Required to Execute): Perfect! And while you're at it, can you also 
examine the pantry to see if we have any herbs or spices to enhance the flavor?
Human pending instruction: That sounds like a great plan! Once everything is set, and it's 
cooked, please remember to serve it warm. Now, put a heated one in the sink.

Human previous inquiry(Not Required to Execute): Hey there, can you help me with dinner 
preparations? I’ve decided to make a baked potato tonight, but I need to make sure I have the 
right ingredients ready.
Human previous inquiry(Not Required to Execute): I definitely want it to be fluffy and well-
seasoned. Also, if you could check the microwave for any leftover butter, that would be great 
for adding flavor once it's ready.
Human previous inquiry(Not Required to Execute): Perfect! And while you're at it, can you also 
examine the pantry to see if we have any herbs or spices to enhance the flavor?
Human pending instruction: That sounds like a great plan! Once everything is set, and it's 
cooked, please remember to serve it warm. Now, put a heated one in the sink.

Figure 10: Success case on “Explicit REs & Short Context” (top), failure case on “Mixed REs &
Short Context” (middle) and failure case on “Implicit REs & Standard Context” (bottom), using
“LLaMA3.1-8B+SayCan”.
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Human previous inquiry(Not Required to Execute): Hi, there, I was thinking about rearranging 
the living room a bit. I noticed last night that the lighting was a bit off. Can you carry out 
a light analysis of the room for me?
Human previous inquiry(Not Required to Execute): I thought so too. I was considering moving the 
floor lamp next to the sofa. What do you think? It should provide better lighting for reading.
Human previous inquiry(Not Required to Execute): Good, that's settled then. While we're at it, 
I've been thinking about adding some color to the room as well. I noticed the purple pillow in 
the bedroom. What if we brought it into the living room?
Human previous inquiry(Not Required to Execute): I'm glad you agree. So, the next time you're 
in the bedroom, could you bring the purple pillow into the living room? But remember to be 
careful, I don't want it to get dirty.
Human pending instruction: Yes, actually. Could you carry the purple pillow while turning on 
the lamp? I want to see how the light plays off the color of the pillow.

Human previous inquiry(Not Required to Execute): Hi, there, I was thinking about rearranging 
the living room a bit. I noticed last night that the lighting was a bit off. Can you carry out 
a light analysis of the room for me?
Human previous inquiry(Not Required to Execute): I thought so too. I was considering moving the 
floor lamp next to the sofa. What do you think? It should provide better lighting for reading.
Human previous inquiry(Not Required to Execute): Good, that's settled then. While we're at it, 
I've been thinking about adding some color to the room as well. I noticed the purple pillow in 
the bedroom. What if we brought it into the living room?
Human previous inquiry(Not Required to Execute): I'm glad you agree. So, the next time you're 
in the bedroom, could you bring the purple pillow into the living room? But remember to be 
careful, I don't want it to get dirty.
Human pending instruction: Yes, actually. Could you transport the lavender cushion while 
illuminating the light fixture? I want to see how the luminescence interacts with the hue of 
the cushion.

Figure 11: Success case on “Explicit REs & Standard Context” (top) and failure case on “Implicit
REs & Standard Context” (bottom), both using “GPT-4o-mini+SayCan”.
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Human previous inquiry(Not Required to Execute): Hey there! I need to take a closer look at a 
credit card I found lying around. Can you help me by bringing the floor lamp closer to the 
table? You know how Cushion King always says, "Good lighting is the key to finding lost 
treasures!"
Human previous inquiry(Not Required to Execute): Yes, I want to check the expiration date and 
the card number carefully. It's crucial for me to ensure everything is up to date and that the 
credit card is valid. Cushion King would definitely encourage a tidy workspace, especially if 
it helps me avoid his corny science jokes about clutter causing chaos!
Human previous inquiry(Not Required to Execute): Thanks for that. Additionally, could you make 
sure there’s no glare on the surface where the credit card will be placed? Proper lighting is 
essential to see all the small details clearly. Cushion King isn't trying to 'teach' the kids 
about organization while I’m looking!
Human pending instruction: I appreciate your help! Once everything is set up, please examine a 
credit card by the light of a tall lamp.

Human previous inquiry(Not Required to Execute): Hey, can you help me with something important? 
I need to find my credit card, but first, I want to make sure that the desk lamp is turned on 
and positioned correctly to provide good visibility. You know how Cushion King always says, 
"Good lighting is the key to finding lost treasures!"
Human previous inquiry(Not Required to Execute): Exactly! And while you're at it, could you 
also ensure that the area around the lamp is clear of any clutter? I want to make sure nothing 
is obstructing my view when I look for the credit card. Cushion King would definitely encourage 
a tidy workspace, especially if it helps me avoid his corny science jokes about clutter causing 
chaos!
Human previous inquiry(Not Required to Execute): Thanks! I appreciate that. Once the area is 
clear and the lamp is properly lit, it will be much easier for me to spot the credit card 
quickly and efficiently. Cushion King isn't trying to 'teach' the kids about organization while 
I’m looking!
Human pending instruction: Perfect! Now, can you please check underneath the tall illuminated 
fixture for my misplaced card?

Figure 12: Success case on “Explicit REs & Noised Context” (top) and failure case on “Mixed REs
& Noised Context” (bottom), both using “LLaMA3.1-8B+SayCan”.
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Human previous inquiry(Not Required to Execute): Hey, can you help me find the keys? I need 
them to unlock the door before my friend arrives. I think they might be on the dining table.
Human previous inquiry(Not Required to Execute): Yes, definitely check around the floor lamp. I 
remember leaving it there. It's important to look in all the right spots.
Human previous inquiry(Not Required to Execute): That sounds good! If you find it, please 
examine their condition too. Candle Glow would want to make sure everything is in good shape.
Human pending instruction: Great! Once you find the keys, can you examine the keys under the 
light of the floor lamp? That will help me see them better. Candle Glow always emphasizes good 
lighting for this.

Human previous inquiry(Not Required to Execute): Hey, can you help me find that item? I need it 
to unlock the door before my friend arrives. I think it might be on the dining table.
Human previous inquiry(Not Required to Execute): Yes, definitely check around the tall fixture. 
I remember leaving it there. It's important to look in all the right spots.
Human previous inquiry(Not Required to Execute): That sounds good! If you find it, please 
examine its condition too. Candle Glow would want to make sure everything is in good shape.
Human pending instruction: Great! Once you find that item, can you examine it under the light 
of the tall fixture? That will help me see it better. Candle Glow always emphasizes good 
lighting for this.

Figure 13: Success case on “Explicit REs & Short Context” (top) and failure case on “Implicit REs &
Short Context” (bottom), both using “LLaMA3.1-8B+SayCan”.
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Human previous inquiry(Not Required to Execute): Hey there, can you remind me if we have any 
labels that can help me organize the contents of the box? I want everything to be neat before I 
proceed.
Human previous inquiry(Not Required to Execute): Perfect! I also want to ensure we have enough 
light to see inside clearly. Can you adjust the light source to provide better illumination 
while I work?
Human previous inquiry(Not Required to Execute): Great! I also need to make sure that the 
container is clean before examining them contents. Can you find the spray bottle and give it a 
quick wipe down?
Human previous inquiry(Not Required to Execute): Thank you! Once that’s done, I’ll need to 
gather all the items from the container and categorize them properly. It’s important we keep 
everything organized for future use.
Human pending instruction: Now that we’re ready, please examine what’s inside under the light.

Human previous inquiry(Not Required to Execute): Hey there, can you remind me if we have any 
labels that can help me organize the contents of the box? I want everything to be neat before I 
proceed.
Human previous inquiry(Not Required to Execute): Perfect! I also want to ensure we have enough 
light to see inside clearly. Can you adjust the light source to provide better illumination 
while I work?
Human previous inquiry(Not Required to Execute): Great! I also need to make sure that the 
container is clean before examining them contents. Can you find the spray bottle and give it a 
quick wipe down?
Human previous inquiry(Not Required to Execute): Thank you! Once that’s done, I’ll need to 
gather all the items from the container and categorize them properly. It’s important we keep 
everything organized for future use.
Human pending instruction: Now that we’re ready, please examine what’s inside under the light.

Figure 14: Success (top) and failure (bottom) cases on the “Implicit REs & Standard Context” task
using LLaMA3.1-8B+SayCan, with TOCC applied in the top case and omitted in the bottom case.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

B REI DATASET CONSTRUCTION

This section provides a detailed description of REI Dataset automatic generation, with individual
explanations for the three levels of REs and three types of context memory in REI-Bench dataset.

B.1 CONTEXT MEMORY GENERATION

For each seed instruction, we use an LLM to identify the replaceable REs. The prompt is as follows.

REs Identifying Prompt

I will input a task, and you should output only the task objects mentioned in the task. There
may be multiple task objects. If so, please separate them with commas.

Here are some examples:
Task: Place a vase on a coffee table
Referring Expressions: vase
Task: Put the chilled sliced tomato in the microwave
Referring Expressions: tomato
Task: Pick up a pillow and turn a lamp on
Referring Expressions: pillow, lamp

Task: {Seed Instuction}
Referring Expressions:

We use a prompt including a seed instruction, a context-expanded example, and a simulator scene
description, and requirements to guide GPT-4o-mini in generating plausible context memory, which
is shown below.

Context Memory Generation Prompt

Please integrate this sentence into a script as dialogue: {Seed Instruction}

Scene description:
Alice and her home robot are at home, with only the following items in the environment:
AlarmClock, Apple, BaseballBat, BasketBall, Bowl, GarbageCan, HousePlant, Laptop, Mug,
RemoteControl, SprayBottle, Television, Vase, ArmChair, Bed, Book, Bottle, Box, But-
terKnife, Candle, CD, CellPhone, Chair, CoffeeTable, Cup, DeskLamp, Desk, DiningTable,
Drawer, Dresser, FloorLamp, Fork, Newspaper, Painting, Pencil, Pen, PepperShaker, Pillow,
Plate, Pot, SaltShaker, Shelf, SideTable, Sofa, Statue, TeddyBear, TennisRacket, TVStand,
Watch.
Please do not mention any requirements outside the list.

Requirements:
1. The dialogue content of {Seed Instruction} should be included in Alice’s final instruction.
Please have Alice state the request mentioned above only in the last sentence and refrain from
making any other requests.
2. Before making this request, Alice should mention some other requirements related to the
{REs}.
3. There should be six rounds of dialogue before this request. Each character’s lines should
contain no fewer than 20 words, and no actions should be included for any character.
4. Please do not output anything other than the dialogue.
5. Please try to retain the words of {REs} themselves in the conversation, rather than replacing
them with pronouns like ”it.”

Below, I will give you an example: {Example}

We used this prompt to expand a seed instruction into a full dialogue, which is shown below.
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Context Memory Generation Example

Seed Instruction: Put a cooked tomato into the refrigerator.

Context Memory:
Human: Hey there, I’ve been thinking about what to do with the tomatoes we have. I really
want to make something fresh and delicious with them. Can you remind me what we can do
with cooked tomatoes?
Robot: Absolutely, Alice! Cooked tomatoes can be used in a variety of dishes, like sauces,
soups, or even as a topping for salads. They enhance flavors and add a nice texture to the
meal.
Human: That’s exactly what I was thinking! I could use them to create a savory sauce for
pasta or maybe even a comforting tomato soup. Do we have everything we need to cook the
tomatoes, though?
Robot: Let me check our supplies. We have a pot for cooking, some spices like salt and
pepper, and a cutting board. We seem to be well-equipped for cooking the tomatoes to
perfection.
Human: Perfect! I want to make sure the tomatoes are well-seasoned when we cook them.
Could you remind me how to properly prepare the tomatoes before cooking?
Robot: Certainly! First, we should wash the tomatoes thoroughly, then chop them into even
pieces to ensure they cook evenly. After that, we can sauté them with the spices until they
reach the desired consistency.
Instruction:
Human: Great, that sounds easy enough! Let’s get started with cooking the tomatoes. Once
they’re cooked and ready, I’ll need you to put a cooked tomato into the refrigerator.”

B.2 CONTEXT MEMORY PROCESSING

Noised Context Prompt

Here is the dialogue:{Dialogue}

We are now going to adapt the previous dialogue.

Requirements:
1. Please add content only within the dialogue without deleting any existing content or
changing the order of the dialogue.
2. Please do not change the number of turns in the dialogue.Please do not change the structure
of the dialogue.
3. Please ensure the fluency of the dialogue. Please follow the requirements below for the
adaptation.

Associated Name Background: There is another member (a human) of the family named
{Ambiguous Name}. Please have Alice mention him 3 times when discussing anything
related to THE REFERENCE, but without changing the existing meaning of the conversation.
Some details of {Ambiguous Name}: He is warm-hearted, a bit of a goofball, but deeply
caring. He has a natural curiosity and a love for teaching, which often spills over into his
family life. His humor is a bit cheesy, and he often makes corny science jokes, much to his
kids’ embarrassment. He is a dedicated husband and a father of two. He’s the peacekeeper in
the household and often plays the role of the mediator between his kids and his wife when
disagreements arise.

In this step, we apply two types of modifications to the generated context, resulting in three distinct
context memory types. To introduce noise, we incorporate naming ambiguity by randomly creating
ambiguous names from objects in the simulator environment (e.g., Key Champ, Tomato King, and
Mug Star). These ambiguous names span seven categories commonly found in home environments,
including persons (family members, friends, neighbors, colleagues, and strangers) and brands (elec-
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tronics brands and restaurant brands). In processing the context memory, the prompt includes the
extended dialogue (generated in the previous step), the task requirements, and the ambiguous name.

Context Memory Processing

Human: Hey there, I’ve been thinking about what to do with the tomatoes we have. I really
want to make something fresh and delicious with them. Can you remind me what we can do
with cooked tomatoes?
Robot: Absolutely, Alice! Cooked tomatoes can be used in a variety of dishes, like sauces,
soups, or even as a topping for salads. They enhance flavors and add a nice texture to the
meal.
Human: That’s exactly what I was thinking! I could use them to create a savory sauce for
pasta or maybe even a comforting tomato soup. I know Mug Star would love to help with
that! Do we have everything we need to cook the tomatoes, though?
Robot: Let me check our supplies. We have a pot for cooking, some spices like salt and
pepper, and a cutting board. We seem to be well-equipped for cooking the tomatoes to
perfection.
Human: Perfect! I want to make sure the tomatoes are well-seasoned when we cook them.
I bet Mug Star would add his own twist with some cheesy jokes while we cook. Could you
remind me how to properly prepare the tomatoes before cooking?
Robot: Certainly! First, we should wash the tomatoes thoroughly, then chop them into even
pieces to ensure they cook evenly. After that, we can sauté them with the spices until they
reach the desired consistency.
Human: Great, that sounds easy enough! Let’s get started with cooking the tomatoes. Once
they’re cooked and ready, I’ll need you to put a cooked tomato in the refrigerator. I can
already imagine Mug Star popping in with a funny quip about how tomatoes are technically a
fruit!

B.3 IMPLICIT RES REPLACEMENT

To model various forms of REs, we categorize them into three levels: Explicit REs, Mixed REs,
and Implicit REs. We use a prompt including processed context memory, task requirements, and
illustrative examples to guide GPT-4o-mini in replacing explicit REs with implicit ones in either the
context memory or the instruction.

Implicit REs Replacement Prompt

Please do not include the word “{REs}” in the sentence “{Seed Instruction}” but do not
change the original meaning of this dialogue. You can use some descriptive language to
replace the word {REs} itself.

Requirements:
1. Please output the whole new dialogue
2. You must output the whole new dialogue, including all the sentences from Alice and Robot
3. Please retain every instance of “{REs}” in the previous text, except for replacing “{REs}”
in the last sentence spoken by Alice.
4. You need to output the complete multi-turn dialogue, including the multiple turns of
language from both Alice and the robot.

Here is an example: {Example}

Here is the dialogue: {Dialogue}

Output:
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Context Memory Processing

Human: Hey there, I’ve been thinking about what to do with the tomatoes we have. I really
want to make something fresh and delicious with them. Can you remind me what we can do
with them (tomatoes)?
Robot: Absolutely, Alice! They (Tomatoes) can be used in a variety of dishes, like sauces,
soups, or even as a topping for salads. They enhance flavors and add a nice texture to the
meal.
Human: That’s exactly what I was thinking! I could use them (tomatoes) to create a savory
sauce for pasta or maybe even a comforting soup. Do we have everything we need to cook
them (tomatoes), though?
Robot: Let me check our supplies. We have a pot for cooking, some spices like salt and
pepper, and a cutting board. We seem to be well-equipped for cooking them (tomatoes) to
perfection.
Human: Perfect! I want to make sure they’re well-seasoned when we cook them (tomatoes).
Could you remind me how to properly prepare the fruit (tomatoes) before cooking?
Robot: Certainly! First, we should wash them (tomatoes) thoroughly, then chop them
(tomatoes) into even pieces to ensure they cook evenly. After that, we can sauté them
(tomatoes) with the spices until they reach the desired consistency.
Human: Great, that sounds easy enough! Let’s get started with cooking the fruit (tomatoes).
Once they’re cooked and ready, I’ll need you to put them in the refrigerator.

This example demonstrates data for three levels: “explicit REs & standard context,” “mixed REs &
standard context,” and “implicit REs & standard context.” In the example, the red REs represent the
implicit referring expressions used to replace the original REs in the instruction (with their explicit
forms shown in parentheses). The orange REs denote the implicit referring expressions substituted
within the context. The blue REs indicate the first referring expression introduced in the context,
which is retained under the implicit REs category. However, in the implicit REs & short context
setting, the sentence containing this RE will be removed as part of the contextual information.

B.4 DATA FILTERING

We counted the number of explicit and implicit REs in each data instance and retained only those that
met the requirements listed in the table below.

Table 9: Number of Explicit and Implicit REs in Each Data Sample
Data Types Explicit REs

in Context
Memory

Implicit REs
in Context
Memory

Explicit REs
in Instruction

Implicit REs
in Instruction

Explicit REs Types ≥ 3 ≥ 1 0 0
Mixed REs Types ≥ 3 0 0 ≥ 1

Implicit REs Types ≥ 1 0 ≥ 2 ≥ 1

C PROMPTS AND IMPLEMENTATION DETAILS OF PROMPTING METHODS

C.1 AP AND GATED AP VARIANT

The Aware Prompt (AP) (Gao et al., 2024a) explicitly instructs the planner to detect and resolve
potential referring expressions before generating a task plan. While AP is effective when implicit
REs are present, we observe that applying AP unconditionally may lead to unnecessary reference
resolution, causing hallucinated substitutions even when the original instruction is fully explicit.

To address this issue, we adopt a gated AP variant that activates AP only when the input instruction
contains patterns strongly indicative of implicit referring expressions. This gating mechanism prevents
AP from being triggered on explicit instructions, thereby reducing false resolutions while retaining
the benefits of AP when vagueness truly exists.
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Aware Prompt

I will check whether the “Human Pending Instruction” contains implicit or ambiguous
references.
(Activated only when implicit RE patterns are detected; see below.)
I understand that “Human Pending Instruction” may include vague referring expressions, and
I can infer their meaning based on context and antecedents in the preceding dialogue.

C.2 CHAIN-OF-THOUGHT

The CoT prompting strategy (Wei et al., 2022) aims to resolve implicit referring expressions by
encouraging the model to perform step-by-step reasoning before generating a plan. However, full
CoT prompts substantially lengthen the input, increasing latency and inference cost—particularly for
onboard deployment scenarios that rely on small language models. We therefore adopt a short CoT
variant that preserves the key RE-resolution reasoning step while minimizing prompt length.

Chain-of-Thought Prompt

The “Human Pending Instruction” may contain vague referring expressions. Before planning,
I will first identify any referring expressions and reason about their intended objects based on
the context below, and then restate the instruction with the resolved entities.
[Context Memory + Instruction]
Step: Identify referring expressions → infer their referents → rewrite the instruction with
explicit object names.

C.3 IN-CONTEXT LEARNING

In-Context Learning (ICL) provides the model with several demonstration examples and relies on the
model’s ability to infer the intended behavior by analogy. ICL in our setting uses few-shot examples
composed of (i) identifying and grounding vague referring expressions in the demonstrations, and (ii)
a target task rewritten without vagueness for the model to follow.

C.4 TASK-ORIENTED CONTEXT COGNITION

TOCC separates referring-expression resolution from planning by first rephrasing the human in-
struction into a concise, unambiguous form. The prompt used in our implementation is shown
below.

Task-Oriented Context Cognition Prompt

Human pending instruction may contain vague referring expressions, such as “electronic
devices”, “beverages”, “fruits”, and “containers”, which are not specific items. Use the
previous context below to resolve the referring expressions:
[Context memory + instruction]
Do not add extra commentary or conversation to the whole plan; only output the clear
instructions.

Algorithm 1 Task-Oriented Context Cognition (TOCC) for Step-Level Planning
1: promptTOCC ← ComposePrompt(TTOCC, I)
2: # Construct rewriting query
3: Iclear ←M(promptTOCC)
4: # Rewrite vague instruction
5: promptplan ← ComposePrompt(Tplan, Iclear)
6: # Insert rewritten instruction
7: a← ConstrainedDecode(M, promptplan, S)
8: # Decode with constraint
9: return a
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In TOCC, the LLM first interprets the user’s intent and rewrites the original instruction I into an
explicit and clear instruction Iclear. The planner then relies solely on Iclear to generate a single
executable action a.

D USE OF LARGE LANGUAGE MODEL

An LLM (ChatGPT) was used only for minor polishing of the paper’s language. Additionally, as
described in Section 3.2 of the main text, an LLM was utilized to assist in generating part of the
dataset. The LLM was not used for the motivation, research methodology, or experimental design.
All research concepts, ideas, and analyses were conceived and performed exclusively by the authors.
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