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Abstract—One mainstream of image anomaly detection is
based on reconstruction. Such methods still struggle with diverse
anomalies, such as near-in-distribution or deformed types. To
address the challenge, we propose a Discriminative Network
with Dual Reconstruction (DN-DR), consisting of a Memory
Reconstructor, a Corrector, and a Discriminator. DN-DR aims
to better restore the defective image to its normal state through
dual reconstruction, thereby obtaining superior Discriminator
performance. Specifically, (1) the Memory Reconstructor is based
on training multi-scale codebooks from normal images to rebuild
unknown regions in the test images, also named preliminary
reconstruction; (2) the Corrector, as a subsequent reconstruction
module, addresses false anomalies caused by the patch-level
replacement strategy in the Memory Reconstructor, achieving
a final refined reconstruction; (3) a U-Net Discriminator follows.
Experiments on the challenging MVTec AD dataset demonstrate
excellent reconstruction performance and anomaly inspection,
including defects of near-in-distribution or deformed types.

Index Terms—anomaly detection, reconstruction-based meth-
ods, dual reconstruction.

I. INTRODUCTION

Image anomaly detection is the technique of identifying pat-
terns in images that deviate from the norm to prevent potential
risks [1]. A typical scenario is industrial surface defect detec-
tion and localization. In large-scale industrial manufacturing,
accurately detecting and locating defects is crucial for quality
control [2]. However, surface defects are unpredictable and
often vary by product category. For example, common defects
in carpets are holes and threads, while capsules may have
cracks and scratches. Therefore, a large number of abnormal
samples are required for defect classification, detection, and
segmentation. In actual production, the number of abnormal
samples is relatively small, and artificially producing them is
impractical. Meanwhile it is time-consuming to label samples.
Clearly, traditional supervised methods are not feasible [3].

There is a growing emphasis on unsupervised training
methods. Three main trends are synthesizing-based methods
[4]-[8], embedding-based methods [2], [5], [9]-[13], and
reconstruction-based methods [14]-[18], and so on. Compared
to the others, reconstruction-based methods are more intu-
itive and interpretable. It is assumed that a model trained
on only normal data can effectively restore normal regions
of the input images but struggles with anomalies, allowing
us to identify defects based on reconstruction differences.
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Fig. 1. Impact of improved reconstruction. For each example, from left to
right, they are the sample image and its ground-truth mask (GT), the result
of DRAEM [4], and the result of DN-DR (ours). DN-DR outperforms DRAEM
[4] in restoring sample images, leading to improved anomaly inspection.
However, if the model generalizes too well, even the abnormal
regions could be well reconstructed, leading to failures in
reconstruction-based methods. Researchers are working to
limit the generalization ability of reconstruction models [19].
[14]-[16] use memory banks to limit image reconstruction.
Although effective, these methods do not learn anomalies
during training, which can lead to potential detection failures
in real-world scenarios. [4], [7] use synthetic data to train
models for restoring defective images to normal instead of
poorly reconstructing anomalies. However, due to limitations
in design or anomaly simulation, these models struggle with
complex anomalies, such as those near in distribution (i.e.,
highly similar to normal appearances) or just deformed.

This paper further studies the reconstruction-based methods
and proposes a Discriminative Network with Dual Reconstruc-
tion (DN-DR), which consists of a Memory Reconstructor,
a Corrector, and a Discriminator. DN-DR restores images
well, thus enhancing anomaly detection and localization. Our
method is based on three interactive considerations. First,
anomalies are unpredictable, which makes it hard to cover
all scenarios during training. The task becomes easier when
unknown problems are transformed into known ones through
a medium. Therefore, we use multi-scale codebooks to learn
limited patterns from normal samples, aiming to replace all
unknown patterns in the test images. This is the prelimi-
nary reconstruction, performed by a Memory Reconstructor.
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® The first row shows the training process of the first stage:

© The second row shows the training process of the second stage.
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Fig. 2. Overview of the proposed method. The two rows show the two-stage training of DN-DR. Stage 1: The Memory Reconstructor is trained on original
normal images. Stage 2: The Corrector and the Discriminator are trained on synthetic anomalous images. We adopt the idea of [4] for anomaly simulation.

Second, the initial reconstruction focuses on local features
rather than individual pixels for more effectively removing
anomalies. However, this strategy is limited and may lead to
problems such as incoherence between regions and deviations
in details, called false anomalies. So it is necessary to perform
further fine-grained reconstruction through a Corrector. Third,
understanding false anomalies improves the Corrector, and
existing anomaly simulation strategies contribute to this. We
design a simple Corrector for practicality. Experiments on the
MVTec AD dataset [20] show DN-DR’s excellent performance
in reconstruction as well as in anomaly detection and localiza-
tion. Fig. 1 illustrates the impact of improved reconstruction.

II. DN-DR

As shown in Fig. 2, DN-DR comprises three main modules:
a Memory Reconstructor, a Corrector, and a Discriminator.
The Memory Reconstructor and the Corrector work together
for dual reconstruction. The Discriminator outputs the results
of anomaly detection and localization by comparing the refined
reconstructions with the test images.

A. Memory Reconstructor

Fig. 3 shows the Memory Reconstructor in training mode.
We extract multi-scale global feature maps E; € R xWixC:
from the input image I € R¥*Wx3 where 1 < i < L denotes
the i-th scale. A separate codebook is trained at each scale
for high-resolution reconstruction, and multi-scale information
is aggregated. The process flow remains consistent across all
scales (see Fig. 4). Specifically, (1) the global feature map
E; is divided into local feature maps, which are then flattened
into one-dimensional vectors; (2) each one-dimensional vector
is replaced with the most similar embedding vector from
the codebook; (3) the inverse of the first step is performed
to obtain a new global feature map Q; € RHXWixCi jp
preparation for multi-scale feature fusion. In the following,
we refer to the above steps as the vector quantization (VQ)
[7], [21] process. Key operations are detailed below.

Division and Flattening of Feature Maps. For each global

feature map E;, we divide it into n = rpr, local feature
W,

maps F/ € R 7 *% (j = 1,2,...,n), where r;, and
Ty are the division rates along height and width respectively.

I Irec

®

(®) Numerical Accumulation

Matrix Addition

Fig. 3. Details of the Memory Reconstructor. Identical arrows indicate the
same operations.

To simplify subsequent processing, each local feature map
is flattened intg a gne-dimensional vector, also named query
vector qg ER nrw (j=12,...,n).

Details of Codebooks. The codebook C; € RN*Di jg
defined as a real-valued matrix containing N embedding
vectors ef € RPi (k = 1,2,...,N), where D; matches the
dimension of the query vector ¢;. Note that codebooks are not
shared across scales due to varying local feature map sizes.

Method of Replacement. It is formulated as:

j l N
(a])" = e; = argmin(|lg] — e;'|2), ey
EfEK:i
where (g!)’ is the result of replacing ¢. || - ||2 denotes the

Euclidean distance between two vectors, with smaller values
indicating higher similarity.

Fusion of Multi-scale Features. After processing with the
VQ module (see Fig. 4), we obtain new global feature maps
{Q1,Q2,...,Qr}. We begin by upsampling Q, to match the
size of Q1 and then concatenate them along the channel
dimension to form Qconcar(r.—1,7.)- Next, we apply a series of
operations (see Fig. 3) to halve the channels of Qconcar(—1,1.)>
completing the initial fusion. Similar steps are repeated for the
remaining scales until all global feature maps are fused.

B. Corrector

As stated above, codebooks store local feature maps, not
individual pixels. While the former captures rich local infor-
mation and is more representative of patterns in the image, it
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Fig. 4. Details of the overall VQ process.

is less likely that anomalies and normality share the same pat-
terns [16]. Actually, the patch-level replacement strategy has
limitations. Specifically, during VQ, specific-sized patches are
directly replaced in E;, which can result in detail deviations.
Moreover, since each patch is replaced independently, this may
lead to incoherence between regions of Q;. Such limitations
prevent us from using the preliminary reconstruction R; as fi-
nal. Therefore, a Corrector is used to refine the reconstruction.

The Corrector is important in DN-DR and has a simple
design. It consists only of multi-layer symmetric encoders
and decoders, trained simultaneously. The training aims to
minimize the reconstruction loss L,.., which measures the
discrepancy between the final refined reconstruction Ry and
the target (i.e., the original input I), as detailed in (4).

C. Discriminator

To adaptively distinguish the differences between the final
refined reconstruction Ry and the test image I, we concate-
nate them along the channel dimension and feed the result into
a U-Net [22] Discriminator. This architecture retains detailed
information through skip connections for finer segmentation.
The Discriminator directly outputs a pixel-level anomaly score
map D € R”*W To determine the image-level anomaly score
s € R, we smooth the map with a 21 x 21 mean filter and then
take the maximum value, i.e., s = max(Avgpoola; x21(D)).

D. Loss Function and Training Procedure

The training of DN-DR involves two stages. In the first
stage, we train the codebook, encoder and decoder of each
layer of the Memory Reconstructor on normal images 1. In
codebook training, traditional methods use a loss term to
further assist in updating embedding vectors, while we use
EMA (Exponential Moving Average) [21]. EMA replaces
the current value with a weighted average of data from the
previous K periods, where weights decay exponentially as the
time interval increases. This makes updating faster and more
stable. The overall loss function here consists of two losses:
reconstruction 10ss L. o and quantization loss L,q, i.e.,

Estagel = »Crec 0o+ )\L‘qu = [ﬁmse(l Irec) + ['sszm (I Irec)}

+)\Z {ﬁmse(EZ,sg QZ -‘r’ Lmse 59[ ] ) }a

where the loss term in the is discarded due to the use of
EMA, X controls the proportion of the two losses, sg[-] is the

stop-gradient operator [7], [21], Lynse(, ) is the MSE (Mean
Square Error) loss function, and Lggipm (-,-) = 1 — ssim(-, )
where ssim(-, ) measures the structural similarity [23], [24]:

2E(1)E(Liec) + o] [2Cov(1, Lec) + B] 3)
[E(MD)? + E(lrec)? + o] [D(I) + D(Irec) + B]

Here, E(-), D(-), and Cov(-,-) stand for the mean, variance,
and covariance, respectively. Constants « and 3 ensure numer-
ical stability. The combined use of the loss terms in (2) helps
effectively generate an output I... close to the input I, while
ensuring high-quality VQ at each scale.

In the second stage, we train both the Corrector and the
Discriminator. First, we perform anomaly simulation [4] on
normal images I, adding anomalies randomly. Those without
anomalies are used as positives. Later, the synthetic data I, is
sequentially processed through the Memory Reconstructor (in
test mode), Corrector, and Discriminator. Parameter updates
are guided by Lgiqge2, Which also consists of two losses:
reconstruction loss L,.. and segmentation loss L, i.e.,

EstageQ - Erec + Eseg = [[fmse(l, RQ) + Lssim(L RZ)]
+ ‘C’f(D7 Dgt),
where Dy € RZ*W is the ground-truth mask obtained from

anomaly simulation. The focal loss [25] L¢(-,-) emphasizes
hard-to-detect instances to increase segmentation robustness:

1 H w
ﬂf(D7Dgt) = _W Zh:l szl( (5)

o= DL

ssim(L, Irec) =

“)

1- phw)’Y IOg(phw)v

1-D{" )1 D)) (6)

where ng’w) denotes the pixel value of Dy at (h,w), and
D(®) has a similar definition. ~y is the focusing parameter.

III. EXPERIMENT

A. Experimental Settings

Dataset. The MVTec AD dataset [20] includes 15 categories
(5 textures, 10 objects). The training set contains only normal
images. The test set has both normal and abnormal images.

Training Details. For each category, we perform a two-
stage training (see Section II-D). In the first stage, training is
set to 200 epochs with a batch size of 16. The codebook size N
is experimentally set to 1024. r;, and r,, are both set to 8. The
learning rate 7; is set to 0.0002 and is multiplied by 0.1 after
160 epochs. In the second stage, to enhance model robustness,
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TABLE I
RESULTS (I-AUROC% / P-AP%) ON THE MVTEC AD DATASET. BEST AND SECOND BEST SCORES ARE HIGHLIGHTED AND UNDERLINED.

DRZAEM [4] |99.2/86.5|98.5/49.4|99.9/65.7 | 100/75.3

Method - - - - lCategory Average
bottle capsule |grid leather | pill tile transistor | zipper cable carpet hazelnut | metal nut| screw toothbrush | wood
MemAE [14]|95.4/- 83.1/- 94.6/- 61.1/- 88.3/- 63.0/- 79.3/- 87.1/- 69.4/- 45.4/- 89.1/- 53.7/- 99.2/- 97.2/- 96.7/- 80.2/-
US [11] 99.0/74.2{86.1/25.9| 81.0/10.1 | 88.2/40.9| 87.9/62.0| 99.1/65.3 | 81.8/27.1{91.9/36.1 | 86.2/48.2|91.6/52.2|93.1/57.8| 82.0/83.5|54.9/7.8 |95.3/37.7 |97.7/53.5|87.7/45.5
RIAD [17] |99.9/76.4|88.4/38.2|99.6/36.4|100/49.1 | 83.8/51.6|98.7/52.6{90.9/39.2| 98.1/63.4 | 81.9/24.4| 84.2/61.4 | 83.3/33.8 | 88.5/64.3 | 84.5/43.9| 100/50.6 |{93.0/38.2|91.7/48.2
PaDiM [10] |99.9/77.3|91.3/46.7|96.7/35.7|100/53.5 | 93.3/61.2 | 98.1/52.4| 97.4/72.0| 90.3/58.2 | 92.7/45.4| 99.8/60.7 | 92.0/61.1| 98.7/77.4 | 85.8/21.7| 96.1/54.7 |99.2/46.3|95.4/55.0
DAAD+ [16]]97.6/- 76.7/- 95.7/- 86.2/- 90.0/- 88.2/- 87.6/- 85.9/- 84.4/- 86.6/- 92.1/- 75.8/- 98.7/- 99.2/- 98.2/- 89.5/-
CutPaste [6] |98.2/- 98.2/- 100/- 100/- 94.9/- 94.6/- 96.1/- 99.9/- 81.2/- 93.9/- 98.3/- 99.9/- 88.7/- 99.4/- 99.1/- 96.2/-

98.9/48.5|99.6/92.3193.1/50.7 | 100/81.5

91.8/52.4197.0/53.5|100/92.9 | 98.7/96.3| 93.9/58.2| 100/44.7 99.1/77.7 | 98.0/68.4

Ours 99.3/90.4|97.6/53.5|99.8/66.3 | 100/74.3 | 92.1/49.7 | 100/95.6

95.4/55.2199.7/63.3 | 94.0/55.3| 98.1/69.2| 100/89.5 | 99.2/92.8| 86.8/44.6 | 99.4/57.2

99.6/77.9 | 97.4/69.0

GT

I

“i‘a ”

Fig. 5. Qualitative results. From top to bottom, they are the test images, the final refined reconstructions, the pixel-level anomaly score maps, and the
ground-truth masks. In some categories, especially with repeating textures (e.g., leather, tile), DN-DR will blur information that interferes with detection.

we randomly rotate the training images in the range of [-90,
90] degrees. This stage trains for 1,000 epochs with a batch
size of 4. The initial learning rate 7y is 0.0001, and it decays
by a factor of 10 at 600 and 800 epochs, respectively.

B. Experimental Results

The widely used image-level AUROC (I-AUROC) metric
is applied to evaluate the anomaly detection performance. For
anomaly localization, we calculate the pixel-level AP (P-AP),
which is suitable for highly imbalanced categories [7], [26].

Qualitative Reconstruction. As shown in Fig. 6, we com-
pare the reconstructions from DN-DR with those from existing
state-of-the-art methods [4], [7]. The comparison indicates
that DN-DR is more effective in restoring defective images,
including images with near-in-distribution defects or deformed
types of anomalies, to their normal state. This improvement
is particularly noticeable in the reconstruction instances of
capsules, bottles, hazelnuts, transistors, and more.

Anomaly Detection and Localization. The quantitative
results of anomaly detection and localization on the MVTec
AD dataset [20] are summarized in Table I, while qualitative
results are shown in Fig. 5. To ensure a fair comparison, our
DN-DR is primarily compared with advanced reconstruction-
based methods and synthesizing-based methods, as we do not
use large-scale pre-trained models. DN-DR achieves the best
results in several image categories. The advantages of DN-DR
are more clearly demonstrated in anomaly localization, where
its average pixel-level AP across 15 categories reaches 69.0%,
outperforming other methods.

C. Ablation Study

To verify the performance and role of each module in DN-
DR, we conduct ablation studies (see Table II). Experiments

Fig. 6. Qualitative reconstruction results on the MVTec AD dataset [20]. The
first row is the test images. The second, third, and fourth rows are the final
reconstructions from DRZAEM [4], DSR [7], and DN-DR (ours), respectively.
DN-DR demonstrates its superior image restoration capability.

TABLE 11
ABLATION STUDIES. DET. AND LOC. REFER TO THE AVERAGE
I-AUROC% AND AVERAGE P-AP%, RESPECTIVELY.

Memory Reconstructor | Corrector | Discriminator | Det. / Loc.
1 v v 94.8/61.8
2 v v 97.0/67.5
3 v 96.4 /57.7
4 v v v 97.4 / 69.0

1 to 4 show that the complete DN-DR system performs best
in both anomaly detection and anomaly localization. The Dis-
criminator is indispensable, so we keep it in all experiments.

IV. CONCLUSION

In this paper, we propose a Discriminative Network with
Dual Reconstruction (DN-DR) for image anomaly detection
and localization. The Memory Reconstructor collaborates with
the Corrector to achieve dual reconstruction, generating re-
fined reconstructed images that improve the Discriminator’s
performance. Experiments on the MVTec AD dataset [20]
demonstrate the excellent performance of DN-DR.
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