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Figure 1: We propose a new large-scale 3D garment animation dataset LAYERS, which improves over pre-
vious datasets by considering multi-layered 3D garments and more driving factors for garment animation, e.g.,
environmental wind, besides human body movements. In (a)-(d) we show the new and realistic challenges
covered in LAYERS but are omitted in previous datasets.

ABSTRACT

Most existing 3D garment animation datasets are restricted to human bodies with
single-layered garments. Even though cases with upper shirts and lower pants
are included, only a few overlap areas among such garment combinations exist.
Moreover, they often regard human body movement as the only driving factor
that causes garment animation. Approaches developed on top of these datasets
thus tend to model garments as functions of human body parameters such as body
shape and pose. While such treatment leads to promising performance on existing
datasets, it leaves a gap between experimental environments and real scenarios,
where a body can wear multiple layered garments and the corresponding garment
dynamics can be affected by environmental factors and garment attributes. Conse-
quently, existing approaches often struggle to generalize to multi-layered garments
and realistic scenarios. To facilitate the advance of 3D garment animation toward
handling more challenging cases, this paper presents a new large-scale synthetic
dataset called LAYERS, covering 4,900 different combinations of multi-layered
garments with 700k frames in total. The animation of these multi-layered gar-
ments follows the laws of physics and is affected by not only human body move-
ments but also random environmental wind and garment attributes. To demon-
strate the quality of LAYERS, we further propose a novel method, LayersNet, for
3D garment animation, which represents garments as unions of particles and sub-
sequently adopts a neural network to animate garments via particle-based simula-
tion. In this way, the interactions between different parts of one garment, different
garments on the same body, and garments against various driving factors, can be
naturally and uniformly handled via the interactions of particles. Through com-
prehensive experiments, LayersNet demonstrates superior performance in terms
of animation accuracy and generality over baselines. The proposed dataset, LAY-
ERS, as well as the proposed method, LayersNet, will be publicly available.

1 INTRODUCTION

3D garment animation has been an active and important topic in computer graphics and machine
learning, due to its great potential in various downstream tasks, including virtual reality, virtual try-
on, gaming and film production. While this topic has been extensively studied in the past, generating
realistic and faithful animation remains an open research question. In particular, existing approaches
are still limited in modeling diverse garments of different topologies and appearances. In addition,
the complex interactions between the garment and the human body under the challenging setting
of multi-layer garments and with external environmental factors remain much less explored in the
literature.
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To support the development of data-driven approaches for 3D garment animation (Patel et al., 2020;
Bertiche et al., 2020; Santesteban et al., 2021), researchers have built various datasets on real-life
scans and synthetic data generated by Physically Based Simulation (PBS) (Narain et al., 2012; Li
et al., 2018). However, most of existing datasets (Bertiche et al., 2020; Patel et al., 2020; Tiwari
et al., 2020) consider only human bodies with single-layered garments, where each human body
wears either a single dress or an upper t-shirt with lower pants that have limited overlap. The an-
imation of multi-layered garments, such as a t-shirt with a jacket, that obey sophisticated physical
dynamics, remain unexplored. In addition, in existing datasets, the moving human body is com-
monly regarded as the default and only driving factor in animating garments. Other factors, such
as wind and friction, are left unconsidered. Such a simplification thus leads to a significant gap be-
tween experimental environments and real-world applications, making most approaches developed
on top of these datasets less applicable in real life.

To bridge the gap between experimental environments and real-world applications and facilitate the
advance of 3D garment animation, this paper introduces a new challenging dataset called LAYERS,
muLti-lAYerEd gaRmentS dataset, which is carefully generated based on a simulation engine. LAY-
ERS focuses on the animation of multi-layered garments, while also taking the wind, another im-
portant driving factor besides the human body, into consideration. Specifically, in LAYERS, multi-
layered garments are prepared as combinations of inner and outer clothes, as shown in Figure 1.
The inner and outer garments adopt different attribute values, e.g., bend stiffness and frictions. All
garments on the same human body will interact with each other, constrained by the laws of physics.
They are also simultaneously affected by the wind with randomly sampled direction and strength.

To demonstrate the quality of LAYERS, we further propose a novel data-driven method, dubbed
as LayersNet, for multi-layered 3D garment animation. The core of LayersNet is a neural network
based simulation system (Shao et al., 2022) that represents garments as unions of particles. Con-
sequently, all kinds of interactions during garment animation, including the interactions between
different parts of one garment, the interactions between different garments on the same body, and
the interactions between garments and various driving factors, can be naturally and uniformly re-
garded as the interactions between particles. Hence, instead of being restricted to a specific driving
factor (e.g., the human body) as previous methods, the proposed LayersNet possesses a strong gener-
alization ability across diverse types of human body movements, multi-layered 3D garments, as well
as driving factors. As the number of particles in LayersNet are considerably large when fine-grained
details of garments and human bodies are preserved, we further exploit the redundancy of garments
and extend LayersNet to establish a two-level structural hierarchy for garments where garments are
made of patches, and patches are constituted of particles of a fixed configuration. Since the number
of patches is much smaller than the number of particles, the interactions between all particles can be
efficiently captured by the interactions of patches.

Our contributions can be summarized as follows:

1. We propose LAYERS, a large-scale and new dynamic dataset for 3D garment animation.
The dataset focuses on multi-layered 3D garments, introducing random wind and friction
as additional driving factors besides human body movements.

2. On top of LAYERS, we further propose LayersNet, a novel method for 3D garment an-
imation that uniformly captures interactions among garment parts, different garments, as
well as garments against driving factors. The notion of unifying various interactions as
particle-based simulations is novel in the literature.

2 RELATED WORK

3D Garment Datasets. Publicly available 3D garment datasets are in great need. Existing datasets
are generated either from synthesis (Pumarola et al., 2019; Patel et al., 2020; Santesteban et al.,
2021; Bertiche et al., 2020) or real-world scans (Zhang et al., 2017; Zheng et al., 2019; Ma et al.,
2020; Tiwari et al., 2020; Cai et al., 2022). For synthetic datasets, 3DPeople (Pumarola et al., 2019)
contains multi-view images including RGB, depth, normal, and scene flow data. TailorNet (Patel
et al., 2020) provides a synthetic dataset with 20 different garments simulated in 1,782 static SMPL
poses for nine body shapes. Santesteban et al. (2021) contributes a dataset composed of two different
garments simulated on 56 human motion sequences with 17 body shapes. Cloth3D (Bertiche et al.,
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2020) is the largest synthetic dataset, with 11,300 outfits generated from the combinations of several
prototypes, such as t-shirts, tops, trousers and skirts. Most existing datasets only contain single-
layered 3D garment models. Even though there exist combinations with multiple garments, such as
an upper t-shirt and lower pants in Multi-Garment Net Bhatnagar et al. (2019), there are very few
overlapping areas among different cloth pieces. Recently, Layered-Garment Net Aggarwal et al.
(2022) proposes a static multi-layered garments dataset in 7 static poses for 142 bodies to generate
layers of outfits from single image. However, the garments in Layered-Garment Net, which are
mostly skinning clothes, do not follow physics laws and the interpenetration is solved by simply
forcing penetrated vertices out of inner garments.

To our best knowledge, LAYERS is the first dataset containing dynamic multi-layered 3D garments,
e.g., the human model wears a dress and outer jacket which deform according to the body motions.
Different layers of garments have different attributes and interact with each other, obeying the laws
of physics. Moreover, we introduce wind as extra driving factor to animate the garments, enriching
their dynamics given similar human movements. Our dataset includes all necessary 3D information,
which is able to easily generalize to other tasks, such as reconstructions from single images.

Data-driven Cloth Model. Most existing approaches aim to estimate a function that outputs the
deformations of garments for any input. A common strategy is to learn a parametric garment model
to deform the corresponding mesh templates. For example, garments are modeled as functions of
human pose (Wang et al., 2019), shape (Vidaurre et al., 2020), pose-and-shape (Bertiche et al.,
2020; 2021; Tiwari & Bhowmick, 2021), motions (Santesteban et al., 2021), garment type (Ma
et al., 2020; Patel et al., 2020). The approaches mentioned above rely heavily on SMPL-based
human models and animate garments by the blend weight according to the registered templates.
The generalization of such approaches is limited to skinning clothes. Some recent studies explore
bone-driven motion networks (Pan et al., 2022) to animate loose garments by virtual bones, which
can be regarded as extra anchors besides SMPL model. SCALE (Ma et al., 2021) adopts local
elements to model registered garments based on minimum-clothed human. To handle obstacles with
arbitrary topologies, N-Cloth (Li et al., 2022) predicts garments deformations given the states of
initial garments and target obstacles. Other studies Shen et al. (2020); Zhang et al. (2022) generate
3D garments based on UV maps. SimulCap Yu et al. (2019) segments garments into upper and
lower clothes as multiple separated meshes. SMPLicit Corona et al. (2021) generates garments by
controlling the clothes’ shapes and styles, but intersection-free reconstruction is not guaranteed.

In contrast, our data-driven method LayersNet animates garments by inferring garments’ future posi-
tions through the interactions between garment particles and other driving factors. Since the driving
factors are also represented by particles, the garment animation thus equals to simulate particle-wise
interactions, which is shape-independent and is highly generalizable to unseen scenarios.

Physics Simulation by Neural Network. Learning-based methods for physics simulation can be
applied to different kinds of representations, e.g., approaches for grid representation (Thuerey et al.,
2020; Wang et al., 2020), meshes (Nash et al., 2020; Qiao et al., 2020; Weng et al., 2021; Pfaff et al.,
2021), and particles (Li et al., 2019; Ummenhofer et al., 2020; Sanchez-Gonzalez et al., 2020; Shao
et al., 2022). Some methods include Graph Neural Network (GNN)-based methods (Li et al., 2019;
Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021). Transformer-based methods (Shao et al., 2022)
adopt modified attention to recover interactions’ semantics. Other work Liang et al. (2019) designs
algorithms to accelerate gradient computation for collision response as plug-ins for neural network.

Our LayersNet follows TIE in the notion of modeling particle-wise interactions, which is topology-
independent and easy to generalize to unseen scenarios. In contrast to TIE, we exploit the redun-
dancy of garments and establish a two-level hierarchy structure for them, where garments are made
of deformable patches. Our method also differs in learning to predict the patches’ dynamics by in-
teracting with neighbor patches and other driving factors. We devise a decoder to learn a topology-
independent descriptor for each patch, enhancing the generalization abilities to unseen scenarios.

3 LAYERS DATASET

Most existing datasets are limited to single-layered garments driven only by human bodies. Different
garments, such as the upper T-shirt and lower pants, rarely interact with each other. Consequently,
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Table 1: We compare LAYERS with existing 3D datasets. Our dataset is composed of multi-layered clothes,
with unique attribute data, such as stiffness and friction, attached to each garment. Moreover, we include data of
wind with its strength and direction randomly sampled. *1: 3DPeople (Pumarola et al., 2019) does not specify
the exact number of garments, while it claims to dress each subject with different outfits. *2: The multi-layered
garments in Layered-Garment do not follow physics laws and the penetrated vertices are forced to move out of
inner garments in hard-coded manner.

Dataset Dynamics Subjects Garments Multi-layered Attributes Wind

3DPeople (Pumarola et al., 2019) 80 *1 N/A
TailorNet (Patel et al., 2020) 9 20 N/A
Cloth3D (Bertiche et al., 2020) ✓ 8.5K 11.3K 4
Layered-Garment (Aggarwal et al., 2022) 142 101 *2 N/A

LAYERS (Ours) ✓ 4.9K 9.9K ✓ 9.9K ✓

the problem can be easily solved by modeling garments as functions of human bodies and consider-
ing only single-layered outfits predictions (Patel et al., 2020; Bertiche et al., 2021).

Generating a dataset with multi-layered garments is non-trivial – interpenetration between garments
should be avoided, and their dynamics should obey the physics rules. Thanks to recent developments
in physics-based methods, several software, such as Blender1, can infer the interactions among
different clothes and generate faithful garments with multiple layers.

The proposed LAYERS is built with Blender. It is the first dynamic multi-layered garments dataset
that considers the wind factor beyond just human bodies. To construct the dataset, we first collect
the garment templates from SewPattern(Korosteleva & Lee, 2021), which includes various types of
garments, such as jackets with hood, and dresses with waist belts. Then, we generate multi-layered
combinations with outer-layer and inner-layer clothes. Each combination of multi-layered garments
is then draped to SMPL human body (Loper et al., 2015). This is followed by a warm-up simulation
in Blender to resolve interpenetrations. Finally, we simulate the dynamics of garments given the
human motion sequences (Mahmood et al., 2019) and sampled winds. Specifically, after we drape
the garments to a human body model, we scale up the human mesh and garment mesh ten times the
real-world size before simulation. This strategy can reserve more high-frequency details in Blender.
We compare our dataset with existing datasets in Table 1.

Since our dataset includes the 3D meshes and attributes of garments, as well as the detailed scene
settings for each sequence, LAYERS can be easily extended to other formats of data to facilitate the
explorations of alternative topics, such as optical flow estimations, 3D reconstructions from images,
and physics parameters estimations. In the following, we detail the key settings in LAYERS.

Multi-layered Garments. Each multi-layered outfit is composed of inner and outer outfit. In
LAYERS, the outer outfit is either a jacket or a jacket with a hood, giving us a clear view of interac-
tions from inside and outside. Inner outfits refer to whole-body outfits, such as dresses, jumpsuits,
and t-shirts with pants or skirts. We generate 4,900 combinations of multi-layered garments, with
9,872 different garments in total. The garment templates are in high fidelity, with vertices ranging
from 5,000 to more than 15,000 for each garment, enabling us to capture more details in simulation.

The main challenge is to have interpenetration-free simulations for multiple objects. To achieve
that, we first drape the multi-layered outfit to SMPL human body in T-pose, followed by a warm-up
simulation to solve the interpenetrations among garments. We adopt a large collision distance to
ensure all the interpenetrations are resolved. Afterwards, we merge the garments into one garment
mesh and conduct a simulation driven by the human body and wind. Since all garments belong to
one mesh after merging, the interactions among garments are computed through the self-collision
mechanism in Blender, which generates interpenetration-free results in simulation.

Wind. Most existing datasets simplify real-life scenarios through driving the animation of gar-
ments only by human bodies. To enrich the settings and enable researchers to further explore gar-
ment animations driven by multiple factors, in LAYERS we introduce randomly sampled wind, a
common and obvious force field to influence the animation. Specifically, we randomly select sev-
eral spans of frames in a sequence, and apply winds of different directions and strengths as force
fields. The directions and strengths are uniformly sampled (0 to 400 in Blender). Within each span,

1https://www.blender.org/
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Figure 2: Overview of LayersNet. Given driving factors at time t + 1, i.e., the human body model and
environmental wind in our study, LayersNet aims to animate target garments at time t and predicts the new states
of garments at time t+1. Human body model, wind, garments and corresponding attributes are represented by
particles, where we adopt abstract particles to denote the wind and garments’ attributes. We further establish
a two-level structural hierarchy for garments, as shown on the top left of the figure, where garments are made
of patches, and patches are composed of particles of a fixed configuration given the UV mappings. Then we
encode the particles and model the interactions among them by a simulator, which outputs the embeddings for
each patch. Finally, we apply a decoder to decode the patches into corresponding vertices at time t+ 1.

we make a reasonable assumption that the wind would affect the whole 3D space, where wind’s
direction and strength remain constant.

Garments’ Attributes. Existing datasets cover a limited choice for garment attributes, e.g., cotton
or fabric. Tasks like physics parameter estimations could barely benefit from those datasets. To make
garments animations more diverse and flexible, we uniformly sample different garments’ attributes,
such as mass, stiffness, and friction. In addition, we introduce different attributes to the inner and
outer outfits, leading to more varieties.

Human Motion Sequences. We adopt the SMPL-based human motion sequences from CMU
MoCap in AMASS (Mahmood et al., 2019), which includes 2,600 sequences with 30FPS in total.
During simulation, we randomly sample the human shapes and genders for each sequence and ex-
tract sub-sequences with a maximum of 600 frames. To accurately simulate garments on human
body, collision-free human meshes are required to avoid invalid simulations. Since our dataset fo-
cuses on garments generations, we adopt linear regressions to solve the self-collisions from SMPL
models (Loper et al., 2015) and leave a minimum gap of 0.004 meters before scaling up the human
mesh. We skip the unresolvable collisions and discard the corresponding frames.

4 METHODOLOGY

Our goal is to faithfully animate the garments regardless of the garments’ topology and the type of
driving factors, where the latter include the rigid human bodies and winds in our case. To this end,
we propose LayersNet to animate garments in a simulation manner. The novelty of LayersNet is that
we view garment animations driven by human bodies and winds as interactions between particles.
This unified perspective allows our framework to exploit the semantics of interactions among all
particles, e.g., the energy transition when constrained by physics laws. In addition, the animation
of garments becomes shape-independent and highly generalizable. Figure 2 shows an overview of
LayersNet. In the following, we first formulate garment animation in the form of particle simulation,
followed by an explanation of our patch-based garment model, and the introduction of the simulation
pipeline to animate garments.

4.1 LAYERSNET

Problem Formulation. We denote each mesh at time t by M t = {V t,EM ,EW }, where V t =
{xt

i, ẋ
t
i, ẍ

t
i}Ni=1 are the vertices’ positions, velocities, and accelerations, and EM denote the mesh

edges. EW are the world space edges (Pfaff et al., 2021), where we dynamically connect node i
and node j if |xt

i − xt
j | < R, excluding node pairs already exist in the mesh. In a particle-based

system, each mesh is represented by particles, which are the corresponding vertices from the mesh.
During simulation, particle i and particle j will interact with each other iff an edge eij ∈ EM ∪EW
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connects them. The interactions guided by EM enable learning internal dynamics of mesh, while
interactions indicated by EW serve to compute external dynamics such as collisions.

We adopt abstract particles to represent the garments’ attributes and the wind. In particular, we use
ag to denote each garment’s attribute, such as the friction and stiffness, and wt to denote the wind.
Since the wind has constant strength in the whole 3D space, we use the quaternion rotation qt and
the strength st to represent the wind as wt = {qt, st}. In this way, given the human body and wind
at t+1 as well as their previous h states, we aim to predict the garments’ states at time t+1 given the
current states at t and corresponding previous meshes {M t−1, · · · ,M t−h}. In practice, we choose
h = 1 in all experiments. Our approach can be described as:

V̂ t+1
g = ϕ(ag, {M t−i

g ,M t+1−i
b ,wt+1−i}hi=0), (1)

where M t
g and M t+1

b are the meshes of garments and human body, respectively, ϕ(·) is the simulator
and runs recursively during predictions, and V̂ t+1

g is the garment’s new vertices’ states at time t+1.

Patch-based Garment Model. Inspired by Ma et al. (2021), we establish a two-level structural
hierarchy for garments and represent each garment by patches. Patch modeling holds several advan-
tages. First, as basic units to represent garments, patches are topology independent. By modeling the
dynamics of each patch, our model is more flexible and generalizable to unseen garments. Second,
instead of simulating each vertex in a mesh, simulating patches signficantly reduces the computa-
tional overhead, especially when the mesh is of high-fidelity.

Formally, we find a mapping q(·) to map the vertex-based mesh to patch-based representation by:

P t
g = q(M t

g), (2)

where P t
g = {V t

p ,E
M
p ,EW

p }. The patches’ states V t
p are the averaged vertices’ states within the

patches, and EW
p are computed given V t

p . The mapping q(·) is based on the garments’ uv maps as
shown in Figure 2. In this way, our method can be updated as:

V̂ t+1
g = ϕ(ag, {P t−i

g ,M t+1−i
b ,wt+1−i}hi=0), (3)

Simulation-based Garment Animation. After collecting the set of particles, including the patch
particles of garments, the vertex particles of human body, as well as the abstract particles of garment
attributes and environmental wind, we can then animate garments by predicting the future state of
each particles through particle-based simulation, which is topology independent and highly general-
izable. While our method is orthogonal to the choice of particle simulator, in practice we adopt TIE
(Shao et al., 2022) as our simulator due to its promising results and high computational efficiency.
Specifically, it assigns each particle i three tokens, namely a state token vi, a sender token si and a
receiver token ri. The sender token si describes how the particle i influence others, and the receiver
token ri indicates how the particle i can be affected. The updating formulas of all tokens can be
summarized as follow:

si = Wsvi, ri = Wrvi, (4)

s′j =
sj − µsj

σrisj

, r′i =
ri − µri

σrisj

, (5)

fri,sj = r′i + s′j , (6)

v′
i =

∑
j

ωijfri,sj , (7)

ωij = softmax((WQvi)
⊤fri,sj

), (8)

where µri
, µsj

are the means of tokens ri, sj respectively, and σrisj
is the standard deviation. In

practice, we generate two different attention masks indicated by EM and EW for different heads in
multi-head attention.

Formally, the simulator can be described as

Et+1
p = f(ag, {P t−i

g ,M t+1−i
b ,wt+1−i}hi=0). (9)
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To recover each vertex’s details within the corresponding patch, we apply a decoder as:

ât+1
i = g([vt

i , e
t+1
p,i ,vt+1

h,i ]), (10)

v̂t+1
i = ∆t · ât+1

i + vt
i , p̂t+1

i = ∆t · v̂t+1
i + pt

i, (11)

where we concatenate i-th vertex’s state vt
i with its corresponding patch embedding et+1

p,i and the
states of the nearest point on human mesh vt+1

h,i as inputs, and output the new acceleration ât+1
i at

time t + 1. We then calculate the corresponding position and velocity at time t + 1 given the time
interval ∆t between each frame.

4.2 TRAINING DETAILS

To train a simulation model, we first apply a standard mean square error (MSE) loss on the positions
of vertices as:

Lt+1
m =

1

N

∑
i

∥p̂t+1
i − pt+1

i ∥22, (12)

where pt+1
i is the ground truth at time t+ 1 and N is the number of vertices. We adopt a loss term

for the vertex normal to maintain the smoothness and consistence of the garments:

Lt+1
n =

1

N

∑
i

∥n̂t+1
i − nt+1

i ∥22, (13)

where n̂t+1
i and nt+1

i are the vertex normal for prediction and ground truth respectively. To further
reduce the collision rates between garments and human bodies, we adopt a collision loss:

Lt+1
c =

1

Nc

∑
i

(
dϵ −min

(
(p̂t+1

i − pt+1
h ) · nt+1

h , dϵ
))2

, (14)

where pt+1
h is the nearest point to p̂t+1

i on the human mesh, nt+1
h is the normal vector of point

pt+1
h , Nc is the number of collided vertices, and dϵ is the minimum distance of penetration. Thus,

for predictions at time t+ 1, our training loss is written as:

Lt+1 = λmLt+1
m + λnLt+1

n + λcLt+1
c , (15)

During training, we predict the garments’ positions for two future timestamps, namely t + 1 and
t+ 2. The final loss L is

L = Lt+1 + Lt+2. (16)

5 EXPERIMENTS

5.1 BASELINE AND IMPLEMENTATION DETAILS

We implement DeePSD (Bertiche et al., 2021) and MGNet (Zhang et al., 2022) as our baselines.
DeePSD achieves state-of-the-art performance in terms of 3D garment animations. Importantly,
it claims to support the animations of multi-layered garments. We mainly compare DeePSD with
our model and make the following extensions to DeePSD: 1. we add wind as extra inputs; 2. we
add the collision loss between different layers of garments for multi-layered clothes settings. Since
MGNet is a garment-specific model for single-layered clothes, we compare MGNet with only inner
garments. We also include the wind as extra feature map. All models are trained with ten epochs. We
do not apply any postprocessing for both training and predicting. During evaluation, we calculate
errors as the mean of Euclidean errors for each frame, then average the errors of all frames within
each sequence. The final results are the mean of errors from all sequences.

5.2 ABLATION STUDY ON LAYERS

To investigate the influence of multi-layered garments and random wind in LAYERS, we divide
our dataset into four different splits as shown in Table 2 : tight inner garments without wind (T);
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Table 2: To analyze the challenges in LAYERS , we sample four splits from our dataset: inner garments are
tight clothes without wind (T); inner garments are tight clothes with strong wind (T+W); inner garments are
loose clothes without wind (L); inner garments are loose clothes with strong wind (L+W). Specifically, jackets
are either with or without hood, while dress are either with or without waist belt. Notice that we group winds
with a strength less than 50 as not windy, where the wind has little influence on the garments.

Components Tight (T) Tight+Wind (T+W) Loose (L) Loose+Wind (L+W)

Inner Garments Jumpsuit Jumpsuit Dress Dress
Outer Garments Jacket Jacket Jacket Jacket
Wind Strength ≤ 50 > 250 ≤ 50 > 250

Table 3: Euclidean errors (mm) on four splits. To display the challenges brought by the outer garments and
the interactions between layers of clothes, we further train models with only the inner garments as marked by *
in the table. MGNet has worse generalization abilities due to garment-specific design. LayersNet has slightly
higher errors since the inner garments simulated together with outer clothes do not follow physics laws by
themselves. LayersNet achieves superior and robust performance on all splits with multi-layered garments.

Methods Tight (T) Tight + Wind (T+W) Loose (L) Loose + Wind (L+W)

DeePSD∗ 225.3±106.4 239.5±103.9 501.3±300.1 577.5±373.9
MGNet∗ 5219.2±1565.8 5186.8±1754.8 4432.7±1438.0 4595.0±1215.2
LayersNet∗ 260.3±254.4 278.6±328.6 378.0±293.0 363.6±311.4

DeePSD 1068.2±693.8 2782.6±1239.7 868.0±495.6 1707.9±503.4
LayersNet(Ours) 611.3±544.3 578.8±576.2 603.0±529.1 572.5±469.5

tight inner garments with strong wind (T+W); loose inner garments without wind (L); loose inner
garments with strong wind (L+W). Each split contains 36K frames for training, 2K frames for
validation, and 2K frames for test. Note that the strength of the wind ranges from 0 to 400. We
group winds with a strength less than 50 as not windy, where the wind has little influence on the
garments. We consider winds with a strength more than 250 as strong wind. Since the outer garments
exhibit more flexible dynamics, such as falling off or waving in the air, animating them is already a
challenging task for existing methods, let alone considering the interactions with inner garments. To
further simplify our dataset and have a better comparison with existing synthetic dataset, Cloth3D
(Bertiche et al., 2020), we first exclude the outer garments on all splits and train models with only
inner garments, which is indicated in the first three rows of Table 3.

When trained with only inner garments, DeePSD achieves reasonable performance comparing with
that when it is trained on Cloth3D (Bertiche et al., 2020), suggesting that the settings of Cloth3D
are similar to our simplified data settings. MGNet fails in our dataset due to the garment-specific
design and low generalization abilities. LayersNet has lower errors especially on split L and L+W,
suggesting the effectiveness and higher generalization abilities of animating loose clothes, Please
refer to Appendix for more details and qualitative comparisons. On split T+W and L+W, DeePSD
shows higher errors due to the random wind. Since jumpsuits in splits T and T+W are tight garments,
the wind has less influence on them.

When trained with multi-layered garments, the Euclidean errors by DeePSD increase dramatically,
especially with the influence of wind in split T+W and L+W, suggesting the challenges brought
by multi-layered garments. The high errors on split T+W and L+W, compared with split T and L,
respectively, suggest that DeePSD is less generalizable to driving factors beyond human bodies. In
contrast, LayersNet achieves superior performance on all splits with both inner and outer garments.
The Euclidean errors are close to each other on different splits, suggesting that our model is more
robust to the garments’ various topologies as well as the driving factors beyond human bodies.

5.3 GARMENT ANIMATION

We sample 50K frames from LAYERS for training, 6K frames for validation, and 6K frames for
test. There is no overlapping among different sets of samples. All the samples are composed of both
inner and outer garments, as well as random wind as the external factor.

The vanilla DeePSD without collision loss exhibits high Euclidean errors on all types of garments.
When adding collision loss including collisions between layers of garments, the collision rates are
reduced. Nonetheless, DeePSD does not improve in terms of Euclidean errors. Since the vanilla
DeePSD has difficulties in learning reasonable dynamics of garments, the collision terms introduce
more noise while training DeePSD , pushing the garments away from the bodies. In contrast, Lay-
ersNet achieves superior performance in terms of Euclidean errors, suggesting the effectiveness of
our simulation-based methods. Moreover, our LayersNet is more generalizable and shows more
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Table 4: Euclidean error (mm) on sampled LAYERS with maximum sequence length of 35 frames. The colli-
sion rates between different layers of garments are shown under L-Collision, while the collision rates between
garments and human bodies are shown under H-Collision. Models trained with collision loss are marked by +.
When training DeePSD with collision loss, we extend Equation 14 and include the collisions between different
layers of garments as extra loss term. In constrast, our model only applies the basic collision loss between
garments and human bodies following Equation 14. Our LayersNet achieves superior results on all types of
garments. Even without explicitly punishing collisions between layers of garments, LayersNet still achieves
low collision rates among garments and makes good balance between Euclidean errors and penetrations.

Methods Jacket Jacket + Hood Dress Jumpsuit Skirt

DeePSD 2863.0±881.2 2956.7±799.8 2606.3±792.0 2876.2±708.3 2498.6±618.6
DeePSD+ 3609.7±1147.0 3434.4±781.9 4046.6±962.9 4773.1±1120.9 4232.6±1713.9
LayersNet(Ours) 717.6±609.8 577.5±458.1 448.2±452.2 277.3±293.1 274.6±94.4
LayersNet+(Ours) 684.9±554.9 566.2±425.4 501.2±466.9 321.1±274.7 378.6±143.0

Methods Pants T-shirt Overall L-Collision H-Collision

DeePSD 3075.1±117.7 2618.5±729.1 2851.8±696.4 23.82%±11.25% 18.36%±6.74%
DeePSD+ 5260.4±1283.4 4145.9±994.3 3907.6±790.6 3.82%±3.72% 0.63%±0.83%
LayersNet(Ours) 291.2±301.7 272.4±198.2 560.6±452.2 4.51%±2.98% 10.01%±5.62%
LayersNet+(Ours) 349.3±238.4 331.7±226.9 567.2±432.8 4.94%±2.67% 3.58%±2.83%

Figure 3: Qualitative results by LayersNet. The left sequence shows a human model walking down some
steps. The magnified regions highlight the vivid dynamics of the jacket. Human model in the right sequence
is moving towards her left. Without collision loss, LayersNet generates some body-to-cloth penetrations near
the thigh and even head on the last frame of the right sequence. When trained with collision loss, LAYERS,
which is marked by +, reduces the collision rates more obviously. Even though we do not explicitly penalize
the collisions among different layers of garments, LayersNet is able to solve those collisions implicitly through
exchanging semantics by interactions, suggesting the robustness and effectiveness of LayersNet.

robust performance across different types of garments. When adding collision loss as mentioned
in Equation 14, the body-to-cloth collisions and human bodies are reduced. Though we never ex-
plicitly penalize collisions between different layers of garments, the collision rates among clothes
are low. Since the key idea of simulation is to model the interactions among objects, such as the
energy transition and collisions, LayersNet can resolve collisions implicitly. We show the qualita-
tive results by our LayersNet in Figure 3. More qualitative comparisons can be found in Appendix.
LayersNet with collision loss, which is marked by +, shows fewer body-to-garment penetrations,
suggesting the effectiveness and robustness of our model.

6 CONCLUSION

We have presented a new large-scale synthetic dataset called LAYERS, which covers 4,900 different
combinations of multi-layered garments with 700K frames in total. The animations of multi-layered
garments follow the laws of physics, allowing the interactions among different layers of garments. In
addition, LAYERS takes the environmental wind, another important driving factors besides human
body, into consideration to animate garments. To demonstrate the quality of LAYERS, we further
propose LayersNet, a simulation-based method for garment animations. We model the various driv-
ing factors as (abstract) particles, while represent garments as unions of particles as patches. The
animations of garments driven by different factors are naturally and uniformly achieved via model-
ing the interactions among particles. As shown by the experiments, our model achieves superior and
robust performance with compelling abilities in generalization.
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A APPENDIX

A.1 LAYERS DATASET

Although Blender does not support collisions among multiple objects, it is able to solve collisions
within one object. Thus, by merging multiple garments as a single mesh, we regard the collisions
among different garments as the interactions within one mesh, which can be solved by Blender. In
other words, different layers of garments will interact with each other following the physics rules.

Before simulation, we properly dress the human body in T-pose and scale up all objects 10 times the
real-world size, which can preserve more details of the garments such as wrinkles.

We adopt different garment attributes to different layers of clothes. Specifically, we uniformly sam-
ple the following attributes: vertex mass from 0.2 to 0.8; stiffness of tension, compression, shear,
and bending from 15 to 100; friction from 40 to 80.

Quantitiave comparison with existing synthetic dataset. We train our implementation of
DeePSD on Cloth3D following the original paper (Bertiche et al., 2021). Results are shown in
Table 5, suggesting that our implementation of DeePSD is similar to the official one. We sample
four splits from LAYERS as mentioned in main text. Specifically, the inner garments in split T and
T+W are jumpsuits, while those in split L and L+W are dress. The outer garments in all splits are
either jackets or jackets with hood. For convenience, we copy the table in main text for reference as
shown in Table 6 and Table 7. Table 7 shows the results trained on four splits of our dataset. Specif-
ically, the results on the first three rows, where models are marked by *, are obtained by training
models with only inner garments. This setting is most similar to Cloth3D’s settings. The remaining
results are obtained by training on both inner and outer garments on all splits. Notice that we scale
up the human mesh and garment mesh 10 times the real-world size, the corresponding errors are
also scaled up. Thus, DeePSD* achieves similar results on both datasets: the Euclidean errors of
jumpsuit and dress are similar on both LAYERS and Cloth3D, suggesting that the quality of our
dataset is not worse than Cloth3D. In addition, when comparing DeePSD* with DeePSD, DeePSD
achieves higher errors, which mainly come from the outer garments. MGNet fails in LAYERS due
to the garment-specific design and low generalization abilities as shown in Figure 4. Our Layer-
sNet achieves reasonable results especially on loose garment settings, suggesting the effectiveness
and higher generalization abilities of animating loose garments.
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Table 5: We verify our implementation of DeePSD on Cloth3D accroding to official paper (Bertiche et al.,
2021). The results are similar to original paper, suggesting that our implementation of DeePSD is similar to
official one.

Method T-shirt Top Trousers Skirt Jumpsuit Dress

DeePSD 25.01±20.94 16.90±15.38 20.02±8.50 20.43±31.10 24.31±6.36 42.10±21.41

Table 6: To analyze the challenges in LAYERS , we sample four splits from our dataset: inner garments are
tight clothes without wind (T); inner garments are tight clothes with strong wind (T+W); inner garments are
loose clothes without wind (L); inner garments are loose clothes with strong wind (L+W). Specifically, jackets
are either with or without hood, while dress are either with or without waist belt. Notice that we group winds
with a strength less than 50 as not windy, where the wind has little influence on the garments.

Components Tight (T) Tight+Wind (T+W) Loose (L) Loose+Wind (L+W)

Inner Garments Jumpsuit Jumpsuit Dress Dress
Outer Garments Jacket Jacket Jacket Jacket
Wind Strength ≤ 50 > 250 ≤ 50 > 250

Table 7: Euclidean errors (mm) on four splits. To display the challenges brought by the outer garments and
the interactions between layers of clothes, we further train models with only the inner garments as marked
by * in the table. MGNet has worse generalization abilities due to garment-specific design. LayersNet has
slightly higher errors since the inner garments simulated together with outer clothes do not follow physics laws
by themselves. LayersNet achieves superior and robust performance on all splits with both inner and outer
garments.

Methods Tight (T) Tight + Wind (T+W) Loose (L) Loose + Wind (L+W)

DeePSD∗ 225.3±106.4 239.5±103.9 501.3±300.1 577.5±373.9
MGNet∗ 5219.2±1565.8 5186.8±1754.8 4432.7±1438.0 4595.0±1215.2
LayersNet∗ 260.3±254.4 278.6±328.6 378.0±293.0 363.6±311.4

DeePSD 1068.2±693.8 2782.6±1239.7 868.0±495.6 1707.9±503.4
LayersNet(Ours) 611.3±544.3 578.8±576.2 603.0±529.1 572.5±469.5

Figure 4: The left are the training samples while the right is test samples. All samples are from the split T,
where we train models with only inner garments (jumpsuit). MGNet is able to generate 3D garments on training
examples on the left while has difficulties to generalize to unseen examples in test set due to the garment-specific
design. DeePSD has faithful predictions on simplified dataset. Our LayersNet faithfully rollouts 3D garments
when only with inner clothes.

Qualititative comparisons. We include more qualitative comparisons in this section. As shown
in Figure 4 when trained with only inner garments (jumpsuit), DeePSD (Bertiche et al., 2021) is
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Figure 5: The outer garments are more flexible in our dataset and are able to respond to different garment
attributes, such as friction. In this sample, the jacket falls off the shoulder due to the motion of human and small
friction, bringing more challenge for DeePSD to converge. The collision loss for DeePSD further generates
noises and forces DeePSD to push clothes away from human model to achieve lower collision rates. In contrast,
our LayersNet is able to faithfully rollout the garments even on this challenging case.

Table 8: We train LayersNet on our LAYERS and test on Cloth3D. We also compare DeePSD which is
trained on Cloth3D. We re-sample the test samples from Cloth3D and include continuous sequences for better
comparisons. The test set and training set on Cloth3D have no overlaps. Our LayersNet is able to achieve
superior results on all scenarios.

Method T-shirt Top Trousers

DeePSD (trained on Cloth3D) 36.69±15.34 26.52±9.15 29.86±13.47
LayersNet (trained on LAYERS) 23.84±15.81 14.17±5.92 23.16±11.38

Method Skirt Jumpsuit Dress

DeePSD (trained on Cloth3D) 55.66±22.11 26.86±6.65 54.71±49.69
LayersNet (trained on LAYERS) 41.48±17.73 23.01±9.93 35.51±37.73

able to predict faithful rollouts. MGNet (Zhang et al., 2022) is able to generate 3D garments on
training samples while struggles to generalize to unseen garments from test examples due to the
garment-specific design. In original paper of MGNet, they train MGNet with only on 300 frames
of data with the same garment topology, while in our dataset each garment is unique with different
topology. In contrast, our LayersNet achieves faithful predictions in this simplified case.

On the other hand, as shown in Figure 5, the garments in our dataset, especially the outer clothes, are
more flexible and are able to respond to various garment attributes, such as falling off the shoulder
due to small frictions in this case. The high flexibility brings more challenges to DeePSD, leading to
difficulties in convergence. The collision loss for DeePSD further introduces noises due to inaccurate
garment meshes and forces DeePSD to push the clothes away from human to achieve lower collision
rates. In contrast, our simulation-based LayersNet animates garments in topology-independent and
unified manners and still achieves faithful rollouts even on such challenging case.

A.2 MODEL GENERALIZATION

Since our LayersNet learns a topology-independent simulation model and is highly generalizable
to unseen scenarios, we test LayersNet , which is trained on our dataset LAYERS, on Cloth3D
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Figure 6: Samples are from Cloth3D Bertiche et al. (2020). The human model on the left wears a jumpsuit
and is walking, while the human on the right wears a dress and is spinning. Our LayersNet achieves faithful
rollouts. DeePSD is able to animate the garments with more stiff dynamics, while LayersNet can predict
garments following physics laws, such as the inertia shown in the dress.

Figure 7: We grouped garment’s vertices into patches given the corresponding UV mapping. Based on the
coordinates in UV, we group the vertices according to their positions. Subsequently, we divide the 3D garment
mesh into patches based on the groups.

(Bertiche et al., 2020) for generalization and compare the original DeePSD trained on Cloth3D.
We re-sample the test set to include continuous sequence of samples. The test set and training set
for training DeePSD on Cloth3D have no overlaps. As shown in Table 8, our LayersNet achieves
superior performance on all types of garments. As shown in Figure 6, when test on unseen samples,
predictions by DeePSD tend to be stiff while LayersNet still achieves faithful and vivid rollouts,
suggesting the effectiveness of our simulation-based method which animates garments in a unified
manner.

A.3 IMPLEMENTATION DETAILS

Patched Garment Model. We group the particles in garment’s mesh given corresponding UV
mapping. Specifically, we divide the UV mapping into square patches according to the UV coordi-
nates, as shown in Figure 7. Then, we group the garment’s vertices in 3D space given the grouped
UV mapping. When building the connections EM of the patched garments, we connect patch i and
patch j iff there is at least one pair of vertices within the patches are connected in 3D space.

LayersNet details. To obtain the world space edges EW , we adopt R = 0.4 to calculate the
neighbors from the human mesh and R = 0.6 for different layers of garments. We adopt h = 1 for
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Table 9: Euclidean error (mm) on sampled LAYERS with maximum sequence length of 35 frames. The
collision rates between different layers of garments are shown under L-Collision, while the collision rates
between garments and human bodies are shown under H-Collision. Models trained with collision loss are
marked by +. When training DeePSD with collision loss, we extend Equation 14 and include the collisions
between different layers of garments as extra loss term. In constrast, our model only applies the basic collision
loss between garments and human bodies following Equation 14. Our LayersNet achieves superior results on
all types of garments. Even without explicitly punishing collisions between layers of garments, LayersNet still
achieves low collision rates among garments.

Methods Jacket Jacket + Hood Dress Jumpsuit Skirt

LayersNet 706.3±558.5 588.2±460.5 436.3±343.7 289.3±194.4 322.9±58.9
LayersNet+Ln 717.6±609.8 577.5±458.1 448.2±452.2 277.3±293.1 274.6±94.4
LayersNet+Ln,Lc(full) 684.9±554.9 566.2±425.4 501.2±466.9 321.1±274.7 378.6±143.0

Methods Pants T-shirt Overall L-Collision H-Collision

LayersNet 307.2±164.0 282.9±170.8 558.9±409.0 5.31%±3.88% 16.41%±7.18%
LayersNet+Ln 291.2±301.7 272.4±198.2 560.6±452.2 4.51%±2.98% 10.01%±5.62%
LayersNet+Ln,Lc(full) 349.3±238.4 331.7±226.9 567.2±432.8 4.94%±2.67% 3.58%±2.83%

the inputs of all objects’ states. The hyperparameters λm, λn, λc in our loss term are set to 1. We
adopt Adam optimizer with an initial learning rate of 0.001 and a decreasing factor of 0.5 every two
epochs. The batch size is set to 4.

We adopt three different encoders for meshes, garment attributes, and wind attributes. This is be-
cause the three components belong to different domain space and have different dimensions. Since
the states of garments mesh and human bodies mesh are from the same domain, we share the en-
coder for them. All the encoders are two-layer MLPs with dimensions 128. The only difference is
the input dimensions. We adopt 4 blocks of modified Transformer block in LayersNet, with hidden
dimensions 128 for each block. The number of head in multi-head attention is set to 8, while 4
heads apply the attention mask generated by EM , and 4 heads adopt the attention mask generated
by EW . For the decoder, we adopt a three-layer MLPs with a forward dimension of 128 and an out-
put dimension of 3. When concatenating the nearest point on human mesh in Equation 10, we mask
the point vt+1

h,i to zeros if the there is no edge eh,i ∈ EW connecting the point vt+1
h,i and garment

point vt+1
i . For the inputs of garment mesh and human body mesh, we adopt relative positions to

the root of human body mesh. Since the wind’s attributes are still measured in global coordinates,
we also convert them to the relative coordinates in implicit manner, i.e. convert the value of strength
in global coordinates to local coordinates defined by the root of human body. Specifically, we con-
catenate the position, velocity, and acceleration of the human body’s root point vt

r as extra features
wt = {qt, st,vt

r} and let LayersNet learns the wind’s features in relative coordinates. We apply
∆t = 1 in our experiments, which is independent from the real time interval between each frames,
which is 0.33s. When training LayersNet, we normalize the meshes’ states across the whole training
set before feeding into the model, which is a commonly adopted processing in literature.

A.4 ABLATION STUDY ON LAYERSNET

In this section, we analyze our model in the following aspects: (a). vanilla LayersNet; (b). Layer-
sNet with normal loss; (c). LayersNet with both normal loss and collision loss.

As shown in Table 9, the vanilla LayersNet achieves low Euclidean errors on all types of garments,
suggesting the effectiveness of our simulation-based method. With the normal loss term Ln, which
aims to smooth the surface of garments, achieves lower collision rates in terms of both body-to-cloth
penetrations and collisions between different layers of garments, leading to more faithful rollouts
comparing with vanilla LayersNet. When training with both normal loss and collision loss, Layer-
sNet further reduce the body-to-cloth penetrations. Though our complete version of LayersNet has
slightly higher Euclidean errors, the lower collision rates lead to more convincing and faithful re-
sults. A good example is shown in Figure 3 of the main text.

A.5 FUTURE WORK

In this work, we propose a novel multi-layered 3D dataset and make the first attempt to animate
garments though simulation pipeline which achieve superior performance in both LAYERS and
other generalization scenarios. Since we regard all objects as particles, our model is able to animate
various garments with different typologies driven by different types of outer forces, such as human
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bodies and wind. However, since the predictions of future frames are based on previous rollouts
by the model, the errors accumulate as the length of predictions increases, which is a common
problem in simulation. In this work, we train the model and alleviate the problem by predicting two
continuous frames as shown in Equation 16. We will explore more strategies, such as adding noise
to input data and forcing the model to learn to correct errors, to enable the model to rollout long
sequences while keeping the accumulated errors relatively small at the same time.
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