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ABSTRACT

Deep Machine Unlearning addresses the problem of removing the effect of a sub-
set of data points from a trained model. Machine Unlearning has various implica-
tions for the performance of algorithms. A well-known algorithm, SCRUB (Kur-
manji et al., 2023), has served as a baseline and achieved key objectives such as
removing biases, resolving confusion caused by mislabeled data in trained models,
and allowing users to exercise their ”right to be forgotten” to protect user privacy.
Building on this algorithm, we introduce f -SCRUB, an extension of SCRUB that
employs different f -divergences instead of KL divergence. We analyze the role
of these divergences and their impact on the resolution of unlearning problems in
various scenarios.

1 INTRODUCTION

Rapid advancements in modern machine learning systems, coupled with their widespread adoption
across various domains, have raised an important question: What happens if a user no longer wants
their data to be utilized? This issue, along with the EU’s ’right to be forgotten’ (Mantelero, 2013),
presents the challenge of removing or ’unlearning’ the impact of specific training examples from a
trained model. Beyond user privacy, model safety is also a critical concern, particularly in mitigating
the effects of toxic, outdated, or poisoned data. Addressing these challenges is essential for securing
foundation models and ensuring the reliability and robustness of classical machine learning models,
such as classifiers.
One of the prominent approaches for machine unlearning, SCRUB (Kurmanji et al., 2023), intro-
duces a teacher-student framework where the student selectively discards knowledge related to the
data to be removed. The versatility of SCRUB allows it to avoid other methods’ scalability and as-
sumption constraints. However, it faces challenges in balancing the model’s performance on retained
data while achieving high error on removed data.

Our Contribution: In this work, we introduce f -SCRUB, an extension of SCRUB that incorpo-
rates a novel framework based on f -divergences. In particular, our contributions are, (a) using
f -divergences in SCRUB framework, (b) comprehensive experiments investigating different combi-
nations of f -divergences in f -SCRUB.

2 PRELIMINARIES

f -divergence: The f -divergences are information measures that generalize various divergences,
such as Kullback-Leibler (KL) divergence, through the use of a convex generator function f . Given
two discrete distributions P = {pi}ki=1 and Q = {qi}ki=1, the f -divergence between them is defined
as:

Df (P ∥ Q) :=

k∑
i=1

qif

(
pi
qi

)
where f : (0,∞) → R is a convex function with the property that f(1) = 0. This definition
implies that Df (P ∥ Q) = 0 if and only if P = Q. By choosing different forms for f , we obtain
different types of divergences. For example, when f(t) = t log(t), we get the Kullback-Leibler
(KL) divergence, which measures the difference between two probability distributions. In this work,
we focus on JS-divergence and χ2-diveregence.

∗Equal Contribution.
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Table 1: Divergences and their corresponding generator functions
Divergence Generator Function f(t)

KL-divergence t log t

χ2-divergence (1− t)2

JS-divergence t log
(

2t
1+t

)
+ log

(
2

1+t

)

2.1 MACHINE UNLEARNING

Consider a machine learning model θ ∼ A(S) trained on a dataset S. Given a ”forget set” SF ⊂ S
and a corresponding ”retain set” SR = S \ SF , the goal of an exact unlearning algorithm is to
produce a sample from A(SR) starting from the trained model θ.

Definition 2.1 (Exact unlearning (Ginart et al., 2019)) An unlearning algorithm U : Θ× 2|S| →
Θ is considered an exact unlearning algorithm if, for all SF ⊂ S, U(A(S), SF )

d
= A(SR), where

d
= denotes equality in distribution over models.

Definition 2.2 (Approximate unlearning) An unlearning algorithm U : Θ × 2|S| → Θ is said to
perform approximate unlearning if, for all SF ⊂ S, the output of U(A(S), SF ) is close to A(SR)
in terms of some divergence measure d(·, ·), i.e.,

d(U(A(S), SF ),A(SR)) ≤ ϵ,

where ϵ is a small constant, indicating that the model after unlearning is approximately equivalent
to a model retrained on the retain set SR.

SCRUB: The SCRUB method (Kurmanji et al., 2023) proposes a novel approach to unlearning as
a Approximate unlearning method, where a student model is trained to selectively obey a teacher
model. The goal is twofold: to forget the forget set SF while still retaining knowledge about the
retain set SR. The model wu (the student) is initialized with the teacher’s weights wo, and the key
idea is to optimize the student’s performance on the retain set while forgetting the forget set. The
loss function used in SCRUB incorporates several components. It begins with the Kullback-Leibler
(KL) divergence between the student and teacher output distributions for each example x, given by:

dKL(x;w
u) = DKL(h(x;w

u)||h(x;wo)),

where h(x;wu) is the output of Softmax layer. This encourages the student model to stay close to
the teacher for the retain set, ensuring it performs well on SR. However, to encourage forgetting
the forget set, the method adds a contrastive term to the objective, which forces the student to move
away from the teacher on examples from the forget set SF . The objective then becomes:

min
wu

1

Nr

∑
xr∈SR

dKL(xr;w
u)− 1

Nf

∑
xf∈SF

dKL(xf ;w
u)

Furthermore, SCRUB simultaneously optimizes the task loss on the retain set to further enhance
performance on the relevant examples, resulting in the final loss function:

min
wu

α

Nr

∑
xr∈SR

dKL(xr;w
u) +

γ

Nr

∑
(xr,yr)∈SR

ℓ(h(xr;w
u),Yr)−

1

Nf

∑
xf∈SF

dKL(xf ;w
u),

where ℓ represents the cross-entropy loss, and α and γ are hyperparameters controlling the impor-
tance of each term and Yr is the hot-encode of labels vector for given feature xr. This formulation
allows SCRUB to balance the tradeoff between retaining performance on the retain set and forgetting
data from the forget set, addressing the core challenge of machine unlearning.
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Table 2: Forgetting scenarios.
Scenario Name Classes Number to Forget

Complete (1) Entire class 5 All

Light (2) Class 5 100

Moderate (3) Class 5 500

Dual Light (4) Classes 4, 5 100 each

Dual (5) Classes 4, 5 500 each

Broad Light (6) Classes 1, 2, 3, 4, 5 100 each

Broad (7) Classes 1, 2, 3, 4, 5 500 each

Extended Light (8) Classes 1, 2, 3, 4, 5, 6 100 each

Extended (9) Classes 1, 2, 3, 4, 5, 6 500 each

2.2 f -SCRUB

Here we introduce f -SCRUB, a novel approach for unlearning in machine learning models. We
separate the losses based on (Kurmanji et al., 2023) into two distinct components.
Maximization Loss: This loss is defined as

1

Nf

∑
xf∈SF

df (xf ;w
u),

where aims to maximize the divergence between the unlearned model and the data points that need
to be forgotten.
Minimization Loss: This loss is defined as

α

Nr

∑
xr∈SR

df (xr;w
u) +

γ

Nr

∑
(xr,yr)∈SR

ℓf (h(xr;w
u),Yr),

where ℓf (·, ·) is the loss function inspired via f -divergence. We aim to minimize the divergence
between the unlearned model and the remaining data points, while also ensuring that the model’s
predictions remain accurate.
We choose different f -divergences for each component in different scenarios. We modify our loss
functions and introduce f-SCRUB by selecting different f -divergences for minimization and max-
imization losses. While f -SCRUB allows the flexibility to explore various f -divergences as loss
functions, in this work, we limit our choices to three divergences. In particular, the divergence terms
df (xr;w

u) and df (xf ;w
u) are chosen from the Kullback-Leibler (KL), Jensen-Shannon (JS), and

χ2 divergences. The rationale behind this selection is provided in Appendix B.

3 EXPERIMENT AND RESULTS

For our simulations, we use the same framework as (Kurmanji et al., 2023). We conducted our
experiments on the CIFAR-10 dataset and selected ResNet-18 as our model. You can find our code
at github. You can find the details of our simulations in Appendix D.

Scenarios: In the literature, two common forgetting scenarios have been discussed: forgetting an
entire class (Class 5) and forgetting a subset of 100 examples from Class 5. To extend these in-
vestigations, we introduce more challenging scenarios, summarized in Table 2. We provide the
motivations for choosing these scenarios in Appendix C.

Overshoot / Undershoot: As noted in Georgiev et al. (2024), one of the challenges SCRUB faces is
the uncertainty in the loss function values for forget set members. Since these values are unknown,
simply increasing their loss may not be an optimal solution. Depending on the number of training
epochs, SCRUB can lead to overshooting or undershooting the intended loss adjustment. Therefore,
we aim to explore whether using a more robust loss function, such as JS or χ2 divergence, can
yield a loss function that is inherently more stable and reliable in unlearning scenarios. Since KL
divergence has become the standard loss function for the retain set, we focus on using JS and χ2

divergences as the loss functions for the forget set. A detailed analysis of other loss functions is
provided in the appendix.
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In simpler scenarios, such as unlearning 100 data points from a single class, using KL divergence as
the loss function for the forget set does not exhibit significant variance. However, in more challeng-
ing unlearning scenarios, such as unlearning 500 data points across six classes, the variance of the
forget set loss increases significantly. In contrast, JS divergence remains more stable, demonstrating
lower variance even in complex unlearning settings.

In Figure 1, we present the loss values where JS divergence is applied to the forget set and KL
divergence to the retain set. These results correspond to the Exceptionally Challenging, Highly
Difficult, and Difficult scenarios.

In contrast, the right figure shows a case where KL divergence is applied to both sets. As observed,
the forget set exhibits higher variance and greater data dependence when using KL compared to JS.

As shown in Figures 1(a) and 1(d), KL divergence is highly dependent on the data and exhibits sig-
nificant variance. A similar trend is observed in Figures 1(b) and 1(e). However, when unlearning a
smaller number of data points, neither JS nor KL shows substantial variance in their loss values. This
suggests that in simpler unlearning scenarios, where the process is less sensitive to data variations,
both divergences behave similarly, as seen in Figures 1(c) and 1(f).

(a) JS (6 classes) (b) JS (5 classes) (c) JS (2 classes)

(d) KL (6 classes) (e) KL (5 classes) (f) KL (2 classes)

Figure 1: The Max Loss represents the loss of the forget set, which we aim to maximize, while the
Min Loss corresponds to the retain set loss, which we seek to minimize. Notably, in the first phase,
each epoch involves both a maximization and a minimization step. However, after transitioning to
the next phase, we perform only minimization.

4 DISCUSSION

We analyze the performance of the models across different scenarios. In this section, we fo-
cus on KL-JS scenario, where we replace the KL-divergence maximization loss in SCRUB with
JS-divergence, while additional cases are presented in the Appendix F. The best performance is
achieved when the error in the forget set is maximized while the error in the test dataset is min-
imized. As shown in Table 3, using JS loss as the maximization loss generally results in lower
variance across almost most of all scenarios. c

To interpret these results, we define the best loss function as the one where the forgotten error is
highest and the test error is lowest—both occurring in the same row. However, this is not always
the case. With a more nuanced analysis, we argue that KL-JS performs better in most scenarios
with confidence. In cases where it does not, model degradation complicates the analysis and in-
troduces significant complexity. Additionally, when one approach excels in forget set error while
the other performs better on test error, direct comparison becomes infeasible, preventing a definitive
judgment.

In the complete forgetting scenario, where the goal is to forget all data from a specific class, the
error on the forget set rapidly reaches 100%. This phenomenon is also evident in Table 6 and other
tables in the appendix. After two max-min epochs, minimizing with the largest possible batch size
yields strong results, as demonstrated in Kurmanji et al. (2023). The key point here is that because
the entire class is absent, post-minimization does not affect the forget error as presented in Table 3.
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Table 3: Results for various forgetting scenarios with KL-KL being the baseline and KL-JS as main
scenario, training for five intermittent maximization-minimization steps followed by five minimiza-
tion step

Scenario Loss
Vanilla Full capacity

Forget Error Retain Error Test Error Forget Error Retain Error Test Error

Complete
KL-KL 100.00 ± 0.00 80.16 ± 7.88 82.28 ± 7.10 100.00 ± 0.00 35.43 ± 4.89 43.11 ± 3.99

KL-JS 100.00 ± 0.00 81.16 ± 2.73 83.01 ± 2.47 100.00 ± 0.00 50.50 ± 0.75 56.34 ± 0.69

Light
KL-KL 25.33 ± 7.41 22.73 ± 0.93 26.92 ± 0.74 26.67 ± 4.92 8.93 ± 0.06 14.88 ± 0.05

KL-JS 25.33 ± 3.30 22.26 ± 0.36 26.43 ± 0.22 26.33 ± 2.25 8.80 ± 0.09 14.74 ± 0.13

Moderate
KL-KL 100.00 ± 0.00 72.51 ± 4.67 73.05 ± 4.55 33.80 ± 6.88 14.14 ± 1.54 18.64 ± 1.47

KL-JS 99.73 ± 0.19 60.09 ± 2.11 61.79 ± 1.90 39.53 ± 4.40 17.67 ± 0.33 21.68 ± 0.14

Light-Dual
KL-KL 30.67 ± 3.42 23.73 ± 0.21 27.83 ± 0.12 21.33 ± 3.32 10.25 ± 0.90 15.76 ± 0.42

KL-JS 29.50 ± 2.55 23.36 ± 0.10 27.50 ± 0.06 21.17 ± 0.82 9.41 ± 0.11 15.24 ± 0.06

Dual
KL-KL 100.00 ± 0.00 79.05 ± 0.15 79.59 ± 0.21 35.40 ± 1.68 22.96 ± 0.27 26.27 ± 0.09

KL-JS 100.00 ± 0.00 79.01 ± 0.12 79.56 ± 0.09 49.83 ± 1.49 31.97 ± 0.40 34.23 ± 0.40

Light-Broad
KL-KL 83.33 ± 8.68 66.17 ± 9.32 67.05 ± 8.67 39.00 ± 0.99 24.07 ± 1.04 27.36 ± 1.01

KL-JS 63.47 ± 4.74 56.33 ± 3.69 57.84 ± 3.25 40.60 ± 1.50 23.70 ± 0.30 26.89 ± 0.18

Broad
KL-KL 95.01 ± 7.02 73.05 ± 4.30 74.36 ± 3.71 91.96 ± 4.83 57.03 ± 1.95 59.88 ± 1.82

KL-JS 100.00 ± 0.00 78.86 ± 0.11 80.11 ± 0.07 91.19 ± 2.78 56.87 ± 1.06 59.55 ± 1.08

Light-Extended
KL-KL 75.28 ± 8.37 69.35 ± 7.49 69.83 ± 7.11 38.72 ± 0.93 31.38 ± 3.63 33.57 ± 3.51

KL-JS 72.83 ± 2.72 72.55 ± 4.75 72.88 ± 4.47 36.22 ± 1.33 28.92 ± 3.04 31.51 ± 2.66

Extended
KL-KL 88.73 ± 7.97 82.37 ± 6.34 82.81 ± 5.48 69.90 ± 7.66 53.52 ± 3.98 55.38 ± 4.27

KL-JS 90.72 ± 2.33 78.00 ± 0.58 79.04 ± 0.47 85.78 ± 4.79 61.28 ± 2.71 63.76 ± 2.82

As shown in Table 3, in the Light scenario, KL-JS outperforms the baseline. The only exception
is in the full-capacity forget error, where KL-JS exhibits a marginally lower performance (0.34%);
however, this is negligible given that the baseline has twice the variance. The same pattern holds for
the Light-Dual case, where KL-JS has a 0.16% difference in the full-capacity scenario but nearly
four times lower variance. In the Moderate case, KL-JS clearly outperforms the baseline in the
Vanilla setup, but in the full-capacity scenario, direct comparison is not feasible. In the full capacity
case for Light-Broad, the KL−JS outperforming baseline is determined, and for Light-Extended
comparison is not feasible.

Our observations indicate that in the Vanilla case for Moderate (forgetting 500 samples) and Dual
up to Extended cases, the degradation in model performance is so severe that one could argue the
model has effectively lost its knowledge. This highlights a critical limitation of Scrub—widely
regarded as the best unlearning framework based on current literature—when the number of deleted
samples per class increases. This issue presents emerging challenges in the field, which are highly
relevant to real-world scenarios. A similar problem is also addressed in (Sekhari et al., 2021). Broad
and Extended cases in full capacity also suffer the same problem mentioned here. As you can see,
there is not a single case where KL−KL outperforms KL−JS with full confidence and not degraded
model.

5 CONCLUSION

As final conclusion, we introduced f-SCRUB, an extension of SCRUB that incorporates f-
divergences to improve the stability and effectiveness of machine unlearning. By leveraging JS
and χ2 divergences, our approach addresses the overshoot/undershoot problem inherent in existing
methods, leading to more reliable and controlled unlearning. Our extensive experiments demon-
strate that different divergence choices significantly impact forgetting accuracy, retention perfor-
mance, and model stability. Notably, JS divergence offers a more stable unlearning process. These
findings suggest that carefully selecting divergence metrics can substantially improve the trade-off
between forgetting and preserving essential model knowledge. Future work could explore robust-
ness evaluation and privacy implications of these divergences, particularly their effectiveness against
membership inference attacks (MIA).
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A RELATED WORKS

Two primary frameworks have emerged to address the challenge of unlearning: exact unlearning
(Cao & Yang, 2015) and approximate unlearning (Nguyen et al., 2020). Exact unlearning requires
retraining the model from scratch using only the remaining data, but this approach is computation-
ally expensive and impractical for large-scale models (Thudi et al., 2022). In contrast, approxi-
mate unlearning modifies the trained model to mimic the outcome of retraining on the remaining
dataset. The key challenge in approximate unlearning is to ensure that the modified model is in-
distinguishable from a retrained one, often necessitating theoretical guarantees on the quality of the
approximation (Guo et al., 2019).

Although much of the unlearning research has focused on convex models (Sekhari et al., 2021), the
non-convexity of deep neural networks complicates the process. As a result, effective unlearning
remains a challenge, with heuristics often producing varying results across different benchmarks,
making it difficult to ensure consistent reliability (Li et al., 2024).

(Hayes et al., 2024) highlight a significant challenge in fine-tuning-based unlearning methods,
known as the missing targets problem. When unlearning a data point x ∈ forget set, these meth-
ods typically apply gradient ascent on x and gradient descent on the retain set to preserve model
performance. However, gradient ascent can cause the loss on x to grow indefinitely if unchecked.
The desired outcome is to stop when the model’s loss on x matches the counterfactual loss (i.e., the
loss of a model trained only on the retain set). This presents two main issues: (a) the target loss is
unknown, and (b) the optimal stopping point may vary for different points in the forget set. As a
result, unlearning algorithms often ”undershoot” or ”overshoot” the target loss (Hayes et al., 2024).

This problem is further analyzed in the work of (Georgiev et al., 2024), which uses data modeling to
address these challenges. Our research seeks to extend SCRUB to overcome this issue by introduc-
ing a loss function that is naturally robust to overshooting and undershooting by employing various
f -divergences.

While f -divergences have been effective loss functions in various machine learning tasks (Aminian
et al., 2024; Roulet et al., 2025; Novello & Tonello, 2024; Wang et al., 2023), they have been
primarily used for validating machine unlearning processes. For example, Jensen-Shannon (JS)
divergence has been applied in the context of unlearning to validate the removal of data from models
(Bonato et al., 2025), (Jeon et al., 2024), (Rangel et al., 2024). Furthermore, there has been some
exploration of using f -divergences specifically for unlearning large language models (LLMs) (Wang
et al., 2024).

B MOTIVATIONS FOR JS DIVERGENCE AND χ2-DIVERGENCE

In this section, we study some motivations behind choosing JS divergence and χ2 divergence. These
information measures offer several advantages over KL divergence, particularly in applications in-
volving generative modeling and robust regularization.

JS divergence is widely used as a loss function in Generative Adversarial Networks (GANs) due
to its symmetric and bounded nature, which provides a stable measure of similarity between dis-
tributions (Goodfellow et al. (2014)). Unlike KL divergence, which can diverge to infinity when
the two distributions have disjoint supports, JS divergence remains finite and well-behaved, making
it particularly effective for comparing empirical distributions (Nowozin et al. (2016)). This prop-
erty is especially beneficial in our context, as it helps mitigate overshoot and undershoot problems,
particularly in scenarios where exact loss values for removed data points are unavailable.

On the other hand, χ2 divergence emphasizes large discrepancies due to its squared difference term,
making it particularly useful in outlier detection and robust learning frameworks (Reid & Williamson
(2009)). Regularizing with χ2 divergence can also help prevent models from becoming overly biased
toward majority classes by strongly penalizing large probability gaps (Duchi & Namkoong (2020)).
This property makes it particularly effective in imbalanced learning scenarios, where standard loss
functions may fail to capture significant disparities between class distributions.
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Thus, by leveraging JS divergence for stable probability comparisons and χ2 divergence for strong
regularization and outlier sensitivity, we can achieve a more robust and balanced learning framework
compared to using KL divergence alone.

Building on this, we modify our loss functions and introduce f -SCRUB, where we select different
f -divergences for the retain set and the forget set. Each divergence term, d(xr;w

u) and d(xf ;w
u),

can be chosen from JS, KL, or χ2 divergences (Nguyen et al. (2010)).

C SCENARIOS MOTIVATIONS

The motivation behind these scenarios is twofold. First, as the number of forgotten samples in-
creases, the impact on model performance in the retained set becomes more pronounced. Second, as
more classes are involved, the complexity of the forgetting process increases, making the problem
progressively more difficult.

An additional challenge arises in the evaluation phase: it becomes difficult to determine whether
degraded performance on the forgetting set is due to successful forgetting or simply because the
model is encountering previously unseen data. This ambiguity poses a fundamental challenge in
measuring the effectiveness of forgetting strategies.

D SIMULATION DETAILS

We consider two versions of the model. The first, which we call the vanilla model, was trained
on CIFAR-100 for 30 epochs and then fine-tuned on CIFAR-10 for another 30 epochs, achieving
an accuracy of 0.84. We refer to this as the vanilla original model. Notably, this model does not
operate at full capacity. Since we believe that the unlearning frameworks should be independent of
the original model’s training procedure, we also evaluate a full-capacity original model, which is a
Torchvision pre-trained model with a precision of 0.96.

For the unlearning process, we apply two different policies. In the first, we perform two epochs of
maximization, each followed by a minimization step, with an additional minimization step at the
end. In the second, we extend the process to five maximization steps, each followed by a minimiza-
tion step, concluding with five final minimization steps. Our simulations run on a single NVIDIA
RTX 4090 GPU. We use the PyTorch library for our experiments. To ensure simplicity and fair com-
parisons, we fix the retraining batch size at 64 and the forgetting batch size at 32. The remaining
parameters are the same as those used in SCRUB.

E OVERSHOOT/ UNDERSHOOT DISCUSSION

Another key aspect we aim to highlight is the impact of transitioning from a vanilla model to a
maximum-capacity model on the absolute values of loss functions. In the vanilla model, uncertainty
arises from the model’s inherent lack of confidence, introducing variance in the loss function values.
However, in more challenging unlearning scenarios, this uncertainty can significantly influence the
loss function. Even in simpler cases, such as removing 100 data points from six classes, changing the
model does not affect the variance of the loss function but does alter its bias. While KL divergence
is highly sensitive to individual data points (see figure 2), a similar effect can also be observed with
JS divergence (see figure 3).
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Figure 2: Comparing the effect of using a vanilla model (right) versus a maximum-capacity model
(left) for KL-KL.

Figure 3: Comparing the effect of using a vanilla model(right) versus a maximum-capacity model
(left) for KL-JS.

Additionally, we examine the impact of the number of training epochs on the loss function values at
each step. In more complex and challenging scenarios, KL divergence demonstrates high sensitivity
to individual data points, resulting in significant fluctuations when the algorithm is run for different
numbers of epochs. In contrast, JS divergence, due to its bounded nature, offers greater stability and
is less affected by such variations. As expected, increasing the number of training epochs shows
that the loss values remain more consistent and robust when using the JS loss function (see figure
4), whereas KL divergence exhibits greater variability (see figure 5).

Figure 4: This is the Extended scenario for KL-JS .
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Figure 5: This is the Extended scenario for KL-KL
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F COMBINATION OF LOSSES

You can observe all nine combinations of maximization-minimization losses. As seen in the results,
despite JS performing well as a maximization loss (as mentioned in Section 4), it fails to recover the
model when used as a minimization loss, as shown in Tab. 8 and Tab. 9. This failure is due to the
slow convergence of JS in minimization, making it unsuitable for this role.

Additionally, χ2 achieves the fastest recovery among all losses when used as a minimization loss,
particularly in the Complete scenario, where the entire class is forgotten.

Table 4: Results for various forgetting scenarios with combinations of KL × {KL, JS, χ2}, training
for five intermittent maximization-minimization steps followed by five minimization step

Scenario Loss
Vanilla Full capacity

Forget Error Retain Error Test Error Forget Error Retain Error Test Error

Complete
KL-KL 100.00 ± 0.00 80.16 ± 7.88 82.28 ± 7.10 100.00 ± 0.00 35.43 ± 4.89 43.11 ± 3.99

KL-JS 100.00 ± 0.00 81.16 ± 2.73 83.01 ± 2.47 100.00 ± 0.00 50.50 ± 0.75 56.34 ± 0.69

KL-X2 100.00 ± 0.00 77.47 ± 0.35 79.90 ± 0.40 100.00 ± 0.00 60.42 ± 6.74 64.80 ± 5.54

Light
KL-KL 25.33 ± 7.41 22.73 ± 0.93 26.92 ± 0.74 26.67 ± 4.92 8.93 ± 0.06 14.88 ± 0.05

KL-JS 25.33 ± 3.30 22.26 ± 0.36 26.43 ± 0.22 26.33 ± 2.25 8.80 ± 0.09 14.74 ± 0.13

KL-X2 93.67 ± 6.34 61.55 ± 6.08 62.49 ± 5.73 23.67 ± 5.25 52.48 ± 7.42 53.43 ± 7.31

Moderate
KL-KL 100.00 ± 0.00 72.51 ± 4.67 73.05 ± 4.55 33.80 ± 6.88 14.14 ± 1.54 18.64 ± 1.47

KL-JS 99.73 ± 0.19 60.09 ± 2.11 61.79 ± 1.90 39.53 ± 4.40 17.67 ± 0.33 21.68 ± 0.14

KL-X2 100.00 ± 0.00 79.32 ± 0.13 79.53 ± 0.20 23.20 ± 2.14 58.95 ± 2.19 59.42 ± 2.35

Light-Dual
KL-KL 30.67 ± 3.42 23.73 ± 0.21 27.83 ± 0.12 21.33 ± 3.32 10.25 ± 0.90 15.76 ± 0.42

KL-JS 29.50 ± 2.55 23.36 ± 0.10 27.50 ± 0.06 21.17 ± 0.82 9.41 ± 0.11 15.24 ± 0.06

KL-X2 100.00 ± 0.00 79.51 ± 0.11 79.68 ± 0.07 69.50 ± 19.63 62.66 ± 5.03 63.32 ± 4.88

Dual
KL-KL 100.00 ± 0.00 79.05 ± 0.15 79.59 ± 0.21 35.40 ± 1.68 22.96 ± 0.27 26.27 ± 0.09

KL-JS 100.00 ± 0.00 79.01 ± 0.12 79.56 ± 0.09 49.83 ± 1.49 31.97 ± 0.40 34.23 ± 0.40

KL-X2 100.00 ± 0.00 79.40 ± 0.17 79.99 ± 0.16 95.37 ± 6.55 66.50 ± 3.81 67.51 ± 4.13

Light-Broad
KL-KL 83.33 ± 8.68 66.17 ± 9.32 67.05 ± 8.67 39.00 ± 0.99 24.07 ± 1.04 27.36 ± 1.01

KL-JS 63.47 ± 4.74 56.33 ± 3.69 57.84 ± 3.25 40.60 ± 1.50 23.70 ± 0.30 26.89 ± 0.18

KL-X2 85.73 ± 5.20 79.75 ± 0.07 79.90 ± 0.12 61.53 ± 8.42 55.83 ± 8.48 56.49 ± 8.38

Broad
KL-KL 95.01 ± 7.02 73.05 ± 4.30 74.36 ± 3.71 91.96 ± 4.83 57.03 ± 1.95 59.88 ± 1.82

KL-JS 100.00 ± 0.00 78.86 ± 0.11 80.11 ± 0.07 91.19 ± 2.78 56.87 ± 1.06 59.55 ± 1.08

KL-X2 100.00 ± 0.00 79.04 ± 0.05 80.39 ± 0.10 97.15 ± 0.20 59.39 ± 0.44 62.28 ± 0.45

Light-Extended
KL-KL 75.28 ± 8.37 69.35 ± 7.49 69.83 ± 7.11 38.72 ± 0.93 31.38 ± 3.63 33.57 ± 3.51

KL-JS 72.83 ± 2.72 72.55 ± 4.75 72.88 ± 4.47 36.22 ± 1.33 28.92 ± 3.04 31.51 ± 2.66

KL-X2 73.56 ± 8.14 79.72 ± 0.06 79.67 ± 0.07 62.72 ± 3.48 56.46 ± 6.08 56.96 ± 5.98

Extended
KL-KL 88.73 ± 7.97 82.37 ± 6.34 82.81 ± 5.48 69.90 ± 7.66 53.52 ± 3.98 55.38 ± 4.27

KL-JS 90.72 ± 2.33 78.00 ± 0.58 79.04 ± 0.47 85.78 ± 4.79 61.28 ± 2.71 63.76 ± 2.82

KL-X2 90.93 ± 6.67 78.61 ± 0.33 79.71 ± 0.74 83.67 ± 1.02 65.53 ± 3.86 67.32 ± 3.40
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Table 5: Results for various forgetting scenarios with combinations of X2 × {KL, JS, χ2}, training
for five intermittent maximization-minimization steps followed by five minimization step

Scenario Loss
Vanilla Full capacity

Forget Error Retain Error Test Error Forget Error Retain Error Test Error

Complete
X2-KL 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00

X2-JS 100.00 ± 0.00 62.53 ± 3.83 66.77 ± 3.33 100.00 ± 0.00 27.09 ± 1.20 36.54 ± 1.06

X2-X2 100.00 ± 0.00 62.23 ± 8.57 66.57 ± 7.58 100.00 ± 0.00 26.17 ± 3.16 35.24 ± 2.17

Light
X2-KL 46.33 ± 6.13 15.98 ± 0.21 22.23 ± 0.55 26.67 ± 6.18 5.37 ± 0.02 13.00 ± 0.13

X2-JS 44.00 ± 0.71 15.94 ± 0.13 22.30 ± 0.09 23.33 ± 3.52 5.45 ± 0.08 12.83 ± 0.06

X2-X2 41.67 ± 3.86 16.10 ± 0.55 21.85 ± 0.74 33.00 ± 6.48 12.28 ± 2.90 17.71 ± 2.54

Moderate
X2-KL 54.13 ± 5.73 34.06 ± 5.52 37.56 ± 4.73 38.20 ± 4.85 12.04 ± 1.81 17.72 ± 1.76

X2-JS 54.00 ± 0.96 23.81 ± 1.38 28.35 ± 1.27 38.13 ± 0.62 11.91 ± 0.50 17.45 ± 0.53

X2-X2 90.80 ± 7.95 59.75 ± 12.12 60.75 ± 11.42 46.00 ± 2.41 31.97 ± 0.80 33.66 ± 0.07

Light-Dual
X2-KL 30.67 ± 1.65 16.42 ± 0.68 22.28 ± 0.16 17.33 ± 0.62 5.57 ± 0.15 12.94 ± 0.13

X2-JS 28.83 ± 0.85 16.03 ± 0.23 22.36 ± 0.06 19.50 ± 1.95 5.72 ± 0.07 12.64 ± 0.10

X2-X2 38.50 ± 2.55 32.66 ± 1.97 35.31 ± 2.16 33.17 ± 4.11 22.08 ± 0.64 25.35 ± 0.48

Dual
X2-KL 63.33 ± 11.34 42.98 ± 3.61 45.10 ± 3.45 33.97 ± 3.41 19.74 ± 1.10 23.48 ± 0.91

X2-JS 46.47 ± 0.65 35.37 ± 0.32 38.04 ± 0.21 35.30 ± 0.90 20.81 ± 0.22 24.37 ± 0.31

X2-X2 85.43 ± 3.16 52.51 ± 2.74 54.22 ± 2.72 43.50 ± 2.06 33.92 ± 1.33 35.60 ± 0.40

Light-Broad
X2-KL 39.53 ± 4.03 30.48 ± 1.76 34.44 ± 1.42 27.93 ± 1.89 15.17 ± 0.34 19.61 ± 0.20

X2-JS 36.87 ± 1.35 23.50 ± 1.77 27.78 ± 1.84 26.20 ± 0.98 15.37 ± 0.31 20.10 ± 0.17

X2-X2 63.60 ± 8.67 61.97 ± 11.29 62.95 ± 10.62 39.80 ± 2.57 32.96 ± 0.97 34.67 ± 0.69

Broad
X2-KL 93.25 ± 9.54 89.78 ± 0.64 90.00 ± 0.00 43.11 ± 0.52 32.21 ± 1.23 34.41 ± 1.42

X2-JS 85.09 ± 4.92 58.94 ± 5.41 61.41 ± 5.27 42.79 ± 1.22 31.08 ± 0.91 33.24 ± 0.63

X2-X2 85.89 ± 9.87 61.38 ± 10.69 63.32 ± 10.43 52.47 ± 4.26 39.31 ± 3.36 40.99 ± 3.15

Light-Extended
X2-KL 35.89 ± 1.13 30.55 ± 1.23 33.67 ± 1.53 26.44 ± 2.11 18.38 ± 1.79 22.18 ± 1.42

X2-JS 31.56 ± 1.84 25.98 ± 2.19 29.83 ± 1.96 25.17 ± 1.80 17.33 ± 0.47 21.60 ± 0.47

X2-X2 66.72 ± 5.76 61.25 ± 11.68 62.04 ± 11.30 38.22 ± 0.97 34.15 ± 1.59 35.52 ± 1.51

Extended
X2-KL 88.53 ± 8.11 90.12 ± 0.66 90.00 ± 0.00 41.58 ± 3.49 36.53 ± 1.98 38.38 ± 1.84

X2-JS 79.46 ± 5.20 63.20 ± 5.01 64.82 ± 4.90 40.32 ± 0.75 34.71 ± 0.40 36.69 ± 0.25

X2-X2 78.97 ± 9.45 66.78 ± 8.25 67.93 ± 8.16 48.22 ± 2.70 40.94 ± 1.88 42.45 ± 1.67
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Table 6: Results for various forgetting scenarios with combinations of KL × {KL, JS, χ2}, training
for two intermittent maximization-minimization steps followed by one minimization step

Scenario Loss
Vanilla Full capacity

Forget Error Retain Error Test Error Forget Error Retain Error Test Error

Complete
KL-KL 100.00 ± 0.00 77.55 ± 1.19 79.94 ± 1.18 100.00 ± 0.00 45.20 ± 5.46 51.12 ± 4.71

KL-JS 100.00 ± 0.00 78.21 ± 0.62 80.59 ± 0.47 100.00 ± 0.00 62.91 ± 2.45 66.92 ± 2.19

KL-X2 100.00 ± 0.00 72.05 ± 3.48 75.04 ± 3.12 100.00 ± 0.00 45.95 ± 6.20 51.86 ± 5.49

Light
KL-KL 31.67 ± 18.93 43.00 ± 6.90 44.04 ± 6.57 39.67 ± 7.36 31.89 ± 4.13 33.21 ± 4.09

KL-JS 49.33 ± 10.44 41.91 ± 1.79 42.91 ± 1.68 38.33 ± 9.88 36.25 ± 2.95 37.56 ± 2.84

KL-X2 51.33 ± 34.50 53.07 ± 9.10 54.26 ± 8.87 40.67 ± 28.43 53.63 ± 6.91 53.76 ± 6.50

Moderate
KL-KL 100.00 ± 0.00 68.01 ± 2.65 68.62 ± 2.53 48.53 ± 12.28 33.64 ± 3.20 34.80 ± 3.42

KL-JS 96.47 ± 2.43 58.93 ± 2.22 59.79 ± 2.31 61.33 ± 3.85 37.43 ± 0.44 38.72 ± 0.36

KL-X2 91.93 ± 11.41 62.94 ± 3.06 64.00 ± 3.24 50.07 ± 29.95 51.18 ± 2.08 51.60 ± 2.39

Light-Dual
KL-KL 42.67 ± 3.47 40.27 ± 3.66 41.42 ± 3.31 45.67 ± 14.49 32.11 ± 1.31 33.50 ± 1.20

KL-JS 56.33 ± 6.41 43.07 ± 3.52 44.48 ± 3.35 40.67 ± 9.42 27.14 ± 0.94 28.80 ± 0.85

KL-X2 76.50 ± 25.49 63.89 ± 2.64 63.89 ± 2.46 53.50 ± 10.59 40.75 ± 1.69 41.46 ± 1.53

Dual
KL-KL 92.67 ± 10.37 70.34 ± 2.30 71.01 ± 2.16 53.37 ± 3.63 43.20 ± 5.44 44.13 ± 5.22

KL-JS 98.47 ± 0.47 63.95 ± 1.05 65.37 ± 1.09 59.13 ± 4.05 46.13 ± 1.88 47.03 ± 1.78

KL-X2 99.67 ± 0.25 64.60 ± 1.23 65.92 ± 1.29 53.67 ± 18.54 47.39 ± 5.92 47.58 ± 5.75

Light-Broad
KL-KL 83.47 ± 17.46 72.70 ± 7.64 72.96 ± 7.43 48.73 ± 7.27 41.61 ± 4.02 42.72 ± 3.60

KL-JS 63.60 ± 7.33 53.38 ± 1.67 54.39 ± 1.61 57.20 ± 5.26 45.47 ± 4.99 46.29 ± 4.94

KL-X2 84.67 ± 6.37 62.55 ± 2.70 63.27 ± 2.34 56.40 ± 7.07 45.07 ± 1.12 45.52 ± 1.21

Broad
KL-KL 91.97 ± 6.39 76.55 ± 0.72 77.73 ± 0.89 77.41 ± 6.55 55.09 ± 2.11 57.09 ± 2.25

KL-JS 99.71 ± 0.03 74.07 ± 1.65 75.58 ± 1.57 96.64 ± 0.57 64.67 ± 0.83 67.00 ± 0.89

KL-X2 98.57 ± 0.21 65.06 ± 1.75 67.45 ± 1.82 70.32 ± 4.38 48.58 ± 4.86 50.71 ± 4.76

Light-Extended
KL-KL 67.39 ± 6.26 71.70 ± 3.61 71.94 ± 3.42 56.33 ± 4.40 46.86 ± 2.39 47.48 ± 2.36

KL-JS 60.83 ± 2.89 59.07 ± 1.42 59.71 ± 1.52 52.11 ± 4.27 42.78 ± 3.38 43.78 ± 3.48

KL-X2 65.61 ± 8.09 63.10 ± 1.55 63.39 ± 1.86 67.06 ± 5.55 52.29 ± 3.94 53.13 ± 4.37

Extended
KL-KL 85.48 ± 4.57 78.94 ± 2.42 79.28 ± 1.97 56.22 ± 4.86 51.84 ± 6.76 52.37 ± 6.73

KL-JS 84.60 ± 0.74 83.78 ± 1.81 83.76 ± 1.62 82.47 ± 0.44 63.35 ± 0.64 64.97 ± 0.53

KL-X2 83.17 ± 0.28 66.09 ± 3.80 67.56 ± 3.28 50.01 ± 2.81 38.88 ± 2.09 40.56 ± 2.00
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Table 7: Results for various forgetting scenarios with combinations of X2 × {KL, JS, χ2}, training
for two intermittent maximization-minimization steps followed by one minimization step

Scenario Loss
Vanilla Full capacity

Forget Error Retain Error Test Error Forget Error Retain Error Test Error

Complete
X2-KL 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 86.33 ± 3.62 87.75 ± 3.18

X2-JS 100.00 ± 0.00 63.07 ± 3.46 66.47 ± 3.00 100.00 ± 0.00 51.08 ± 2.18 56.02 ± 1.92

X2-X2 100.00 ± 0.00 58.40 ± 6.60 62.45 ± 5.57 100.00 ± 0.00 39.70 ± 1.70 46.70 ± 0.91

Light
X2-KL 44.33 ± 9.98 36.20 ± 3.36 37.89 ± 3.11 38.67 ± 9.57 34.39 ± 3.69 35.67 ± 3.60

X2-JS 61.33 ± 4.55 33.61 ± 1.43 35.74 ± 1.19 43.67 ± 5.98 27.83 ± 2.06 29.66 ± 2.01

X2-X2 57.00 ± 15.58 36.07 ± 2.67 37.77 ± 2.75 53.33 ± 23.61 41.59 ± 5.38 42.72 ± 5.19

Moderate
X2-KL 58.67 ± 12.27 52.55 ± 0.67 53.54 ± 0.98 62.40 ± 20.81 35.67 ± 2.15 36.65 ± 1.93

X2-JS 69.93 ± 6.06 40.06 ± 2.33 41.54 ± 2.25 44.67 ± 4.61 34.09 ± 0.87 35.35 ± 1.01

X2-X2 80.00 ± 25.64 61.79 ± 3.19 62.35 ± 3.82 75.33 ± 14.63 39.86 ± 3.04 41.10 ± 3.29

Light-Dual
X2-KL 46.00 ± 8.38 34.19 ± 0.54 35.65 ± 0.43 31.17 ± 2.25 26.47 ± 2.56 28.31 ± 2.00

X2-JS 52.67 ± 2.16 34.59 ± 0.83 36.07 ± 0.87 35.67 ± 5.29 29.32 ± 0.75 31.17 ± 0.95

X2-X2 57.83 ± 2.32 48.63 ± 2.84 49.13 ± 2.94 54.67 ± 5.86 40.80 ± 2.72 41.57 ± 2.55

Dual
X2-KL 74.10 ± 18.43 56.80 ± 5.25 57.86 ± 5.70 50.53 ± 10.09 35.80 ± 1.45 37.19 ± 1.13

X2-JS 64.03 ± 3.91 50.41 ± 1.72 51.74 ± 1.86 60.07 ± 3.57 39.35 ± 1.05 41.12 ± 1.10

X2-X2 73.53 ± 14.56 55.17 ± 0.34 56.17 ± 0.45 51.90 ± 5.02 37.52 ± 1.76 38.17 ± 1.26

Light-Broad
X2-KL 57.87 ± 10.40 46.19 ± 1.23 46.89 ± 1.62 42.53 ± 1.75 35.37 ± 3.15 36.42 ± 3.25

X2-JS 46.07 ± 2.44 39.91 ± 1.61 41.33 ± 1.61 42.87 ± 1.02 34.19 ± 1.25 35.37 ± 1.12

X2-X2 68.13 ± 8.87 58.01 ± 1.77 58.35 ± 1.87 48.73 ± 6.33 38.72 ± 2.97 39.97 ± 2.74

Broad
X2-KL 91.56 ± 10.88 75.24 ± 9.29 76.00 ± 9.58 61.04 ± 10.69 48.67 ± 3.77 49.74 ± 3.71

X2-JS 90.08 ± 2.97 65.12 ± 5.44 67.07 ± 5.09 59.15 ± 2.09 44.54 ± 1.15 45.47 ± 1.03

X2-X2 84.96 ± 3.63 64.25 ± 5.55 65.74 ± 5.52 57.33 ± 2.20 41.69 ± 4.69 43.40 ± 4.33

Light-Extended
X2-KL 56.22 ± 2.15 51.74 ± 3.02 52.35 ± 2.45 47.83 ± 8.45 38.26 ± 4.47 39.32 ± 4.37

X2-JS 50.33 ± 2.29 44.41 ± 0.35 45.79 ± 0.55 47.44 ± 3.89 38.02 ± 1.53 39.33 ± 1.49

X2-X2 59.17 ± 7.27 54.56 ± 2.18 55.06 ± 2.50 43.78 ± 10.07 37.88 ± 5.24 38.78 ± 5.06

Extended
X2-KL 88.53 ± 8.11 90.12 ± 0.66 90.00 ± 0.00 52.09 ± 4.50 48.34 ± 2.06 49.22 ± 1.34

X2-JS 77.87 ± 2.54 64.95 ± 1.88 66.10 ± 1.71 52.59 ± 0.78 48.79 ± 2.12 49.33 ± 1.76

X2-X2 69.67 ± 8.76 59.50 ± 1.08 60.52 ± 0.59 48.37 ± 2.61 42.39 ± 1.33 43.53 ± 1.12
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Table 8: Results for various forgetting scenarios with combinations of JS × {KL, JS, χ2}, training
for two intermittent maximization-minimization steps followed by one minimization step

Scenario Loss
Vanilla Full capacity

Forget Error Retain Error Test Error Forget Error Retain Error Test Error

Complete
JS-KL 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00

JS-JS 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 83.52 ± 0.61 85.11 ± 0.48

JS-X2 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 62.96 ± 1.38 66.90 ± 1.29

Light
JS-KL 100.00 ± 0.00 86.97 ± 4.24 86.99 ± 4.25 22.33 ± 12.50 49.96 ± 1.50 49.80 ± 1.94

JS-JS 100.00 ± 0.00 87.43 ± 1.80 87.46 ± 1.80 47.33 ± 18.66 51.24 ± 1.16 51.41 ± 1.27

JS-X2 100.00 ± 0.00 87.25 ± 3.86 87.26 ± 3.87 34.00 ± 25.92 70.34 ± 0.21 70.39 ± 0.22

Moderate
JS-KL 100.00 ± 0.00 89.87 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 67.40 ± 3.82 68.05 ± 3.76

JS-JS 100.00 ± 0.00 89.87 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 63.89 ± 3.67 64.42 ± 3.54

JS-X2 100.00 ± 0.00 89.87 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 68.65 ± 7.96 69.03 ± 7.67

Light-Dual
JS-KL 100.00 ± 0.00 89.95 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 54.14 ± 1.56 54.64 ± 1.42

JS-JS 100.00 ± 0.00 87.37 ± 1.83 87.42 ± 1.82 100.00 ± 0.00 55.16 ± 1.00 55.75 ± 0.87

JS-X2 100.00 ± 0.00 89.95 ± 0.00 90.00 ± 0.00 78.50 ± 15.51 67.78 ± 2.55 68.00 ± 2.87

Dual
JS-KL 87.93 ± 17.06 78.98 ± 7.63 79.46 ± 7.49 100.00 ± 0.00 70.08 ± 2.01 71.14 ± 1.90

JS-JS 100.00 ± 0.00 89.74 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 65.94 ± 2.08 67.28 ± 2.09

JS-X2 100.00 ± 0.00 89.74 ± 0.00 90.00 ± 0.00 84.83 ± 15.23 63.96 ± 2.33 64.64 ± 1.92

Light-Broad
JS-KL 87.87 ± 8.62 90.03 ± 0.11 90.00 ± 0.00 88.33 ± 8.30 64.28 ± 3.17 64.58 ± 3.17

JS-JS 87.87 ± 4.31 90.03 ± 0.05 90.00 ± 0.00 100.00 ± 0.00 69.33 ± 1.80 70.02 ± 1.81

JS-X2 87.87 ± 8.62 90.03 ± 0.11 90.00 ± 0.00 98.60 ± 1.34 68.04 ± 4.38 68.67 ± 4.18

Broad
JS-KL 92.47 ± 7.54 83.75 ± 4.54 84.16 ± 4.43 98.29 ± 2.41 81.43 ± 5.62 82.52 ± 5.33

JS-JS 93.44 ± 4.64 89.77 ± 0.31 90.00 ± 0.00 100.00 ± 0.00 82.99 ± 1.30 84.01 ± 1.18

JS-X2 93.44 ± 9.28 89.77 ± 0.62 90.00 ± 0.00 96.93 ± 4.34 65.81 ± 3.63 67.79 ± 3.58

Light-Extended
JS-KL 83.67 ± 0.59 88.36 ± 2.47 88.24 ± 2.49 76.89 ± 6.14 66.25 ± 3.35 66.41 ± 3.25

JS-JS 83.67 ± 0.30 90.10 ± 0.00 90.00 ± 0.00 83.78 ± 6.72 68.84 ± 2.02 68.92 ± 2.14

JS-X2 83.67 ± 0.59 90.10 ± 0.01 90.00 ± 0.00 89.06 ± 4.42 65.90 ± 2.81 66.25 ± 2.64

Extended
JS-KL 88.53 ± 8.11 90.12 ± 0.66 90.00 ± 0.00 100.00 ± 0.00 89.19 ± 0.00 90.00 ± 0.00

JS-JS 89.14 ± 3.84 90.07 ± 0.31 90.00 ± 0.00 100.00 ± 0.00 89.19 ± 0.00 90.00 ± 0.00

JS-X2 89.14 ± 7.68 90.07 ± 0.62 90.00 ± 0.00 87.23 ± 3.62 61.72 ± 4.15 63.73 ± 4.13
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Table 9: Results for various forgetting scenarios with combinations of JS × {KL, JS, χ2}, training
for five intermittent maximization-minimization steps followed by five minimization step

Scenario Loss
Vanilla Full capacity

Forget Error Retain Error Test Error Forget Error Retain Error Test Error

Complete
JS-KL 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00

JS-JS 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00

JS-X2 100.00 ± 0.00 88.89 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 78.91 ± 0.03 81.06 ± 0.10

Light
JS-KL 100.00 ± 0.00 89.97 ± 0.00 90.00 ± 0.00 69.67 ± 42.90 41.49 ± 3.65 42.65 ± 3.66

JS-JS 100.00 ± 0.00 89.97 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 44.16 ± 0.05 45.32 ± 0.11

JS-X2 100.00 ± 0.00 89.97 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 81.51 ± 0.86 81.64 ± 0.88

Moderate
JS-KL 100.00 ± 0.00 89.87 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 55.69 ± 4.23 56.99 ± 4.38

JS-JS 100.00 ± 0.00 89.87 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 52.38 ± 0.07 53.68 ± 0.08

JS-X2 100.00 ± 0.00 89.87 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 78.02 ± 3.92 78.43 ± 3.54

Light-Dual
JS-KL 100.00 ± 0.00 89.95 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 44.44 ± 0.14 45.78 ± 0.14

JS-JS 100.00 ± 0.00 89.95 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 44.29 ± 0.01 45.63 ± 0.14

JS-X2 100.00 ± 0.00 89.95 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 80.90 ± 0.06 80.96 ± 0.15

Dual
JS-KL 91.70 ± 11.74 86.36 ± 4.78 86.56 ± 4.86 100.00 ± 0.00 74.10 ± 4.11 74.88 ± 3.93

JS-JS 100.00 ± 0.00 89.74 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 58.74 ± 1.86 60.03 ± 1.76

JS-X2 100.00 ± 0.00 89.74 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 80.43 ± 0.08 80.94 ± 0.05

Light-Broad
JS-KL 81.53 ± 0.90 90.11 ± 0.01 90.00 ± 0.00 100.00 ± 0.00 79.19 ± 8.04 79.49 ± 7.86

JS-JS 81.53 ± 0.45 90.11 ± 0.01 90.00 ± 0.00 100.00 ± 0.00 69.14 ± 2.54 69.69 ± 2.40

JS-X2 81.53 ± 0.90 90.11 ± 0.01 90.00 ± 0.00 100.00 ± 0.00 78.00 ± 3.82 78.24 ± 3.82

Broad
JS-KL 93.25 ± 9.54 89.78 ± 0.64 90.00 ± 0.00 100.00 ± 0.00 89.33 ± 0.00 90.00 ± 0.00

JS-JS 93.44 ± 4.64 89.77 ± 0.31 90.00 ± 0.00 100.00 ± 0.00 89.33 ± 0.00 90.00 ± 0.00

JS-X2 100.00 ± 0.00 89.33 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 79.68 ± 0.06 80.96 ± 0.14

Light-Extended
JS-KL 83.67 ± 0.59 90.10 ± 0.01 90.00 ± 0.00 100.00 ± 0.00 79.59 ± 2.91 79.87 ± 2.80

JS-JS 83.67 ± 0.30 90.10 ± 0.00 90.00 ± 0.00 91.11 ± 3.28 79.28 ± 2.29 79.42 ± 2.19

JS-X2 83.67 ± 0.59 90.10 ± 0.01 90.00 ± 0.00 90.50 ± 6.72 81.15 ± 6.99 81.27 ± 6.91

Extended
JS-KL 88.53 ± 8.11 90.12 ± 0.66 90.00 ± 0.00 100.00 ± 0.00 89.19 ± 0.00 90.00 ± 0.00

JS-JS 94.71 ± 3.74 89.62 ± 0.30 90.00 ± 0.00 100.00 ± 0.00 89.19 ± 0.00 90.00 ± 0.00

JS-X2 100.00 ± 0.00 89.19 ± 0.00 90.00 ± 0.00 100.00 ± 0.00 84.04 ± 3.68 85.16 ± 3.46
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