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Abstract001

Large Language Models (LLMs) often exhibit002
misaligned confidence scores, usually over-003
estimating the reliability of their predictions.004
While verbalized confidence in Large Lan-005
guage Models (LLMs) has gained attention,006
prior work remains divided on whether con-007
fidence scores can be systematically steered008
through prompting. Recent studies even ar-009
gue that such prompt-induced confidence shifts010
are negligible, suggesting LLMs’ confidence011
calibration is rigid to linguistic interventions.012
Contrary to these claims, we first rigorously013
confirm the existence of directional confi-014
dence shifts by probing three models (including015
GPT3.5, LLAMA3-70b, GPT4) across 7 bench-016
marks, demonstrating that explicit instructions017
can inflate or deflate confidence scores in a reg-018
ulated manner. Based on this observation, we019
propose a novel framework containing three020
components: confidence steering, steered con-021
fidence aggregation and steered answers selec-022
tion, named SteeringConf. Our method, Steer-023
ingConf, leverages a confidence manipulation024
mechanism to steer the confidence scores of025
LLMs in several desired directions, followed026
by a summarization module that aggregates the027
steered confidence scores to produce a final pre-028
diction. We evaluate our method on 7 bench-029
marks and it consistently outperforms the base-030
lines in terms of calibration metrics in task of031
confidence calibration and failure detection.032

1 Introduction033

Large Language Models (LLMs) have revolution-034

ized artificial intelligence by achieving remarkable035

performance across diverse tasks, from text genera-036

tion to complex reasoning (Brown et al., 2020; Wei037

et al., 2022; Petroni et al., 2019). However, their038

practical deployment faces a critical challenge: mis-039

aligned confidence calibration (Jiang et al., 2021;040

Lin et al., 2022; Shrivastava et al., 2023). LLMs of-041

ten produce overconfident predictions (Xiong et al.,042

2023; Tian et al., 2023) that do not reflect their true043

likelihood of being correct, raising concerns about 044

their reliability in high-stakes applications such as 045

healthcare (Bedi et al., 2024; Savage et al., 2024), 046

legal analysis (Guha et al., 2023), and autonomous 047

systems (Chen et al., 2024; Wang et al., 2024). 048

While prior work has explored verbalized confi- 049

dence—probing LLMs to self-assess their predic- 050

tion certainty (Xiong et al., 2023; Tian et al., 2023), 051

the field remains divided on two pivotal questions: 052

Can linguistic interventions, such as prompting, 053

systematically steer an LLM’s confidence scores 054

in a controlled manner? And if confidence scores 055

can be steered, can we utilize this steering to get a 056

better calibrated confidence? 057

Recent studies (Xiong et al., 2023) argue that 058

prompt-induced confidence shifts are negligible, 059

positing that LLMs’ calibration is inherently rigid 060

and resistant to linguistic steering. This perspective, 061

however, conflicts with our observations as shown 062

in Figure 1. To resolve this contradiction, we con- 063

duct a rigorous empirical investigation on seven 064

benchmarks in Section 6. Our experiments sys- 065

tematically confirm that explicit instructions (e.g., 066

“Be very cautious” or “Be very confident”) induce 067

directional confidence shifts, while mild instruc- 068

tions (e.g., “Be cautious” or “Be confident”) can 069

not induce desired confidence shifts. This finding 070

challenges the prevailing assumption of calibration 071

rigidity and opens new avenues for improving LLM 072

trustworthiness. 073

Building on this insight, we propose Steering- 074

Conf, a novel framework for dynamic confidence 075

calibration. SteeringConf comprises three compo- 076

nents: (1) a confidence steering mechanism that 077

steers LLM confidence in specified directions (e.g., 078

conservative or optimistic calibration) through tai- 079

lored prompts, (2) an aggregation module that ag- 080

gregates multiple steered confidences to produce 081

a final, better-calibrated output based on the con- 082

sistency of multiple steered answers and associ- 083

ated confidences, (3) and an selection criteria to 084
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(a) Vanilla Verbalized Confidence (b) Verbalized Confidence Steered to be very cautious

Figure 1: The comparison between vanilla verbalized confidence and very cautious Prompt Steered Confidence
on Object Counting Dataset with GPT-3.5 as LLM. One can see that vanilla verbalized confidence has an extreme
overconfidence issue, while our very cautious prompt successfully steered confidence to a better calibrated distribu-
tion. Moreover, the calibration performance of steered confidence method is much better than vanilla version: 29%
improvement over AUROC and 16% improvement over ECE.

choose the steered answer associated with best con-085

fidence in align with previous calibrated confidence.086

Evaluated across seven benchmarks spanning pro-087

fessional knowledge, common-sense, ethics, and088

reasoning tasks and combined with three state-of-089

the-art models (GPT-3.5, LLaMA 3, GPT-4) , Steer-090

ingConf consistently outperforms existing calibra-091

tion methods in both confidence calibration, e.g.,092

reducing Expected Calibration Error (ECE) by up093

to 39.8%, and failure detection, e.g., improving094

AUROC by 33.9%.095

2 Related Work096

Confidence from External Knowledge This097

paradigm leverages external knowledge through098

model-agnostic approaches: Proxy models em-099

ploy lightweight neural networks trained on syn-100

thetic Q/A/confidence datasets (Tsai et al., 2024)101

or model internal states (Mielke et al., 2022),102

though constrained by training data limitations.103

Human feedback mechanisms demonstrate relia-104

bility through self-repair systems (Giulianelli et al.,105

2023) but face scalability challenges. Knowledge106

tool integration combines search engines and code107

interpreters (Gou et al., 2023; Chern et al., 2023)108

at a significant computational cost.109

Confidence from Logits This method exploits110

model-specific internal computations. Logit-111

based methods aggregate token probabilities either112

through full-sequence likelihood (Jiang et al., 2021;113

Si et al., 2022) or answer-specific token selection114

(Ye et al., 2024), fundamentally limited by seman-115

tic disconnection between token probabilities and 116

high-level uncertainty (Kuhn et al., 2022; Wang 117

and Holmes, 2024; Lin et al., 2022). And the align- 118

ment procedure (OpenAI, 2024) could also ruin the 119

quality of logits for calibration (Tian et al., 2023). 120

Verbalized Confidence This approach directly 121

queries the LLM to self-assess and articulate its 122

confidence through natural language expressions. 123

This method is model-agnostic, requiring only 124

black-box access to the LLM while maintaining 125

low computational overhead (constant token ex- 126

pansion). Current implementations primarily mea- 127

sure confidence in factual correctness (Tian et al., 128

2023; Chen and Mueller, 2023), explanation confi- 129

dence (Kadavath et al., 2022; Tanneru et al., 2023). 130

Recent explorations also investigate calibrating lin- 131

guistic uncertainty markers (e.g., “probably” vs 132

“certainly”) (Mielke et al., 2022; Zhou et al., 2023). 133

(Xiong et al., 2023) summarize a unified frame- 134

work considering sample consistency, which are 135

most close to our method. 136

3 Preliminary 137

3.1 Large Language Models with Prompting 138

We formally define a large language model (LLM) 139

as a generative function M : X → X , where X de- 140

notes the text space encompassing all possible tex- 141

tual inputs and outputs. The prompting mechanism 142

P : X → X operates as a template transformation 143

function that maps an original input x ∈ X to an 144

instruction-augmented prompt. This process en- 145

ables explicit guidance of model behavior through 146
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carefully engineered input formulations.147

One general generation pipeline of LLM to148

tackle the task comprises three key components:149

1. Prompt Engineering: Application of P to cre-150

ate task-specific input prompts.151

2. Text Generation: Execution of large language152

model M to produce textual outputs.153

3. Information Extraction: Implementation of154

readout function R : X → Y that maps gen-155

erated text to structured predictions in output156

space Y .157

The composite prediction function can be ex-158

pressed as:159

f = R ◦M ◦ P : X → Y, (1)160

where ◦ denotes function composition. Notably,161

readout functions typically employ rule-based162

methods (e.g., regular expressions) and demon-163

strate task-specific dependence on prompting strate-164

gies.165

3.2 Verbalized Confidence166

Confidences are quantitative measurement of the167

reliability and uncertainty of predictions made by168

LLMs. If the confidence score is close to 1, it indi-169

cates that the model is confident in its prediction,170

while a confidence score close to 0 indicates that171

the model is uncertain about its prediction. There172

are various ways to compute confidence scores;173

we focus on the verbalized confidence score by174

the LLMs (Xiong et al., 2023; Tian et al., 2023).175

To elicit the confidence score from the LLM, we176

first change the prompting template function P177

to Pconf that asks the LLM to output the predic-178

tion and the confidence score. Then we change179

the readout function R to Rconf that extracts out-180

put text of LLM M and returns two values: the181

prediction and the confidence score. The predic-182

tion and the confidence score can be denoted as183 (
f(x), c(x)

)
= Rconf ◦M ◦ Pconf(x), where c(x)184

is the confidence score of the prediction f(x).185

4 Method186

Building upon the unified framework for verbal-187

ized confidence elicitation proposed in (Xiong188

et al., 2023), which comprises Prompting, Sam-189

pling and Aggregation phases, we present Steering-190

Conf - a calibrated confidence estimation frame-191

work through systematic prompt steering. Our192

key insight stems from the observation that LLM 193

confidence scores exhibit directional sensitivity to 194

semantic perturbations in prompting. This moti- 195

vates our three-stage approach: 1) confidence steer- 196

ing through semantic prompt variations that com- 197

bines the Prompting and Sampling phases. 2) ag- 198

gregation of steered confidence. 3) selection of 199

steered answer. This tribal-phase architecture en- 200

ables both fine-grained confidence adjustment and 201

robust uncertainty quantification. The overview of 202

our method is summarized in Figure 2. 203

4.1 Confidence Steering 204

The steering mechanism begins with constructing 205

a symmetric prompt set. We first define a set of 206

K steering prompts {P−K
conf , P−K+1

conf , . . .,P 0
conf, . . ., 207

PK−1
conf , PK

conf}, where steering magnitude K ∈ Z+ 208

controls the perturbation intensity. Each prompt 209

P k
conf embeds distinct confidence directives from 210

a specified spectrum. In our implementation, we 211

apply a simple but effective steering magnitude 212

setting K = 2 as a moderate granularity, denoted 213

as {very cautious, cautious, vanilla, confident, very 214

confident }. 215

Given an input text x, we apply the steering 216

prompt set {P k
conf}Kk=−K to the LLM, generating 217

2K + 1 prediction-confidence pairs. Formally, we 218

obtain {fk(x), ck(x)}Kk=−K which is defined as 219

(fk(x), ck(x)) ≜ Rconf ◦M ◦ P k
conf(x) 220

Note: While we hypothesize directional mono- 221

tonicity (c−K(x) < · · · < c0(x) < · · · < cK(x)), 222

real-world observations may deviate from strict 223

monotonicity due to LLMs’ complex response pat- 224

terns. Our aggregation module therefore requires 225

robustness to such non-ideal cases. 226

4.2 Steered Confidence Aggregation 227

Given the steering-induced predictions 228

{fk(x)}Kk=−K and associate confidence scores 229

{ck(x)}Kk=−K , our aggregation framework syn- 230

thesizes three complementary signals to produce 231

calibrated confidence estimates. The design 232

philosophy stems from two key observations: (1) 233

prediction consistency across steering directions 234

reflects model certainty, and (2) confidence 235

consistency under steering indicates calibration 236

reliability. We formalize this through three 237

synergistic components: 238
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I have three rabbits, a cat, a 

fish, a goat, two snails, a 

cow, a trumpet, a mouse, 

and a trombone. How many 

animals do I have?

Very Cautious

Cautious

Vanilla

Confident

Very Confident

Confidence Steering

Ans

9

Ans

8

Ans

11

Ans

10

Ans

9

Conf

80

Conf

80

Conf

91

Conf

100

Conf

100

𝜅𝑎𝑛𝑠
= 40

𝜅𝑐𝑜𝑛𝑓
= 91

𝜇𝑐𝑜𝑛𝑓
= 90

×

Calibrated

Confidence

Ans

9

Ans

8

Ans

11

Ans

10

Ans

9

Conf

80

Conf

80

Conf

91

Conf

100

Conf

100

Selected

Answer

Conf

33

Ans

9

Corresponding Answers with the 

Most Similar Confidence

Steered Answer SelectionSteered Confidence Aggregation

Truth

10

Figure 2: An overview and an instantiation of our SteerConf framework, which consists of three components:
Confidence Steering, Steered Confidence Aggregation and Steered Answer Selection. By using a spectrum of
2K + 1 steering prompts: {Very Cautious, Cautious, Vanilla, Confident, Very Confident}, we firstly process the
question with these 2K + 1 steering prompts. Then we obtain 2K + 1 pairs of answer and confidence. Next, we
aggregate the answers and confidences into one calibrated confidence by their consistency. Finally, we select one
steered answer with its corresponding confidence that is closest to the calibrated confidence.

1. Answer Consistency: When LLMs produce239

divergent predictions under semantic pertur-240

bations, this signal predict its inherent un-241

certainty. We quantify answer consistency242

through prediction frequency as in (Xiong243

et al., 2023):244

freq(y) =
1

2K + 1

K∑
k=−K

I(fk(x) = y) (2)245

The dominant prediction fm(x) =246

argmaxy freq(y) and its consistency247

score κans = freq(fm(x)) define the first248

calibration factor. Higher κans indicates249

stronger agreement and stability across250

steering directions, while lower κans values251

indicate conflicting predictions across steer-252

ing directions, suggesting inherent model253

uncertainty.254

2. Confidence Consistency: While answer con-255

sistency evaluates prediction stability, we in-256

troduce confidence consistency to assess the257

reliability of confidence scores under steering258

perturbations. This novel component analyzes259

both central tendency (Mean) and dispersion260

(Std Dev) : 261

µc =
1

2K + 1

K∑
k=−K

ck(x) (3) 262

σc =

√√√√ 1

2K + 1

K∑
k=−K

(ck(x)− µc)2 (4) 263

The confidence consensus score then com- 264

bines these statistics: 265

κconf =
1

1 + σc/µc
(5) 266

This formulation serves three purposes: (1) 267

bounded output in (0, 1] as a scaling factor, (2) 268

Penalizes high variance (σc) relative to mean 269

confidence (µc), and (3) direct scaling with 270

mean confidence µc. High κconf values indi- 271

cate steering-invariant confidence estimates, 272

suggesting well-calibrated certainty. 273

3. Calibrated Confidence: The final confi- 274

dence estimate combines our consensus met- 275

rics through multiplicative interaction: 276

c(x) = µc · κans · κconf (6) 277

This formulation naturally downweights the 278

raw confidence average µc when either answer 279
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inconsistency (κans ↓) or confidence instabil-280

ity (κconf ↓) occurs. And it will preserve well-281

calibrated confidence estimate µc when both282

consistency metrics are high, indicating that283

raw confidence average is reliable.284

4.3 Steered Answer Selection285

To harmonize confidence estimates with prediction286

choices, we develop a prediction selection mecha-287

nism in this section. The intuition is that steering288

directions with confidence values closest to our cal-289

ibrated confidence c(x) should dominate the final290

prediction. We first map c(x) to the steering index291

space through linear quantization:292

j =

⌊
c(x)− cmin

cmax − cmin
· nbins

⌋
(7)293

f(x) =

{
f−K(x) if j < −K,

fj(x) if otherwise,
(8)294

where cmin = mink ck(x), cmax = maxk ck(x).295

Since c(x) ≤ µc ≤ cmax, we have j ≤ K, there-296

fore we only condition corner case of j < −K.297

To summarize, this complete aggregation pro-298

cess achieves dual calibration: confidence esti-299

mates are refined through consistency analysis,300

while predictions are selected through confidence-301

aware steering alignment. It’s noted that the con-302

fidence consistency component is particularly cru-303

cial for handling LLMs’ tendency toward overcon-304

fidence - high variance in confidences under steer-305

ing automatically triggers attenuation through κconf.306

The prediction selection part bridges the gap be-307

tween continuous confidence calibration and dis-308

crete prediction choices.309

5 Main Experiment310

5.1 Setup311

Datasets We assess confidence estimation qual-312

ity across five reasoning categories: (1) Com-313

monsense Reasoning using Sports Understanding314

(SportUND) (Kim, 2021) and StrategyQA (Geva315

et al., 2021) from BigBench (Ghazal et al.,316

2013); (2) Arithmetic Reasoning evaluated on317

GSM8K (Cobbe et al., 2021); (3) Symbolic Reason-318

ing covering Date Understanding (DateUnd) (Wu319

and Wang, 2021) and Object Counting (Object-320

Cou) (Wang et al., 2019) (BigBench); (4) Profes-321

sional Knowledge tested through Law (Prf-Law)322

from MMLU (Hendrycks et al., 2021); and (5)323

Ethical Knowledge examined via Business Ethics324

(Biz-Ethics) in MMLU (Hendrycks et al., 2021).325

Models We use several widely-utilized large 326

language models (LLMs) of varying sizes, such 327

as GPT-3.5 (OpenAI, 2021), Llama 3 (AI@Meta, 328

2024), and GPT-4 (OpenAI, 2024). Specifically, 329

Llama 3 employs a 70B size with 4-bit quantization, 330

while GPT-3.5 and GPT-4 were accessed between 331

August 1, 2024, and February 1, 2025. We com- 332

pare our method with vanilla verbalized confidence 333

elicited from these models in Table 1. 334

Baselines We also compare sampling and 335

prompting based methods summarized as in 336

(Xiong et al., 2023) including Misleading, Self- 337

Random, Prompt and Topk from (Tian et al., 2023) 338

in Table 2. As the same setting in their original 339

paper (Xiong et al., 2023), we adopt GPT-3.5 as 340

the LLM backbone, and they all use CoT, while 341

consistency aggregation metric (Xiong et al., 2023) 342

is used for these baselines. 343

5.2 Metrics 344

To assess the quality of confidence estimates pro- 345

duced by models, two distinct but complemen- 346

tary evaluation frameworks are commonly used: 347

calibration analysis and failure prediction (Xiong 348

et al., 2023). Calibration examines the alignment 349

between a model’s stated confidence levels and 350

its empirical accuracy—for instance, predictions 351

made with 80% confidence should ideally exhibit 352

an 80% accuracy rate. These well-calibrated esti- 353

mates are particularly important in contexts such 354

as risk evaluation. In contrast, failure prediction 355

tasks evaluate a model’s ability to rank confidence 356

scores such that correct predictions receive higher 357

values than incorrect ones, testing whether confi- 358

dence metrics can reliably separate accurate from 359

inaccurate outputs. For this work, Expected Cali- 360

bration Error (ECE) serves as the primary calibra- 361

tion metric, while failure prediction performance 362

is measured using the Area Under the Receiver 363

Operating Characteristic Curve (AUROC). To ad- 364

dress potential class imbalance arising from differ- 365

ences in accuracy across samples, we additionally 366

incorporate AUPRC-Positive (PR-P) and AUPRC- 367

Negative (PR-N) metrics, which focus specifically 368

on the model’s capacity to prioritize incorrect pre- 369

dictions (PR-P) or correct predictions (PR-N) in 370

precision-recall frameworks. 371

Further details of implementation of prompts can 372

be found in Appendix B, and the details of the tasks 373

and their metrics can be found in Appendix A. 374
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Model GSM. Date Cou. Stra. Sport Law Eth. Avg

LLaMA 3 74.8 37.8 50.2 26.6 30.6 30.9 15.0 38.0
+ours 45.2 11.8 34.6 29.3 16.4 8.5 26.5 24.6
+CoT 5.0 13.7 8.7 11.8 7.7 22.8 7.8 11.1
+ours+CoT 7.8 1.0 6.5 8.6 5.4 20.9 5.0 7.9

GPT-3.5 62.6 60.2 45.6 29.6 25.3 43.2 26.0 41.8
+ours 22.8 33.0 27.5 14.9 12.2 24.0 10.8 20.7
+CoT 20.3 30.8 41.8 26.0 20.5 44.3 24.8 29.8
+ours+CoT 6.5 6.7 19.7 14.5 10.8 16.0 15.1 12.7

GPT-4 53.5 25.7 23.7 16.8 18.7 19.4 5.1 23.3
+ours 27.5 19.5 18.0 13.5 13.6 11.2 9.9 16.2
+CoT 6.5 6.6 4.9 18.5 9.2 23.0 6.1 10.7
+ours+CoT 4.3 8.4 1.6 11.5 5.6 9.9 9.3 7.2

(a) ECE ↓ (Lower is Better)

Model GSM. Date Cou. Stra. Sport Law Eth. Avg

LLaMA 3 53.7 50.3 50.3 58.8 51.5 51.0 42.3 51.1
+ours 67.1 61.0 67.2 59.0 53.8 58.9 62.9 61.4
+CoT 55.1 54.3 50.0 64.6 74.1 54.3 54.2 58.1
+ours+CoT 81.2 70.7 87.6 74.5 79.4 64.7 81.2 77.0

GPT-3.5 55.8 56.6 50.3 53.3 52.8 51.7 54.8 53.6
+ours 82.9 60.5 82.5 58.6 61.5 60.6 71.0 68.2
+CoT 56.2 49.8 50.1 56.4 62.7 53.0 65.2 56.2
+ours+CoT 85.6 76.0 82.5 67.5 66.4 61.5 86.7 75.2

GPT-4 52.0 50.5 50.4 55.6 57.9 56.6 84.1 58.2
+ours 83.9 64.2 72.7 63.7 63.3 59.7 77.6 69.3
+CoT 52.1 75.1 50.0 68.8 65.0 59.5 87.6 65.5
+ours+CoT 86.0 81.5 93.3 70.3 75.2 68.4 93.0 81.1

(b) AUROC ↑ (Higher is Better)

Model GSM. Date Cou. Stra. Sport Law Eth. Avg

LLaMA 3 81.7 38.2 50.2 33.0 34.8 40.8 30.3 44.1
+ours 88.5 51.7 66.1 32.1 37.7 47.0 52.3 53.6
+CoT 12.4 13.4 8.7 29.7 38.3 38.2 26.1 23.8
+ours+CoT 41.3 24.0 49.0 43.2 47.5 50.6 51.7 43.9

GPT-3.5 76.9 66.0 46.1 37.6 32.3 54.8 37.5 50.2
+ours 93.5 64.1 76.4 43.5 41.7 64.4 51.7 62.2
+CoT 26.5 28.0 42.0 36.8 46.9 55.5 45.7 40.2
+ours+CoT 70.9 49.7 74.7 48.9 52.2 60.9 75.0 61.8

GPT-4 55.3 26.5 24.3 30.7 23.9 41.3 58.4 37.2
+ours 83.5 35.9 47.3 37.5 33.2 46.2 45.0 46.9
+CoT 10.5 47.6 4.9 48.7 27.7 46.2 83.2 38.4
+ours+CoT 59.3 61.8 44.9 38.9 48.7 55.4 74.9 54.9

(c) PR-N ↑ (Higher is Better)

Model GSM. Date Cou. Stra. Sport Law Eth. Avg

LLaMA 3 21.3 62.5 49.9 77.2 66.9 61.0 71.5 58.6
+ours 28.1 68.0 62.3 79.6 67.1 66.2 79.1 64.3
+CoT 95.4 89.3 91.3 85.2 89.2 66.5 83.0 85.7
+ours+CoT 97.8 92.6 98.1 90.0 92.8 73.6 93.1 91.1

GPT-3.5 30.0 41.5 54.5 66.2 70.8 47.5 69.6 54.3
+ours 60.4 54.4 83.3 71.1 76.1 52.3 80.2 68.3
+CoT 80.5 71.5 58.2 71.5 70.2 48.4 75.8 68.0
+ours+CoT 92.1 88.4 83.2 77.7 75.0 57.3 91.8 80.8

GPT-4 47.3 74.5 76.5 77.6 82.6 67.5 94.5 74.4
+ours 76.8 81.2 84.4 81.4 84.4 71.3 92.0 81.6
+CoT 93.7 94.2 95.1 81.4 88.0 68.3 92.8 87.6
+ours+CoT 97.3 94.0 99.2 87.6 91.1 75.6 97.9 91.8

(d) PR-P ↑ (Higher is Better)

Table 1: Comparison with Vanilla Verbalized Confidence Elicitation, while metrics (ECE, AUROC ,PR-N and
PR-P) are in percentage(%). Abbreviations are used: GSM. (GSM8K), Date (Date Understanding), Cou. (Object
Counting), Stra. (StrategyQA) Sport (Sport Understanding), Law (Professional Law), Eth. (Business Ethic). ECE >
0.25, AUROC, AUPRC-Positive, AUPRC-Negative < 0.6 denote significant deviation from ideal performance. The
best among the same model are in bold.

5.3 Comparison with Vanilla Verbalized375

Confidence Elicitation376

Table 1 presents comprehensive evaluations across377

four critical metrics: Expected Calibration Er-378

ror (ECE), Area Under ROC Curve (AUROC),379

Precision-Recall at N (PR-N), and Precision-Recall380

at Precision Threshold (PR-P). Our analysis reveals381

three key findings. First, in the failure detection382

task measured by AUROC, our method demon-383

strates consistent superiority over vanilla models384

across all datasets under Chain-of-Thought (CoT)385

settings. Specifically, significant improvements are386

observed in LLaMA-3 (25.6% on Sport), GPT-3.5387

(32.4% on Count), and GPT-4 (43.3% on Count)388

configurations. Notably, even without CoT inte-389

gration, our approach maintains competitive perfor-390

mance - achieving 20.6% and 31.9% improvements391

over baselines in LLaMA-3 (Eth. dataset) and GPT-392

4 (GSM8K) settings respectively, though we ob-393

serve a singular exception where GPT-4 baseline 394

outperforms our method by 6.5% on Eth. dataset. 395

Second, detailed analysis of PR-N and PR-P 396

metrics reveals two noteworthy patterns. While 397

CoT integration generally enhances positive sam- 398

ple identification at the cost of negative class per- 399

formance degradation (e.g., PR-N scores dropping 400

from 81.7% to 12.4% in LLaMA-3/GSM8K con- 401

figuration), our method effectively bridges this per- 402

formance gap. Through dual optimization, we ele- 403

vate PR-N scores from (81.7%, 12.4%) to (88.5%, 404

41.3%) and PR-P scores from (21.3%, 95.4%) to 405

(28.1%, 97.8%) in respective settings, demonstrat- 406

ing balanced improvements across both metrics. 407

Finally, in confidence calibration measured by 408

ECE, our method achieves state-of-the-art perfor- 409

mance across most configurations. The most strik- 410

ing result emerges in LLaMA-3/Date setting where 411

our CoT-enhanced approach attains an exception- 412
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Method GSM8K Law Date Strategy Ethics Average

ECE AUROC ECE AUROC ECE AUROC ECE AUROC ECE AUROC ECE AUROC

CoT (M=1) 10.1 54.8 39.7 52.2 23.4 57.4 22.0 59.8 30.0 56.0 25.0 56.4
CoT+Top-K (M=1) 19.6 58.5 16.7 58.9 26.1 74.2 14.0 61.3 12.4 73.3 17.8 65.2
CoT+Misleading (M=5) 8.03 88.6 18.3 59.3 20.5 67.3 21.8 61.5 17.8 71.3 17.3 69.6
CoT+Self-Random (M=5) 6.28 92.7 26.0 65.6 17.0 66.8 23.3 60.8 20.7 79.0 18.7 73.0
CoT+Prompt (M=5) 35.2 74.4 31.5 60.8 23.9 69.8 16.1 61.3 15.0 79.5 24.3 69.2

CoT+ours 6.5 85.6 16.0 61.5 6.7 76.0 14.5 67.5 15.1 86.7 11.7 75.4

Table 2: Comparison with Sampling Based Baselines (Consistency+CoT) on GPT-3.5 while metrics (ECE, AUROC)
are in percentage(%). The best results are in bold.

Dataset Was Dis JS Div Mean ∆auroc ∆-ece

Sport -13.83 -41.74 -14.66 -0.56 9.27
Ethics -21.20 -72.34 -20.49 11.58 17.29
Law -18.49 -59.99 -17.74 -1.54 15.59
Count -11.42 -34.23 -16.93 28.57 15.10
Strategy -15.14 -46.66 -16.94 1.57 13.20
Date -19.27 -60.82 -25.33 0.12 26.65
GSM8K -24.77 -52.11 -25.98 3.65 22.69

(a) very cautious- vanilla

Dataset Was Dis JS Div Mean ∆auroc ∆-ece

Sport -0.27 -4.18 -0.83 -1.04 1.86
Ethics -1.40 -10.63 -0.04 10.92 0.74
Law -1.11 -8.13 -1.59 2.31 -0.38
Count -0.01 -1.86 -0.13 0.37 -1.31
Strategy -0.28 -3.47 -0.99 -1.84 1.29
Date -0.08 -3.19 -1.22 1.97 5.23
GSM8K -0.50 -3.34 -1.02 1.18 -0.67

(b) cautious- vanilla

Dataset Was Dis JS Div Mean ∆auroc ∆-ece

Sport -0.53 -4.93 -0.47 2.53 2.99
Ethics -1.20 -10.08 -1.79 -2.12 -2.41
Law -0.79 -6.45 -1.33 0.98 -0.11
Count -0.05 -2.79 -0.09 0.14 -0.42
Strategy -0.46 -5.52 -1.02 -2.42 1.29
Date -0.19 -4.84 -1.44 4.87 3.55
GSM8K -0.85 -4.41 -1.58 -1.54 0.89

(c) confident- vanilla

Dataset Was Dis JS Div Mean ∆auroc ∆-ece

Sport 1.11 17.43 1.71 0.76 -2.33
Ethics 1.30 14.31 2.05 -0.65 -4.15
Law 1.73 19.22 3.26 1.55 -3.81
Count 0.08 2.63 0.08 -0.11 -2.28
Strategy 0.97 13.16 1.41 -0.20 -1.36
Date -0.19 -4.75 -0.69 6.04 4.08
GSM8K 4.08 23.72 5.36 -3.05 -6.45

(d) very confident- vanilla

Table 3: Effects of Prompt Steering

ally low ECE of 1%. Aggregate improvements413

show consistent advantages: average ECE reduc-414

tions of 13.4% (without CoT) and 3.2% (with415

CoT) for LLaMA-3, 21.1%/17.1% for GPT-3.5,416

and 7.1%/3.5% for GPT-4 configurations. These417

results collectively validate our method’s effective-418

ness in both failure identification and confidence419

calibration tasks.420

5.4 Comparison with Sampling Based421

Baselines422

Table 2 systematically compares our approach with423

three sampling-based baselines (Misleading, Self-424

Random, Prompt) on GPT-3.5 and one competitive425

baseline (Top-K) across five reasoning-intensive426

benchmarks, evaluating both calibration quality427

(ECE) and failure detection capability (AUROC).428

Three pivotal observations emerge from the exper- 429

imental results. First, our method achieves the 430

lowest average ECE (11.7%) while attaining the 431

highest average AUROC (75.4%), demonstrating 432

superior performance on both confidence calibra- 433

tion and error identification task. 434

To be specific, on DateUnd dataset, our approach 435

delivers breakthrough performance: attaining an 436

ECE of 6.7% (relatively 60.8% lower than second- 437

best) coupled with record AUROC of 76.0%. Simi- 438

lar dominance is observed in Biz-Ethics where we 439

achieve the highest AUROC (86.7%) while main- 440

taining competitive ECE (15.1%). 441

6 Effects of Prompt Steering 442

In this section, we empirically study one fundamen- 443

tal questions to our work: how will the steered 444
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prompt steers confidence elicitation? We investi-445

gates how steered prompts influence confidence cal-446

ibration through quantitative comparisons across447

four steering strategies (very cautious, cautious,448

confident, very confident) against the vanilla base-449

line. Table 3 presents performance variations in450

Wasserstein Distance (Was Dis), Jensen-Shannon451

Divergence (JS Div), mean confidence (Mean),452

AUROC (∆auroc), and (negative for better com-453

parison) expected calibration error (∆-ece) across454

seven datasets. The sign of two distances (JS Div455

and Was Dis) are determined by the sign their dif-456

ference of mean confidence between vanilla verbal-457

ized confidence to show directions.458

Conservative Steering Effects The very cau-459

tious strategy induces substantial reductions in con-460

fidence divergence metrics (Was Dis: -11.42 to461

-24.77; JS Div: -34.23 to -72.34) compared to462

vanilla, suggesting diminished confidence extrem-463

ity. Furthermore, this conservative alignment up-464

grades calibration, evidenced by ∆-ece increases465

of +9.27% to +26.65% across datasets. However,466

for failure prediction tasks measured by AUROC,467

the conservative steered prompts don’t always pro-468

mote the performance, such as in Law with -1.54%.469

The cautious variant produces milder divergence470

reductions (Was Dis: -1.40 to -0.01; JS Div: -10.63471

to -1.86) while enjoys smaller calibration quality472

gain (∆-ece: -1.31 to +5.23), indicating the degree473

of steering actually matters.474

Confidence Boosting Effects The confident475

steering strategy reveals unexpected patterns that476

challenge intuitive assumptions. While designed477

to amplify model confidence, it paradoxically re-478

duces confidence divergence metrics (Was Dis: -479

0.85 to -0.05; JS Div: -10.08 to -2.79) compared480

to vanilla baselines in most datasets (Table 3c).481

While very confident steering strategy behaves as482

expected. This phenomenon indicates not only the483

steering direction is needed, its magnitude should484

be also considered.485

To conclude, prompt steering actually changes486

the distribution of confidences in every task. One487

may fail to steer confidence if not using a proper488

magnitude or prompting template. And this study489

explains why previously the steering study part in490

Appendix B.2 of (Xiong et al., 2023) fails: they491

only use mild steering prompt.492

7 Conclusion 493

In this work, we propose SteeringConf, a novel 494

framework for calibrating verbalized confidence in 495

large language models (LLMs) through systematic 496

prompt steering and aggregation. Our empirical 497

analysis demonstrates that explicit linguistic ma- 498

nipulation (e.g., "Be very cautious " or "Be very 499

confident ") can directionally steer LLM confidence 500

scores, challenging prior assumptions about the 501

rigidity of confidence calibration in LLMs. By 502

aggregating predictions and confidences across 503

steered prompts, SteeringConf achieves state-of- 504

the-art performance on both confidence calibra- 505

tion and failure detection tasks. Experiments 506

across seven benchmarks and three LLMs (GPT- 507

3.5, LLaMA3-70B, GPT-4) validate our method’s 508

effectiveness. 509

8 Limitations 510

This work mainly has the following limitations: 511

Manually Designed Steering Prompt Our cur- 512

rently proposed method relies on manually de- 513

signed steering prompts (e.g., "very cautious 514

"). The reliance on manually designed steering 515

prompts introduces critical constraints in scalabil- 516

ity and generalizability. While our current frame- 517

work operates with a moderate steering magnitude 518

(K = 2, e.g., very cautious, cautious, vanilla, con- 519

fident, very confident), extending to larger (e.g., 520

K = 5 with finer-grained directives like extremely 521

cautious or moderately confident) would require 522

laborious, task-specific prompt engineering. Each 523

additional steering direction demands careful lin- 524

guistic tuning to ensure semantic distinctiveness 525

and monotonic confidence shifts. Automatic steer- 526

ing prompt generation or the K-free continuous 527

steering may be possible solutions to this limita- 528

tion. 529

Computational Inefficiency Our SteerConf 530

method necessitates extra K forward passes 531

through energy-intensive LLMs, directly ampli- 532

fying energy consumption and associated carbon 533

emissions. To solve this, one should adaptively pri- 534

oritize high-uncertainty samples for multi-prompt 535

inference, while using single-prompt baselines for 536

low-uncertainty cases using some novel criteria. 537
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A Task Statement And Metric760

Confidence Calibration LLMs often exhibit761

misaligned confidence scores, usually overestimat-762

ing the reliability of their predictions. The con-763

fidence calibration task aims to improve the cal-764

ibration of LLMs by aligning their confidence765

scores with their actual performance. In our eval-766

uation, we use the Expected Calibration Error767

(ECE) (Naeini et al., 2015; Xiong et al., 2022; Yuan768

et al., 2021), as the calibration metric to evaluate769

the calibration performance of LLMs.770

Suppose we have a set of input samples {xi}Ni=1,771

their corresponding labels {yi}Ni=1, the LLM’s pre-772

dictions {f(xi)}Ni=1, and the confidence scores773

{c(xi)}Ni=1. We divide the samples into B bins774

in terms of their confidence scores: xi ∈ Bb if775

c(xi) ∈
[
b−1
B , b

B

)
. The Expected Calibration Error776

(ECE) is defined as777

ECE =
B∑
b=1

|Bb|
N

|acc(Bb)− conf(Bb)| , (9)778

where Bb is the set of samples in the b-th bin,779

|Bb| is the number of samples in the b-th bin,780

acc(Bb) =
1

|Bb|
∑

xi∈Bb
I(f(xi) = yi) is the accu-781

racy of the samples in the b-th bin, and conf(Bb) =782
1

|Bb|
∑

xi∈Bb
c(xi) is the average confidence score783

of the samples in the b-th bin. Here, I(·) is the indi-784

cator function, which returns 1 if the event inside785

the parentheses occurs, and 0 otherwise.786

Failure Prediction Another important task is787

to directly predict whether the LLM’s prediction788

is correct or not using the confidence score. This789

task is often referred to as the failure prediction790

task. The metric used to evaluate the performance791

of the failure prediction task is the Area Under792

the Receiver Operating Characteristic Curve (AUC-793

ROC) (Boyd et al., 2013). Suppose we have a794

set of input samples {xi}Ni=1, we can define the795

failure prediction task as a binary classification796

problem, where the input is their confidence score797

c(xi) and the label is the correctness of the LLM’s798

prediction I(f(xi) = yi). The Area Under the799

Receiver Operating Characteristic Curve (AUC-800

ROC) is defined as801

AUC-ROC =

∫ 1

0
TPR(t) dFPR(t), (10)802

where TPR(t) is the True Positive Rate at the803

threshold t and FPR(t) is the False Positive Rate at804

the threshold t, which can be computed as 805

TPR(t) =
1

N

N∑
i=1

I(c(xi) ≥ t)I(f(xi) = yi),

(11)

806

FPR(t) =
1

N

N∑
i=1

I(c(xi) ≥ t) (1− I(f(xi) = yi)) .

(12)

807

B Prompts Used For Steering Confidence 808

In this section, we show the detailed prompt of 809

the spectrum: {very cautious, cautious, vanilla, 810

confident, very confident } as follows. 811

B.1 CoT Setting 812

very cautious Read the question, analyze step 813

by step, provide your answer and your confidence 814

in this answer. Note: (1) The confidence indi- 815

cates how likely you think your answer will be 816

true. (2) You are making important decisions, 817

thus you should avoid giving a wrong answer with 818

high confidence. (3) You should be very cautious, 819

and tend to give low confidence on almost all of 820

the answers. \nUse the following format to an- 821

swer:\“‘Explanation: [insert step-by-step analysis 822

here]\nAnswer and Confidence (0-100): [ONLY 823

the {ANSWER_TYPE}; not a complete sentence], 824

[Your confidence level, please only include the nu- 825

merical number in the range of 0-100]%“‘\nOnly 826

give me the reply according to this format, don’t 827

give me any other words. 828

cautious Read the question, analyze step by step, 829

provide your answer and your confidence in this 830

answer. Note: (1) The confidence indicates how 831

likely you think your answer will be true. (2) You 832

are making important decisions, thus you should 833

avoid giving a wrong answer with high confidence. 834

(3) You should be very cautious, and tend to give 835

low confidence on almost all of the answers. \nUse 836

the following format to answer:\“‘Explanation: [in- 837

sert step-by-step analysis here]\nAnswer and Con- 838

fidence (0-100): [ONLY the {ANSWER_TYPE}; 839

not a complete sentence], [Your confidence level, 840

please only include the numerical number in the 841

range of 0-100]%“‘\nOnly give me the reply ac- 842

cording to this format, don’t give me any other 843

words. 844

vanilla Read the question, analyze step by step, 845

provide your answer and your confidence in this 846
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answer. Note: The confidence indicates how likely847

you think your answer is true.\nUse the follow-848

ing format to answer:\n“‘Explanation: [insert step-849

by-step analysis here]\nAnswer and Confidence850

(0-100): [ONLY the {ANSWER_TYPE}; not a851

complete sentence], [Your confidence level, please852

only include the numerical number in the range of853

0-100]%\n“‘\nOnly give me the reply according to854

this format, don’t give me any other words.855

confident Read the question, analyze step by step,856

provide your answer and your confidence in this an-857

swer. Note: (1) The confidence indicates how likely858

you think your answer will be true. (2) You are859

making important decisions, thus you should avoid860

giving a right answer with low confidence. \nUse861

the following format to answer:\“‘Explanation: [in-862

sert step-by-step analysis here]\nAnswer and Con-863

fidence (0-100): [ONLY the {ANSWER_TYPE};864

not a complete sentence], [Your confidence level,865

please only include the numerical number in the866

range of 0-100]%“‘\nOnly give me the reply ac-867

cording to this format, don’t give me any other868

words.869

very confident Read the question, analyze step870

by step, provide your answer and your confidence871

in this answer. Note: (1) The confidence indi-872

cates how likely you think your answer will be873

true. (2) You are making important decisions,874

thus you should avoid giving a right answer with875

low confidence. (3) You should be very confident,876

and tend to give high confidence on almost all of877

the answers. \nUse the following format to an-878

swer:\“‘Explanation: [insert step-by-step analysis879

here]\nAnswer and Confidence (0-100): [ONLY880

the {ANSWER_TYPE}; not a complete sentence],881

[Your confidence level, please only include the nu-882

merical number in the range of 0-100]%“‘\nOnly883

give me the reply according to this format, don’t884

give me any other words.885

B.2 No CoT Setting886

very cautious Read the question, provide your887

answer and your confidence in this answer. Note:888

(1) The confidence indicates how likely you think889

your answer will be true. (2) You are making im-890

portant decisions, thus you should avoid giving891

a wrong answer with high confidence. (3) You892

should be very cautious, and tend to give low con-893

fidence on almost all of the answers. \nUse the894

following format to answer:\n“‘Answer and Confi-895

dence (0-100): [ONLY the ANSWER_TYPE; not a896

Table 4: Comparison between Vanilla (before - after)

Dataset Was Dis JS Div Mean ∆auroc ∆-ece

Sport -26.42 -49.64 -28.52 -0.30 3.44
Ethics -12.20 -36.89 -12.54 11.09 8.74
Law -31.83 -62.52 -30.89 3.90 22.06
Count -0.10 -3.73 -0.11 0.12 1.12
Strategy -35.56 -55.22 -37.64 2.46 6.11
Date -11.82 -28.24 -12.99 5.27 6.19
GSM8K -3.61 -10.87 -2.19 10.86 2.20

complete sentence], [Your confidence level, please 897

only include the numerical number in the range of 898

0-100]%“‘\nOnly the answer and confidence, don’t 899

give me the explanation. 900

cautious Read the question, provide your answer 901

and your confidence in this answer. Note: (1) The 902

confidence indicates how likely you think your an- 903

swer will be true. (2) You are making important 904

decisions, thus you should avoid giving a wrong 905

answer with high confidence. \nUse the follow- 906

ing format to answer:\n“‘Answer and Confidence 907

(0-100): [ONLY the ANSWER_TYPE; not a com- 908

plete sentence], [Your confidence level, please only 909

include the numerical number in the range of 0- 910

100]%“‘\nOnly the answer and confidence, don’t 911

give me the explanation. 912

vanilla Read the question, provide your answer 913

and your confidence in this answer. Note: The 914

confidence indicates how likely you think your 915

answer is true.\nUse the following format to an- 916

swer:\n“‘Answer and Confidence (0-100): [ONLY 917

the ANSWER_TYPE; not a complete sentence], 918

[Your confidence level, please only include the nu- 919

merical number in the range of 0-100]%“‘\nOnly 920

the answer and confidence, don’t give me the ex- 921

planation. 922

confident Read the question, provide your an- 923

swer and your confidence in this answer. Note: 924

(1) The confidence indicates how likely you think 925

your answer will be true. (2) You are making im- 926

portant decisions, thus you should avoid giving a 927

right answer with low confidence.\nUse the follow- 928

ing format to answer:\n“‘Answer and Confidence 929

(0-100): [ONLY the ANSWER_TYPE; not a com- 930

plete sentence], [Your confidence level, please only 931

include the numerical number in the range of 0- 932

100]%“‘\nOnly the answer and confidence, don’t 933

give me the explanation. 934
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Method GSM8K Prf-Law DateUnd StrategyQA Biz-Ethics Average

ECE AUROC ECE AUROC ECE AUROC ECE AUROC ECE AUROC ECE AUROC

ours-before 25.8 84.2 11.2 57.5 23.4 58.7 23.8 56.1 15.8 66.5 20.0 64.6
ours-after 22.8 82.9 24.0 60.6 33.0 60.5 14.9 58.6 10.8 71.0 21.1 66.7

Table 5: Comparison of ours-before and ours-after

very confident Read the question, provide your935

answer and your confidence in this answer. Note:936

(1) The confidence indicates how likely you think937

your answer will be true. (2) You are making im-938

portant decisions, thus you should avoid giving a939

right answer with low confidence. (3) You should940

be very confident, and tend to give high confidence941

on almost all of the answers. \nUse the follow-942

ing format to answer:\n“‘Answer and Confidence943

(0-100): [ONLY the ANSWER_TYPE; not a com-944

plete sentence], [Your confidence level, please only945

include the numerical number in the range of 0-946

100]%“‘\nOnly the answer and confidence, don’t947

give me the explanation.948

C Effects of Placing Confidence949

Elicitation Before Or After The Answer950

This section studies a relatively minor question:951

should the confidence assigned to question or the952

answer in verbalized confidence elicitation? We953

notice one omitted fact is that every problem itself954

could have a difficulty level for the model. It’s like955

that when facing a problem, before giving an an-956

swer, one can evaluate how difficulty this problem957

is, and decide whether he can answer this question.958

We call this confidence before answer, while all959

our previous setting is called confidence after an-960

swer, i.e., giving an answer and its accompanied961

confidence, or several answer-confidence pairs as962

in TopK (Tian et al., 2023).963

To investigate this, we conduct two experiments,964

one is for vanilla GPT-3.5 with verbalized con-965

fidence before answer and verbalized confidence966

after answer. This is to show under vanilla setting,967

will this prompt modification cause confidence and968

performance shifting. The results are in Table 4.969

The other one is combined with our method with970

GPT-3.5, to show if our method is stable to such971

modification whose results are in Table 5.972

Table 4 reveals nuanced performance shifts973

when placing confidence elicitation before an-974

swers. One can find that confidence before an-975

swer tend to produce more conservative predic-976

tions since it has much smaller mean confidences. 977

This indicates confidence before answers could 978

produce better confidences in vanilla verbalized 979

confidence elicitation. However, as demonstrated 980

in Table 5, these two placings don’t make much 981

difference in overall results for our methods: the 982

average AUROC difference narrows to 2.1% points 983

(64.6% vs 66.7%), while ECE values remain within 984

1.1% points (20.0% vs 21.1%). Domain-specific 985

patterns emerge – for instance, confidence-after 986

yields substantially better ECE in Business Ethics 987

(15.8%→10.8%) but worse calibration in Profes- 988

sional Law (11.2%→24.0%) – no configuration 989

demonstrates universal superiority across metrics. 990

This indicates our method is stable to the placing 991

of confidence elicitation. 992

Despite comparable aggregate performance, we 993

ultimately adopt confidence-after elicitation for the 994

reason that post-answer confidence naturally ac- 995

commodates multi-answer scenarios such as TopK 996

sampling. However, confidence-before elicitation 997

presents intriguing research opportunities for diffi- 998

culty estimation and refuse-to-ask mechanisms. 999
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