Gated Integration of Low-Rank Adaptation
for Continual Learning of Language Models

Anonymous Authors'

Abstract

Continual learning, which requires the model to
learn multiple tasks sequentially, is crucial for lan-
guage models (LMs). Recently, low-rank adap-
tation (LoRA), one of the most representative
parameter-efficient fine-tuning (PEFT) methods,
has gained increasing attention in continual learn-
ing of LMs. However, most existing continual
learning methods based on LoRA typically ex-
pand a new LoRA branch to learn each new task
and force the new and old LoRA branches to
contribute equally to old tasks, potentially lead-
ing to forgetting. In this work, we propose a
new method, called gated integration of low-rank
adaptation (GainLoRA), for continual learning of
LMs. GainLoRA expands a new LoRA branch
for each new task and introduces gating modules
to integrate the new and old LoRA branches. Fur-
thermore, GainLoRA leverages the new gating
module to minimize the contribution from the
new LoRA branch to old tasks, effectively mitigat-
ing forgetting and improving the model’s overall
performance. Experimental results on continual
learning benchmarks demonstrate that GainLoRA
outperforms existing state-of-the-art methods.

1. Introduction

Continual learning, which requires the model to learn
multiple tasks sequentially, is crucial for language mod-
els (LMs) (Shi et al., 2024). Specifically, with extensive
pre-trained knowledge and further fine-tuning strategies,
existing LMs have demonstrated strong performance for a
wide range of tasks (Brown et al., 2020; Zhang et al., 2022;
Touvron et al., 2023). However, when learning multiple
tasks sequentially, LMs may lose knowledge acquired from
old tasks, resulting in a significant degradation in perfor-

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

mance on old tasks. This phenomenon, known as catas-
trophic forgetting (Parisi et al., 2019; Luo et al., 2023; Wang
et al., 2023a; 2024), highlights the need for developing
effective continual learning methods for LMs. Existing con-
tinual learning methods can be categorized into two main
categories. The first category (Razdaibiedina et al., 2023)
assumes that task identities are available during inference,
while the second category (Liang & Li, 2024; Zhao et al.,
2024) tackles a more difficult and practical setting where
task identities are unavailable during inference.

Recently, low-rank adaptation (LoRA) (Hu et al., 2022),
one of the most representative parameter-efficient fine-
tuning (PEFT) methods, has gained increasing attention
in the continual learning of LMs (Wang et al., 2023a; Bohao
et al., 2024). Specifically, by reparameterizing pre-trained
weights in a low-rank form, LoRA updates only a limited
number of parameters to adapt LMs to a downstream task,
making the fine-tuning process much more efficient than
updating all parameters of LMs (Han et al., 2024). This
efficiency also benefits continual learning, making LoRA
increasingly popular in continual learning of LMs.

Most existing continual learning methods based on
LoRA (Liang & Li, 2024; Zhao et al., 2024) typically ex-
pand a new LoRA branch for learning each new task while
freezing all old LoRA branches. In this way, they avoid
forgetting caused by directly updating the LoRA parameters
of old tasks (Qiao et al., 2024). However, to handle the
practical continual learning scenario where task identities
are unavailable at inference time, existing methods (Wang
et al., 2023a; Liang & Li, 2024; Smith et al., 2024) based
on LoRA integrate new and old LoRA branches through a
simple addition. Consequently, they force the new and old
LoRA branches to contribute equally to old tasks, which
means that the new LoRA branch may cause a relatively
large change in the model’s output on old tasks. This leads
to forgetting and degrades the model’s overall performance
in continual learning.

In this work, we propose a new method, called gated
integration of low-rank adaptation (GainLoRA), for con-
tinual learning of LMs. The contributions of GainLoRA are
listed as follows:

Submission and Formatting Instructions for ICML 2025

* GainLoRA expands a new LoRA branch to learn each
new task and introduces gating modules to integrate
the new and old LoRA branches.

* GainLoRA leverages the new gating module to mini-
mize the contribution from the new LoRA branch to old
tasks, effectively mitigating forgetting and improving
the model’s overall performance.

» Experimental results on continual learning benchmarks
show that GainLoRA outperforms existing state-of-the-
art continual learning methods.

2. Related Work and Preliminaries
2.1. Related Work

Parameter-Efficient Fine-Tuning Parameter-efficient
fine-tuning (PEFT) methods tune a limited number of pa-
rameters to adapt a pre-trained model for downstream tasks,
showing much more efficiency than tuning all the param-
eters of the pre-trained model, especially for LMs. For
example, Adapter (Houlsby et al., 2019) modifies the model
architecture by introducing trainable modules into Trans-
former layers and tunes these modules for downstream
tasks. Prompt-tuning (Lester et al., 2021) and Prefix-
tuning (Li & Liang, 2021) insert learnable tokens into the
input and tune them for downstream tasks. Low-rank adap-
tation (LoRA) (Hu et al., 2022) reparameterizes the original
model parameters with low-rank matrices and tunes these
matrices for downstream tasks. Although PEFT methods
tune significantly fewer parameters than full fine-tuning,
they can achieve comparable performance to full fine-tuning
across a wide range of computer vision (CV) and natural
language processing (NLP) tasks (Fu et al., 2022; Hu et al.,
2022; Mahabadi et al., 2021; Zaken et al., 2022).

Continual Learning There are three main types of con-
tinual learning methods, categorized as regularization-based
methods, memory-based methods, and expansion-based
methods. Regularization-based methods (Kirkpatrick et al.,
2017; Aljundi et al., 2018; Jung et al., 2020; Smith et al.,
2024) incorporate a regularization term to mitigate catas-
trophic forgetting. Memory-based methods (Aljundi et al.,
2019a;b; Sun et al., 2022; Liang & Li, 2023a; Zhao et al.,
2024) utilize memory mechanisms to preserve knowledge
from old tasks. Expansion-based methods (Rusu et al., 2016;
Hung et al., 2019; Li et al., 2019; Liang & Li, 2023b) miti-
gate catastrophic forgetting by introducing new parameters
for learning new tasks while typically freezing old parame-
ters.

Many continual learning methods (Aljundi et al., 2018;
Arani et al., 2022; Liang & Li, 2023b) are designed to train
models from scratch. Recent studies (Wang et al., 2022b;
Smith et al., 2023b; Wang et al., 2023a; Liang & Li, 2024)

have shown that leveraging pre-trained models and PEFT
strategies enables continual learning methods to achieve
superior performance across tasks in both CV and NLP.
For example, some methods (Wang et al., 2022b; Qin &
Joty, 2022; Razdaibiedina et al., 2023) utilize prompt-tuning
for continual learning. They either maintain independent
prompts for each task or maintain a pool of prompts and
select relevant ones from the pool for learning new tasks.
Other methods (Wang et al., 2023a; Smith et al., 2023a;
Liang & Li, 2024; Zhao et al., 2024) adopt LoRA for con-
tinual learning. Most of these methods expand a new LoRA
branch to handle each new task while freezing old LoRA
branches to mitigate catastrophic forgetting. However, they
force the new and old LoRA branches to contribute equally
to old tasks, potentially leading to forgetting.

2.2. Preliminaries

Problem Definition We follow existing continual learn-
ing works (Wang et al., 2023a; Zhao et al., 2024) to for-
malize the problem definition for continual learning of
LMs. Specifically, in continual learning, a sequence of
tasks {71, Tz, ..., Tr } is presented to the model sequentially,
where T' denotes the total number of tasks. The ¢-th task
T; consists of a training dataset D,. For any given sample
(x4, y:) € Dy, x4 denotes an input sentence and y; denotes
the corresponding output. When learning the ¢-th new task,
the model is required to mitigate catastrophic forgetting of
the ¢ — 1 previously learned tasks.

Similar to existing continual learning works for LMs (Bo-
hao et al., 2024; Zhao et al., 2024), we consider a more
challenging continual learning setting defined by three key
challenges: (1) the model is presented with a sequence of
tasks spanning various types, such as dialogue generation,
information extraction and so on; (2) the model is not pro-
vided with task identities at inference time; (3) the model
must learn without access to real or synthetic samples from
previously learned tasks.

Low-Rank Adaptation LoRA (Hu et al., 2022) is a
widely adopted PEFT method used for fine-tuning vari-
ous pre-trained models, particularly LMs. Specifically, let
W € RéoutXdin represent a pre-trained weight in LMs,
where d;,, and d,,; are the input and output dimensions,
respectively. Instead of updating W directly, LoRA in-
troduces an additional branch consisting of two matrices,
A € R%uwt*" and B € R™*%n where r < min(d;,, dout).
LoRA then modifies the forward propagation of this layer
as e = (W 4+ AB)h. Here, h and e denote the input and
output, respectively. To ensure no initial impact on the pre-
trained weights, A is initialized to 0, and B is initialized
using a Gaussian distribution. During fine-tuning for down-
stream tasks, the pre-trained weight W remains frozen, and
only the parameters A and B are fine-tuned.

Submission and Formatting Instructions for ICML 2025

Answer: A

@: Addition @ : Multiplication : Frozen

/_% (A
Language Models ’/
q

/I t

Pre-trained D
Q)
L Bl

Weights
W,
® \

\

\

\

\

\ \ a, /. \a_./ \ 4 /
\
\ ® ® 3. Updating
\ ,31\ - B, B, <= new branch to

2. Integrating
<— new and old
LoRA branches

1. Expanding
<= anew LoRA
branch

w
h |_—t_|
Someone who had a very bad ' learn new task

flight might be given a trip in this
X to make up for it? \

Option: (Alfirst class (B)propitious Y Old Branches New Branch

(C)reputable (D)one (E)sufficient \ /

Figure 1. The expandable LoRA architecture of our GainLoRA for
learning the ¢-th new task.

3. Methodology

Our GainLoRA employs an expandable LoRA architecture,
which is illustrated in Figure 1. Specifically, before learning
the ¢-th task (1 < ¢t < T'), GainLoRA first expands the
LoRA architecture by introducing the ¢-th new branch with
matrices A; € R%ut*" and B, € R"*%n»_ The new and
old LoRA branches are then integrated as

t
Wi=W, 1 +a,AB =Y aAB, (1)

i=1

where a; is an integration coefficient that determines the
contribution of the i-th LoRA branch to the input h. Note
that W;_1 is a zero matrix when ¢t = 1. As a result, the
forward propagation in this layer is modified as

e= (W +W,)h.)

Finally, only the new LoRA branch (i.e. the ¢-th LoRA
branch) is updated for the ¢-th new task, while all the old
LoRA branches are frozen. After learning the ¢-th task, (2)
is also used for inference across all test samples, thereby en-
suring compatibility with the scenario where task identities
are unavailable during inference.

Many existing continual learning methods based on
LoRA (Wang et al., 2023a; Smith et al., 2024; 2023a; Liang
& Li, 2024; Zhao et al., 2024) share a similar architecture
to our method, as illustrated in Figure 1. However, these
methods fix all coefficients {a;}{_; in (1) to 1, forcing the
new and old LoRA branches to contribute equally to old
tasks. As aresult, the new LoRA branch introduces a change
of AyB;h to the output for inputs h associated with old
tasks, potentially leading to forgetting (Qiao et al., 2024).
Although some methods attempt to mitigate this forgetting

[FZ10)] [9e-1()] Imposing
constraints
t 1]
s “~

roTTEEEEEES < Se- ~
] \
1 1
1 PO i) q 1
Someone who had a very bad flight | Initialization Updating |
might be given a trip in this to make 1 constraints constraints !
x up for it? 1 1
Option: (Alfirst class (B)propitious '\ |
4

(C)reputable (D)one (E)sufficient

Figure 2. For each task 7;, GainLoRA uses an independent gating
module g;(-) to generate integration coefficient a;. Furthermore,
during the learning of the ¢-th task, GainLoRA imposes constraints
on the new gating module g4 (-).

by imposing regularization (Smith et al., 2024) or orthog-
onality constraints (Liang & Li, 2024) on the new LoRA
branch, the fixed integration coefficients {a; }!_; still limit
their performance, as demonstrated by the experimental re-
sults presented in Section 4. Some method (Zhao et al.,
2024) does not force the new and old LoRA branches to con-
tribute equally to old tasks but relies on replaying synthetic
old samples to mitigate forgetting, making it unsuitable for
the scenario considered in this work.

Different from existing methods, GainLoRA introduces an
independent gating module g;(-) for each task 7; to generate
the integration coefficients (1 < ¢ < T'). To mitigate the
forgetting caused by the new task, GainLoRA leverages the
gating module to minimize the contribution from the new
LoRA branch to the old tasks. The details will be introduced
in the following subsections.

3.1. Architecture of Gating Modules

As illustrated in Figure 2, given an input sample x, the
gating module g;(-) generates the integration coefficient
for the i-th LoRA branch, denoted as a; = g;(x). The
computation of g;(-) is defined as

gi(x) = f(Wiry1pL),
P = U(Wi,lpl—l)a l e {1,2, ...,L},
po = Pool(Token(x)). 3)

Here, Token(-) represents the tokenizer used in LMs to
extract token embeddings from the input . Pool(-) de-
notes an average pooling operation applied to the token
embeddings to produce a fixed-size vector. o () denotes
the non-linear activation function. W; ; denotes the weight
matrix for the [-th layer of g;(-) (1 <1 < L+1). In the final
layer, W; 111 is a vector that maps the input vector pr11
to a scalar. Following existing works with gating mecha-

Submission and Formatting Instructions for ICML 2025

nisms (Hochreiter & Schmidhuber, 1997; Cho, 2014), the
function f(-) is designed to map a scalar to a value within
[0,1], thatis, f() : R — [0, 1].

Note that the input to gating modules is the same as that of
LMs, denoted as @, which differs from the input to LoRA
in a specific layer, denoted as h. During the learning of the
t-th new task, only the new gating module g,(-) is updated,
while all the old gating modules {g;(-)}!Z] remain frozen.

3.2. Minimizing the Contribution from the new LoRA
branch to Old Tasks

GainLoRA minimizes the contribution from the new LoRA
branch to old tasks by making a; = g:(x) as close to 0 as
possible for any input a from old tasks {7; }!_1. However,
since we focus on the scenario where no real or synthetic
samples from old tasks are accessible, directly optimiz-
ing g:(x) to 0 is impractical. To overcome this challenge,
GainLoRA imposes constraints on the new gating module
g+(+), implicitly guiding g; () to close to 0 and reduce the
contribution of the new LoRA branch to old tasks.

In the following two subsections, we first describe the con-
straints imposed on the new gating module g, (-) and explain
how these constraints guide g,() close to 0 for any from
the old tasks. Then, we detail the implementation of these
constraints during training.

3.2.1. CONSTRAINTS ON NEW GATING MODULE

To formalize the constraints imposed on the new gating
module g;(-), we define the subspace spanned by the inputs
to Wy (1 <1< L+ 1) from the previous ¢ — 1 tasks as:

My = span{p;_1| p;—1 is defined in (3),
(z,y) € UZDi}. 4

Note that subspaces {M;}/~' cannot be obtained directly
due to the unavailability of samples from old tasks. However,
by introducing additional constraints, {Mt,l}l]fll can be
solved iteratively, which will be discussed in Section 3.2.2.

Initialization Constraints Before learning the ¢-th task,
the following constraints are imposed on the initialization
of the new gating module g;(-):

Init(Wt7L+1)J_Mt7L+1, f(O) =0, 5)

where Init(W; 141) denotes the initialization of Wy 1 41.
These constraints ensure that for any sample from the
old tasks, the integration coefficient satisfies a; = g¢(x) =
f(Init(Wy,4+1)pr) = 0, where py, is defined in (3). The
second equality holds since Wy 111 = Init(W; p41) be-
fore learning the t¢-th new task. The third equality holds
because f(0) = 0 and py, € My 141 for any x from previ-
ous t — 1 tasks.

Updating Constraints During the learning of the ¢-th
task, the following constraints are imposed on the updates
to the new gating module g;(-):

AW IMy; for 1<I<L+1, (6)
where AW, ; denotes the update to W, ;. Based on existing
studies (Wang et al., 2021; Liang & Li, 2023b; Qiao et al.,
2024), the constraints in (6) ensure that g;(x) remains un-
changed for inputs « from the old tasks during the learning
of the ¢-th task. Formally, the following proposition holds:

Proposition 3.1. If the constraints in (6) are satisfied, sub-
spaces {./\/lt,l}lL;ll remain unchanged during the learning
of the t-th task. Furthermore, for any input x from the
previous t — 1 tasks, g:(x) remains unchanged during the
learning of the t-th task.

The proof of this proposition is provided in Appendix A.3.
Since the initialization constraints in (5) ensure g;(x) = 0
before learning the ¢-th new task, g¢(z) = 0 is preserved
throughout the learning process if the updating constraints
in (6) are satisfied.

The fact that subspaces { M} remain unchanged, as
stated in Proposition 3.1, is essential for implementing the
orthogonal constraints in (6). Specifically, as will be de-
tailed in Section 3.2.2, orthonormal bases for the subspaces
{My, }lell are learned to enforce the orthogonal constraints
in (5) and (6). Since the subspaces { M, ;} ="' remain
unchanged during the learning of the ¢-th task, their or-
thonormal bases also remain unchanged, allowing them to
be pre-computed before learning the ¢-th task, thus facili-
tating the implementation of orthogonal constraints in (5)
and (6) throughout the learning process.

3.2.2. IMPLEMENTATION OF CONSTRAINTS

There exist many functions f(-) : R — [0, 1] satisfying
£(0) = 0. In this work, we define f(-) as

F(b) = |2 - sigmoid(b) — 1],)

where sigmoid(-) denotes the sigmoid function. Other func-
tions f(-) : R — [0,1] that satisfy f(0) = 0 are also
applicable, and experiments with different choices of f(-)
are provided in Appendix C.3.1. Better model performance
can be expected by designing more effective f(-), but this
is not the focus of this paper.

Implementing the orthogonal constraints in (5) and (6) is
challenging due to the lack of samples from previous ¢ — 1
tasks to approximate the subspaces {Mt,l}fjll. To address
this issue, we further impose the following constraints on
the initialization of W, ; (1 <[< L):

Init(Wt’l) — Wtfl,l. (8)

Submission and Formatting Instructions for ICML 2025

This strategy initializes the first L layers of g;(-) using
the corresponding layers from the previous gating mod-
ule g;—1(+). As a result, the first L layers of ¢.(-) can be
viewed as being initialized and starting their training at the
beginning of the first task, continuing until the ¢-th task.
Simultaneously, the first L layers in g;(-) serve as check-
points, preserving the state of ¢;(-) after learning the i-th
task (1 < ¢ < t). At this time, we can use existing method
gradient projection memory (GPM) (Saha et al., 2021) to
iteratively learn a set of matrices {M;;} "', where the
columns of M ; contribute to a set of orthonormal bases
of subspace M, ;. Details of GPM are provided in Ap-
pendix A.1. Then, before learning the ¢-th task, the follow-
ing operation can be performed on Init(W; r41):

Init(Wt7L+1) <—Init(WtﬂL+1)
— My L M Init(Wy L), (9)

According to existing works (Wang et al., 2021; Saha et al.,
2021; Liang & Li, 2023b), Init(W; 11) satisfies the con-
straints in (5) after the operation in (9). Similarly, during
the learning of the ¢-th task, the following operation can be
performed on { AW, ;} /1

AW, + AW, — My M AW, ;. 10)

After this, { AW, ;} ! satisfy the constraints in (6).

3.3. Updating the New LoRA Branch

Our GainLoRA aims to effectively integrate new and old
LoRA branches while mitigating forgetting caused by the
new LoRA branch on old tasks. Since GainLoRA does
not impose specific update strategies for the new LoRA
branch, it is inherently compatible with various existing
continual learning methods that adopt similar LoRA ar-
chitecture as our method and can update the new LoRA
branch (Wang et al., 2023a; Liang & Li, 2024; Smith et al.,
2024). Since these existing methods fix all integration co-
efficients {a;}!_, to 1, combining our method with these
existing methods can enhance their performance, as demon-
strated in Section 4.

3.4. Whole Process of GainLoRA

Algorithm 1 outlines the whole process of our GainLoRA.
Before learning the t-th new task 7;, GainLoRA first ex-
pands the LoRA architecture by introducing the ¢-th new
branch with matrices A; and B;. Simultaneously, a new
gating module g, (-) is initialized through the operations
specified in (7), (9) and (8) to ensure that the initialization
constraints in (5) are satisfied. The new and old LoRA
branches are then integrated using (1), and the forward prop-
agation is modified as (2).

During the learning of the ¢-th task 7; with the correspond-
ing dataset Dy, our method follows existing methods (Wang

Algorithm 1 GainLoRA for Continual Learning

Input: The data of different tasks {D;}/_;.
Output: Learned LoRA parameters {(A;, B;)}7_, and
gating modules {g;(-)}7_;.
fortinl:T do
Expand the ¢-th new LoRA branch with A; and By;
Impose initialization constraints on the new gating
module g;(-) by (7), (8) and (9);
Integrate new and old LoRA branches by (1);
for Bt - Dt do
Compute the loss in (11) and the update of the pa-
rameters in the new LoRA branch and the new gating
module;
Impose updating constraints on the update of the
new gating module by (6);
end for
end for

et al., 2023a; Zhao et al., 2024) and computes the loss for
the new task through

[yel

Z Zlog [P(yt,j‘mtvyt,lv"'7yt.’j71)]5

(zt,y1)€Dy J=1

1
L= —
"Dy

(11

where y; = [ys,1,Yt,2, -+ Yt,|y,|]- Each time, GainLoRA
samples a mini-batch B; to minimize the loss in (11) by
updating the new LoRA branch and the new gating module
g+(-). During this process, the projections defined in (10) are
applied to the parameters of g (-), ensuring that the update
constraints in (6) are satisfied.

Our GainLoRA introduces a new gating module for each
new task, which inevitably incurs additional parameters and
computational overhead when combined with other methods.
Section 4 will demonstrate that the trainable parameters
added by our method are limited, making the number of
trainable parameters in our method comparable to other
methods. Additionally, Appendix C.1 will demonstrate that
the computational cost introduced by GainLoRA is minimal
compared to the original LMs.

4. Experiments
4.1. Experimental Settings

Datasets Following existing continual learning meth-
ods (Razdaibiedina et al., 2023; Wang et al., 2023a;
Zhao et al., 2024), we evaluate different methods on
SuperNI (Wang et al., 2022a) and Long Sequence (Raz-
daibiedina et al., 2023) benchmarks. SuperNI benchmark
includes various types of NLP tasks, including dialogue gen-
eration, information extraction, question answering, sum-
marization, and sentiment analysis. Following the protocols

Submission and Formatting Instructions for ICML 2025

Table 1. Results on different task sequences with T5-large model. Results of methods with * are copied from existing paper (Zhao et al.,

2024).
Method Order 1 Order 2 Order 3 Order 4
APt FT| APt FT} APt FT| APt FT|
L2P* (Wang et al., 2022b) 15.18 3.65 10.27 12.24 | 58.61 1543 5734 17.82
LFPT5* (Qin & Joty, 2022) 39.03 9.85 29.70 19.08 | 66.62 13.60 67.40 11.99
EPI* (Wang et al., 2023b) - - - - 75.19 0.60 75.10 2.23
MIGU+FT (Du et al., 2024) - - - - 7130 11.39 69.05 14.06
SeqLoRA 730 47.60 7.03 4797 | 4946 27.60 33.81 4553
IncLoRA (Wang et al., 2023a) | 12.33 4193 16.65 36.56 | 61.19 13.63 62.46 1592
C-LoRA (Smith et al., 2024) 22.69 2425 3281 11.60 | 66.83 8.64 61.86 14.18
O-LoRA (Wang et al., 2023a) | 26.37 19.15 32.83 11.99 | 7098 3.69 71.21 4.03
GainLoRA (O-LoRA) 47.84 226 4684 291 | 7337 3.02 7601 249
InfLoRA (Liang & Li, 2024) 39.78 7.64 3957 893 | 7515 4.19 7579 347
GainLoRA (InfLoRA) 46.21 240 46.44 261 | 7801 0.77 7754 1.25

of existing method (Zhao et al., 2024), three tasks are se-
lected from each type, resulting in 15 tasks. These tasks
are arranged into two different task sequences with different
orders, referred to as Order 1 and Order 2. Long Sequence
benchmark consists of 15 diverse classification tasks, which
are similarly arranged into two task sequences with different
orders, referred to as Order 3 and Order 4. More details
about the benchmarks and task sequences are provided in
Appendix B.

Evaluation Metric We use A ; to denote the model’s per-
formance on the ¢-th task once the model learns the j-th task.
Specifically, A ; ; represents accuracy for classification tasks
and Rouge-L (Lin, 2004) for other types of tasks. Following
traditional continual learning works (Chaudhry et al., 2019;
Deng et al., 2021), we employ average performance (AP)
and forgetting (FT) to evaluate the model’s performance.
The formulas for these two metrics are defined as

1 I
AP =— Arp,,
=
FT = 71 ;(maxle{m,...,:r—l}Al,i —Ap,), (12)
where T' denotes the total number of tasks in the task se-
quence. AP evaluates the model’s final performance, and
FT quantifies the forgetting.

Baselines We compare our method with state-of-the-art
continual learning methods, including L2P (Wang et al.,
2022b), LFPT5 (Qin & Joty, 2022), EPI (Wang et al.,
2023b), MIGU (Du et al., 2024), IncLoRA (Wang et al.,
2023a), C-LoRA (Smith et al., 2024), O-LoRA (Wang et al.,
2023a), and InfLoRA (Liang & Li, 2024). Additionally, we
introduce a simple baseline called SeqLoRA, which does
not expand new LoRA branches but sequentially updates

old LoRA parameters for new tasks and lacks mechanism
to mitigate forgetting.

Implementation Details Following existing continual
learning works (Ouyang et al., 2022; Wei et al., 2022;
Wang et al., 2023a), all methods are implemented with in-
struction tuning (Ouyang et al., 2022) and optimized using
AdamW (Loshchilov & Hutter, 2019). To ensure fair com-
parisons, for all the methods based on LoRA, we follow
existing continual learning methods (Hu et al., 2022; Wang
et al., 2023a; Zhao et al., 2024) by incorporating the LoRA
architecture into the query and value components of the
multi-head attention mechanism in each Transformer block.
We use T5 (Raffel et al., 2020) and Llama-2 (Touvron et al.,
2023) as the base architectures, aligning with the existing
continual learning methods for LMs (Wang et al., 2023a;
Zhao et al., 2024). Each experiment is repeated three times
with different seeds, and the average result is reported. More
details, such as the learning rate, batch size, and architec-
ture of the gating modules in GainLoRA, are provided in
Appendix B.2 and Appendix B.3.

4.2. Experimental Results

Compare with Existing Methods We first follow exist-
ing works (Zhao et al., 2024; Du et al., 2024) and evaluate
different continual learning methods using T5-Large. Since
our method does not impose specific update strategies for
the new LoRA branch, we adopt the same update strate-
gies as the two state-of-the-art methods, O-LoRA (Wang
et al., 2023a) and InfLoRA (Liang & Li, 2024). Note that
these two methods leverage LoRA architecture similar to
our method but fix all integration coefficients {a;}Z_; to 1.
Details of these two methods are provided in Appendix A.2.
We use GainLoRA (O-LoRA) and GainLoRA (InfLoRA) to
respectively denote our methods adopting O-LoRA and In-
fLoRA to update the new LoRA branch. GainLoRA is also

Submission and Formatting Instructions for ICML 2025

i~
3

—_—

IncLoRA

t
o
2

--»-- GainLoRA (O-LoRA)

(0] N 4]
I~ I o
% 60 »\ % 60
£ £
S 50 B 50
Y- Y-
= =
QL 40 (0]
o o 40
g w0 9
o)) mSO
20
> >
< 10 <
3 5 7 9 11 13 15
Task ID Task ID
(a) Order 1 (b) Order 2

InfLORA GainLoRA (InfLoRA)
8 * 8 80+ R
c c . H el
© 80 © A z
g 70 g 704
o o
‘£ 60 ©
[J] QD 60+
Q so [
k3 2
40 4
o @50
0 30 I
(9] (]
> 20 > 40
< <
1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
Task ID Task ID
(c) Order 3 (d) Order 4

Figure 3. The variation of performance across different continual learning methods during training on different task sequences.

Table 2. The overall results on different task sequences with T5-XL model.

Method Order 1 Order 2 Order 3 Order 4
APt FT| APt FT| | APt FT| APt FT|
O-LoRA (Wang et al., 2023a) | 36.50 11.42 40.64 637 | 73.77 270 76.19 3.56
GainLoRA (O-LoRA) 50.10 3.21 49.86 3.04 | 7841 259 7721 3.30
InfLoRA (Liang & Li, 2024) | 45.61 5.60 4585 5.10 | 80.22 2.09 7943 1.71
GainLoRA (InfLoRA) 50.06 1.86 50.26 2.64 | 81.22 0.58 80.30 0.75

Table 3. The overall results on different task sequences with Llama-2-7B and Llama-2-13B.

Llama-2-7B Llama-2-13B
Method Order 1 Order 2 Order 1 Order 2
APt FT| APT FTJ APT FT| APt FTJ
O-LoRA (Wang et al., 2023a) | 39.37 15.84 37.55 20.23 | 4392 14.15 40.05 19.53
GainLoRA (O-LoRA) 51.10 496 51.14 557 | 5247 478 5168 5.86
InfLoRA (Liang & Li, 2024) | 42.93 11.23 3994 15.00 | 43.64 14.85 4574 10.61
GainLoRA (InfLoRA) 51.27 2.84 50.17 471 | 53.64 287 5246 4.90

compatible with other methods that leverage expandable
LoRA architecture shown in Figure 1, and we give some
results in Appendix C.5.

The results are shown in Table 1. As we can see, our meth-
ods GainLoRA (O-LoRA) and GainLoRA (InfLoRA) out-
perform O-LoRA and InfLoRA in both AP and FT, respec-
tively. This improvement demonstrates that fixing all coeffi-
cients {a; }1_; to 1 leads to forgetting on old tasks, thereby
limiting the performance of O-LoRA and InfLoRA. By ef-
fectively mitigating this forgetting, GainLoRA (O-LoRA)
and GainLoRA (InfLoRA) achieve superior performance.
Furthermore, our methods consistently achieve the best per-
formance across all task sequences.

Figure 3 illustrates the variation in the average performance
across all learned tasks for different methods throughout
the continual learning process. As shown, GainLoRA con-
sistently outperforms the performance of O-LoRA and In-
fLoRA throughout the whole training process.

Scaling to Larger Model Architectures To evaluate the
effectiveness of our method on larger model architectures,
we scale different LoORA-based continual learning meth-

ods to larger models, including T5-XL, Llama-2-7B, and
Llama-2-13B. Table 2 and Table 3 present the results of dif-
ferent methods. As shown, across models of varying sizes,
GainLoRA (O-LoRA) and GainLoRA (InfLoRA) consis-
tently outperform O-LoRA and InfLoRA in terms of AP
and FT, respectively. This demonstrates that GainLoRA
effectively mitigates forgetting in the new LoRA branch
across different model architectures.

Trainable Parameters We compare the number of train-
able parameters across different methods for training on
different task sequences. The results are shown in Figure 4,
and the detailed computation of trainable parameters is pro-
vided in Appendix B.4.

As shown, GainLoRA (O-LoRA) and GainLoRA (InfLoRA)
have more trainable parameters than O-LoRA and InfLoRA,
respectively. This increase arises from the introduction of
the trainable gating module in GainLoRA. However, the ad-
ditional trainable parameters introduced by GainLoRA are
much fewer than those in LoRA. Therefore, the total num-
ber of trainable parameters in GainLoRA (O-LoRA) and
GainLoRA (InfLoRA) are comparable to that of O-LoRA
and InfLoRA, respectively.

Submission and Formatting Instructions for ICML 2025

Table 4. Ablation study of GainLoRA with T5-Large and Llama-2-7B.

T5-Large Llama-2-7B
Method Order 1 Order 2 Order 1 Order 2
APt FT| | APt FT| | APt FT| | APt FT|
GainLoRA (O-LoRA) 47.84 226 | 46.84 291 | 51.10 496 | 51.14 5.57
No Initialization Constraints | 35.30 17.19 | 39.82 12.90 | 44.02 11.71 | 42.89 14.77
No Updating Constraints 23.01 30.32 | 2496 28.14 | 33.74 23.06 | 34.71 22.36
No Constraints 26.32 26.00 | 30.63 22.37 | 3448 2346 | 36.87 21.24
GainLoRA (InfLoRA) 46.21 240 | 4644 2.61 | 51.27 284 | 50.17 4.71
No Initialization Constraints | 45.38 3.40 | 43.05 5.15 | 5048 348 | 48.17 6.45
No Updating Constraints 37.69 1094 | 3885 9.31 | 4852 5.68 | 4785 7.00
No Constraints 36.75 12.18 | 41.00 6.66 | 49.10 6.07 | 4577 8.70
EEN O-LoRA BB GainLoRA (O-LoRA) [EE InflLoRA [ES3 GainLoRA (InfLoRA) :; 1 ? 1 5 1 . 1 -
g~- § 0.8 0.8 0.8 8 0.8
g % 04 04 04 04
j; ‘5 0.2 I 0.2 % 0.2 % 0.2 é
E g 0.4 él 0.4 0.4 0.4
Model Size Model Size Order 1 Order 2 Order 1 Order 2
(@) T5 (b) Llama-2 (a) GainLoRA (O-LoRA) (b) GainLoRA (InfLoRA)

Figure 4. The number of trainable parameters in different con-
tinual learning methods with different model backbones on task
sequences Order 1 and Order 2.

Ablation Study To verify the necessity of both the initial-
ization and updating constraints introduced in Section 3.2.1,
we define several variants of GainLoRA. The first variant, re-
ferred to as “No Initialization Constraints”, removes the ini-
tialization constraints defined in (5). Specifically, it replaces
f () defined in (7) with function sigmoid(-) and eliminates
the operation in (9) while keeping all other components un-
changed. The second variant, referred to as “No Updating
Constraints”, removes the updating constraints defined in
(6) by eliminating the operations in (10) while preserving
all other components of GainLoRA. The third variant, re-
ferred to as “No Constraints”, follows “No Initialization
Constraints” and “No Updating Constraints” to remove both
the initialization and updating constraints.

Table 4 presents the experimental results of these variants.
As shown, none of these variants perform as well as our
GainLoRA, indicating the critical role of both the initializa-
tion constraints and updating constraints in our GainLoRA.

Distribution of Outputs in New Gating Module To
demonstrate that our GainLoRA effectively minimizes the
contribution from the new LoRA branches to old tasks, we
analyze the output distributions of the new gating modules.
Specifically, after training on the final task (i.e., the 15-th
task) in the task sequences, the 15-th task corresponds to

Figure 5. Outputs of new gating module in our GainLoRA on dif-
ferent task sequences with T5-Large.

the new task, and its associated gating module ¢15(+) serves
as the new gating module.

We obtain the outputs of the new gating module g;5(-) on the
samples from old and new tasks, respectively. Then, we an-
alyze their distributions in Figure 5. As shown, the outputs
of g15(+) for the samples from old tasks are concentrated
around 0, effectively minimizing the contribution from the
new LoRA branch to old tasks. Furthermore, GainLoRA
does not constrain the outputs of g15(+) for the samples from
the new task. As a result, the outputs of ¢q5(+) for the sam-
ples from the new task are distributed near 1, enabling the
model to effectively learn the new task.

5. Conclusion

In this work, we propose a new method, called GainLoRA,
for continual learning of language models. GainLoRA ex-
pands a new LoRA branch for each new task and introduces
gating modules to integrate the new and old LoRA branches.
Furthermore, GainLoRA leverages the new gating module
to minimize the contribution of the new LoRA branch to
old tasks, effectively mitigating forgetting and improving
the model’s overall performance. Experimental results on
continual learning benchmarks demonstrate that GainLoRA
outperforms existing state-of-the-art methods.

Submission and Formatting Instructions for ICML 2025

Impact Statement

This paper aims to contribute to the advancement of the
machine learning field. While our work may have vari-
ous societal implications, we do not find any that requires
specific emphasis.

References

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M.,
and Tuytelaars, T. Memory aware synapses: Learning
what (not) to forget. In Proceedings of the European
Conference on Computer Vision, pp. 139—154, 2018.

Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Cac-
cia, M., Lin, M., and Page-Caccia, L. Online continual
learning with maximal interfered retrieval. In Advances

in Neural Information Processing Systems, pp. 11849—
11860, 2019a.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. Gradient
based sample selection for online continual learning. In
Advances in Neural Information Processing Systems, pp.
11816-11825, 2019b.

Arani, E., Sarfraz, F., and Zonooz, B. Learning fast, learning
slow: A general continual learning method based on com-
plementary learning system. In International Conference
on Learning Representations, 2022.

Bohao, P., Tian, Z., Liu, S., Yang, M.-C., and Jia, J. Scalable
language model with generalized continual learning. In
International Conference on Learning Representations,
2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in Neural Information Processing Systems, pp.
1877-1901, 2020.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T.,
Dokania, P. K., Torr, P. H., and Ranzato, M. On tiny
episodic memories in continual learning. arXiv preprint
arXiv:1902.10486, 2019.

Cho, K. On the properties of neural machine trans-
lation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

Dao, T. Flashattention-2: Faster attention with better paral-
lelism and work partitioning. In International Conference
on Learning Representations, 2024.

Deng, D., Chen, G., Hao, J., Wang, Q., and Heng, P.-A. Flat-
tening sharpness for dynamic gradient projection memory
benefits continual learning. Advances in Neural Informa-
tion Processing Systems, pp. 18710-18721, 2021.

Du, W, Cheng, S., Luo, T., Qiu, Z., Huang, Z., Cheung,
K. C., Cheng, R., and Fu, J. Unlocking continual learning
abilities in language models. In Findings of the Confer-

ence on Empirical Methods in Natural Language Pro-
cessing, pp. 6503-6522, 2024.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural Networks, pp. 3—11,
2018.

Fu, C.-L., Chen, Z.-C., Lee, Y.-R., and Lee, H.-Y. Adapter-
bias: Parameter-efficient token-dependent representation
shift for adapters in nlp tasks. In Findings of the Confer-
ence of the North American Chapter of the Association
for Computational Linguistics, pp. 2608-2621, 2022.

Han, Z., Gao, C., Liu, J., Zhang, S. Q., et al. Parameter-
efficient fine-tuning for large models: A comprehensive
survey. arXiv preprint arXiv:2403.14608, 2024.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, pp. 1735-1780, 1997.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp. In

Proceedings of the International Conference on Machine
Learning, pp. 2790-2799, 2019.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. Lora: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations, 2022.

Hung, S. C. Y, Tu, C., Wu, C., Chen, C., Chan, Y., and Chen,
C. Compacting, picking and growing for unforgetting
continual learning. In Advances in Neural Information
Processing Systems, pp. 13647-13657, 2019.

Jung, S., Ahn, H., Cha, S., and Moon, T. Continual learning
with node-importance based adaptive group sparse regu-
larization. Advances in Neural Information Processing
Systems, pp. 3647-3658, 2020.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ra-
malho, T., Grabska-Barwinska, A., et al. Overcoming
catastrophic forgetting in neural networks. Proceedings
of the National Academy of Sciences, pp. 3521-3526,
2017.

Lester, B., Al-Rfou, R., and Constant, N. The power of
scale for parameter-efficient prompt tuning. In Proceed-
ings of the Conference on Empirical Methods in Natural
Language Processing, pp. 3045-3059, 2021.

Submission and Formatting Instructions for ICML 2025

Li, X., Zhou, Y., Wu, T., Socher, R., and Xiong, C. Learn
to grow: A continual structure learning framework for
overcoming catastrophic forgetting. In Proceedings of

the International Conference on Machine Learning, pp.
3925-3934, 2019.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics,
pp. 4582-4597, 2021.

Liang, Y. and Li, W. Loss decoupling for task-agnostic
continual learning. In Advances in Neural Information
Processing Systems, 2023a.

Liang, Y.-S. and Li, W.-J. Adaptive plasticity improvement
for continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 78167825, 2023b.

Liang, Y.-S. and Li, W.-J. Inflora: Interference-free low-
rank adaptation for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 23638-23647, 2024.

Lin, C.-Y. Rouge: A package for automatic evaluation of
summaries. In Text Summarization Branches Out, pp.
74-81, 2004.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2019.

Luo, Y., Yang, Z., Meng, F., Li, Y., Zhou, J., and Zhang,
Y. An empirical study of catastrophic forgetting in large
language models during continual fine-tuning. arXiv
preprint arXiv:2308.08747, 2023.

Mahabadi, R. K., Henderson, J., and Ruder, S. Compacter:
Efficient low-rank hypercomplex adapter layers. In Ad-
vances in Neural Information Processing Systems, pp.
1022-1035, 2021.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, pp. 2773027744, 2022.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, pp. 54-71, 2019.

Qiao, J., Tan, X., Chen, C., Qu, Y., Peng, Y., Xie, Y., et al.
Prompt gradient projection for continual learning. In
International Conference on Learning Representations,
2024.

10

Qin, C. and Joty, S. R. LFPTS5: A unified framework for life-
long few-shot language learning based on prompt tuning
of TS. In International Conference on Learning Repre-
sentations, 2022.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research, pp.
1-67, 2020.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Pro-

ceedings of the International Conference on Knowledge
Discovery & Data Mining, pp. 3505-3506, 2020.

Razdaibiedina, A., Mao, Y., Hou, R., Khabsa, M., Lewis,
M., and Almabhairi, A. Progressive prompts: Continual
learning for language models. In International Confer-
ence on Learning Representations, 2023.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Saha, G., Garg, L., and Roy, K. Gradient projection memory
for continual learning. In International Conference on
Learning Representations, 2021.

Shi, H., Xu, Z., Wang, H., Qin, W., Wang, W., Wang, Y., and
Wang, H. Continual learning of large language models: A
comprehensive survey. arXiv preprint arXiv:2404.16789,
2024.

Smith, J. S., Cascante-Bonilla, P., Arbelle, A., Kim, D.,
Panda, R., Cox, D., Yang, D., Kira, Z., Feris, R., and
Karlinsky, L. Construct-vl: Data-free continual structured
vl concepts learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pp.- 14994-15004, 2023a.

Smith, J. S., Karlinsky, L., Gutta, V., Cascante-Bonilla, P.,
Kim, D., Arbelle, A., Panda, R., Feris, R., and Kira,
Z. Coda-prompt: Continual decomposed attention-based
prompting for rehearsal-free continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 11909-11919, 2023b.

Smith, J. S., Hsu, Y.-C., Zhang, L., Hua, T., Kira, Z., Shen,
Y., and Jin, H. Continual diffusion: Continual customiza-
tion of text-to-image diffusion with c-lora. Transactions
on Machine Learning Research, 2024.

Sun, Q., Lyu, F.,, Shang, F., Feng, W., and Wan, L. Exploring
example influence in continual learning. Advances in Neu-
ral Information Processing Systems, pp. 27075-27086,
2022.

Submission and Formatting Instructions for ICML 2025

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, L., Zhang, X., Su, H., and Zhu, J. A comprehen-
sive survey of continual learning: Theory, method and
application. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 5362-5383, 2024.

Wang, S., Li, X., Sun, J., and Xu, Z. Training networks in
null space of feature covariance for continual learning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 184-193, 2021.

Wang, X., Chen, T., Ge, Q., Xia, H., Bao, R., Zheng, R.,
Zhang, Q., Gui, T., and Huang, X.-J. Orthogonal sub-
space learning for language model continual learning.
In Findings of the Conference on Empirical Methods in
Natural Language Processing, pp. 10658-10671, 2023a.

Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y.,
Mirzaei, A., Naik, A., Ashok, A., Dhanasekaran, A. S.,
Arunkumar, A., Stap, D., Pathak, E., Karamanolakis, G.,
Lai, H. G., Purohit, 1., Mondal, 1., Anderson, J., Kuz-
nia, K., Doshi, K., Pal, K. K., Patel, M., Moradshahi,
M., Parmar, M., Purohit, M., Varshney, N., Kaza, P. R.,
Verma, P, Puri, R. S., Karia, R., Doshi, S., Sampat, S. K.,
Mishra, S., A, S. R., Patro, S., Dixit, T., and Shen, X.
Super-naturalinstructions: Generalization via declarative
instructions on 1600+ NLP tasks. In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing, pp. 5085-5109, 2022a.

Wang, Z., Zhang, Z., Lee, C.-Y., Zhang, H., Sun, R., Ren,
X., Su, G., Perot, V., Dy, J., and Pfister, T. Learning
to prompt for continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 139-149, 2022b.

Wang, Z., Liu, Y., Ji, T., Wang, X., Wu, Y., Jiang, C., Chao,
Y., Han, Z., Wang, L., Shao, X., et al. Rehearsal-free con-
tinual language learning via efficient parameter isolation.
In Proceedings of the Annual Meeting of the Association
for Computational Linguistics, pp. 10933-10946, 2023b.

Weli, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester,
B., Du, N, Dai, A. M., and Le, Q. V. Finetuned lan-
guage models are zero-shot learners. In International
Conference on Learning Representations, 2022.

Ye, X. calflops: a flops and params calculate tool for neural
networks in pytorch framework, 2023.

Zaken, E. B., Goldberg, Y., and Ravfogel, S. Bitfit: Sim-
ple parameter-efficient fine-tuning for transformer-based

11

masked language-models. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics,
pp- 1-9, 2022.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhao, W., Wang, S., Hu, Y., Zhao, Y., Qin, B., Zhang, X.,
Yang, Q., Xu, D., and Che, W. Sapt: A shared attention
framework for parameter-efficient continual learning of
large language models. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics,
pp.- 11641-11661, 2024.

Submission and Formatting Instructions for ICML 2025

A. More Details of Methods

A.1. Gradient Projection Memory

We initialize the first L layers of g;(-) using the corresponding layers from the previous gating module g;_1(-). Therefore,
the first L layers of g;(-) can be viewed as being initialized at the beginning of the first task and continue their training until
the ¢-th task. Additionally, the first L layers in g;(-) serve as checkpoints, preserving the state of g, (+) after learning the i-th
task (1 < ¢ < t). At this time, existing method gradient projection memory (GPM) (Saha et al., 2021) can be used to learn
matrices {Mtvl}f:ﬁl, where the columns of M, ; approximate the orthonormal bases of the subspace M, ;. Specifically,
when ¢ = 1, since there is no old task, M ; is a null space and M} ; is a zero matrix. After learning the ¢-th new task, GPM
expands M ; to M1 by first computing the input matrix H;; where each column of H ; represents an input to the /-th
layer. Then, the component of H, ; already in M, ; is removed by

H,, = H,, — M, ;(M,,)"H,,. (13)

Next, singular value decomposition (SVD) is performed on Ht’lHtTl, which is decomposed as ﬁt,lfit’lf]fl. Then, u new

orthonormal bases w1, ..., u,, are chosen from the columns of Uy ;, where w is the minimum number satisfying the following
criteria for a given threshold e, :

(H)l 3 + || My (M) " Hy |5 > e | Hegl| 3 (14)

Here, (H), denotes the components of H, +,1 corresponding to the top-u singular values. Then, the orthonormal bases of
subspace M ; are obtained by augmenting the orthonormal bases of subspace M, ; with the new orthogonal vectors
UL, ..., Uy, Tesulting in Mg = [My, w1, ..., Uy].

A.2. More Details of O-LoRA and InfLoRA

O-LoRA O-LoRA (Wang et al., 2023a) ensures that the new LoRA branch remains orthogonal to all the old LoRA
branches. Specifically, during the learning of the ¢-th new task with the ¢-th LoRA branch (A4, B;), O-LoRA computes the
inner product between the new and old LoRA branches as

O,;=B!B; forl<i<t-—1 (15)
Then, the loss function of O-LoRA is defined as

[y t—1

1 .
D] Z ZIOg[P(yt,ﬂmtayt,la-~-ayt,j—1)]+)\ZZHoi,t[.%k]”% (16)

(z1,y1)€Dy j=1 i=1 j.k

For further details on O-LoRA, we refer readers to the original paper (Wang et al., 2023a).

InfLoRA InfLoRA (Liang & Li, 2024) ensures orthogonality between the new LoRA branch and the gradients of old
tasks. Specifically, it shows that only fine-tuning the down-projection matrix A; in the new LoRA branch is equivalent to
directly fine-tuning the pre-trained weights within a subspace spanned by the rows of B;. Therefore, before learning the ¢-th
task, InfLoRA designs B, to be orthogonal to the gradients of the old tasks. During the learning of the ¢-th task, InfLoRA
only tunes A; in the new LoRA branch while freezing B; and all the old LoRA branches. For further details on InfLoRA,
we refer readers to the original paper (Liang & Li, 2024).

A.3. Proof of Proposition 3.1
Proposition A.1. If the constraints in (6) are satisfied, subspaces {Mt,l}lL:Jrll remain unchanged during the learning of the
t-th task. Furthermore, for any input from the previous t — 1 tasks, g:(x) remains unchanged during the learning of the

t-th task.

Proof. For any x from previous ¢ — 1 tasks, we rewrite g;(x) as

gt(x) = f(Wi L41pL),
pr=0(Wypi_1), 1 €{1,2,...,L},
po = Pool(Token(x)). a7

12

Submission and Formatting Instructions for ICML 2025

Since pg = Pool(Token(x)) is unrelated to the parameters of the new gating module g;(-), pg does not change with the
update of g;(-). Since My 1 is spanned by pg, M, ; remains unchanged during the learning of the ¢-th task.

Suppose that we have proven that p;_; does not change with the update of the new gating module g;(-) (1 <1 < L). Since
My, is spanned by p;_1, M, remains unchanged during the learning of the ¢-th task. At this point, p; can be expressed as

P = O’((Init(Wt}l) + AWt,l)pl—l) = O'(Init(WtJ)pl_l). (18)

Here, the second equality holds since p;—1 € M;; and AW, ; L M, ;. Therefore, p; does not change with the update of the
new gating module g;(-) (1 <! < L). Since M, ;11 is spanned by p;, M, ;41 remains unchanged during the learning of
the ¢-th task.

Furthermore, during the learning of the ¢-th task, g;(x) can be expressed as
gi(x) = f((Init(Wi 1) + AW, 141)pr) = f(Init(Wy r11)pr)- (19)

Here, the second equality holds since p;, € My 1 and AW, 1,41 LMy 141. O

B. More Details of Experimental Settings
B.1. More Details of Datasets

Table 5 and Table 6 show the details of Long Sequence Benchmark and SuperNI Benchmark, respectively. Long Sequence
Benchmark consists of 15 classification tasks while SuperNI Benchmark consists of various NLP tasks, including dialogue
generation, information extraction, question answering, summarization, and sentiment analysis.

Table 5. Details of different tasks in Long Benchmark.

Dataset name | Category Domain Task Type Metric

Yelp CL Benchmark sentiment analysis Yelp reviews Accuracy
Amazon CL Benchmark sentiment analysis Amazon reviews Accuracy
DBpedia CL Benchmark topic classification Wikipedia Accuracy
Yahoo CL Benchmark topic classification Yahoo Q&A Accuracy
AG News CL Benchmark topic classification news Accuracy
MNLI GLUE natural language inference various Accuracy
QQP GLUE paraphrase detection Quora Accuracy
RTE GLUE natural language inference news, Wikipedia Accuracy
SST-2 GLUE sentiment analysis movie reviews Accuracy
WiC SuperGLUE word sense disambiguation lexical databases Accuracy
CB SuperGLUE natural language inference various Accuracy
COPA SuperGLUE question and answering blogs, encyclopedia Accuracy
BoolQA SuperGLUE boolean question and answering Wikipedia Accuracy
MultiRC SuperGLUE question and answering various Accuracy
IMDB SuperGLUE sentiment analysis movie reviews Accuracy

The task sequences are constructed using Long Sequence Benchmark and SuperNI Benchmark. The details of different task
sequences are presented in Table 7.
B.2. More Implementation Details

Following existing continual learning works (Ouyang et al., 2022; Wang et al., 2023a; Wei et al., 2022), all methods are
implemented using instruction tuning (Ouyang et al., 2022). Experiments are conducted on NVIDIA RTX A6000 GPUs with
AdamW (Loshchilov & Hutter, 2019) as the optimizer. For T5-Large and T5-XL, their relatively smaller model sizes allow

13

Submission and Formatting Instructions for ICML 2025

Table 6. Details of different tasks in SuperNI Benchmark.

Dataset name ‘ Task Type Metric

Task639_multi_woz_user_utterance_generation | summarization Rouge-L
Task1590_diplomacy_text_generation summarization Rouge-L
Task1729_personachat_generate_next summarization Rouge-L
Task181_outcome_extraction information extraction Rouge-L
Task748_glucose_reverse_cause_event_detection | information extraction Rouge-L
Task1510_evalution_relation_extraction information extraction Rouge-L
Task002_quoref_answer_generation dialogue generation ~ Rouge-L

Task073_commonsenseqa_answer_generation | dialogue generation Rouge-L

Task591 _sciq_answer_generation dialogue generation =~ Rouge-L
Task511 _reddit_tifu_long_text_summarization | question answering Rouge-L
Task1290_xsum_summarization question answering Rouge-L
Task1572_samsum_summary question answering ~ Rouge-L
Task363_sst2_polarity _classification sentiment analysis Accuracy
Task875_emotion _classification sentiment analysis Accuracy
Task1687_sentiment140_classification sentiment analysis Accuracy

Table 7. The order of different task sequences for experiments.

Benchmark Order Task Sequence
task1572 — task363 — task1290 — task181 — task002 —
1 task1510 — task639 — task1729 — task073 — task1590 —
SuperNI Benchmark task748 — task511 — task591 — task1687 — task875
task748 — task073 — task1590 — task639 — task1572 —
2 task1687 — task591 — task363 — task1510 — task1729 —

task181 — task511 — task002 — task1290 — task875

MNLI — CB — WiC — COPA — QQP — BoolQA — RTE — IMDB — Yelp —
Amazon — SST-2 — DBpedia — AG News — MultiRC — Yahoo

CL Benchmark Yelp — Amazon — MNLI — CB — COPA — QQP — RTE — IMDB — SST-2 —

DBpedia — AG News — Yahoo — MultiRC — BoolQA — WiC

experiments to be performed on a single A6000 GPU with gradient accumulation. For Llama-2-7B and Llama-2-13B, data
parallelism with DeepSpeed ZeRO-2 (Rasley et al., 2020) is prioritized across multiple A6000 GPUs. FlashAttention-2 (Dao,
2024) is employed to reduce memory usage during training, ensuring sufficient GPU memory to enable DeepSpeed ZeRO-2
whenever possible. However, if the sequence lengths of certain tasks are too long to enable DeepSpeed ZeRO-2 even with
FlashAttention-2, DeepSpeed ZeRO-3 is utilized to handle these tasks.

To ensure fair comparisons, for all the methods based on LoRA, we follow existing continual learning methods (Hu et al.,
2022; Wang et al., 2023a; Zhao et al., 2024) by integrating the LoRA architecture into the query and value components of
the multi-head attention mechanism in each Transformer block. Following existing works (Wang et al., 2023a; Zhao et al.,
2024), for all the methods based on LoRA, the rank of a single LoRA branch is set to 4 for Order 1 and Order 2, and 8 for
Order 3 and Order 4. We also vary the rank in LoRA branches and show the results in Appendix C.4.

For our methods, the global batch size is set to 32 across all model backbones. The learning rate is set to 3e-4 for TS
backbones and 5e-5 for Llama backbones. Each task is trained for 100 epochs with T5 backbones and 50 epochs with Llama
backbones. For baselines, we follow their official implementations to set the hyperparameters, making the comparison as
fair as possible. If this does not achieve the expected performance, we perform a hyperparameter search for the learning rate

14

Submission and Formatting Instructions for ICML 2025

and batch size.

B.3. More Details about the Architecture of the Gating Module

The architecture of the gating module g;(-) can be represented as

gi(z) = f(WirL11pL),
p=c(Wypi—1), l€{1,2,...L},
po = Pool(Token(x)). 20)

Non-linear activation function o (-) is set to SiLU (Elfwing et al., 2018). For all experiments, unless otherwise stated, L is
set to 2. In other words, the gating module g;(-) has three layers. For T5-Large and T5-XL, the parameters in the i-th gating
module g;(-) are W; ; € R100%d W, , € R4*100 and W; 3 € RY*?. For Llama-2-7B and Llama-2-13B, the parameters in
the i-th gating module g;(-) are W; ; € R%*4 W, 5 € R?*50 and W, 5 € R1*4. Here, d denotes the dimension of the
embeddings. For different models, d is 1024 for T5-Large and T5-XL, 4096 for Llama-2-7B, and 5120 for Llama-2-13B.

Additionally, we investigate the influence of the architecture of the gating module on the performance of our method. Results
are provided in Appendix C.3.

B.4. Computation of Trainable Parameters

To ensure fair comparisons, we set the same rank for each LoRA branch across all continual learning methods based on the
expandable LoRA architectures shown in Figure 1. Additionally, for all the methods based on LoRA, the LoRA modules are
incorporated into the query and value components of the multi-head attention mechanism within each Transformer block.

B.4.1. COMPUTATION OF TRAINABLE PARAMETERS IN T5-LARGE

In T5-Large, the projection weights for the query and value components have shapes W, W, € R1024x1024 The model
consists of 24 self-attention modules in the encoder, 24 self-attention modules in the decoder, and 24 cross-attention modules
in the decoder, resulting in a total of (24 4 24 + 24) * 2 = 144 pre-trained weights that incorporate the LoRA architecture.

During the learning of the ¢-th new task, O-LoRA updates the parameters A; € R1924X" and B; € R"*1924 resulting
in 1024 * r x 144 + r x 1024 * 144 = 2949127 trainable parameters. When r = 4, the number of trainable parameters
in O-LoRA is 294912 x 4 = 1179648 = 1.18M. InfLoRA only updates the parameters A; € R!024X" resulting in
1024 * r = 144 = 147456 trainable parameters. When r = 4, the number of trainable parameters in InfLoRA is
147456r = 589824 = 0.59M.

GainLoRA introduces an additional new gating module g;(-) with parameters W; ; € R00x1024 "y, , ¢ R1024x100
and W; 3 € R1*1024_ Therefore, the number of trainable parameters in GainLoRA (O-LoRA) is 1179648 + 1024 x
100 + 1024 = 100 + 1024 = 1385472 = 1.39M. The number of trainable parameters in GainLoRA (InfLoRA) is
589824 + 1024 % 100 + 1024 % 100 4+ 1024 = 795648 = 0.80M.

B.4.2. COMPUTATION OF TRAINABLE PARAMETERS IN T5-XL

In T5-XL, the projection weights for the query and value components have shapes W,, W,, € R4096x1024 " The model
architecture is similar to T5-Large, with 144 pre-trained weights incorporating LoRA.

During the learning of the ¢-th new task, O-LoRA updates the parameters A, € R*%96x" and B, € R"*1924 resulting in is
4096 xr* 144+ 7% 1024 % 144 = 737280r trainable parameters. When r = 4, O-LoRA has 7372804 = 2949120 = 2.95M
trainable parameters. InfLoRA only updates A; € R*096X" resulting in 4096 7 * 144 = 5898247 trainable parameters.
When r = 4, InfLoRA has 589824 x 4 = 2359296 = 2.36M trainable parameters.

GainLoRA introduces the same new gating module g;(-) as in T5-Large, with parameters W, ; € R100x1024 Wy, , ¢
R1024x100 and W, 3 € R1*1024, Thus, the total number of trainable parameters for GainLoRA (O-LoRA) is 2949120 +
1024 % 100 4 1024 * 100 4 1024 = 3154944 = 3.15M. The total number of trainable parameters in GainLoRA (InfLoRA)
is 2359296 4 1024 * 100 4+ 1024 % 100 + 1024 = 2565120 = 2.57TM.

15

Submission and Formatting Instructions for ICML 2025

Table 8. FLOPs and MACs for different models.

| Method | Input Shape (batch,length) FLOPs (G) MACs (G)
Original (1,128) 194.25 97.1

T5-Laree | GANLORA (O-LoRA) (1,128) 198.79 99.37

g GainLoRA (InfLoRA) (1,128) 198.79 99.37
Original (1,128) 751.7 375.78

T5-XL GainLoRA (O-LoRA) (1,128) 763.03 381.45
GainLoRA (InfLoRA) (1,128) 763.03 381.45

Original (1,128) 1701.07 850.5

Llama-2-7B GainLoRA (O-LoRA) (1,128) 1709.14 854.53
GainLoRA (InfLoRA) (1,128) 1709.14 854.53
Original (1,128) 3291.66 1645.79
Llama2.138 | GANLORA (O-LoRA) (1,128) 330426 1652.09
GainLoRA (InfLoRA) (1,128) 3304.26 1652.09

B.4.3. COMPUTATION OF TRAINABLE PARAMETERS IN LLAMA-2-7B

In Llama-2-7B, the projection weights for the query and value components have shapes W, W,, € R1096x4096 The model
contains 32 self-attention modules, resulting in 32 % 2 = 64 pre-trained weights that incorporate the LoRA architecture.

During the learning of the ¢-th new task, O-LoRA updates the parameters A, € R*%96x" and B, € R"*40% resulting in
4096 7+ 6441 x4096 % 64 = 524288 trainable parameters. When r = 4, the number of trainable parameters in O-LoRA is
524288%4 = 2097152 = 2.10M. InfLoRA only updates the parameters A; € R4096X" resulting in 4096% 764 = 2621447
trainable parameters. When r = 4, the number of trainable parameters in InfLoRA is 262144 % 4 = 1048576 = 1.05M.

GainLoRA introduces a new gating module g (-) with parameters W; ; € R%0x4096 W, , € R4096x50 and W, 5 € R1X4096,
Therefore, the number of trainable parameters in GainLoRA (O-LoRA) is 2097152 + 4096 * 50 + 4096 * 50 + 4096 =
2510848 = 2.51M. The number of trainable parameters in GainLoRA (InfLoRA) is 1048576+4096+50+-4096%504-4096 =
1462272 = 1.46M.

B.4.4. COMPUTATION OF TRAINABLE PARAMETERS IN LLAMA-2-13B

In Llama-2-13B, the projection weights for the query and value components have shapes W, W,, € R?120%5120 The model
contains 40 self-attention modules, resulting in 40 * 2 = 80 pre-trained weights that incorporate the LoRA architecture.

During the learning of the ¢-th new task, O-LoRA updates the parameters A; € R5120%" and B, € R"*5120 resulting in
5120 7r*x80+7r*x5120%x80 = 8192007 trainable parameters. When r = 4, the number of trainable parameters in O-LoRA is
8192004 = 3276800 = 3.28M. InfLoRA only updates the parameters A, € R5120%" resulting in 5120 %7 %80 = 4096007
trainable parameters. When r = 4, the number of trainable parameters in InfLoRA is 409600 * 4 = 1638400 = 1.64M.

GainLoRA introduces a new gating module g;(-) with parameters W 1 € R50x5120, W, € R5120%50 apd W3 € R1x5120,
Therefore, the number of trainable parameters in GainLoRA (O-LoRA) is 3276800 + 5120 * 50 4+ 5120 % 50 + 5120 =
3793920 = 3.79M. The number of trainable parameters in GainLoRA (InfLoRA) is 1638400+5120%50+5120%50+5120 =
2155520 = 2.16M.

C. More Experimental Results
C.1. Discussing Computational Costs Introduced by GainLoRA

Existing methods, such as O-LoRA and InfL.oRA, adopt the expandable LoRA architecture shown in Figure 1 and fix
the integration coefficients {a;}’_; to 1, allowing the model to merge the expanded LoRA branches into the pre-trained
matrix at inference time, thereby avoiding additional computational costs. However, when using our gating module to
integrate different LORA branches, the LoRA branches cannot be merged into the pre-trained matrix at inference time,
which introduces additional computational costs. Nevertheless, we demonstrate that these computational costs are minimal
compared to the computational cost of the original language models (LMs).

Table 8 compares the floating-point operations (FLOPs) and multiply-add operations (MACs) during inference for different

16

Submission and Formatting Instructions for ICML 2025

Table 9. Results with standard deviation on different task sequences using T5-large model.

Method Order 1 Order 2 Order 3 Order 4
AP?T FT| AP FT| AP?T FT| AP?T FT|
MIGU+FT (Du et al., 2024) 71.30+1.85 11.39+1.92 69.05+071 14.06+0.86

7.30+1.12 47.60+094 7.03+049 47.97+007
12.33+056 41.93+0.17 16.65+091 36.56+1.30
22.69+0.01 24.25+090 32.81+064 11.60+023
26.37+227 19.15+2.15 32.83+025 11.99+03s8
47.84+016 2.26+006 46.84+t011 2.91+013
39.78+057 7.64+054 39.57+094 8.93+037
46.214+005 2.40+024 46.44+041 2.61+0.25

SeqLoRA

IncLoRA (Hu et al., 2022)
C-LoRA (Smith et al., 2024)
O-LoRA (Wang et al., 2023a)
GainLoRA (O-LoRA)
InfLoRA (Liang & Li, 2024)
GainLoRA (InfLoRA)

49.46+2.42
61.19+035
66.83+0.56
70.98+1.74
73.37+0.01
75.15+0.06
78.01+0.26

27.60+4.090 33.81+001 45.53+1.60
13.63+1.27 62.46+034 15.92+046
8.64+032 61.86+1.77 14.18+150
3.69+053 71.21+033 4.03+1.00
3.02+081 76.01+049 2.49-+0.12
4.19+0.13 75.79+056 3.47+045
0.77 001 77.54+023 1.25+0.10

Table 10. The overall results on different task sequences with T5-XL model.

Order 1 Order 2 Order 3 Order 4
APT FT| APt FT|] APt FT|] AP?T FT|]

O-LoRA (Wang et al., 2023a) | 36.50+4.29 11.42+530 40.64+1.00 6.37+0.66|73.77+1.14 2.70+054 76.19+049 3.56+0.40
GainLoRA (O-LoRA) 50.10+022 3.21+032 49.86+0.06 3.04+0.13|78.41+050 2.59+056 77.21+0.19 3.30+0.34
InfLoRA (Liang & Li, 2024) [45.61+128 5.60+135 45.85+0.10 5.104032|80.22+0.04 2.09+0.11 79.43+0.03 1.71+0.09
GainLoRA (InfLoRA) 50.06+0.11 1.86+028 50.26+0.14 2.64-+0.41|81.22+0.11 0.58+0.01 80.30+0.11 0.75+0.15

Method

models with and without GainLoRA. The computation of FLOPs and MACs follows the existing project calflops (Ye, 2023).
Here, “Original” denotes the original LMs without any LoRA adaptation. Methods such as O-LoRA and InfLoRA avoid
additional computational costs by merging their LoRA branches into the original weights during inference, resulting in
FLOPs and MACs identical to the original LMs. Despite introducing additional FLOPs and MACs compared to the original
LMs, GainLoRA maintains minimal computational overhead relative to the original LMs.

C.2. Results with standard deviation

Table 9, Table 10 and Table 11 report the results with standard deviation.

Table 11. The overall results on different task sequences with Llama-2-7B and Llama-2-13B.

Llama-2-7B Llama-2-13B
Order 1 Order 2 Order 1 Order 2

Method

AP} FT) AP} FT)

APt FT} APt FTJ

O-LoRA (Wang et al., 2023a)
GainLoRA (O-LoRA)
InfLoRA (Liang & Li, 2024)

39.37+0.24 15.84+058 37.55+0.70 20.23+0.20
51.10+091 4.96+056 51.14+1.01 5.57+0.65
42.93+0.77 11.23+024 39.94+030 15.00+0.51
51.27+0.01 2.84+t011 50.17+032 4.71+0.22

43.92+042 14.15+035 40.05+0.46 19.53+0.50
52.47+024 4.78+027 51.68+063 5.86-+044
43.64+0.02 14.85+031 45.74+0381 10.61+0.09
53.64+081 2.87+0.05 52.46+050 4.90-+0.30

GainLoRA (InfLoRA)

C.3. Varying the Architecture of Gating Module
C.3.1. VARYING FUNCTION f(-) IN GATING MODULE

To implement our method, we define function f(-) as (7). Here, we vary the formula of function f(-) as the following two
functions:

b

min{|b|, 1}, |sin(5

)l 21

Clearly, these two functions map real values among [0, 1] and satisfy f(0) = 0. Table 12 shows the results. As we can see,
when changing the formula of f(-), GainLoRA also improves the performance of O-LoRA and InfLoRA.

C.3.2. VARYING THE SHAPES OF WEIGHTS IN GATING MODULE

In this section, we vary the shapes of the weights in the gating modules with T5-Large. Specifically, we set the weights
W, € R%x1024 and W, , € R1924%dn in each gating module g;(-) and vary dj, over {50,100, 200}. Figure 6 (a) and
Figure 6 (b) show the results. As we can see, when increasing dj,, the performance of GainLoRA remains relatively stable,

17

Submission and Formatting Instructions for ICML 2025

Table 12. Varying the function f(-) in GainLoRA on different task sequences with T5-large model.

Order 1 Order 2

Method APt FT AP} FTJ
GainLoRA (InfLoRA) (f(b) = |2sigmoid(b) — 1|) | 46.21+005 2.40+024 | 46.44+041 2.61+025
GainLoRA (InfLoRA) (f(b) = min{|b|,1}) 45.05+032 2.07+024 | 45.00+020 1.74+0.44
GainLoRA (InfLoRA) (f(b) = |sin(7Tb)|) 4748003 1.21+0s2 | 45.03+067 2.37+034
InfLoRA 39.78+057 7.64+054 | 39.571004 8.931037
GainLoRA (O-LoRA) (f(b) = |2sigmoid(b) — 1|) | 47.84+016 2.26+006 | 46.84+011 2.91+013
GainLoRA (O-LoRA) (f(b) = min{|b|,1}) 49.62+057 2.83+073 | 48.621047 3.741002
GainLoRA (O-LoRA) (f(b) | sin (%2 mb) |) 48.49+092 3.84+0s4 | 47.20+085 4.69-+065
O-LoRA 26.37+227 19.15+215 | 32.83+025 11.99+03s8

(5] ——— (0] 475 [— [p—— [} 50 Py [} -

R — S I e e | T . 2 e -

S 45 s 450 S 45 Bl B = S

z s z £

407 = = 404 ks

Lo L 400 Lo Lo

A ~ ~ 2 4o

B3 — oLora 3 375/ — O-LorA B % — o-Lora B | — oLora

%0 -~ GainLoRA (O-LoRA) %D -#- GainLoRA (O-LoRA) %0 -#- GainLoRA (O-LoRA) %0 -#- GainLoRA (O-LoRA)

5 301 InfLoRA & 350 InfLoRA 5 301 InfLoRA S 35 InfLoRA

E | Gam‘LORA (InfLoRA) — E sl Gam‘LoRA (InfLoRA) — E | G‘amLoRA‘(InfLoRP‘x) — E | G:amLoRA‘(InfLoRé) —

50 100 200 50 100 200 0 i 2 3 4 0 i 2 3 4
dh dh L L
(a) Order 1 (b) Order 2 (c) Order 1 (d) Order 2

Figure 6. (a) and (b) show the variation of our methods’ performance with the shapes of the weights in the gating module. (c) and (d)
show the variation of our methods’ performance with the Layers of the gating module.

indicating that our method is robust to the shape of the weights in the gating module. Note that the number of trainable
parameters increases as dj, increases.

C.3.3. VARYING THE LAYERS OF GATING MODULE

In this section, we vary the layers of the gating modules with T5-Large. Specifically, we vary across {0,2,4}. when
L = 0, there is only one layer with W; ; € R1*1924 in each gating module g;(-). When L = 2, there are three layers with
W, 1 € RIOX102 Wy, | € R1024x100 g g W, 1 € RY1924 When L = 4, there are 5 layers with W, ; € R100x1024)
W, € RI024x100 7, | ¢ RL00x1024 7, | ¢ RL024x100 and W, | € R1¥1024 ip each gating module. Flgure 6 (c) and
Figure 6 (d) show the results As we can see, when increasing the layers of gating modules, the performance of GainLoRA
remains relatively stable, indicating that our method is robust to the layers of the gating module. Note that the number of
trainable parameters increases as the number of layers in gating modules increases.

C.4. Varying Ranks in LoRA Branches

In this section, we vary the rank of LoRA branches across {2, 4, 8} with T5-Large. Figure 7 shows the results. As shown,
when the rank of LoRA branches increases, the performance of GainLoRA remains relatively stable. Note that the number
of trainable parameters increases as the rank of LoRA branches increases.

C.5. Adopting Other Update Strategies for the New LoRA Branch

Our GainLoRA does not impose specific update strategies for the new LoRA branches. In this work, we adopt the same
update strategies as the existing two methods, O-LoRA (Wang et al., 2023a) and InfLoRA (Liang & Li, 2024). Related
methods, such as IncLoRA (Hu et al., 2022) and C-LoRA (Smith et al., 2024), also adopt the expandable LoRA architecture
illustrated in Figure 1 and fix all integration coefficients {a;}7_; to 1. Our method GainLoRA can also adopt their update
strategies for the new LoRA branch. Table 13 presents the results demonstrating that GainLoRA further improves the

18

Submission and Formatting Instructions for ICML 2025

s P Y
S 3 > 2

\

1

1

1

i

i

1

1

i

i

1

1

i

i

1

1

1

i

i

1

1

|

°
s O Y
£ 3 » 3

w
3
w
3

--#- GainLoRA (O-LoRA)
GainLoRA (InfLoRA)

--#- GainLoRA (O-LoRA)
GainLoRA (InfLoRA)

Averaged Performance
5

Averaged Performance
5
5

w
=8
v
=

2 4 6 8 2 4 6 8

Rank Rank
(a) Order 1 (b) Order 2

Figure 7. The variation of our methods’ performance with the Layers of the gating module.

Table 13. The overall results on different task sequences with T5-large model.

Order 1 Order 2
Method APt FT AP} FT
IncLoRA 12.331056 41.931017 16.65+t091 36.56=+1.30
GainLoRA (IncLoRA) | 47.82+008 3.73+025 45421119 5.83+153
C-LoRA 22.69+001 24.251t090 32.81x064 11.60x023
GainLoRA (C-LoRA) | 49241021 2941041 46231061 6.05+051

performance of these two methods.

C.6. Extending to the Rehearsal Setting

In this work, we focus on the non-rehearsal setting, where no real or synthetic samples from old tasks are available during
the learning of a new task. In this section, we demonstrate that our method, GainLoRA, can also be extended to the rehearsal
setting. Specifically, in the rehearsal setting, a set of samples A; containing real or synthetic samples from the previous
t — 1 tasks is available while the model learns the ¢-th new task. In this case, the constraints introduced in Section 3.2.1 are
no longer necessary, and we can optimize the following loss function:

[ye

1
= Z ZIOg[P(yt,j|mtayt,la~~~ayt,j—1)]JF Z log g:(x), (22)

D
Di] (@¢,y0) €D, j=1 (,5)~N,

The second term in (22) minimizes the contribution from the new LoRA branch on old tasks.

We compare GainLoRA with SAPT-LoRA (Zhao et al., 2024). For a fair comparison, we use the same rehearsal dataset
as SAPT-LoRA, generated using a trained generative model. As shown in Table 14, GainLoRA achieves comparable
performance to SAPT-LoRA in the rehearsal setting. Note that SAPT-LoRA is specifically designed for the rehearsal setting
and is not applicable to the non-rehearsal setting, which is considered in this work.

Table 14. The overall results on Order 1 in the rehearsal-setting.

T5-Large ‘ Llama-2-7B
AP?T FT| APt FT|
SAPT-LoRA (Zhao et al., 2024) | 51.38+012 0.74+01s 55.881025 0.741027
GainLoRA (InfLoRA) + Replay | 51.62+0s6 0.08+010 55.931060 0.95+039

C.7. Scaling to Unseen Tasks

We further follow existing work (Zhao et al., 2024) and select 3 tasks from each task category in SuperNI benchmark to
assess the model’s cross-task generalization ability. The selected datasets are shown in Table 15. Table 16 shows the results.

19

Submission and Formatting Instructions for ICML 2025

Table 15. Details of selected unseen tasks in SuperNI Benchmark.

Dataset name ‘ Task Type Metric

Task360_spolin_yesand_response_generation summarization Rouge-L
Task574 _air_dialogue_sentence_generation summarization Rouge-L
Task1714_convai3_sentence_generation summarization Rouge-L
Task180_intervention_extraction information extraction Rouge-L
Task678 _ollie_actual relationship_answer_generation | information extraction Rouge-L
Task1410_dart_relationship_extraction information extraction Rouge-L
Task339_record_answer_generation dialogue generation ~ Rouge-L
Task670_ambigqa_question_generation dialogue generation ~ Rouge-L
Task1327_qa_zre_answer_generation_from_question |dialogue generation = Rouge-L
Task522 _news_editorial_summary question answering Rouge-L
Task1356_xIsum_title_generation question answering Rouge-L
Task1499_dstc3_summarization question answering Rouge-L
Task421 _persent_sentence_sentiment_classification | sentiment analysis Accuracy
Task833_poem_sentiment_classification sentiment analysis Accuracy
Task929 _products_reviews_classification sentiment analysis Accuracy

Here, ‘Sum’, ‘IE’, ‘Dialogue’, ‘QA’ and ‘SA’ denote the summarization tasks, information extraction tasks, dialogue tasks,
question answering tasks and sentiment analysis tasks, respectively. Our methods yield better overall performance than
other methods.

Table 16. The results of different methods on unseen tasks after training on Order 1 with Llama-2-7B model.

Method ‘ Sum IE Dialogue QA SA Avg
O-LoRA 6.77 36.53 31.79 14.66 61.67 30.28
GainLoRA (O-LoRA) | 6.03 42.97 44.52 1534 175.44 36.86
InfLoRA 872 31.33 36.51 19.63 61.55 31.55

GainLoRA (InfLoRA) | 8.94 34.35 38.74 19.19 64.22 33.09

20

