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Abstract
Continual learning, which requires the model to
learn multiple tasks sequentially, is crucial for lan-
guage models (LMs). Recently, low-rank adap-
tation (LoRA), one of the most representative
parameter-efficient fine-tuning (PEFT) methods,
has gained increasing attention in continual learn-
ing of LMs. However, most existing continual
learning methods based on LoRA typically ex-
pand a new LoRA branch to learn each new task
and force the new and old LoRA branches to
contribute equally to old tasks, potentially lead-
ing to forgetting. In this work, we propose a
new method, called gated integration of low-rank
adaptation (GainLoRA), for continual learning of
LMs. GainLoRA expands a new LoRA branch
for each new task and introduces gating modules
to integrate the new and old LoRA branches. Fur-
thermore, GainLoRA leverages the new gating
module to minimize the contribution from the
new LoRA branch to old tasks, effectively mitigat-
ing forgetting and improving the model’s overall
performance. Experimental results on continual
learning benchmarks demonstrate that GainLoRA
outperforms existing state-of-the-art methods.

1. Introduction
Continual learning, which requires the model to learn
multiple tasks sequentially, is crucial for language mod-
els (LMs) (Shi et al., 2024). Specifically, with extensive
pre-trained knowledge and further fine-tuning strategies,
existing LMs have demonstrated strong performance for a
wide range of tasks (Brown et al., 2020; Zhang et al., 2022;
Touvron et al., 2023). However, when learning multiple
tasks sequentially, LMs may lose knowledge acquired from
old tasks, resulting in a significant degradation in perfor-
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mance on old tasks. This phenomenon, known as catas-
trophic forgetting (Parisi et al., 2019; Luo et al., 2023; Wang
et al., 2023a; 2024), highlights the need for developing
effective continual learning methods for LMs. Existing con-
tinual learning methods can be categorized into two main
categories. The first category (Razdaibiedina et al., 2023)
assumes that task identities are available during inference,
while the second category (Liang & Li, 2024; Zhao et al.,
2024) tackles a more difficult and practical setting where
task identities are unavailable during inference.

Recently, low-rank adaptation (LoRA) (Hu et al., 2022),
one of the most representative parameter-efficient fine-
tuning (PEFT) methods, has gained increasing attention
in the continual learning of LMs (Wang et al., 2023a; Bohao
et al., 2024). Specifically, by reparameterizing pre-trained
weights in a low-rank form, LoRA updates only a limited
number of parameters to adapt LMs to a downstream task,
making the fine-tuning process much more efficient than
updating all parameters of LMs (Han et al., 2024). This
efficiency also benefits continual learning, making LoRA
increasingly popular in continual learning of LMs.

Most existing continual learning methods based on
LoRA (Liang & Li, 2024; Zhao et al., 2024) typically ex-
pand a new LoRA branch for learning each new task while
freezing all old LoRA branches. In this way, they avoid
forgetting caused by directly updating the LoRA parameters
of old tasks (Qiao et al., 2024). However, to handle the
practical continual learning scenario where task identities
are unavailable at inference time, existing methods (Wang
et al., 2023a; Liang & Li, 2024; Smith et al., 2024) based
on LoRA integrate new and old LoRA branches through a
simple addition. Consequently, they force the new and old
LoRA branches to contribute equally to old tasks, which
means that the new LoRA branch may cause a relatively
large change in the model’s output on old tasks. This leads
to forgetting and degrades the model’s overall performance
in continual learning.

In this work, we propose a new method, called gated
integration of low-rank adaptation (GainLoRA), for con-
tinual learning of LMs. The contributions of GainLoRA are
listed as follows:
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• GainLoRA expands a new LoRA branch to learn each
new task and introduces gating modules to integrate
the new and old LoRA branches.

• GainLoRA leverages the new gating module to mini-
mize the contribution from the new LoRA branch to old
tasks, effectively mitigating forgetting and improving
the model’s overall performance.

• Experimental results on continual learning benchmarks
show that GainLoRA outperforms existing state-of-the-
art continual learning methods.

2. Related Work and Preliminaries
2.1. Related Work

Parameter-Efficient Fine-Tuning Parameter-efficient
fine-tuning (PEFT) methods tune a limited number of pa-
rameters to adapt a pre-trained model for downstream tasks,
showing much more efficiency than tuning all the param-
eters of the pre-trained model, especially for LMs. For
example, Adapter (Houlsby et al., 2019) modifies the model
architecture by introducing trainable modules into Trans-
former layers and tunes these modules for downstream
tasks. Prompt-tuning (Lester et al., 2021) and Prefix-
tuning (Li & Liang, 2021) insert learnable tokens into the
input and tune them for downstream tasks. Low-rank adap-
tation (LoRA) (Hu et al., 2022) reparameterizes the original
model parameters with low-rank matrices and tunes these
matrices for downstream tasks. Although PEFT methods
tune significantly fewer parameters than full fine-tuning,
they can achieve comparable performance to full fine-tuning
across a wide range of computer vision (CV) and natural
language processing (NLP) tasks (Fu et al., 2022; Hu et al.,
2022; Mahabadi et al., 2021; Zaken et al., 2022).

Continual Learning There are three main types of con-
tinual learning methods, categorized as regularization-based
methods, memory-based methods, and expansion-based
methods. Regularization-based methods (Kirkpatrick et al.,
2017; Aljundi et al., 2018; Jung et al., 2020; Smith et al.,
2024) incorporate a regularization term to mitigate catas-
trophic forgetting. Memory-based methods (Aljundi et al.,
2019a;b; Sun et al., 2022; Liang & Li, 2023a; Zhao et al.,
2024) utilize memory mechanisms to preserve knowledge
from old tasks. Expansion-based methods (Rusu et al., 2016;
Hung et al., 2019; Li et al., 2019; Liang & Li, 2023b) miti-
gate catastrophic forgetting by introducing new parameters
for learning new tasks while typically freezing old parame-
ters.

Many continual learning methods (Aljundi et al., 2018;
Arani et al., 2022; Liang & Li, 2023b) are designed to train
models from scratch. Recent studies (Wang et al., 2022b;
Smith et al., 2023b; Wang et al., 2023a; Liang & Li, 2024)

have shown that leveraging pre-trained models and PEFT
strategies enables continual learning methods to achieve
superior performance across tasks in both CV and NLP.
For example, some methods (Wang et al., 2022b; Qin &
Joty, 2022; Razdaibiedina et al., 2023) utilize prompt-tuning
for continual learning. They either maintain independent
prompts for each task or maintain a pool of prompts and
select relevant ones from the pool for learning new tasks.
Other methods (Wang et al., 2023a; Smith et al., 2023a;
Liang & Li, 2024; Zhao et al., 2024) adopt LoRA for con-
tinual learning. Most of these methods expand a new LoRA
branch to handle each new task while freezing old LoRA
branches to mitigate catastrophic forgetting. However, they
force the new and old LoRA branches to contribute equally
to old tasks, potentially leading to forgetting.

2.2. Preliminaries

Problem Definition We follow existing continual learn-
ing works (Wang et al., 2023a; Zhao et al., 2024) to for-
malize the problem definition for continual learning of
LMs. Specifically, in continual learning, a sequence of
tasks {T1, T2, ..., TT } is presented to the model sequentially,
where T denotes the total number of tasks. The t-th task
Tt consists of a training dataset Dt. For any given sample
(xt,yt) ∈ Dt, xt denotes an input sentence and yt denotes
the corresponding output. When learning the t-th new task,
the model is required to mitigate catastrophic forgetting of
the t− 1 previously learned tasks.

Similar to existing continual learning works for LMs (Bo-
hao et al., 2024; Zhao et al., 2024), we consider a more
challenging continual learning setting defined by three key
challenges: (1) the model is presented with a sequence of
tasks spanning various types, such as dialogue generation,
information extraction and so on; (2) the model is not pro-
vided with task identities at inference time; (3) the model
must learn without access to real or synthetic samples from
previously learned tasks.

Low-Rank Adaptation LoRA (Hu et al., 2022) is a
widely adopted PEFT method used for fine-tuning vari-
ous pre-trained models, particularly LMs. Specifically, let
W ∈ Rdout×din represent a pre-trained weight in LMs,
where din and dout are the input and output dimensions,
respectively. Instead of updating W directly, LoRA in-
troduces an additional branch consisting of two matrices,
A ∈ Rdout×r and B ∈ Rr×din , where r � min(din, dout).
LoRA then modifies the forward propagation of this layer
as e = (W + AB)h. Here, h and e denote the input and
output, respectively. To ensure no initial impact on the pre-
trained weights, A is initialized to 0, and B is initialized
using a Gaussian distribution. During fine-tuning for down-
stream tasks, the pre-trained weight W remains frozen, and
only the parameters A and B are fine-tuned.
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Figure 1. The expandable LoRA architecture of our GainLoRA for
learning the t-th new task.

3. Methodology
Our GainLoRA employs an expandable LoRA architecture,
which is illustrated in Figure 1. Specifically, before learning
the t-th task (1 ≤ t ≤ T ), GainLoRA first expands the
LoRA architecture by introducing the t-th new branch with
matrices At ∈ Rdout×r and Bt ∈ Rr×din . The new and
old LoRA branches are then integrated as

Wt = Wt−1 + atAtBt =

t∑
i=1

aiAiBi, (1)

where ai is an integration coefficient that determines the
contribution of the i-th LoRA branch to the input h. Note
that Wt−1 is a zero matrix when t = 1. As a result, the
forward propagation in this layer is modified as

e = (W + Wt)h. (2)

Finally, only the new LoRA branch (i.e. the t-th LoRA
branch) is updated for the t-th new task, while all the old
LoRA branches are frozen. After learning the t-th task, (2)
is also used for inference across all test samples, thereby en-
suring compatibility with the scenario where task identities
are unavailable during inference.

Many existing continual learning methods based on
LoRA (Wang et al., 2023a; Smith et al., 2024; 2023a; Liang
& Li, 2024; Zhao et al., 2024) share a similar architecture
to our method, as illustrated in Figure 1. However, these
methods fix all coefficients {ai}ti=1 in (1) to 1, forcing the
new and old LoRA branches to contribute equally to old
tasks. As a result, the new LoRA branch introduces a change
of AtBth to the output for inputs h associated with old
tasks, potentially leading to forgetting (Qiao et al., 2024).
Although some methods attempt to mitigate this forgetting
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Figure 2. For each task Ti, GainLoRA uses an independent gating
module gi(·) to generate integration coefficient ai. Furthermore,
during the learning of the t-th task, GainLoRA imposes constraints
on the new gating module gt(·).

by imposing regularization (Smith et al., 2024) or orthog-
onality constraints (Liang & Li, 2024) on the new LoRA
branch, the fixed integration coefficients {ai}ti=1 still limit
their performance, as demonstrated by the experimental re-
sults presented in Section 4. Some method (Zhao et al.,
2024) does not force the new and old LoRA branches to con-
tribute equally to old tasks but relies on replaying synthetic
old samples to mitigate forgetting, making it unsuitable for
the scenario considered in this work.

Different from existing methods, GainLoRA introduces an
independent gating module gi(·) for each task Ti to generate
the integration coefficients (1 ≤ i ≤ T ). To mitigate the
forgetting caused by the new task, GainLoRA leverages the
gating module to minimize the contribution from the new
LoRA branch to the old tasks. The details will be introduced
in the following subsections.

3.1. Architecture of Gating Modules

As illustrated in Figure 2, given an input sample x, the
gating module gi(·) generates the integration coefficient
for the i-th LoRA branch, denoted as ai = gi(x). The
computation of gi(·) is defined as

gi(x) = f(Wi,L+1pL),

pl = σ(Wi,lpl−1), l ∈ {1, 2, ..., L},
p0 = Pool(Token(x)). (3)

Here, Token(·) represents the tokenizer used in LMs to
extract token embeddings from the input x. Pool(·) de-
notes an average pooling operation applied to the token
embeddings to produce a fixed-size vector. σ(·) denotes
the non-linear activation function. Wi,l denotes the weight
matrix for the l-th layer of gi(·) (1 ≤ l ≤ L+1). In the final
layer, Wi,L+1 is a vector that maps the input vector pL+1

to a scalar. Following existing works with gating mecha-
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nisms (Hochreiter & Schmidhuber, 1997; Cho, 2014), the
function f(·) is designed to map a scalar to a value within
[0, 1], that is, f(·) : R→ [0, 1].

Note that the input to gating modules is the same as that of
LMs, denoted as x, which differs from the input to LoRA
in a specific layer, denoted as h. During the learning of the
t-th new task, only the new gating module gt(·) is updated,
while all the old gating modules {gi(·)}t−1i=1 remain frozen.

3.2. Minimizing the Contribution from the new LoRA
branch to Old Tasks

GainLoRA minimizes the contribution from the new LoRA
branch to old tasks by making at = gt(x) as close to 0 as
possible for any input x from old tasks {Ti}t−1i=1 . However,
since we focus on the scenario where no real or synthetic
samples from old tasks are accessible, directly optimiz-
ing gt(x) to 0 is impractical. To overcome this challenge,
GainLoRA imposes constraints on the new gating module
gt(·), implicitly guiding gt(x) to close to 0 and reduce the
contribution of the new LoRA branch to old tasks.

In the following two subsections, we first describe the con-
straints imposed on the new gating module gt(·) and explain
how these constraints guide gt(x) close to 0 for any x from
the old tasks. Then, we detail the implementation of these
constraints during training.

3.2.1. CONSTRAINTS ON NEW GATING MODULE

To formalize the constraints imposed on the new gating
module gt(·), we define the subspace spanned by the inputs
to Wt,l (1 ≤ l ≤ L+ 1) from the previous t− 1 tasks as:

Mt,l = span{pl−1| pl−1 is defined in (3),

(x,y) ∈ ∪t−1i=1Di}. (4)

Note that subspaces {Mt,l}L+1
l=1 cannot be obtained directly

due to the unavailability of samples from old tasks. However,
by introducing additional constraints, {Mt,l}L+1

l=1 can be
solved iteratively, which will be discussed in Section 3.2.2.

Initialization Constraints Before learning the t-th task,
the following constraints are imposed on the initialization
of the new gating module gt(·):

Init(Wt,L+1)⊥Mt,L+1, f(0) = 0, (5)

where Init(Wt,L+1) denotes the initialization of Wt,L+1.
These constraints ensure that for any sample x from the
old tasks, the integration coefficient satisfies at = gt(x) =
f(Init(Wt,L+1)pL) = 0, where pL is defined in (3). The
second equality holds since Wt,L+1 = Init(Wt,L+1) be-
fore learning the t-th new task. The third equality holds
because f(0) = 0 and pL ∈Mt,L+1 for any x from previ-
ous t− 1 tasks.

Updating Constraints During the learning of the t-th
task, the following constraints are imposed on the updates
to the new gating module gt(·):

∆Wt,l⊥Mt,l for 1 ≤ l ≤ L+ 1, (6)

where ∆Wt,l denotes the update to Wt,l. Based on existing
studies (Wang et al., 2021; Liang & Li, 2023b; Qiao et al.,
2024), the constraints in (6) ensure that gt(x) remains un-
changed for inputs x from the old tasks during the learning
of the t-th task. Formally, the following proposition holds:

Proposition 3.1. If the constraints in (6) are satisfied, sub-
spaces {Mt,l}L+1

l=1 remain unchanged during the learning
of the t-th task. Furthermore, for any input x from the
previous t− 1 tasks, gt(x) remains unchanged during the
learning of the t-th task.

The proof of this proposition is provided in Appendix A.3.
Since the initialization constraints in (5) ensure gt(x) = 0
before learning the t-th new task, gt(x) = 0 is preserved
throughout the learning process if the updating constraints
in (6) are satisfied.

The fact that subspaces {Mt,l}L+1
l=1 remain unchanged, as

stated in Proposition 3.1, is essential for implementing the
orthogonal constraints in (6). Specifically, as will be de-
tailed in Section 3.2.2, orthonormal bases for the subspaces
{Mt,l}L+1

l=1 are learned to enforce the orthogonal constraints
in (5) and (6). Since the subspaces {Mt,l}L+1

l=1 remain
unchanged during the learning of the t-th task, their or-
thonormal bases also remain unchanged, allowing them to
be pre-computed before learning the t-th task, thus facili-
tating the implementation of orthogonal constraints in (5)
and (6) throughout the learning process.

3.2.2. IMPLEMENTATION OF CONSTRAINTS

There exist many functions f(·) : R → [0, 1] satisfying
f(0) = 0. In this work, we define f(·) as

f(b) = |2 · sigmoid(b)− 1|, (7)

where sigmoid(·) denotes the sigmoid function. Other func-
tions f(·) : R → [0, 1] that satisfy f(0) = 0 are also
applicable, and experiments with different choices of f(·)
are provided in Appendix C.3.1. Better model performance
can be expected by designing more effective f(·), but this
is not the focus of this paper.

Implementing the orthogonal constraints in (5) and (6) is
challenging due to the lack of samples from previous t− 1
tasks to approximate the subspaces {Mt,l}L+1

l=1 . To address
this issue, we further impose the following constraints on
the initialization of Wt,l (1 ≤ l ≤ L):

Init(Wt,l)←Wt−1,l. (8)

4
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This strategy initializes the first L layers of gt(·) using
the corresponding layers from the previous gating mod-
ule gt−1(·). As a result, the first L layers of gt(·) can be
viewed as being initialized and starting their training at the
beginning of the first task, continuing until the t-th task.
Simultaneously, the first L layers in gi(·) serve as check-
points, preserving the state of gt(·) after learning the i-th
task (1 ≤ i ≤ t). At this time, we can use existing method
gradient projection memory (GPM) (Saha et al., 2021) to
iteratively learn a set of matrices {Mt,l}L+1

l=1 , where the
columns of Mt,l contribute to a set of orthonormal bases
of subspace Mt,l. Details of GPM are provided in Ap-
pendix A.1. Then, before learning the t-th task, the follow-
ing operation can be performed on Init(Wt,L+1):

Init(Wt,L+1)←Init(Wt,L+1)

−Mt,L+1M
T
t,L+1Init(Wt,L+1). (9)

According to existing works (Wang et al., 2021; Saha et al.,
2021; Liang & Li, 2023b), Init(Wt,L+1) satisfies the con-
straints in (5) after the operation in (9). Similarly, during
the learning of the t-th task, the following operation can be
performed on {∆Wt,l}L+1

l=1 :

∆Wt,l ← ∆Wt,l −Mt,lM
T
t,l∆Wt,l. (10)

After this, {∆Wt,l}L+1
l=1 satisfy the constraints in (6).

3.3. Updating the New LoRA Branch

Our GainLoRA aims to effectively integrate new and old
LoRA branches while mitigating forgetting caused by the
new LoRA branch on old tasks. Since GainLoRA does
not impose specific update strategies for the new LoRA
branch, it is inherently compatible with various existing
continual learning methods that adopt similar LoRA ar-
chitecture as our method and can update the new LoRA
branch (Wang et al., 2023a; Liang & Li, 2024; Smith et al.,
2024). Since these existing methods fix all integration co-
efficients {ai}ti=1 to 1, combining our method with these
existing methods can enhance their performance, as demon-
strated in Section 4.

3.4. Whole Process of GainLoRA

Algorithm 1 outlines the whole process of our GainLoRA.
Before learning the t-th new task Tt, GainLoRA first ex-
pands the LoRA architecture by introducing the t-th new
branch with matrices At and Bt. Simultaneously, a new
gating module gt(·) is initialized through the operations
specified in (7), (9) and (8) to ensure that the initialization
constraints in (5) are satisfied. The new and old LoRA
branches are then integrated using (1), and the forward prop-
agation is modified as (2).

During the learning of the t-th task Tt with the correspond-
ing dataset Dt, our method follows existing methods (Wang

Algorithm 1 GainLoRA for Continual Learning
Input: The data of different tasks {Dt}Tt=1.
Output: Learned LoRA parameters {(Ai,Bi)}Ti=1 and
gating modules {gi(·)}Ti=1.
for t in 1 : T do

Expand the t-th new LoRA branch with At and Bt;
Impose initialization constraints on the new gating
module gt(·) by (7), (8) and (9);
Integrate new and old LoRA branches by (1);
for Bt ⊆ Dt do

Compute the loss in (11) and the update of the pa-
rameters in the new LoRA branch and the new gating
module;
Impose updating constraints on the update of the
new gating module by (6);

end for
end for

et al., 2023a; Zhao et al., 2024) and computes the loss for
the new task through

Lt =
1

|Dt|
∑

(xt,yt)∈Dt

|yt|∑
j=1

log [P (yt,j |xt, yt,1, ..., yt,j−1)] ,

(11)

where yt = [yt,1, yt,2, ..., yt,|yt|]. Each time, GainLoRA
samples a mini-batch Bt to minimize the loss in (11) by
updating the new LoRA branch and the new gating module
gt(·). During this process, the projections defined in (10) are
applied to the parameters of gt(·), ensuring that the update
constraints in (6) are satisfied.

Our GainLoRA introduces a new gating module for each
new task, which inevitably incurs additional parameters and
computational overhead when combined with other methods.
Section 4 will demonstrate that the trainable parameters
added by our method are limited, making the number of
trainable parameters in our method comparable to other
methods. Additionally, Appendix C.1 will demonstrate that
the computational cost introduced by GainLoRA is minimal
compared to the original LMs.

4. Experiments
4.1. Experimental Settings

Datasets Following existing continual learning meth-
ods (Razdaibiedina et al., 2023; Wang et al., 2023a;
Zhao et al., 2024), we evaluate different methods on
SuperNI (Wang et al., 2022a) and Long Sequence (Raz-
daibiedina et al., 2023) benchmarks. SuperNI benchmark
includes various types of NLP tasks, including dialogue gen-
eration, information extraction, question answering, sum-
marization, and sentiment analysis. Following the protocols

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

Table 1. Results on different task sequences with T5-large model. Results of methods with ∗ are copied from existing paper (Zhao et al.,
2024).

Method Order 1 Order 2 Order 3 Order 4
AP↑ FT↓ AP↑ FT↓ AP↑ FT↓ AP↑ FT↓

L2P∗ (Wang et al., 2022b) 15.18 3.65 10.27 12.24 58.61 15.43 57.34 17.82
LFPT5∗ (Qin & Joty, 2022) 39.03 9.85 29.70 19.08 66.62 13.60 67.40 11.99
EPI∗ (Wang et al., 2023b) - - - - 75.19 0.60 75.10 2.23
MIGU+FT (Du et al., 2024) - - - - 71.30 11.39 69.05 14.06
SeqLoRA 7.30 47.60 7.03 47.97 49.46 27.60 33.81 45.53
IncLoRA (Wang et al., 2023a) 12.33 41.93 16.65 36.56 61.19 13.63 62.46 15.92
C-LoRA (Smith et al., 2024) 22.69 24.25 32.81 11.60 66.83 8.64 61.86 14.18
O-LoRA (Wang et al., 2023a) 26.37 19.15 32.83 11.99 70.98 3.69 71.21 4.03
GainLoRA (O-LoRA) 47.84 2.26 46.84 2.91 73.37 3.02 76.01 2.49
InfLoRA (Liang & Li, 2024) 39.78 7.64 39.57 8.93 75.15 4.19 75.79 3.47
GainLoRA (InfLoRA) 46.21 2.40 46.44 2.61 78.01 0.77 77.54 1.25

of existing method (Zhao et al., 2024), three tasks are se-
lected from each type, resulting in 15 tasks. These tasks
are arranged into two different task sequences with different
orders, referred to as Order 1 and Order 2. Long Sequence
benchmark consists of 15 diverse classification tasks, which
are similarly arranged into two task sequences with different
orders, referred to as Order 3 and Order 4. More details
about the benchmarks and task sequences are provided in
Appendix B.

Evaluation Metric We use Aj,i to denote the model’s per-
formance on the i-th task once the model learns the j-th task.
Specifically, Aj,i represents accuracy for classification tasks
and Rouge-L (Lin, 2004) for other types of tasks. Following
traditional continual learning works (Chaudhry et al., 2019;
Deng et al., 2021), we employ average performance (AP)
and forgetting (FT) to evaluate the model’s performance.
The formulas for these two metrics are defined as

AP =
1

T

T∑
i=1

AT,i,

FT =
1

T − 1

T−1∑
i=1

(maxl∈{1,2,...,T−1}Al,i −AT,i), (12)

where T denotes the total number of tasks in the task se-
quence. AP evaluates the model’s final performance, and
FT quantifies the forgetting.

Baselines We compare our method with state-of-the-art
continual learning methods, including L2P (Wang et al.,
2022b), LFPT5 (Qin & Joty, 2022), EPI (Wang et al.,
2023b), MIGU (Du et al., 2024), IncLoRA (Wang et al.,
2023a), C-LoRA (Smith et al., 2024), O-LoRA (Wang et al.,
2023a), and InfLoRA (Liang & Li, 2024). Additionally, we
introduce a simple baseline called SeqLoRA, which does
not expand new LoRA branches but sequentially updates

old LoRA parameters for new tasks and lacks mechanism
to mitigate forgetting.

Implementation Details Following existing continual
learning works (Ouyang et al., 2022; Wei et al., 2022;
Wang et al., 2023a), all methods are implemented with in-
struction tuning (Ouyang et al., 2022) and optimized using
AdamW (Loshchilov & Hutter, 2019). To ensure fair com-
parisons, for all the methods based on LoRA, we follow
existing continual learning methods (Hu et al., 2022; Wang
et al., 2023a; Zhao et al., 2024) by incorporating the LoRA
architecture into the query and value components of the
multi-head attention mechanism in each Transformer block.
We use T5 (Raffel et al., 2020) and Llama-2 (Touvron et al.,
2023) as the base architectures, aligning with the existing
continual learning methods for LMs (Wang et al., 2023a;
Zhao et al., 2024). Each experiment is repeated three times
with different seeds, and the average result is reported. More
details, such as the learning rate, batch size, and architec-
ture of the gating modules in GainLoRA, are provided in
Appendix B.2 and Appendix B.3.

4.2. Experimental Results

Compare with Existing Methods We first follow exist-
ing works (Zhao et al., 2024; Du et al., 2024) and evaluate
different continual learning methods using T5-Large. Since
our method does not impose specific update strategies for
the new LoRA branch, we adopt the same update strate-
gies as the two state-of-the-art methods, O-LoRA (Wang
et al., 2023a) and InfLoRA (Liang & Li, 2024). Note that
these two methods leverage LoRA architecture similar to
our method but fix all integration coefficients {ai}Ti=1 to 1.
Details of these two methods are provided in Appendix A.2.
We use GainLoRA (O-LoRA) and GainLoRA (InfLoRA) to
respectively denote our methods adopting O-LoRA and In-
fLoRA to update the new LoRA branch. GainLoRA is also

6
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Figure 3. The variation of performance across different continual learning methods during training on different task sequences.

Table 2. The overall results on different task sequences with T5-XL model.

Method Order 1 Order 2 Order 3 Order 4
AP↑ FT↓ AP↑ FT↓ AP↑ FT↓ AP↑ FT↓

O-LoRA (Wang et al., 2023a) 36.50 11.42 40.64 6.37 73.77 2.70 76.19 3.56
GainLoRA (O-LoRA) 50.10 3.21 49.86 3.04 78.41 2.59 77.21 3.30
InfLoRA (Liang & Li, 2024) 45.61 5.60 45.85 5.10 80.22 2.09 79.43 1.71
GainLoRA (InfLoRA) 50.06 1.86 50.26 2.64 81.22 0.58 80.30 0.75

Table 3. The overall results on different task sequences with Llama-2-7B and Llama-2-13B.

Llama-2-7B Llama-2-13B

Method Order 1 Order 2 Order 1 Order 2
AP↑ FT↓ AP↑ FT↓ AP↑ FT↓ AP↑ FT↓

O-LoRA (Wang et al., 2023a) 39.37 15.84 37.55 20.23 43.92 14.15 40.05 19.53
GainLoRA (O-LoRA) 51.10 4.96 51.14 5.57 52.47 4.78 51.68 5.86
InfLoRA (Liang & Li, 2024) 42.93 11.23 39.94 15.00 43.64 14.85 45.74 10.61
GainLoRA (InfLoRA) 51.27 2.84 50.17 4.71 53.64 2.87 52.46 4.90

compatible with other methods that leverage expandable
LoRA architecture shown in Figure 1, and we give some
results in Appendix C.5.

The results are shown in Table 1. As we can see, our meth-
ods GainLoRA (O-LoRA) and GainLoRA (InfLoRA) out-
perform O-LoRA and InfLoRA in both AP and FT, respec-
tively. This improvement demonstrates that fixing all coeffi-
cients {ai}Ti=1 to 1 leads to forgetting on old tasks, thereby
limiting the performance of O-LoRA and InfLoRA. By ef-
fectively mitigating this forgetting, GainLoRA (O-LoRA)
and GainLoRA (InfLoRA) achieve superior performance.
Furthermore, our methods consistently achieve the best per-
formance across all task sequences.

Figure 3 illustrates the variation in the average performance
across all learned tasks for different methods throughout
the continual learning process. As shown, GainLoRA con-
sistently outperforms the performance of O-LoRA and In-
fLoRA throughout the whole training process.

Scaling to Larger Model Architectures To evaluate the
effectiveness of our method on larger model architectures,
we scale different LoRA-based continual learning meth-

ods to larger models, including T5-XL, Llama-2-7B, and
Llama-2-13B. Table 2 and Table 3 present the results of dif-
ferent methods. As shown, across models of varying sizes,
GainLoRA (O-LoRA) and GainLoRA (InfLoRA) consis-
tently outperform O-LoRA and InfLoRA in terms of AP
and FT, respectively. This demonstrates that GainLoRA
effectively mitigates forgetting in the new LoRA branch
across different model architectures.

Trainable Parameters We compare the number of train-
able parameters across different methods for training on
different task sequences. The results are shown in Figure 4,
and the detailed computation of trainable parameters is pro-
vided in Appendix B.4.

As shown, GainLoRA (O-LoRA) and GainLoRA (InfLoRA)
have more trainable parameters than O-LoRA and InfLoRA,
respectively. This increase arises from the introduction of
the trainable gating module in GainLoRA. However, the ad-
ditional trainable parameters introduced by GainLoRA are
much fewer than those in LoRA. Therefore, the total num-
ber of trainable parameters in GainLoRA (O-LoRA) and
GainLoRA (InfLoRA) are comparable to that of O-LoRA
and InfLoRA, respectively.
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Table 4. Ablation study of GainLoRA with T5-Large and Llama-2-7B.

Method
T5-Large Llama-2-7B

Order 1 Order 2 Order 1 Order 2
AP↑ FT↓ AP↑ FT↓ AP↑ FT↓ AP↑ FT↓

GainLoRA (O-LoRA) 47.84 2.26 46.84 2.91 51.10 4.96 51.14 5.57
No Initialization Constraints 35.30 17.19 39.82 12.90 44.02 11.71 42.89 14.77
No Updating Constraints 23.01 30.32 24.96 28.14 33.74 23.06 34.71 22.36
No Constraints 26.32 26.00 30.63 22.37 34.48 23.46 36.87 21.24

GainLoRA (InfLoRA) 46.21 2.40 46.44 2.61 51.27 2.84 50.17 4.71
No Initialization Constraints 45.38 3.40 43.05 5.15 50.48 3.48 48.17 6.45
No Updating Constraints 37.69 10.94 38.85 9.31 48.52 5.68 47.85 7.00
No Constraints 36.75 12.18 41.00 6.66 49.10 6.07 45.77 8.70
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Figure 4. The number of trainable parameters in different con-
tinual learning methods with different model backbones on task
sequences Order 1 and Order 2.

Ablation Study To verify the necessity of both the initial-
ization and updating constraints introduced in Section 3.2.1,
we define several variants of GainLoRA. The first variant, re-
ferred to as “No Initialization Constraints”, removes the ini-
tialization constraints defined in (5). Specifically, it replaces
f(·) defined in (7) with function sigmoid(·) and eliminates
the operation in (9) while keeping all other components un-
changed. The second variant, referred to as “No Updating
Constraints”, removes the updating constraints defined in
(6) by eliminating the operations in (10) while preserving
all other components of GainLoRA. The third variant, re-
ferred to as “No Constraints”, follows “No Initialization
Constraints” and “No Updating Constraints” to remove both
the initialization and updating constraints.

Table 4 presents the experimental results of these variants.
As shown, none of these variants perform as well as our
GainLoRA, indicating the critical role of both the initializa-
tion constraints and updating constraints in our GainLoRA.

Distribution of Outputs in New Gating Module To
demonstrate that our GainLoRA effectively minimizes the
contribution from the new LoRA branches to old tasks, we
analyze the output distributions of the new gating modules.
Specifically, after training on the final task (i.e., the 15-th
task) in the task sequences, the 15-th task corresponds to
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Figure 5. Outputs of new gating module in our GainLoRA on dif-
ferent task sequences with T5-Large.

the new task, and its associated gating module g15(·) serves
as the new gating module.

We obtain the outputs of the new gating module g15(·) on the
samples from old and new tasks, respectively. Then, we an-
alyze their distributions in Figure 5. As shown, the outputs
of g15(·) for the samples from old tasks are concentrated
around 0, effectively minimizing the contribution from the
new LoRA branch to old tasks. Furthermore, GainLoRA
does not constrain the outputs of g15(·) for the samples from
the new task. As a result, the outputs of g15(·) for the sam-
ples from the new task are distributed near 1, enabling the
model to effectively learn the new task.

5. Conclusion
In this work, we propose a new method, called GainLoRA,
for continual learning of language models. GainLoRA ex-
pands a new LoRA branch for each new task and introduces
gating modules to integrate the new and old LoRA branches.
Furthermore, GainLoRA leverages the new gating module
to minimize the contribution of the new LoRA branch to
old tasks, effectively mitigating forgetting and improving
the model’s overall performance. Experimental results on
continual learning benchmarks demonstrate that GainLoRA
outperforms existing state-of-the-art methods.
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A. More Details of Methods
A.1. Gradient Projection Memory

We initialize the first L layers of gt(·) using the corresponding layers from the previous gating module gt−1(·). Therefore,
the first L layers of gt(·) can be viewed as being initialized at the beginning of the first task and continue their training until
the t-th task. Additionally, the first L layers in gi(·) serve as checkpoints, preserving the state of gt(·) after learning the i-th
task (1 ≤ i ≤ t). At this time, existing method gradient projection memory (GPM) (Saha et al., 2021) can be used to learn
matrices {Mt,l}L+1

l=1 , where the columns of Mt,l approximate the orthonormal bases of the subspaceMt,l. Specifically,
when t = 1, since there is no old task,M1,l is a null space and M1,l is a zero matrix. After learning the t-th new task, GPM
expandsMt,l toMt+1,l by first computing the input matrix Ht,l where each column of Ht,l represents an input to the l-th
layer. Then, the component of Ht,l already inMt,l is removed by

Ĥt,l = Ht,l −Mt,l(Mt,l)
THt,l. (13)

Next, singular value decomposition (SVD) is performed on Ĥt,lĤ
T
t,l, which is decomposed as Ût,lΣ̂t,lÛ

T
t,l. Then, u new

orthonormal bases u1, ...,uu are chosen from the columns of Ût,l, where u is the minimum number satisfying the following
criteria for a given threshold εth:

||(Ĥt,l)u||2F + ||Mt,l(Mt,l)
THt,l||2F ≥ εth||Ht,l||2F . (14)

Here, (Ĥt,l)u denotes the components of Ĥt,l corresponding to the top-u singular values. Then, the orthonormal bases of
subspaceMt+1,l are obtained by augmenting the orthonormal bases of subspaceMt,l with the new orthogonal vectors
u1, ...,uu, resulting in Mt+1,l = [Mt,l,u1, ...,uu].

A.2. More Details of O-LoRA and InfLoRA

O-LoRA O-LoRA (Wang et al., 2023a) ensures that the new LoRA branch remains orthogonal to all the old LoRA
branches. Specifically, during the learning of the t-th new task with the t-th LoRA branch (At,Bt), O-LoRA computes the
inner product between the new and old LoRA branches as

Oi,t = BT
i Bt for 1 ≤ i ≤ t− 1 (15)

Then, the loss function of O-LoRA is defined as

1

|Dt|
∑

(xt,yt)∈Dt

|yt|∑
j=1

log [P (yt,j |xt, yt,1, ..., yt,j−1)] + λ

t−1∑
i=1

∑
j,k

||Oi,t[j, k]||22 (16)

For further details on O-LoRA, we refer readers to the original paper (Wang et al., 2023a).

InfLoRA InfLoRA (Liang & Li, 2024) ensures orthogonality between the new LoRA branch and the gradients of old
tasks. Specifically, it shows that only fine-tuning the down-projection matrix At in the new LoRA branch is equivalent to
directly fine-tuning the pre-trained weights within a subspace spanned by the rows of Bt. Therefore, before learning the t-th
task, InfLoRA designs Bt to be orthogonal to the gradients of the old tasks. During the learning of the t-th task, InfLoRA
only tunes At in the new LoRA branch while freezing Bt and all the old LoRA branches. For further details on InfLoRA,
we refer readers to the original paper (Liang & Li, 2024).

A.3. Proof of Proposition 3.1

Proposition A.1. If the constraints in (6) are satisfied, subspaces {Mt,l}L+1
l=1 remain unchanged during the learning of the

t-th task. Furthermore, for any input x from the previous t− 1 tasks, gt(x) remains unchanged during the learning of the
t-th task.

Proof. For any x from previous t− 1 tasks, we rewrite gt(x) as

gt(x) = f(Wt,L+1pL),

pl = σ(Wt,lpl−1), l ∈ {1, 2, ..., L},
p0 = Pool(Token(x)). (17)
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Since p0 = Pool(Token(x)) is unrelated to the parameters of the new gating module gt(·), p0 does not change with the
update of gt(·). SinceMt,1 is spanned by p0,Mt,1 remains unchanged during the learning of the t-th task.

Suppose that we have proven that pl−1 does not change with the update of the new gating module gt(·) (1 ≤ l ≤ L). Since
Mt,l is spanned by pl−1,Mt,l remains unchanged during the learning of the t-th task. At this point, pl can be expressed as

pl = σ((Init(Wt,l) + ∆Wt,l)pl−1) = σ(Init(Wt,l)pl−1). (18)

Here, the second equality holds since pl−1 ∈Mt,l and ∆Wt,l⊥Mt,l. Therefore, pl does not change with the update of the
new gating module gt(·) (1 ≤ l ≤ L). SinceMt,l+1 is spanned by pl,Mt,l+1 remains unchanged during the learning of
the t-th task.

Furthermore, during the learning of the t-th task, gt(x) can be expressed as

gt(x) = f((Init(Wt,L+1) + ∆Wt,L+1)pL) = f(Init(Wt,L+1)pL). (19)

Here, the second equality holds since pL ∈Mt,L+1 and ∆Wt,L+1⊥Mt,L+1.

B. More Details of Experimental Settings
B.1. More Details of Datasets

Table 5 and Table 6 show the details of Long Sequence Benchmark and SuperNI Benchmark, respectively. Long Sequence
Benchmark consists of 15 classification tasks while SuperNI Benchmark consists of various NLP tasks, including dialogue
generation, information extraction, question answering, summarization, and sentiment analysis.

Table 5. Details of different tasks in Long Benchmark.

Dataset name Category Domain Task Type Metric

Yelp CL Benchmark sentiment analysis Yelp reviews Accuracy
Amazon CL Benchmark sentiment analysis Amazon reviews Accuracy
DBpedia CL Benchmark topic classification Wikipedia Accuracy
Yahoo CL Benchmark topic classification Yahoo Q&A Accuracy
AG News CL Benchmark topic classification news Accuracy
MNLI GLUE natural language inference various Accuracy
QQP GLUE paraphrase detection Quora Accuracy
RTE GLUE natural language inference news, Wikipedia Accuracy
SST-2 GLUE sentiment analysis movie reviews Accuracy
WiC SuperGLUE word sense disambiguation lexical databases Accuracy
CB SuperGLUE natural language inference various Accuracy
COPA SuperGLUE question and answering blogs, encyclopedia Accuracy
BoolQA SuperGLUE boolean question and answering Wikipedia Accuracy
MultiRC SuperGLUE question and answering various Accuracy
IMDB SuperGLUE sentiment analysis movie reviews Accuracy

The task sequences are constructed using Long Sequence Benchmark and SuperNI Benchmark. The details of different task
sequences are presented in Table 7.

B.2. More Implementation Details

Following existing continual learning works (Ouyang et al., 2022; Wang et al., 2023a; Wei et al., 2022), all methods are
implemented using instruction tuning (Ouyang et al., 2022). Experiments are conducted on NVIDIA RTX A6000 GPUs with
AdamW (Loshchilov & Hutter, 2019) as the optimizer. For T5-Large and T5-XL, their relatively smaller model sizes allow
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Table 6. Details of different tasks in SuperNI Benchmark.

Dataset name Task Type Metric

Task639 multi woz user utterance generation summarization Rouge-L
Task1590 diplomacy text generation summarization Rouge-L
Task1729 personachat generate next summarization Rouge-L
Task181 outcome extraction information extraction Rouge-L
Task748 glucose reverse cause event detection information extraction Rouge-L
Task1510 evalution relation extraction information extraction Rouge-L
Task002 quoref answer generation dialogue generation Rouge-L
Task073 commonsenseqa answer generation dialogue generation Rouge-L
Task591 sciq answer generation dialogue generation Rouge-L
Task511 reddit tifu long text summarization question answering Rouge-L
Task1290 xsum summarization question answering Rouge-L
Task1572 samsum summary question answering Rouge-L
Task363 sst2 polarity classification sentiment analysis Accuracy
Task875 emotion classification sentiment analysis Accuracy
Task1687 sentiment140 classification sentiment analysis Accuracy

Table 7. The order of different task sequences for experiments.

Benchmark Order Task Sequence

SuperNI Benchmark
1

task1572→ task363→ task1290→ task181→ task002→
task1510→ task639→ task1729→ task073→ task1590→

task748→ task511→ task591→ task1687→ task875

2
task748→ task073→ task1590→ task639→ task1572→

task1687→ task591→ task363→ task1510→ task1729→
task181→ task511→ task002→ task1290→ task875

CL Benchmark
3

MNLI→ CB→WiC→ COPA→ QQP→ BoolQA→ RTE→ IMDB→ Yelp→
Amazon→ SST-2→ DBpedia→ AG News→MultiRC→ Yahoo

4
Yelp→ Amazon→MNLI→ CB→ COPA→ QQP→ RTE→ IMDB→ SST-2→

DBpedia→ AG News→ Yahoo→MultiRC→ BoolQA→WiC

experiments to be performed on a single A6000 GPU with gradient accumulation. For Llama-2-7B and Llama-2-13B, data
parallelism with DeepSpeed ZeRO-2 (Rasley et al., 2020) is prioritized across multiple A6000 GPUs. FlashAttention-2 (Dao,
2024) is employed to reduce memory usage during training, ensuring sufficient GPU memory to enable DeepSpeed ZeRO-2
whenever possible. However, if the sequence lengths of certain tasks are too long to enable DeepSpeed ZeRO-2 even with
FlashAttention-2, DeepSpeed ZeRO-3 is utilized to handle these tasks.

To ensure fair comparisons, for all the methods based on LoRA, we follow existing continual learning methods (Hu et al.,
2022; Wang et al., 2023a; Zhao et al., 2024) by integrating the LoRA architecture into the query and value components of
the multi-head attention mechanism in each Transformer block. Following existing works (Wang et al., 2023a; Zhao et al.,
2024), for all the methods based on LoRA, the rank of a single LoRA branch is set to 4 for Order 1 and Order 2, and 8 for
Order 3 and Order 4. We also vary the rank in LoRA branches and show the results in Appendix C.4.

For our methods, the global batch size is set to 32 across all model backbones. The learning rate is set to 3e-4 for T5
backbones and 5e-5 for Llama backbones. Each task is trained for 100 epochs with T5 backbones and 50 epochs with Llama
backbones. For baselines, we follow their official implementations to set the hyperparameters, making the comparison as
fair as possible. If this does not achieve the expected performance, we perform a hyperparameter search for the learning rate
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and batch size.

B.3. More Details about the Architecture of the Gating Module

The architecture of the gating module gi(·) can be represented as

gi(x) = f(Wi,L+1pL),

pl = σ(Wi,lpl−1), l ∈ {1, 2, ..., L},
p0 = Pool(Token(x)). (20)

Non-linear activation function σ(·) is set to SiLU (Elfwing et al., 2018). For all experiments, unless otherwise stated, L is
set to 2. In other words, the gating module gi(·) has three layers. For T5-Large and T5-XL, the parameters in the i-th gating
module gi(·) are Wi,1 ∈ R100×d, Wi,2 ∈ Rd×100 and Wi,3 ∈ R1×d. For Llama-2-7B and Llama-2-13B, the parameters in
the i-th gating module gi(·) are Wi,1 ∈ R50×d, Wi,2 ∈ Rd×50 and Wi,3 ∈ R1×d. Here, d denotes the dimension of the
embeddings. For different models, d is 1024 for T5-Large and T5-XL, 4096 for Llama-2-7B, and 5120 for Llama-2-13B.

Additionally, we investigate the influence of the architecture of the gating module on the performance of our method. Results
are provided in Appendix C.3.

B.4. Computation of Trainable Parameters

To ensure fair comparisons, we set the same rank for each LoRA branch across all continual learning methods based on the
expandable LoRA architectures shown in Figure 1. Additionally, for all the methods based on LoRA, the LoRA modules are
incorporated into the query and value components of the multi-head attention mechanism within each Transformer block.

B.4.1. COMPUTATION OF TRAINABLE PARAMETERS IN T5-LARGE

In T5-Large, the projection weights for the query and value components have shapes Wq,Wv ∈ R1024×1024. The model
consists of 24 self-attention modules in the encoder, 24 self-attention modules in the decoder, and 24 cross-attention modules
in the decoder, resulting in a total of (24 + 24 + 24) ∗ 2 = 144 pre-trained weights that incorporate the LoRA architecture.

During the learning of the t-th new task, O-LoRA updates the parameters At ∈ R1024×r and Bt ∈ Rr×1024, resulting
in 1024 ∗ r ∗ 144 + r ∗ 1024 ∗ 144 = 294912r trainable parameters. When r = 4, the number of trainable parameters
in O-LoRA is 294912 ∗ 4 = 1179648 = 1.18M. InfLoRA only updates the parameters At ∈ R1024×r, resulting in
1024 ∗ r ∗ 144 = 147456r trainable parameters. When r = 4, the number of trainable parameters in InfLoRA is
147456r = 589824 = 0.59M.

GainLoRA introduces an additional new gating module gt(·) with parameters Wt,1 ∈ R100×1024, Wt,2 ∈ R1024×100

and Wt,3 ∈ R1×1024. Therefore, the number of trainable parameters in GainLoRA (O-LoRA) is 1179648 + 1024 ∗
100 + 1024 ∗ 100 + 1024 = 1385472 = 1.39M. The number of trainable parameters in GainLoRA (InfLoRA) is
589824 + 1024 ∗ 100 + 1024 ∗ 100 + 1024 = 795648 = 0.80M.

B.4.2. COMPUTATION OF TRAINABLE PARAMETERS IN T5-XL

In T5-XL, the projection weights for the query and value components have shapes Wq,Wv ∈ R4096×1024. The model
architecture is similar to T5-Large, with 144 pre-trained weights incorporating LoRA.

During the learning of the t-th new task, O-LoRA updates the parameters At ∈ R4096×r and Bt ∈ Rr×1024, resulting in is
4096∗r∗144+r∗1024∗144 = 737280r trainable parameters. When r = 4, O-LoRA has 737280∗4 = 2949120 = 2.95M
trainable parameters. InfLoRA only updates At ∈ R4096×r, resulting in 4096 ∗ r ∗ 144 = 589824r trainable parameters.
When r = 4, InfLoRA has 589824 ∗ 4 = 2359296 = 2.36M trainable parameters.

GainLoRA introduces the same new gating module gt(·) as in T5-Large, with parameters Wt,1 ∈ R100×1024, Wt,2 ∈
R1024×100 and Wt,3 ∈ R1×1024. Thus, the total number of trainable parameters for GainLoRA (O-LoRA) is 2949120 +
1024 ∗ 100 + 1024 ∗ 100 + 1024 = 3154944 = 3.15M. The total number of trainable parameters in GainLoRA (InfLoRA)
is 2359296 + 1024 ∗ 100 + 1024 ∗ 100 + 1024 = 2565120 = 2.57M.
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Table 8. FLOPs and MACs for different models.
Method Input Shape (batch,length) FLOPs (G) MACs (G)

T5-Large

Original (1,128) 194.25 97.1
GainLoRA (O-LoRA) (1,128) 198.79 99.37
GainLoRA (InfLoRA) (1,128) 198.79 99.37

T5-XL

Original (1,128) 751.7 375.78
GainLoRA (O-LoRA) (1,128) 763.03 381.45
GainLoRA (InfLoRA) (1,128) 763.03 381.45

Llama-2-7B

Original (1,128) 1701.07 850.5
GainLoRA (O-LoRA) (1,128) 1709.14 854.53
GainLoRA (InfLoRA) (1,128) 1709.14 854.53

Llama-2-13B

Original (1,128) 3291.66 1645.79
GainLoRA (O-LoRA) (1,128) 3304.26 1652.09
GainLoRA (InfLoRA) (1,128) 3304.26 1652.09

B.4.3. COMPUTATION OF TRAINABLE PARAMETERS IN LLAMA-2-7B

In Llama-2-7B, the projection weights for the query and value components have shapes Wq,Wv ∈ R4096×4096. The model
contains 32 self-attention modules, resulting in 32 ∗ 2 = 64 pre-trained weights that incorporate the LoRA architecture.

During the learning of the t-th new task, O-LoRA updates the parameters At ∈ R4096×r and Bt ∈ Rr×4096, resulting in
4096∗r∗64+r∗4096∗64 = 524288r trainable parameters. When r = 4, the number of trainable parameters in O-LoRA is
524288∗4 = 2097152 = 2.10M. InfLoRA only updates the parameters At ∈ R4096×r, resulting in 4096∗r∗64 = 262144r
trainable parameters. When r = 4, the number of trainable parameters in InfLoRA is 262144 ∗ 4 = 1048576 = 1.05M.

GainLoRA introduces a new gating module gt(·) with parameters Wt,1 ∈ R50×4096, Wt,2 ∈ R4096×50 and Wt,3 ∈ R1×4096.
Therefore, the number of trainable parameters in GainLoRA (O-LoRA) is 2097152 + 4096 ∗ 50 + 4096 ∗ 50 + 4096 =
2510848 = 2.51M. The number of trainable parameters in GainLoRA (InfLoRA) is 1048576+4096∗50+4096∗50+4096 =
1462272 = 1.46M.

B.4.4. COMPUTATION OF TRAINABLE PARAMETERS IN LLAMA-2-13B

In Llama-2-13B, the projection weights for the query and value components have shapes Wq,Wv ∈ R5120×5120. The model
contains 40 self-attention modules, resulting in 40 ∗ 2 = 80 pre-trained weights that incorporate the LoRA architecture.

During the learning of the t-th new task, O-LoRA updates the parameters At ∈ R5120×r and Bt ∈ Rr×5120, resulting in
5120∗r∗80+r∗5120∗80 = 819200r trainable parameters. When r = 4, the number of trainable parameters in O-LoRA is
819200∗4 = 3276800 = 3.28M. InfLoRA only updates the parameters At ∈ R5120×r, resulting in 5120∗r∗80 = 409600r
trainable parameters. When r = 4, the number of trainable parameters in InfLoRA is 409600 ∗ 4 = 1638400 = 1.64M.

GainLoRA introduces a new gating module gt(·) with parameters Wt,1 ∈ R50×5120, Wt,2 ∈ R5120×50 and Wt,3 ∈ R1×5120.
Therefore, the number of trainable parameters in GainLoRA (O-LoRA) is 3276800 + 5120 ∗ 50 + 5120 ∗ 50 + 5120 =
3793920 = 3.79M. The number of trainable parameters in GainLoRA (InfLoRA) is 1638400+5120∗50+5120∗50+5120 =
2155520 = 2.16M.

C. More Experimental Results
C.1. Discussing Computational Costs Introduced by GainLoRA

Existing methods, such as O-LoRA and InfLoRA, adopt the expandable LoRA architecture shown in Figure 1 and fix
the integration coefficients {ai}Ti=1 to 1, allowing the model to merge the expanded LoRA branches into the pre-trained
matrix at inference time, thereby avoiding additional computational costs. However, when using our gating module to
integrate different LoRA branches, the LoRA branches cannot be merged into the pre-trained matrix at inference time,
which introduces additional computational costs. Nevertheless, we demonstrate that these computational costs are minimal
compared to the computational cost of the original language models (LMs).

Table 8 compares the floating-point operations (FLOPs) and multiply-add operations (MACs) during inference for different
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Table 9. Results with standard deviation on different task sequences using T5-large model.

Method Order 1 Order 2 Order 3 Order 4
AP↑ FT↓ AP↑ FT↓ AP↑ FT↓ AP↑ FT↓

MIGU+FT (Du et al., 2024) - - - - 71.30±1.85 11.39±1.92 69.05±0.71 14.06±0.86

SeqLoRA 7.30±1.12 47.60±0.94 7.03±0.49 47.97±0.07 49.46±2.42 27.60±4.09 33.81±0.01 45.53±1.60

IncLoRA (Hu et al., 2022) 12.33±0.56 41.93±0.17 16.65±0.91 36.56±1.30 61.19±0.85 13.63±1.27 62.46±0.34 15.92±0.46

C-LoRA (Smith et al., 2024) 22.69±0.01 24.25±0.90 32.81±0.64 11.60±0.23 66.83±0.56 8.64±0.32 61.86±1.77 14.18±1.50

O-LoRA (Wang et al., 2023a) 26.37±2.27 19.15±2.15 32.83±0.25 11.99±0.38 70.98±1.74 3.69±0.53 71.21±0.33 4.03±1.00

GainLoRA (O-LoRA) 47.84±0.16 2.26±0.06 46.84±0.11 2.91±0.13 73.37±0.01 3.02±0.81 76.01±0.49 2.49±0.12

InfLoRA (Liang & Li, 2024) 39.78±0.57 7.64±0.54 39.57±0.94 8.93±0.37 75.15±0.06 4.19±0.13 75.79±0.56 3.47±0.45

GainLoRA (InfLoRA) 46.21±0.05 2.40±0.24 46.44±0.41 2.61±0.25 78.01±0.26 0.77±0.01 77.54±0.23 1.25±0.10

Table 10. The overall results on different task sequences with T5-XL model.

Method Order 1 Order 2 Order 3 Order 4
AP↑ FT↓ AP↑ FT↓ AP↑ FT↓ AP↑ FT↓

O-LoRA (Wang et al., 2023a) 36.50±4.29 11.42±5.30 40.64±1.09 6.37±0.66 73.77±1.14 2.70±0.54 76.19±0.49 3.56±0.40

GainLoRA (O-LoRA) 50.10±0.22 3.21±0.32 49.86±0.06 3.04±0.13 78.41±0.50 2.59±0.56 77.21±0.19 3.30±0.34

InfLoRA (Liang & Li, 2024) 45.61±1.28 5.60±1.35 45.85±0.10 5.10±0.32 80.22±0.04 2.09±0.11 79.43±0.03 1.71±0.09

GainLoRA (InfLoRA) 50.06±0.11 1.86±0.28 50.26±0.14 2.64±0.41 81.22±0.11 0.58±0.01 80.30±0.11 0.75±0.15

models with and without GainLoRA. The computation of FLOPs and MACs follows the existing project calflops (Ye, 2023).
Here, “Original” denotes the original LMs without any LoRA adaptation. Methods such as O-LoRA and InfLoRA avoid
additional computational costs by merging their LoRA branches into the original weights during inference, resulting in
FLOPs and MACs identical to the original LMs. Despite introducing additional FLOPs and MACs compared to the original
LMs, GainLoRA maintains minimal computational overhead relative to the original LMs.

C.2. Results with standard deviation

Table 9, Table 10 and Table 11 report the results with standard deviation.

Table 11. The overall results on different task sequences with Llama-2-7B and Llama-2-13B.
Llama-2-7B Llama-2-13B

Method Order 1 Order 2 Order 1 Order 2
AP↑ FT↓ AP↑ FT↓ AP↑ FT↓ AP↑ FT↓

O-LoRA (Wang et al., 2023a) 39.37±0.24 15.84±0.58 37.55±0.70 20.23±0.20 43.92±0.42 14.15±0.35 40.05±0.46 19.53±0.50

GainLoRA (O-LoRA) 51.10±0.91 4.96±0.56 51.14±1.01 5.57±0.65 52.47±0.24 4.78±0.27 51.68±0.63 5.86±0.44

InfLoRA (Liang & Li, 2024) 42.93±0.77 11.23±0.24 39.94±0.30 15.00±0.51 43.64±0.02 14.85±0.31 45.74±0.81 10.61±0.09

GainLoRA (InfLoRA) 51.27±0.01 2.84±0.11 50.17±0.32 4.71±0.22 53.64±0.81 2.87±0.05 52.46±0.50 4.90±0.30

C.3. Varying the Architecture of Gating Module

C.3.1. VARYING FUNCTION f(·) IN GATING MODULE

To implement our method, we define function f(·) as (7). Here, we vary the formula of function f(·) as the following two
functions:

min{|b|, 1}, | sin(
πb

2
)|. (21)

Clearly, these two functions map real values among [0, 1] and satisfy f(0) = 0. Table 12 shows the results. As we can see,
when changing the formula of f(·), GainLoRA also improves the performance of O-LoRA and InfLoRA.

C.3.2. VARYING THE SHAPES OF WEIGHTS IN GATING MODULE

In this section, we vary the shapes of the weights in the gating modules with T5-Large. Specifically, we set the weights
Wi,1 ∈ Rdh×1024 and Wi,2 ∈ R1024×dh in each gating module gi(·) and vary dh over {50, 100, 200}. Figure 6 (a) and
Figure 6 (b) show the results. As we can see, when increasing dh, the performance of GainLoRA remains relatively stable,
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Table 12. Varying the function f(·) in GainLoRA on different task sequences with T5-large model.

Method Order 1 Order 2
AP↑ FT↓ AP↑ FT↓

GainLoRA (InfLoRA) (f(b) = |2sigmoid(b)− 1|) 46.21±0.05 2.40±0.24 46.44±0.41 2.61±0.25

GainLoRA (InfLoRA) (f(b) = min{|b|, 1}) 45.05±0.32 2.07±0.24 45.00±0.20 1.74±0.44

GainLoRA (InfLoRA)
(
f(b) = | sin(πb2 )|

)
47.48±0.03 1.21±0.52 45.03±0.67 2.37±0.34

InfLoRA 39.78±0.57 7.64±0.54 39.57±0.94 8.93±0.37

GainLoRA (O-LoRA) (f(b) = |2sigmoid(b)− 1|) 47.84±0.16 2.26±0.06 46.84±0.11 2.91±0.13

GainLoRA (O-LoRA) (f(b) = min{|b|, 1}) 49.62±0.57 2.83±0.73 48.62±0.47 3.74±0.02

GainLoRA (O-LoRA)
(
f(b) = | sin(πb2 )|

)
48.49±0.92 3.84±0.54 47.20±0.85 4.69±0.65

O-LoRA 26.37±2.27 19.15±2.15 32.83±0.25 11.99±0.38
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Figure 6. (a) and (b) show the variation of our methods’ performance with the shapes of the weights in the gating module. (c) and (d)
show the variation of our methods’ performance with the Layers of the gating module.

indicating that our method is robust to the shape of the weights in the gating module. Note that the number of trainable
parameters increases as dh increases.

C.3.3. VARYING THE LAYERS OF GATING MODULE

In this section, we vary the layers of the gating modules with T5-Large. Specifically, we vary across {0, 2, 4}. when
L = 0, there is only one layer with Wi,1 ∈ R1×1024 in each gating module gi(·). When L = 2, there are three layers with
Wi,1 ∈ R100×1024, Wi,1 ∈ R1024×100 and Wi,1 ∈ R1×1024. When L = 4, there are 5 layers with Wi,1 ∈ R100×1024,
Wi,1 ∈ R1024×100, Wi,1 ∈ R100×1024, Wi,1 ∈ R1024×100, and Wi,1 ∈ R1×1024 in each gating module. Figure 6 (c) and
Figure 6 (d) show the results. As we can see, when increasing the layers of gating modules, the performance of GainLoRA
remains relatively stable, indicating that our method is robust to the layers of the gating module. Note that the number of
trainable parameters increases as the number of layers in gating modules increases.

C.4. Varying Ranks in LoRA Branches

In this section, we vary the rank of LoRA branches across {2, 4, 8} with T5-Large. Figure 7 shows the results. As shown,
when the rank of LoRA branches increases, the performance of GainLoRA remains relatively stable. Note that the number
of trainable parameters increases as the rank of LoRA branches increases.

C.5. Adopting Other Update Strategies for the New LoRA Branch

Our GainLoRA does not impose specific update strategies for the new LoRA branches. In this work, we adopt the same
update strategies as the existing two methods, O-LoRA (Wang et al., 2023a) and InfLoRA (Liang & Li, 2024). Related
methods, such as IncLoRA (Hu et al., 2022) and C-LoRA (Smith et al., 2024), also adopt the expandable LoRA architecture
illustrated in Figure 1 and fix all integration coefficients {ai}Ti=1 to 1. Our method GainLoRA can also adopt their update
strategies for the new LoRA branch. Table 13 presents the results, demonstrating that GainLoRA further improves the
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Figure 7. The variation of our methods’ performance with the Layers of the gating module.

Table 13. The overall results on different task sequences with T5-large model.

Method Order 1 Order 2
AP↑ FT↓ AP↑ FT↓

IncLoRA 12.33±0.56 41.93±0.17 16.65±0.91 36.56±1.30

GainLoRA (IncLoRA) 47.82±0.08 3.73±0.25 45.42±1.19 5.83±1.53

C-LoRA 22.69±0.01 24.25±0.90 32.81±0.64 11.60±0.23

GainLoRA (C-LoRA) 49.24±0.21 2.94±0.41 46.23±0.61 6.05±0.51

performance of these two methods.

C.6. Extending to the Rehearsal Setting

In this work, we focus on the non-rehearsal setting, where no real or synthetic samples from old tasks are available during
the learning of a new task. In this section, we demonstrate that our method, GainLoRA, can also be extended to the rehearsal
setting. Specifically, in the rehearsal setting, a set of samples Nt containing real or synthetic samples from the previous
t− 1 tasks is available while the model learns the t-th new task. In this case, the constraints introduced in Section 3.2.1 are
no longer necessary, and we can optimize the following loss function:

1

|Dt|
∑

(xt,yt)∈Dt

|yt|∑
j=1

log [P (yt,j |xt, yt,1, ..., yt,j−1)] +
∑

(x,y)∼Nt

log gt(x), (22)

The second term in (22) minimizes the contribution from the new LoRA branch on old tasks.

We compare GainLoRA with SAPT-LoRA (Zhao et al., 2024). For a fair comparison, we use the same rehearsal dataset
as SAPT-LoRA, generated using a trained generative model. As shown in Table 14, GainLoRA achieves comparable
performance to SAPT-LoRA in the rehearsal setting. Note that SAPT-LoRA is specifically designed for the rehearsal setting
and is not applicable to the non-rehearsal setting, which is considered in this work.

Table 14. The overall results on Order 1 in the rehearsal-setting.

T5-Large Llama-2-7B
AP↑ FT↓ AP↑ FT↓

SAPT-LoRA (Zhao et al., 2024) 51.38±0.12 0.74±0.18 55.88±0.25 0.74±0.27

GainLoRA (InfLoRA) + Replay 51.62±0.56 0.08±0.10 55.93±0.69 0.95±0.39

C.7. Scaling to Unseen Tasks

We further follow existing work (Zhao et al., 2024) and select 3 tasks from each task category in SuperNI benchmark to
assess the model’s cross-task generalization ability. The selected datasets are shown in Table 15. Table 16 shows the results.

19



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Submission and Formatting Instructions for ICML 2025

Table 15. Details of selected unseen tasks in SuperNI Benchmark.

Dataset name Task Type Metric

Task360 spolin yesand response generation summarization Rouge-L
Task574 air dialogue sentence generation summarization Rouge-L
Task1714 convai3 sentence generation summarization Rouge-L
Task180 intervention extraction information extraction Rouge-L
Task678 ollie actual relationship answer generation information extraction Rouge-L
Task1410 dart relationship extraction information extraction Rouge-L
Task339 record answer generation dialogue generation Rouge-L
Task670 ambigqa question generation dialogue generation Rouge-L
Task1327 qa zre answer generation from question dialogue generation Rouge-L
Task522 news editorial summary question answering Rouge-L
Task1356 xlsum title generation question answering Rouge-L
Task1499 dstc3 summarization question answering Rouge-L
Task421 persent sentence sentiment classification sentiment analysis Accuracy
Task833 poem sentiment classification sentiment analysis Accuracy
Task929 products reviews classification sentiment analysis Accuracy

Here, ‘Sum’, ‘IE’, ‘Dialogue’, ‘QA’ and ‘SA’ denote the summarization tasks, information extraction tasks, dialogue tasks,
question answering tasks and sentiment analysis tasks, respectively. Our methods yield better overall performance than
other methods.

Table 16. The results of different methods on unseen tasks after training on Order 1 with Llama-2-7B model.

Method Sum IE Dialogue QA SA Avg

O-LoRA 6.77 36.53 31.79 14.66 61.67 30.28
GainLoRA (O-LoRA) 6.03 42.97 44.52 15.34 75.44 36.86
InfLoRA 8.72 31.33 36.51 19.63 61.55 31.55
GainLoRA (InfLoRA) 8.94 34.35 38.74 19.19 64.22 33.09

20


