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ABSTRACT

Quantization is a widely used compression method that effectively reduces redun-
dancies in over-parameterized neural networks. However, existing quantization
techniques for deep neural networks often lack a comprehensive error analysis
due to the presence of non-convex loss functions and nonlinear activations. In
this paper, we propose a fast stochastic algorithm for quantizing the weights of
fully trained neural networks. Our approach leverages a greedy path-following
mechanism in combination with a stochastic quantizer. Its computational com-
plexity scales only linearly with the number of weights in the network, thereby
enabling the efficient quantization of large networks. Importantly, we establish,
for the first time, full-network error bounds, under an infinite alphabet condition
and minimal assumptions on the weights and input data. As an application of
this result, we prove that when quantizing a multi-layer network having Gaussian
weights, the relative square quantization error exhibits a linear decay as the degree
of over-parametrization increases. Furthermore, we demonstrate that it is possible
to achieve error bounds equivalent to those obtained in the infinite alphabet case,
using on the order of a mere log logN bits per weight, where N represents the
largest number of neurons in a layer.

1 INTRODUCTION

Deep neural networks (DNNs) have shown impressive performance in a variety of areas including
computer vision and natural language processing among many others. However, highly overparam-
eterized DNNs require a significant amount of memory to store their associated weights, activations,
and – during training – gradients. As a result, in recent years, there has been an interest in model
compression techniques, including quantization, pruning, knowledge distillation, and low-rank de-
composition (Neill, 2020; Deng et al., 2020; Cheng et al., 2017; Gholami et al., 2021; Guo, 2018).
Neural network quantization, in particular, utilizes significantly fewer bits to represent the weights
of DNNs. This substitution of original, say, 32-bit floating-point operations with more efficient
low-bit operations has the potential to significantly reduce memory usage and accelerate inference
time while maintaining minimal loss in accuracy. Quantization methods can be categorized into
two classes (Krishnamoorthi, 2018): quantization-aware training and post-training quantization.
Quantization-aware training substitutes floating-point weights with low-bit representations during
the training process, while post-training quantization quantizes network weights only after the train-
ing is complete.

To achieve high-quality empirical results, quantization-aware training methods, such as those in
(Choi et al., 2018; Cai et al., 2020; Wang et al., 2019; Courbariaux et al., 2015; Jacob et al., 2018;
Zhang et al., 2018; Zhou et al., 2017), often require significant time for retraining and hyper-
parameter tuning using the entire training dataset. This can make them impractical for resource-
constrained scenarios. Furthermore, it can be challenging to rigorously analyze the associated error
bounds as quantization-aware training is an integer programming problem with a non-convex loss
function, making it NP-hard in general. In contrast, post-training quantization algorithms, such as
(Choukroun et al., 2019; Wang et al., 2020; Lybrand & Saab, 2021; Zhang et al., 2023; Hubara et al.,
2020; Nagel et al., 2020; Zhao et al., 2019; Maly & Saab, 2023; Frantar et al., 2022), require only a
small amount of training data, and recent research has made strides in obtaining quantization error
bounds for some of these algorithms (Lybrand & Saab, 2021; Zhang et al., 2023; Maly & Saab,
2023) in the context of shallow networks.
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In this paper, we focus on this type of network quantization and its theoretical analysis, proposing a
fast stochastic quantization technique and obtaining theoretical guarantees on its performance, even
in the context of deep networks.

1.1 RELATED WORK

In this section, we provide a summary of relevant prior results concerning a specific post-training
quantization algorithm, which forms the basis of our present work. To make our discussion more
precise, let X ∈ Rm×N0 and w ∈ RN0 represent the input data and a neuron in a single-layer
network, respectively. Our objective is to find a mapping, also known as a quantizer, Q : RN0 →
AN0 such that q = Q(w) ∈ AN0 minimizes ∥Xq − Xw∥2. Even in this simplified context, since
A is a finite discrete set, this optimization problem is an integer program and therefore NP-hard in
general. Nevertheless, if one can obtain good approximate solutions to this optimization problem,
with theoretical error guarantees, then those guarantees can be combined with the fact that most
neural network activation functions are Lipschitz, to obtain error bounds on entire (single) layers of
a neural network.

Recently, Lybrand & Saab (2021) proposed and analyzed a greedy algorithm, called greedy path
following quantization (GPFQ), to approximately solve the optimization problem outlined above.
Their analysis was limited to the ternary alphabet A = {0,±1} and a single-layer network with
Gaussian random input data. Zhang et al. (2023) then extended GPFQ to more general input dis-
tributions and larger alphabets, and they introduced variations that promoted pruning of weights.
Among other results, they proved that if the input data X is either bounded or drawn from a mixture
of Gaussians, then the relative square error of quantizing a generic neuron w satisfies

∥Xw −Xq∥22
∥Xw∥22

≲
m logN0

N0
(1)

with high probability. Extensive numerical experiments in (Zhang et al., 2023) also demonstrated
that GPFQ, with 4 or 5 bit alphabets, can achieve less than 1% loss in Top-1 and Top-5 accuracy on
common neural network architectures. Subsequently, (Maly & Saab, 2023) introduced a different
algorithm that involves a deterministic preprocessing step on w that allows quantizing DNNs via
memoryless scalar quantization (MSQ) while preserving the same error bound in 1. This algorithm
is more computationally intensive than those of (Lybrand & Saab, 2021; Zhang et al., 2023) but does
not require hyper-parameter tuning for selecting the alphabet step-size.

1.2 CONTRIBUTIONS AND ORGANIZATION

In spite of recent progress in developing computationally efficient algorithms with rigorous theoret-
ical guarantees, all technical proofs in (Lybrand & Saab, 2021; Zhang et al., 2023; Maly & Saab,
2023) only apply for a single-layer of a neural network with certain assumed input distributions.
This limitation naturally comes from the fact that a random input distribution and a deterministic
quantizer lead to activations (i.e., outputs of intermediate layers) with dependencies, whose distri-
bution is usually intractable after passing through multiple layers and nonlinearities.

To overcome this main obstacle to obtaining theoretical guarantees for multiple layer neural net-
works, in Section 2, we propose a new stochastic quantization framework, called stochastic path
following quantization (SPFQ), which introduces randomness into the quantizer. We show that
SPFQ admits an interpretation as a two-phase algorithm consisting of a data-alignment phase and a
quantization phase. This allows us to propose two variants, both summarized in Algorithm 1, which
involve different data alignment strategies that are amenable to analysis.

Importantly, our algorithms are fast. For example, SPFQ with approximate data alignment has
a computational complexity that only scales linearly in the number of parameters of the neural
network. This stands in sharp contrast with quantization algorithms that require solving optimization
problems, generally resulting in polynomial complexity in the number of parameters.

In Section 3, we present the first error bounds for quantizing an entire L-layer neural network Φ,
under an infinite alphabet condition and minimal assumptions on the weights and input data X . To
illustrate the use of our results, we show that if the weights of Φ are standard Gaussian random
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variables, then, with high probability, the quantized neural network Φ̃ satisfies

∥Φ(X)− Φ̃(X)∥2F
EΦ∥Φ(X)∥2F

≲
m(logNmax)

L+1

Nmin
(2)

where we take the expectation EΦ with respect to the weights of Φ, and Nmin, Nmax represent the
minimum and maximum layer width of Φ respectively. We can regard the relative error bound in 2
as a natural generalization of 1.

In Section 4, we consider the finite alphabet case under the random network hypothesis. De-
noting by Ni the number of neurons in the i-th layer, we show that it suffices to use b ≤
C log logmax{Ni−1, Ni} bits to quantize the i-th layer while guaranteeing the same error bounds
as in the infinite alphabet case.

It is worth noting that we assume that Φ is equipped with ReLU activation functions, i.e. max{0, x},
throughout this paper. This assumption is only made for convenience and concreteness, and we
remark that the non-linearities can be replaced by any Lipschitz functions without changing our
results, except for the values of constants. For example, suppose the activations are scalar quantized,
i.e., rounded to their nearest element in some alphabet. Then, the composition of the activation
quantization map and a Lipschitz neural network non-linearity is essentially Lipschitz (up to an
additive constant). Moreover, the resulting Lipschitz constant decreases as one uses a finer alphabet.
This illustrates that our results easily extend to cover both weight and activation quantization.

Finally, we empirically test the developed method in Appendix H, by quantizing the weights of
several neural network architectures that are originally trained for classification tasks on the Ima-
geNet dataset (Deng et al., 2009). The experiments show only a minor loss of accuracy compared to
unquantized models.

2 STOCHASTIC QUANTIZATION ALGORITHM

In this section, we start with the notation that will be used throughout this paper and then introduce
our stochastic quantization algorithm, and show that it can be viewed as a two-stage algorithm. This
in turn will simplify its analysis.

2.1 NOTATION AND PRELIMINARIES

We denote various positive absolute constants by C, c. We use a ≲ b as shorthand for a ≤ Cb, and
a ≳ b for a ≥ Cb. For any matrix A ∈ Rm×n, ∥A∥max denotes maxi,j |Aij |.

2.1.1 QUANTIZATION

An L-layer perceptron, Φ : RN0 → RNL , acts on a vector x ∈ RN0 via

Φ(x) := φ(L) ◦A(L) ◦ · · · ◦ φ(1) ◦A(1)(x) (3)

where each φ(i) : RNi → RNi is an activation function acting entrywise, and A(i) : RNi−1 → RNi

is an affine map given by A(i)(z) := W (i)⊤z + b(i). Here, W (i) ∈ RNi−1×Ni is a weight matrix
and b(i) ∈ RNi is a bias vector. Since w⊤x + b = ⟨(w, b), (x, 1)⟩, the bias term b(i) can simply be
treated as an extra row to the weight matrix W (i), so we will henceforth ignore it. For theoretical
analysis, we focus on infinite mid-tread alphabets, with step-size δ, i.e., alphabets of the form

A = Aδ
∞ := {±kδ : k ∈ Z} (4)

and their finite versions, mid-tread alphabets of the form

A = Aδ
K := {±kδ : 0 ≤ k ≤ K, k ∈ Z}. (5)

Given A = Aδ
∞, the associated stochastic scalar quantizer QStocQ : R → A randomly rounds

every z ∈ R to either the minimum or maximum of the interval [kδ, (k + 1)δ] containing it, in such
a way that E(QStocQ(z)) = z. Specifically, we define

QStocQ(z) :=

®
⌊ z
δ ⌋δ with probability p(
⌊ z
δ ⌋+ 1

)
δ with probability 1− p

(6)
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where p = 1 − z
δ + ⌊ z

δ ⌋. If instead of the infinite alphabet, we use A = Aδ
K , then whenever

|z| ≤ Kδ, QStocQ(z) is defined via 6 while QStocQ(z) is assigned −Kδ and Kδ if z < −Kδ and
z > Kδ respectively. The idea of stochastic quantization and stochastic rounding has a long history
(Forsythe, 1959; Barnes et al., 1951) and it has been widely used in signal processing field (Aysal
et al., 2008; Wannamaker et al., 2000).

2.1.2 ORTHOGONAL PROJECTIONS AND CONVEX ORDERS

Throughout this paper, we will use orthogonal projections and the notion of convex order (see, e.g.,
(Shaked & Shanthikumar, 2007)) in our analysis, see Appendix A for their definitions and properties.

2.2 SPFQ FUNDAMENTALS

We start with a data set X ∈ Rm×N0 with (vectorized) data stored as rows and a pretrained neural
network Φ with weight matrices W (i) ∈ RNi−1×Ni having neurons as their columns. Let Φ(i), Φ̃(i)

denote the original and quantized neural networks up to layer i respectively so that, for example,
Φ(i)(x) := φ(i) ◦W (i) ◦ · · · ◦ φ(1) ◦W (1)(x). Assuming the first i− 1 layers have been quantized,
define the activations from (i− 1)-th layer as

X(i−1) := Φ(i−1)(X) ∈ Rm×Ni−1 and ‹X(i−1) := Φ̃(i−1)(X) ∈ Rm×Ni−1 , (7)

which also serve as input data for the i-th layer. For each neuron w ∈ RNi−1 in layer i, our goal is
to construct a quantized vector q ∈ ANi−1 such that‹X(i−1)q =

Ni−1∑
t=1

qt‹X(i−1)
t ≈

Ni−1∑
t=1

wtX
(i−1)
t = X(i−1)w

where X(i−1)
t , ‹X(i−1)

t are the t-th columns of X(i−1), ‹X(i−1). Following the GPFQ scheme
in (Lybrand & Saab, 2021; Zhang et al., 2023), our algorithm selects qt sequentially, for t =
1, 2, . . . , Ni−1, so that the approximation error of the t-th iteration, denoted by

ut :=

t∑
j=1

wjX
(i−1)
j −

t∑
j=1

qj ‹X(i−1)
j ∈ Rm, (8)

is well-controlled in the ℓ2 norm. Specifically, assuming that the first t−1 components of q have been

determined, the proposed algorithm maintains the error vector ut−1 =
t−1∑
j=1

(wjX
(i−1)
j − qj ‹X(i−1)

j ),

and sets qt ∈ A probabilistically depending on ut−1, X(i−1)
t , and ‹X(i−1)

t . Note that 8 implies

ut = ut−1 + wtX
(i−1)
t − qt‹X(i−1)

t (9)

and one can get

c∗ := argmin
c∈R

∥ut−1 + wtX
(i−1)
t − c‹X(i−1)

t ∥22 =
⟨‹X(i−1)

t , ut−1 + wtX
(i−1)
t ⟩

∥‹X(i−1)
t ∥22

.

Hence, a natural design of qt ∈ A is to quantize c∗. Instead of using a deterministic quantizer as in
(Lybrand & Saab, 2021; Zhang et al., 2023), we apply the stochastic quantizer in 6, that is

qt := QStocQ(c
∗) = QStocQ

(
⟨‹X(i−1)

t , ut−1 + wtX
(i−1)
t ⟩

∥‹X(i−1)
t ∥22

)
. (10)

Putting everything together, the stochastic version of GPFQ, namely SPFQ in its basic form, can
now be expressed as follows.

u0 = 0 ∈ Rm,

qt = QStocQ

(
⟨X̃(i−1)

t ,ut−1+wtX
(i−1)
t ⟩

∥X̃(i−1)
t ∥2

2

)
,

ut = ut−1 + wtX
(i−1)
t − qt‹X(i−1)

t

(11)
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where t iterates over 1, 2, . . . , Ni−1. In particular, the final error vector is

uNi−1
=

Ni−1∑
j=1

wjX
(i−1)
j −

Ni−1∑
j=1

qj ‹X(i−1)
j = X(i−1)w − ‹X(i−1)q (12)

and our goal is to estimate ∥uNi−1∥2.

2.3 A TWO-PHASE PIPELINE

An essential observation is that 11 can be equivalently decomposed into two phases.

Phase I: Given inputs X(i−1), ‹X(i−1) and neuron w ∈ RNi−1 for the i-th layer, we first align the
input data to the layer, by finding a real-valued vector w̃ ∈ RNi−1 such that ‹X(i−1)w̃ ≈ X(i−1)w.
Similar to our discussion above 10, we adopt the same sequential selection strategy to obtain each
w̃t and deduce the following update rules.

û0 = 0 ∈ Rm,

w̃t =
⟨X̃(i−1)

t ,ût−1+wtX
(i−1)
t ⟩

∥X̃(i−1)
t ∥2

2

,

ût = ût−1 + wtX
(i−1)
t − w̃t

‹X(i−1)
t

(13)

where t = 1, 2 . . . , Ni−1. Note that the approximation error is given by

ûNi−1
= X(i−1)w − ‹X(i−1)w̃. (14)

Phase II: After getting the new weights w̃, we quantize w̃ using SPFQ with input ‹X(i−1), i.e.,
finding q̃ ∈ ANi−1 such that ‹X(i−1)q̃ ≈ ‹X(i−1)w̃. This process can be summarized as follows. For
t = 1, 2, . . . , Ni−1, 

ũ0 = 0 ∈ Rm,

q̃t = QStocQ

(
w̃t +

⟨X̃(i−1)
t ,ũt−1⟩
∥X̃(i−1)

t ∥2
2

)
,

ũt = ũt−1 + (w̃t − q̃t)‹X(i−1)
t .

(15)

Here, the quantization error is
ũNi−1 = ‹X(i−1)(w̃ − q̃). (16)

Proposition 2.1. Given inputs X(i−1), ‹X(i−1) and any neuron w ∈ RNi−1 for the i-th layer, the
two-phase formulation given by 13 and 15 generate exactly same result as in 11, that is, q̃ = q.

Proposition 2.1, which is proved in Appendix B, implies that the quantization error 12 for SPFQ can
be split into two parts:

uNi−1
= X(i−1)w − ‹X(i−1)q = X(i−1)w − ‹X(i−1)w̃ + ‹X(i−1)(w̃ − q) = ûNi−1

+ ũNi−1
.

Here, the first error term ûNi−1 results from the data alignment in 13 to generate a new “virtual”
neuron w̃ and the second error term ũNi−1 is due to the quantization in 15. It follows that

∥uNi−1
∥2 = ∥ûNi−1

+ ũNi−1
∥2 ≤ ∥ûNi−1

∥2 + ∥ũNi−1
∥2. (17)

Thus, we can bound the quantization error for SPFQ by controlling ∥ûNi−1
∥2 and ∥ũNi−1

∥2.

2.4 SPFQ VARIANTS

The two-phase formulation of SPFQ provides a flexible framework that allows for the replacement
of one or both phases with alternative algorithms. Here, our focus is on replacing the first, “data-
alignment”, phase to eliminate, or massively reduce, the error bound associated with this step. In-
deed, by exploring alternative approaches, one can improve the error bounds of SPFQ, at the expense
of increasing the computational complexity. Below, we present two such alternatives to Phase I.

In Section 3 we derive an error bound associated with the second phase of SPFQ, namely quantiza-
tion, which is independent of the reconstructed neuron w̃. Thus, to reduce the bound on ∥uNi−1∥2
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Algorithm 1: SPFQ

Input: An L-layer neural network Φ with weight matrices W (i) ∈ RNi−1×Ni , input data
X ∈ Rm×N0 , order r ∈ Z+

1 for i = 1 to L do
2 Generate X(i−1) = Φ(i−1)(X) ∈ Rm×Ni−1 and ‹X(i−1) = Φ̃(i−1)(X) ∈ Rm×Ni−1

3 if perfect data alignment then
4 For each column w of W (i), find a solution w̃ to 18 (Phase I) and quantize w̃ via 15

(Phase II)
5 else if approximate data alignment then
6 For each column w of W (i), obtain w̃ using the r-th order data alignment in 13 and 20

(Phase I) then quantize w̃ via 15 (Phase II)

7 Obtain the quantized i-th layer weights Q(i) ∈ ANi−1×Ni

Output: Quantized neural network Φ̃

in 17, we can eliminate ∥ûNi−1∥2 by simply choosing w̃ with ‹X(i−1)w̃ = X(i−1)w. As this system
of equations may admit infinitely many solutions, we opt for one with the minimal ∥w̃∥∞. This
choice is motivated by the fact that smaller weights can be accommodated by smaller quantization
alphabets, resulting in bit savings in practical applications. In other words, we replace Phase I with
the optimization problem

min‹w∈RNi−1

∥w̃∥∞

s.t. ‹X(i−1)w̃ = X(i−1)w.
(18)

It is not hard to see that 18 can be formulated as a linear program and solved via standard linear
programming techniques (Abdelmalek, 1977). Alternatively, powerful tools like Cadzow’s method
(Cadzow, 1973; 1974) can also be used to solve linearly constrained infinity-norm optimization
problems like 18. Cadzow’s method has computational complexity O(m2Ni−1), thus is a factor of
m more expensive than our original approach but has the advantage of eliminating ∥ûNi−1∥2.

With this modification, one then proceeds with Phase II as before. Given a minimum ℓ∞ solution w̃
satisfying ‹X(i−1)w̃ = X(i−1)w, one can quantize it using 15 and obtain q̃ ∈ ANi−1 . In this case, q̃
may not be equal to q in 11 and the quantization error becomes

X(i−1)w − ‹X(i−1)q̃ = ‹X(i−1)(w̃ − q̃) = ũNi−1
(19)

where only Phase II is involved. We summarize this version of SPFQ in Algorithm 1.

The second approach we present herein aims to reduce the computational complexity associated
with 18. To that end, we generalize the data alignment process in 13 as follows. Let r ∈ Z+ and
w ∈ RNi−1 . For t = 1, 2, . . . , Ni−1, we perform 13 as before. Now however, for t = Ni−1 +
1, Ni−1 + 2, . . . , rNi−1, we run

v̂t−1 = ût−1 − wtX
(i−1)
t + w̃t

‹X(i−1)
t ,

w̃t =
⟨X̃(i−1)

t ,v̂t−1+wtX
(i−1)
t ⟩

∥X̃(i−1)
t ∥2

2

,

ût = v̂t−1 + wtX
(i−1)
t − w̃t

‹X(i−1)
t

(20)

Here, we use modulo Ni−1 indexing for (the subscripts of) w, w̃,X(i−1), and ‹X(i−1). We call
the combination of 13 and 20 the r-th order data alignment procedure, which costs O(rmNi−1)
operations. Applying 15 to the output w̃ as before, the quantization error consists of two parts:

X(i−1)w − ‹X(i−1)q̃ = X(i−1)w − ‹X(i−1)w̃ + ‹X(i−1)(w̃ − q̃) = ûrNi−1
+ ũNi−1

. (21)

This version of SPFQ with order r is summarized in Algorithm 1. In Section 3, we prove that the
data alignment error ûrNi−1 = X(i−1)w − ‹X(i−1)w̃ decays exponentially in order r.
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3 ERROR BOUNDS FOR SPFQ WITH INFINITE ALPHABETS

We can now begin analyzing the errors associated with the above variants of SPFQ. The proof of
Theorem 3.1 can be found in Appendix D.

Theorem 3.1. Let Φ be an L-layer neural network as in 3 where the activation function is φ(i)(x) =
ρ(x) := max{0, x} for 1 ≤ i ≤ L. Let A = Aδ

∞ be as in 4 and p ∈ N.

(a) If we quantize Φ using Algorithm 1 with perfect data alignment, then

max
1≤j≤NL

∥Φ(X)j − Φ̃(X)j∥2 ≤
L−1∑
i=0

(2πpmδ2)
L−i
2

(L−1∏
k=i

logNk

) 1
2

max
1≤j≤Ni

∥X(i)
j ∥2 (22)

holds with probability at least 1−
∑L

i=1

√
2mNi

Np
i−1

.

(b) If we quantize Φ using Algorithm 1 with approximate data alignment, then

max
1≤j≤NL

∥Φ(X)j − Φ̃(X)j∥2 ≤

L−1∑
i=0

δ
√
2πpm logNi max

1≤j≤Ni

∥X(i)
j ∥2

L−1∏
k=i+1

(
Nk∥W (k+1)∥max∥P (k)∥r−1

2 + δ
√
2πpm logNk

)
(23)

holds with probability at least 1−
∑L

i=1

√
2mNi

Np
i−1

. Here, P (k) = P
X̃

(k)⊥
Nk

. . . P
X̃

(k)⊥
2

P
X̃

(k)⊥
1

is defined

in Lemma D.2.

Remarks on the error bounds. A few comments are in order regarding the error bounds asso-
ciated with Theorem 3.1. First, let us consider the difference between the error bounds 22 and 23.
As 23 deals with imperfect data alignment, it involves a term that bounds the mismatch between the
quantized and unquantized networks. This term is controlled by the quantity ∥P (k)∥r−1

2 , which is
expected to be small when the order r is sufficiently large provided ∥P (k)∥2 < 1. In other words,
one expects this term to be dominated by the error due to quantization. To get a sense for whether
this intuition is valid, consider the case where ‹X(k)

1 , ‹X(k)
2 , . . . , ‹X(k)

Nk
are i.i.d. standard Gaussian

vectors. Then Lemma C.3 implies that, with high probability,

∥P (k)∥r−1
2 ≲

(
1− c

m

) (r−1)Nk
10

=
(
1− c

m

)−m
c ·−c(r−1)Nk

10m ≤ e−
c(r−1)Nk

10m

where c > 0 is a constant. In this case, ∥P (k)∥r−1
2 decays exponentially with respect to r with a

favorable dependence on the overparametrization N
m . In other words, here, even with a small order

r, the error bounds in 22 and 23 are quite similar.

Keeping this in mind, our next objective is to assess the quality of these error bounds. We will
accomplish this by examining the relative error connected to the quantization of a neural network.
Specifically, we will concentrate on evaluating the relative error associated with 22 since a similar
derivation can be applied to 23.

We begin with the observation that both absolute error bounds 22 and 23 in Theorem 3.1 only
involve randomness due to the stochastic quantizer QStocQ. In particular, there is no randomness
assumption on either the weights or the activations. However, to evaluate the relative error, we
suppose that each W (i) ∈ RNi−1×Ni has i.i.d. N (0, 1) entries and {W (i)}Li=1 are independent. One
needs to make an assumption of this type in order to facilitate the calculation, and more importantly,
to avoid adversarial scenarios where the weights are chosen to be in the null-space of the data matrix‹X(i). We obtain the following corollary which is proved in Appendix E and shows that the relative
error decays with the overparametrization of the neural network.

Corollary 3.2. Let Φ be anL-layer neural network as in 3 where the activation function isφ(i)(x) =
ρ(x) := max{0, x} for 1 ≤ i ≤ L. Suppose the weight matrix W (i) has i.i.d. N (0, 1) entries and
{W (i)}Li=1 are independent. Let X ∈ Rm×N0 be the input data and X(i) = Φ(i)(X) ∈ Rm×Ni be

7
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the output of the i-th layer defined in 7. Then the following inequalities hold.
(a) Let p ∈ N with p ≥ 2. For 1 ≤ i ≤ L,

max
1≤j≤Ni

∥X(i)
j ∥2 ≤ (4p)

i
2

(i−1∏
k=1

Nk

) 1
2
(i−1∏
k=0

logNk

) 1
2 ∥X∥F (24)

holds with probability at least 1−
∑i

k=1
2Nk

Np
k−1

.

(b) For 1 ≤ i ≤ L, we have

EΦ∥X(i)∥2F ≥ ∥X∥2F
(2π)i

i∏
k=1

Nk (25)

where EΦ denotes the expectation with respect to the weights of Φ, that is {W (i)}Li=1.

Under the same conditions of Corollary 3.2 and further assume Nmin ≤ Ni ≤ Nmax for all i, and
2m ≤ Nmin, we have that, with high probability,

∥Φ(X)− Φ̃(X)∥2F
EΦ∥Φ(X)∥2F

≲
m(logNmax)

L+1

Nmin
. (26)

This high probability estimate, proved in Appendix E, indicates that the squared error resulting from
quantization decays with the overparametrization of the network, relative to the expected squared
norm of the neural network’s output. It may be possible to replace the expected squared norm by
the squared norm itself using another high probability estimate. However, we refrain from doing so
as the main objective of this computation was to gain insight into the decay of the relative error in
generic settings and the expectation suffices for that purpose.

4 ERROR BOUNDS FOR SPFQ WITH FINITE ALPHABETS

Our goal for this section is to relax the assumption that the quantization alphabet used in our algo-
rithms is infinite. We would also like to evaluate the number of elements 2K in our alphabet, and
thus the number of bits b := log2(K)+1 needed for quantizing each layer. Moreover, for simplicity,
here we will only consider Algorithm 1 with perfect data alignment. In this setting, to use a finite
quantization alphabet, and still obtain theoretical error bounds, we must guarantee that the argument
of the stochastic quantizer in 15 remains smaller than the maximal element in the alphabet. Indeed,
if that is the case for all t = 1, ..., Ni−1 then the error bound for our finite alphabet would be iden-
tical as for the infinite alphabet. It remains to determine the right size of such a finite alphabet. To
that end, we start with Theorem 4.1, which assumes boundedness of all the aligned weights w̃ in the
i-th layer, i.e., the solutions of 18, in order to generate an error bound for a finite alphabet of size
K(i) ≳

√
logmax{Ni−1, Ni}.

Theorem 4.1. Assuming that the first i − 1 layers have been quantized, let X(i−1), ‹X(i−1) be as
in 7. Let p,K(i) ∈ N and δ > 0 satisfying p ≥ 3. Suppose we quantize W (i) using Algorithm 1
with perfect data alignment and A = Aδ

K(i) , and suppose the resulting aligned weights W̃ (i) from
solving 18 satisfy

∥W̃ (i)∥max ≤ 1

2
K(i)δ. (27)

Then

max
1≤j≤Ni

∥X(i−1)W
(i)
j − ‹X(i−1)Q

(i)
j ∥2 ≤ δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥‹X(i−1)
j ∥2 (28)

holds with probability at least 1−
√
2mNi

Np
i−1

−
√
2Ni

Ni−1∑
t=2

exp
(
− (K(i))2∥X̃(i−1)

t ∥2
2

8π max
1≤j≤t−1

∥X̃(i−1)
j ∥2

2

)
.

Next, in Theorem 4.2, we show that provided the activations X(i−1) and ‹X(i−1) of the quantized
and unquantized networks are sufficiently close, and provided the weights w follow a random distri-
bution, one can guarantee the needed boundedness of the aligned weights w̃. This allows us to apply
Theorem 4.1 and generate an error bound for finite alphabets. Our focus on random weights here

8
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enables us to avoid certain adversarial situations. Indeed, one can construct activations X(i−1) and‹X(i−1) that are arbitrarily close to each other, along with adversarial weights w that together lead
to ∥w̃∥∞ becoming arbitrarily large. We demonstrate this contrived adversarial scenario in Proposi-
tion C.9. However, in generic cases represented by random weights, as shown in Theorem 4.2, the
bound on w̃ is not a major issue. Consequently, one can utilize a finite alphabet for quantization as
desired. The following results are proved in Appendix G.

Theorem 4.2. Assuming that the first i− 1 layers have been quantized, let X(i−1), ‹X(i−1) be as in
7. Suppose the weight matrix W (i) ∈ RNi−1×Ni has i.i.d. N (0, 1) entries and

∥‹X(i−1) −X(i−1)∥2 ≤ ϵ(i−1)σ
(i−1)
1 < σ(i−1)

m , (29)

where ϵ(i−1) ∈ (0, 1), σ(i−1)
1 and σ(i−1)

m are the largest and smallest singular values of X(i−1)

respectively. Let p,K(i) ∈ N and δ > 0 such that p ≥ 3 and
K(i)δ ≥ 2η(i−1)

√
2p logNi−1. (30)

where η(i−1) :=
σ
(i−1)
1

σ
(i−1)
m −ϵ(i−1)σ

(i−1)
1

. If we quantize W (i) using Algorithm 1 with perfect data align-

ment and A = Aδ
K(i) , then

max
1≤j≤Ni

∥X(i−1)W
(i)
j − ‹X(i−1)Q

(i)
j ∥2 ≤ δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥‹X(i−1)
j ∥2 (31)

holds with probability at least 1− 2Ni

Np−1
i−1

−
√
2mNi

Np
i−1

−
√
2Ni

∑Ni−1

t=2 exp
(
− (K(i))2∥X̃(i−1)

t ∥2
2

8πmax1≤j≤t−1 ∥X̃(i−1)
j ∥2

2

)
.

Now we are about to approximate the number of bits needed for guaranteeing the derived bounds.
Note that, in Theorem 4.2, we achieved the same error bound 31 as in Lemma D.1, choosing proper
ϵ(i−1) ∈ (0, 1) and K(i) ∈ N such that 29 and 30 are satisfied and the associated probability in
31 is positive. This implies that the error bounds we obtained in Section 3 remain valid for our
finite alphabets as well. In particular, by a similar argument we used to obtain 79, one can get the
following approximations

∥‹X(i−1) −X(i−1)∥2F
∥X(i−1)∥2F

≲
(i−1∏
k=0

logNk

) i−2∑
j=0

i−2∏
k=j

m

Nk
.

Due to ∥X(i−1)∥F ≤
√
m∥X(i−1)∥2 and ∥‹X(i−1) −X(i−1)∥2 ≤ ∥‹X(i−1) −X(i−1)∥F , we have

∥‹X(i−1) −X(i−1)∥22
∥X(i−1)∥22

≤ m∥‹X(i−1) −X(i−1)∥2F
∥X(i−1)∥2F

≲ m
(i−1∏
k=0

logNk

) i−2∑
j=0

i−2∏
k=j

m

Nk
.

If
∏i−2

k=j Nk ≳ mi−j
∏i−1

k=0 logNk for 0 ≤ j ≤ i − 2, then it is possible to choose ϵ(i−1) ∈ (0, 1)

such that 29 holds. Moreover, since σ(i−1)
m ≤ σ

(i−1)
1 , we have η(i−1) =

σ
(i−1)
1

σ
(i−1)
m −ϵ(i−1)σ

(i−1)
1

≥

(1− ϵ(i−1))−1 and thus 30 becomes

K(i) ≥ 2δ−1(1− ϵ(i−1))−1
√
2p logNi−1 ≳

√
logNi−1. (32)

Assuming columns of ‹X(i−1) are similar in the sense of

max
1≤j≤t−1

∥‹X(i−1)
j ∥2 ≲

√
logNi−1∥‹X(i−1)

t ∥2, 2 ≤ t ≤ Ni−1,

we obtain that 31 holds with probability exceeding

1− 2Ni

Np−1
i−1

−
√
2mNi

Np
i−1

−
√
2Ni

Ni−1∑
t=2

exp
(
− (K(i))2∥‹X(i−1)

t ∥22
8πmax1≤j≤t−1 ∥‹X(i−1)

j ∥22

)
≥ 1− 2Ni

Np−1
i−1

−
√
2mNi

Np
i−1

−
√
2Ni−1Ni exp

(
− (K(i))2

8π logNi−1

)
. (33)

To make 33 positive, we have
K(i) ≳ logmax{Ni−1, Ni}. (34)

It follows from 32 and 33 that, in the ith layer, we only need a number of bits b(i) that satisfies
b(i) ≥ log2K

(i) + 1 ≳ log2 logmax{Ni−1, Ni}
to guarantee the performance of our quantization method using finite alphabets.
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A PROPERTIES OF ORTHOGONAL PROJECTIONS AND CONVEX ORDERS

A.1 ORTHOGONAL PROJECTIONS

Given a subspace S ⊆ Rm, we denote by S⊥ its orthogonal complement in Rm, and by PS the
orthogonal projection of Rm onto S. In particular, if z ∈ Rm is a nonzero vector, then we use Pz

and Pz⊥ to represent orthogonal projections onto span(z) and span(z)⊥ respectively. Hence, for
any x ∈ Rm, we have

Pz(x) =
⟨z, x⟩z
∥z∥22

, x = Pz(x) + Pz⊥(x), and ∥x∥22 = ∥Pz(x)∥22 + ∥Pz⊥(x)∥22. (35)

Throughout this paper, we will also use Pz and Pz⊥ to denote the associated matrix representations
satisfying

Pzx =
zz⊤

∥z∥22
x and Pz⊥x =

(
I − zz⊤

∥z∥22

)
x. (36)

A.2 CONVEX ORDER

We now introduce the concept of convex order, which is essential for our theoretical analysis.
Throughout this section, d

= denotes equality in distribution.
Definition A.1. Let X,Y be n-dimensional random vectors such that

Ef(X) ≤ Ef(Y ) (37)

holds for all convex functions f : Rn → R, provided the expectations exist. Then X is said to be
smaller than Y in the convex order, denoted by X ≤cx Y .

For i = 1, 2, . . . , n, define functions ϕi(x) := xi and ψi(x) := −xi. Since both ϕi(x) and ψi(x)
are convex, substituting them into 37 yields EXi = EYi for all i. Therefore, we obtain

X ≤cx Y =⇒ EX = EY. (38)

Clearly, according to Definition A.1, X ≤cx Y only depends on the respective distributions of X
and Y . It can be easily seen that the relation ≤cx satisfies reflexivity and transitivity. In other words,
one has X ≤cx X and that if X ≤cx Y and Y ≤cx Z, then X ≤cx Z. The convex order defined
in Definition A.1 is also called mean-preserving spread (Rothschild & Stiglitz, 1970; Machina &
Pratt, 1997), which is a special case of second-order stochastic dominance (Hadar & Russell, 1969;
Hanoch & Levy, 1975; Shaked & Shanthikumar, 2007). A well-known result is that the convex order
can be characterized by a coupling of X and Y , i.e. constructing X and Y on the same probability
space.

12
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Theorem A.2 (Theorem 7.A.1 in (Shaked & Shanthikumar, 2007)). The random vectors X and
Y satisfy X ≤cx Y if and only if there exist two random vectors X̂ and Ŷ , defined on the same
probability space, such that X̂ d

= X , Ŷ d
= Y , and E(Ŷ |X̂) = X̂ .

In Theorem A.2, E(Ŷ |X̂) = X̂ implies E(Ŷ − X̂|X̂) = 0. Let Ẑ := Ŷ − X̂ . Then we have
Ŷ = X̂ + Ẑ with E(Ẑ|X̂) = 0. Thus, one can obtain Ŷ by first sampling X̂ , and then adding a
mean 0 random vector Ẑ whose distribution may depend on the sampled X̂ . Based on this important
observation, the following result gives necessary and sufficient conditions for the comparison of
multivariate normal random vectors, see e.g. Example 7.A.13 in (Shaked & Shanthikumar, 2007).

Lemma A.3. Consider multivariate normal distributions N (µ1,Σ1) and N (µ2,Σ2). Then

N (µ1,Σ1) ≤cx N (µ2,Σ2) ⇐⇒ µ1 = µ2 and Σ1 ⪯ Σ2.

Proof. (⇒) Suppose that X ∼ N (µ1,Σ1) and Y ∼ N (µ2,Σ2) such that X ≤cx Y . By 38, we
have µ1 = µ2. Let a ∈ Rn and define f(x) := (a⊤x− a⊤µ1)

2. Since f(x) is convex, one can get

a⊤Σ1a = Var(a⊤X) = Ef(X) ≤ Ef(Y ) = Var(a⊤Y ) = a⊤Σ2a.

Since this inequality holds for arbitrary a ∈ Rn, we obtain Σ1 ⪯ Σ2.

(⇐) Conversely, assume that µ1 = µ2 and Σ1 ⪯ Σ2. Let X ∼ N (µ1,Σ1) and Z ∼ N (0,Σ2−Σ1)
be independent. Construct a random vector Y := X + Z. Then Y ∼ N (µ2,Σ2) and E(Y |X) =
E(X + Z|X) = X + EZ = X . Following Theorem A.2, N (µ1,Σ1) ≤cx N (µ2,Σ2) holds.

Moreover, the convex order is preserved under affine transformations.

Lemma A.4. Suppose that X , Y are n-dimensional random vectors satisfying X ≤cx Y . Let
A ∈ Rm×n and b ∈ Rm. Then AX + b ≤cx AY + b.

Proof. Let f : Rn → R be any convex function. Since g(x) := f(Ax + b) is a composition of
convex function f(x) and a linear map, g(x) is also convex. As X ≤cx Y , we now have

Ef(AX + b) = Eg(X) ≤ Eg(Y ) = Ef(AY + b),

so AX + b ≤cx AY + b.

The following results, which will also be useful to us, were proved in Section 2 of (Alweiss et al.,
2021).

Lemma A.5. Consider random vectors X , Y , W , and Z. Let X and Y live on the same probability
space, and let W and Z be independent. Suppose that X ≤cx W and (Y − X)|X ≤cx Z. Then
Y ≤cx W + Z.

Lemma A.6. Let X be a real-valued random variable with EX = 0 and |X| ≤ C. Then X ≤cx

N
(
0, πC

2

2

)
.

Applying Lemma A.5 inductively, one can show that the convex order is closed under convolutions.

Lemma A.7. Let X1, X2, . . . , Xm be a set of independent random vectors and let Y1, Y2, . . . , Ym
be another set of independent random vectors. If Xi ≤cx Yi for 1 ≤ i ≤ m, then

m∑
i=1

Xi ≤cx

m∑
i=1

Yi. (39)

Proof. We will prove 39 by induction on m. The case m = 1 is trivial. Assume that the lemma
holds for m − 1 with m ≥ 2, and let us prove it for m. Applying Lemma A.5 for X = Xm,
Y =

∑m
i=1Xi, W = Ym, and Z =

∑m−1
i=1 Yi, inequality 39 follows.
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B PROOF OF PROPOSITION 2.1

Proof. We proceed by induction on the iteration index t. If t = 1, then 13, 15 and 11 imply that

q̃1 = QStocQ(w̃1) = QStocQ

( ⟨‹X(i−1)
1 , w1X

(i−1)
1 ⟩

∥‹X(i−1)
1 ∥22

)
= q1.

For t ≥ 2, assume q̃j = qj for 1 ≤ j ≤ t − 1 and we aim to prove q̃t = qt. Note that ût−1 =∑t−1
j=1(wjXj−w̃j

‹Xj) and ũt−1 =
∑t−1

j=1(w̃j
‹Xj− q̃j ‹Xj) =

∑t−1
j=1(w̃j

‹Xj−qj ‹Xj) by our induction

hypothesis. It follows that ût−1 + ũt−1 =
∑t−1

j=1(wjXj − qj ‹Xj) = ut−1. Thus, we get

q̃t = QStocQ

( ⟨‹X(i−1)
t , ũt−1 + ût−1 + wtX

(i−1)
t ⟩

∥‹X(i−1)
t ∥22

)
= QStocQ

( ⟨‹X(i−1)
t , ut−1 + wtX

(i−1)
t ⟩

∥‹X(i−1)
t ∥22

)
= qt.

This establishes q̃ = q and completes the proof.

C USEFUL LEMMATA

C.1 CONCENTRATION INEQUALITIES

The following two lemmata are essential for the approximation of quantization error bounds. The
proof techniques follow (Alweiss et al., 2021).
Lemma C.1. Let α > 0 and z1, z2, . . . , zd ∈ Rm be nonzero vectors. Let M0 = 0. For 1 ≤ t ≤ d,
define Mt ∈ Rm×m inductively as

Mt := Pz⊥
t
Mt−1Pz⊥

t
+ αztz

⊤
t

where Pz⊥
t
= I − ztz

⊤
t

∥zt∥2
2

is the orthogonal projection as in 36. Then

Mt ⪯ βtI (40)

holds for all t, where βt := αmax1≤j≤t ∥zj∥22.

Proof. We proceed by induction on t. If t = 1, then M1 = αz1z
⊤
1 . By Cauchy-Schwarz inequality,

for any x ∈ Rm, we get

x⊤M1x = α⟨z1, x⟩2 ≤ α∥z1∥22∥x∥22 = β1∥x∥22 = x⊤(β1I)x.

It follows that M1 ⪯ β1I . Now, assume that 40 holds for t− 1 with t ≥ 2. Then we have

Mt = Pz⊥
t
Mt−1Pz⊥

t
+ αztz

⊤
t

⪯ βt−1P
2
z⊥
t
+ αztz

⊤
t (by assumptionMt−1 ⪯ βt−1I)

⪯ βtPz⊥
t
+ αztz

⊤
t (sinceP 2

z⊥
t
= Pz⊥

t
andβt−1 ≤ βt)

= βtI + (α∥zt∥22 − βt)
ztz

⊤
t

∥zt∥22
(using 36)

⪯ βtI (asβt = α max
1≤j≤t

∥zj∥22).

This completes the proof.

Lemma C.2. Let X be an n-dimensional random vector such that X ≤cx N (µ, σ2I), and let
α > 0. Then

P

Å
∥X − µ∥∞ ≤ α

ã
≥ 1−

√
2ne−

α2

4σ2 .

In particular, if α = 2σ
»
log(

√
2n/γ) with γ ∈ (0, 1], we have

P
(
∥X − µ∥∞ ≤ 2σ

»
log(

√
2n/γ)

)
≥ 1− γ.
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Proof. Let x ∈ Rn with ∥x∥2 ≤ 1. Since X ≤cx N (µ, σ2I), by Lemma A.3 and Lemma A.4, we
get

⟨X − µ, x⟩
σ

≤cx N (0, ∥x∥22) ≤cx N (0, 1).

Then we have

Ee
⟨X−µ,x⟩2

4σ2 ≤ EZ∼N (0,1)e
Z2/4 =

√
2.

where we used Definition A.1 on the convex function f(x) = ex
2/4. By Markov’s inequality and

the inequality above, we conclude that

P(|⟨X − µ, x⟩| ≥ α) = P
(
e

⟨X−µ,x⟩2

4σ2 ≥ e
α2

4σ2

)
≤ e−

α2

4σ2 Ee
⟨X−µ,x⟩2

4σ2

≤
√
2e−

α2

4σ2 .

Finally, by a union bound over the standard basis vectors x = e1, e2, . . . , en, we have

P

Å
∥X − µ∥∞ ≤ α

ã
≥ 1−

√
2ne−

α2

4σ2 .

Lemma C.3 below will be used to illustrate the behavior of the norm of the successive projection
operator appearing in Theorem 3.1 in the case of random inputs.

Lemma C.3. Let X1, X2, . . . , XN be i.i.d. random vectors drawn from N (0, Im). Let N ≥ 10 and
P := PX⊥

N
. . . PX⊥

2
PX⊥

1
∈ Rm×m. Then

P
(
∥P∥22 ≤ 4

(
1− c

m

)⌊N
5 ⌋
)
≥ 1− 5me−

N
5 (41)

where c > 0 is an absolute constant.

Proof. This proof is based on an ϵ-net argument. By the definition of ∥P∥2, we need to bound
∥Pz∥2 for all vectors z ∈ Sm−1. To this end, we will cover the unit sphere using small balls with
radius ϵ, establish tight control of ∥Pz∥2 for every fixed vector z from the net, and finally take a
union bound over all vectors in the net.

We first set up an ϵ-net. Choosing ϵ = 1
2 , according to Corollary 4.2.13 in (Vershynin, 2018), we

can find an ϵ-net D ⊆ Sm−1 such that

Sm−1 ⊆
⋃
z∈D

B(z, ϵ) and |D| ≤
(
1 +

2

ϵ

)m
= 5m. (42)

Here, B(z, ϵ) represents the closed ball centered at z and with radius ϵ, and |D| is the cardinality of
D. Moreover, we have (see Lemma 4.4.1 in (Vershynin, 2018))

∥P∥2 ≤ 1

1− ϵ
max
z∈D

∥Pz∥2 = 2max
z∈D

∥Pz∥2. (43)

Next, let β ≥ 1, γ > 0, and z ∈ Sm−1. Applying 35 and setting ξ ∼ N (0, Im), for 1 ≤ j ≤ N , we
obtain

P
(
∥PX⊥

j
(z)∥22 ≥ 1− γ

)
= P

(
∥PXj

(z)∥22 ≤ γ
)

= P
(〈 Xj

∥Xj∥2
, z
〉2

≤ γ
)

= P
(〈 ξ

∥ξ∥2
, z
〉2

≤ γ
)
.

15
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By rotation invariance of the normal distribution, we may assume without loss of generality that
z = e1 := (1, 0, . . . , 0) ∈ Rm. It follows that

P
(
∥PX⊥

j
(z)∥22 ≥ 1− γ

)
= P

( ξ21
∥ξ∥22

≤ γ
)

= P
( ξ21
∥ξ∥22

≤ γ, ∥ξ∥22 ≤ βm
)
+ P

( ξ21
∥ξ∥22

≤ γ, ∥ξ∥22 > βm
)

≤ P(ξ21 ≤ βγm) + P(∥ξ∥22 ≥ βm)

≤
…

2βγm

π
+ 2 exp(−c′m(

√
β − 1)2). (44)

In the last step, we controlled the probability via

P(ξ21 ≤ βγm) =

∫ √
βγm

−
√
βγm

1√
2π
e−

1
2x

2

dx ≤ 1√
2π

∫ √
βγm

−
√
βγm

1 dx =

…
2βγm

π
,

and used the concentration of the norm (see Theorem 3.1.1 in (Vershynin, 2018)):

P(∥ξ∥22 ≥ βm) ≤ 2 exp(−c′m(
√
β − 1)2), β ≥ 1,

where c′ > 0 is an absolute constant. In 44, picking β = (
»

3
c′ + 1)2 and γ = 1

12βm = c
m with

c := 1
12 (
»

3
c′ + 1)−2, we have that

τ := P
(
∥PX⊥

j
(z)∥22 ≤ 1− c

m

)
≥ 1−

…
1

6π
− 2e−3m ≥ 1−

…
1

6π
− 2e−3 ≥ 2

3
(45)

holds for all 1 ≤ j ≤ N and z ∈ Sm−1. So each orthogonal projection PX⊥
j

can reduce the squared
norm of a vector to at most 1 − c

m ratio with probability τ . Fix z ∈ D. Since X1, X2, . . . , Xn are
independent, we have

P
(
∥Pz∥22 ≥

(
1− c

m

)⌊N
5 ⌋)

≤
⌊N

5 ⌋∑
k=0

Ç
N

k

å
τk(1− τ)N−k

≤
⌊N

5 ⌋∑
k=0

Ç
N

k

å
(1− τ)N−k (since τ ≤ 1)

≤ (1− τ)N−⌊N
5 ⌋

⌊N
5 ⌋∑

k=0

Ç
N

k

å
≤
(1
3

)N−⌊N
5 ⌋

⌊N
5 ⌋∑

k=0

Ç
N

k

å
(by 45)

≤
(1
3

)N−⌊N
5 ⌋( eN

⌊N
5 ⌋

)⌊N
5 ⌋

(due to
l∑

k=0

Ç
n

k

å
≤
(en
l

)l
). (46)

Since N
5 − 1 < ⌊N

5 ⌋ ≤
N
5 and N ≥ 10, we have(1

3

)N−⌊N
5 ⌋( eN

⌊N
5 ⌋

)⌊N
5 ⌋

≤
(1
3

) 4N
5
( eN

N
5 − 1

)N
5

=
( 1

81
· 5e

1− 5
N

)N
5 ≤

(10e
81

)N
5 ≤ e−

N
5 .

Plugging this into 46, we deduce that

P
(
∥Pz∥22 ≤

(
1− c

m

)⌊N
5 ⌋)

≥ 1− e−
N
5 .

holds for all z ∈ D. By a union bound over |D| ≤ 5m points, we obtain

P
(
max
z∈D

∥Pz∥22 ≤
(
1− c

m

)⌊N
5 ⌋)

≥ 1− 5me−
N
5 . (47)

Then 41 follows immediately from 43 and 47.
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Moreover, we present the following result on concentration of (Gaussian) measure inequality for
Lipschitz functions, which will be used in the proofs to control the effect of the non-linear function
ρ that appears in the neural network.
Lemma C.4. Consider an n-dimensional random vector X ∼ N (0, I) and a Lipschitz function
f : Rn → R with Lipschitz constant Lf > 0, that is |f(x)− f(y)| ≤ Lf∥x− y∥2 for all x, y ∈ Rn.
Then, for all α ≥ 0,

P(|f(X)− Ef(X)| ≥ α) ≤ 2 exp

Å
− α2

2L2
f

ã
.

A proof of Lemma C.4 can be found in Chapter 8 of (Foucart & Rauhut, 2013). Further, the follow-
ing result provides a lower bound for the expected activation associated with inputs drawn from a
Gaussian distribution. This will be used to illustrate the relative error associated with SPFQ.
Proposition C.5. Let ρ(x) := max{0, x} be the ReLU activation function, acting elementwise, and
let X ∼ N (0,Σ). Then

E∥ρ(X)∥2 ≥

 
tr(Σ)

2π
.

To start the proof of Proposition C.5, we need the following two lemmas. While these results
are likely to be known, we could not find proofs in the literature so we include the argument for
completeness.
Lemma C.6. Let S denote the convex set of all positive semidefinite matrices A in Rn×n with
tr(A) = 1. Then the extreme points of S are exactly the rank-1 matrices of the form uu⊤ where u is
a unit vector in Rn.

Proof. We first let A ∈ S be an extreme point of S and assume rank(A) = r > 1. Since A is

positive semidefinite, the spectral decomposition of A yields A =
r∑

i=1

λiuiu
⊤
i where λi > 0 and

∥ui∥2 = 1 for 1 ≤ i ≤ r. Then A can be rewritten as

A =
(r−1∑
j=1

λj

)
B + λruru

⊤
r

where B =
r−1∑
i=1

λi∑r−1
j=1 λj

uiu
⊤
i . Note that B and uru⊤r are distinct positive semidefinite matrices

with tr(B) = tr(uru
⊤
r ) = 1, and

r∑
j=1

λj = tr(A) = 1. Thus, B, uru⊤r ∈ S and A is in the open

line segment joining B and uru⊤r , which is a contradiction. So any extreme point of S is a rank-1
matrix of the form A = uu⊤ with ∥u∥2 = 1.

Conversely, consider any rank-1 matrix A = uu⊤ with ∥u∥2 = 1. Then we have A ∈ S . Assume
that A lies in an open segment in S connecting two distinct matrices A1, A2 ∈ S, that is

A = α1A1 + α2A2 (48)

where α1 + α2 = 1 and 0 < α1 ≤ α2. Additionally, for any x ∈ ker(A), we have

0 = x⊤Ax = α1x
⊤A1x+ α2x

⊤A2x (49)

and thus A1x = A2x = 0. It implies ker(A) ⊆ ker(A1) ∩ ker(A2). By the rank–nullity theorem,
we get 1 = rank(A) ≥ max{rank(A1), rank(A2)}. Since A1 and A2 are distinct matrices in S,
we have rank(A1) = rank(A2) = 1 and there exist unit vectors u1, u2 such that A1 = u1u

⊤
1 ,

A2 = u2u
⊤
2 , and u1 ̸= ±u2. Hence,

rank(A1 +A2) = rank([u1, u2][u1, u2]
⊤) = rank([u1, u2]) = 2.

Moreover, it follows from 48 that A = α1(A1 + A2) + (α2 − α1)A2. Due to α2 − α1 ≥ 0, one
can get rank(A) ≥ rank(A1 + A2) = 2 by a similar argument we applied in 49. However, this
contradicts the assumption that A is a rank-1 matrix. Therefore, for any unit vector u, A = uu⊤ is
an extreme point of S.
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Lemma C.7. Suppose X ∼ N (0,Σ). Then E∥X∥2 ≥
»

2 tr(Σ)
π .

Proof. Without loss of generality, we can assume that tr(Σ) = 1. Let Z ∼ N (0, I). Since Σ
1
2Z ∼

N (0,Σ), we have
E∥X∥2 = E∥Σ 1

2Z∥2 = E
√
Z⊤ΣZ. (50)

Define a function f(A) := E
√
Z⊤AZ and let S denote the set of all positive semidefinite matrices

whose traces are equal to 1. Then f(A) is continuous and concave over S that is convex and compact.
By Bauer maximum principle, f(A) attains its minimum at some extreme point Ã of S. According
to Lemma C.6, Ã = uu⊤ with ∥u∥2 = 1. If follows that

min
A∈S

f(A) = f(Ã) = E
√
Z⊤ÃZ = E|u⊤Z| =

…
2

π
. (51)

In the last step, we used the fact u⊤Z ∼ N (0, 1). Combining 50 and 51, we obtain

E∥X∥2 = f(Σ) ≥ min
A∈S

f(A) =

…
2

π
.

This completes the proof.

Lemma C.8. Given an n-dimensional random vector X ∼ N (0,Σ), we have

E∥ρ(X)∥2 ≥ 1

2
E∥X∥2

where ρ(x) = max{0, x} is the ReLU activation function.

Proof. We divide Rn into J := 2n−1 pairs of orthants {(Ai, Bi)}Ji=1 such that −Ai = Bi. For
example, {(x1, x2, . . . , xn) : xi > 0, i = 1, 2, . . . , n} and {(x1, x2, . . . , xn) : xi < 0, i =
1, 2, . . . , n} compose one of these pairs. Since X is symmetric, that is, X and −X have the same
distribution, one can get ∫

Ai

∥ρ(−x)∥2 dPX =

∫
Bi

∥ρ(x)∥2 dPX (52)

and ∫
Ai

∥x∥2 dPX =

∫
Bi

∥x∥2 dPX (53)

where PX denotes the probability distribution of X . It follows that

E∥ρ(X)∥2 =

∫
Rn

∥ρ(x)∥2 dPX

=
J∑

j=1

∫
Aj∪Bj

∥ρ(x)∥2 dPX

=

J∑
j=1

∫
Aj

∥ρ(x)∥2 dPX +

∫
Aj

∥ρ(−x)∥2 dPX (using 52)

≥
J∑

j=1

∫
Aj

∥ρ(x) + ρ(−x)∥2 dPX (by triangle inequality)

=

J∑
j=1

∫
Aj

∥x∥2 dPX

=
1

2

J∑
j=1

∫
Aj∪Bj

∥x∥2 dPX (using 53)

=
1

2
E∥X∥2.

Proposition C.5 then follows immediately from Lemma C.7 and Lemma C.8.
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C.2 PERTURBATION ANALYSIS FOR UNDERDETERMINED SYSTEMS

In this section, we investigate the minimal ℓ∞ norm solutions of perturbed underdetermined linear
systems like 18, which can be used to bound the ℓ∞ norm of w̃ generated by the perfect data
alignment. Specifically, consider a matrix X ∈ Rm×N with rank(X) = m < N . It admits the
singular value decomposition

X = USV ⊤ (54)

where U = [U1, . . . , Um] ∈ Rm×m, V = [V1, . . . , Vm] ∈ RN×m have orthonormal columns, and
S = diag(σ1, . . . , σm) consists of singular values σ1 ≥ σ2 ≥ . . . ≥ σm > 0. Moreover, suppose
ϵ > 0, w ∈ RN , and E ∈ Rm×N satisfying ∥E∥2 ≤ ϵ∥X∥2. Let ‹X := X + E be the perturbed
matrix and define

ŵ := argmin ∥z∥∞ subject to Xz = Xw, (55)

w̃ := argmin ∥z∥∞ subject to ‹Xz = Xw. (56)

Our goal is to evaluate the ratio ∥‹w∥∞
∥ŵ∥∞

.

The proposition below highlights the fact that one can construct systems where arbitrarily small
perturbations can yield arbitrarily divergent solutions. The proof relies on the system being ill-
conditioned, and on a particular construction of X and E to exploit the ill-conditioning.

Proposition C.9. For ϵ, γ ∈ (0, 1), there exist a matrix X ∈ Rm×N , a perturbed version ‹X =
X + E with ∥E∥2 ≤ ϵ∥X∥2, and a unit vector w ∈ RN , so that the optimal solutions to 55 and 56
satisfy ∥‹w∥∞

∥ŵ∥∞
= 1

γ .

Proof. Let U ∈ Rm×m be any orthogonal matrix and let V ∈ RN×m be the first m columns
of a normalized Hadamard matrix of order N . Then we have V ⊤V = I and entries of V are
either 1√

N
or − 1√

N
. Set X = USV ⊤ where S ∈ Rm×m is diagonal with diagonal elements

σ1 = σ2 = . . . = σm−1 = 1 and σm = ϵ. Define a rank one matrix E = ϵ(γ − 1)UmV
⊤
m . Then we

have
∥E∥2
∥X∥2

= ϵ(1− γ) < ϵ, ‹X = X + E = Udiag(1, . . . , 1, ϵγ)V ⊤.

Picking a unit vector w = ϵV S−1em with em := (0, . . . , 0, 1) ∈ Rm, the feasibility condition in
55, together with the definition of X , implies that Xz = Xw is equivalent to

V ⊤z = em. (57)

Since V V ⊤z = PIm(V )(z) is the orthogonal projection of z onto the image of V , for any feasible z
satisfying 57, we have

∥z∥∞ ≥ ∥z∥2√
N

≥ ∥V V ⊤z∥2√
N

=
∥V ⊤z∥2√

N
=

∥em∥2√
N

=
1√
N
.

Note that z = Vm satisfies 57 and ∥Vm∥∞ = 1√
N

achieves the lower bound. Thus, we have found
an optimal solution ŵ = Vm with ∥ŵ∥∞ = 1√

N
.

Meanwhile the corresponding feasibility condition in 56, coupled with the definition of ‹X , implies
that ‹Xz = Xw can be rewritten as V ⊤z = 1

γ em. By a similar argument we used for solving 55,
we obtain that w̃ = 1

γVm is an optimal solution to 56 and thus ∥w̃∥∞ = 1
γ
√
N

. Therefore, we have
∥‹w∥∞
∥ŵ∥∞

= 1
γ as desired.

Proposition C.9 constructs a scenario in which adjusting the weights to achieve ‹Xw̃ = Xŵ = Xw,
under even a small perturbation of X , inexorably leads to a large increase in the infinity norm of
w̃. In Proposition C.11, we consider a more reasonable scenario where the original weights w is
Gaussian that is more likely to be representative of ones encountered in practice. The proof of the
following lemma follows (, https://mathoverflow.net/users/36721/iosif pinelis).

19



Under review as a conference paper at ICLR 2024

Lemma C.10. Let ∥ · ∥ be any vector norm on Rn. Let X ∼ N (0,Σ1) and Y ∼ N (0,Σ2) be
n-dimensional random vectors. Suppose Σ1 ⪯ Σ2. Then, for t ≥ 0, we have

P(∥X∥ ≤ t) ≥ P(∥Y ∥ ≤ t).

Proof. Fix t ≥ 0. Define g : Rn → [0, 1] by

g(z) := P(∥X + z∥ ≤ t) =

∫
Rn

fX(x)1{∥x+z∥≤t} dx

where fX(x) := (2π)−
n
2 det(Σ1)

− 1
2 exp(− 1

2x
⊤Σ−1

1 x) is the density function of X . Since
log fX(x) = − 1

2x
⊤Σ−1

1 x is concave and 1{∥x+z∥≤t} is an indicator function of a convex set, both
fX(x) and 1{∥x+z∥≤t} are log-concave. It follows that the product h(x, z) := fX(x)1{∥x+z∥≤t} is
also log-concave. Applying the Prékopa–Leindler inequality (Prékopa, 1971; 1973), the marginal-
ization g(z) =

∫
Rn h(x, z) dx preserves log-concavity. Additionally, by change of variables and the

symmetry of fX(x), we have

g(−z) =
∫
Rn

fX(x)1{∥x−z∥≤t} dx =

∫
Rn

fX(x)1{∥x+z∥≤t} dx = g(z).

So g(z) is a log-concave even function, which implies that, for any z ∈ Rn,

g(z) = g(z)
1
2 g(−z) 1

2 ≤ g
(1
2
z − 1

2
z
)
= g(0) = P(∥X∥ ≤ t). (58)

Now, let Z ∼ N (0,Σ2 − Σ1) be independent of X . Then X + Z
d
= Y ∼ N (0,Σ2) and, by 58,

Eg(Z) ≤ P(∥X∥ ≤ t). It follows that

P(∥X∥ ≤ t) ≥ Eg(Z)

=

∫
Rn

fZ(z)g(z) dz

=

∫
Rn

∫
Rn

fX(x)fZ(z)1{∥x+z∥≤t} dx dz

=

∫
Rn×Rn

f(X,Z)(x, z)1{∥x+z∥≤t} d(x, z)

= P(∥X + Z∥ ≤ t)

= P(∥Y ∥ ≤ t)

where fZ(z) and f(X,Z)(x, z) are density functions of Z and (X,Z) respectively.

Proposition C.11. Let X ∈ Rm×N admit the singular value decomposition X = USV ⊤ as in 54
and let w ∈ RN be a random vector with i.i.d. N (0, 1) entries. Let p ∈ N with p ≥ 2. Given
ϵ ∈ (0, 1), suppose ‹X = X + E ∈ Rm×N with ∥E∥2 ≤ ϵσ1 < σm.Then, with probability at least
1− 2

Np−1 ,

∥w̃∥∞ ≤ σ1
σm − ϵσ1

√
2p logN

holds for all optimal solutions w̃ of 56.

Proof. Let w♯ := V V ⊤w be the orthogonal projection of w onto Im(V ). Let ‹V = [V, V̂ ] ∈ RN×N

be an expansion of V such that ‹V is orthogonal. Define

Ẽ := U⊤E‹V = [U⊤EV,U⊤EV̂ ] = [E , Ê ] ∈ Rm×N

where E := U⊤EV and Ê := U⊤EV̂ . Then E = U Ẽ‹V ⊤ and thus

ϵσ1 ≥ ∥E∥2 = ∥Ẽ∥2 ≥ ∥E∥2. (59)
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Define z♯ := V (S + E)−1
SV ⊤w ∈ RN . Since Ẽ‹V ⊤V = E , we have‹Xz♯ = Xz♯ + Ez♯

= US(S + E)−1SV ⊤w + U Ẽ‹V ⊤V (S + E)−1SV ⊤w

= US(S + E)−1SV ⊤w + UE(S + E)−1SV ⊤w

= USV ⊤w

= Xw.

Moreover, since w ∼ N (0, I), we have z♯ ∼ N (0, BB⊤) with B := V (S + E)−1S and thus

BB⊤ ≼ ∥BB⊤∥2I = ∥B∥22I = ∥(S + E)−1S∥22I ≼
( σ1
σm − ∥E∥2

)2
I ≼

( σ1
σm − ϵσ1

)2
I. (60)

Applying Lemma C.10 to 60 with Σ1 = BB⊤ and Σ2 = ( σ1

σm−ϵσ1
)2I , we obtain that, for t ≥ 0,

P(∥z♯∥∞ ≤ t) ≥ P
(∥∥∥ σ1ξ

σm − ϵσ1

∥∥∥
∞

≤ t
)
≥ 1− 2N exp

(
−1

2

(σm − ϵσ1
σ1

)2
t2
)

(61)

where ξ ∼ N (0, I). In the last inequality, we used the following concentration inequality

P(∥ξ∥∞ ≤ t) ≥ 1− 2Ne−
t2

2 , t ≥ 0.

Choosing t = σ1

σm−ϵσ1

√
2p logN in 61, we obtain

P
(
∥z♯∥∞ ≤ σ1

σm − ϵσ1

√
2p logN

)
≥ 1− 2

Np−1
.

Further, since z♯ is a feasible vector of 56, we have ∥w̃∥∞ ≤ ∥z♯∥∞. Therefore, with probability at
least 1− 2

Np−1 ,

∥w̃∥∞ ≤ σ1
σm − ϵσ1

√
2p logN.

D PROOF OF THEOREM 3.1

In this section, we will prove Theorem 3.1 using a sequence of results which we will now briefly
outline. Recall here that on the one hand, in Algorithm 1 with perfect data alignment, since data is
aligned by solving 18, we only have to bound the quantization error ũNi−1

generated by procedure
15. On the other hand, Algorithm 1 with approximate data alignment has a faster implementation
provided r < m, but introduces an extra error ûrNi−1

arising from the r-th order data alignment.
Thus, to control the error bounds, we first bound ũNi−1 and ûrNi−1 appearing in 19 and 21 in
Lemma D.1 and Lemma D.2 respectively. With these bounds in hand, we next prove Theorem D.3
which provides a recursive relation between the error in the current layer and that of the previous
layer. Finally, applying Theorem D.3 inductively over all layers, we complete the proof.
Lemma D.1 (Quantization error). Assuming that the first i − 1 layers have been quantized, let
X(i−1), ‹X(i−1) be as in 7 and w ∈ RNi−1 be the weights associated with a neuron in the i-th layer,
i.e. a column of W (i) ∈ RNi−1×Ni . Suppose w̃ is either the solution of 18 or the output of 20.
Quantize w̃ using 15 with alphabets A = Aδ

∞ as in 4. Then, for any p ∈ N,

∥ũNi−1∥2 ≤ δ
√
2πpm logNi−1 max

1≤j≤Ni−1

∥‹X(i−1)
j ∥2 (62)

holds with probability at least 1−
√
2m

Np
i−1

.

Proof. We first show that
ũt ≤cx N (0,Σt) (63)

holds for all 1 ≤ t ≤ Ni−1, where Σt is defined recursively as follows

Σt := P
X̃

(i−1)⊥
t

Σt−1PX̃
(i−1)⊥
t

+
πδ2

2
‹X(i−1)
t

‹X(i−1)⊤
t with Σ0 := 0.
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At the t-th step of quantizing w̃, by 15, we have ũt = ũt−1 + (w̃t − q̃t)‹X(i−1)
t . Define

ht := ũt−1 + w̃t
‹X(i−1)
t and vt :=

⟨‹X(i−1)
t , ht⟩

∥‹X(i−1)
t ∥22

. (64)

It follows that
ũt = ht − q̃t‹X(i−1)

t (65)

and 15 implies

q̃t = QStocQ

(
⟨‹X(i−1)

t , ht⟩
∥‹X(i−1)

t ∥22

)
= QStocQ(vt). (66)

Since A = Aδ
∞, EQStocQ(z) = z for all z ∈ R. Moreover, conditioning on ũt−1 in 64, ht and vt

are fixed and thus one can get
E(QStocQ(vt)|ũt−1) = vt (67)

and

E(ũt|ũt−1) = E(ht − q̃t‹X(i−1)
t |ũt−1)

= ht − ‹X(i−1)
t E(q̃t|ũt−1)

= ht − ‹X(i−1)
t E(QStocQ(vt)|ũt−1)

= ht − vt‹X(i−1)
t

= ht −
⟨‹X(i−1)

t , ht⟩
∥‹X(i−1)

t ∥22
‹X(i−1)
t

=

(
I −

‹X(i−1)
t

‹X(i−1)⊤
t

∥‹X(i−1)
t ∥22

)
ht

= P
X̃

(i−1)⊥
t

(ht).

The identity above indicates that the approximation error ũt can be split into two parts: its condi-
tional mean P

X̃
(i−1)⊥
t

(ht) and a random perturbation. Specifically, applying 65 and 35, we obtain

ũt = P
X̃

(i−1)⊥
t

(ht) + P
X̃

(i−1)
t

(ht)− q̃t‹X(i−1)
t = P

X̃
(i−1)⊥
t

(ht) +Rt
‹X(i−1)
t (68)

where
Rt := vt − q̃t.

Further, combining 66 and 67, we have

E(Rt|ũt−1) = vt − E(q̃t|ũt−1) = vt − E(QStocQ(vt)|ũt−1) = 0

and |Rt| = |vt −QStocQ(vt)| ≤ δ. Lemma A.6 yields that, conditioning on ũt−1,

Rt ≤cx N
(
0,
πδ2

2

)
. (69)

Now, we are ready to prove 63 by induction on t. When t = 1, we have h1 = w̃1
‹X(i−1)
1 . We can

deduce from 68 and 69 that ũ1 = P
X̃

(i−1)⊥
1

(w̃1
‹X(i−1)
1 ) + R1

‹X(i−1)
1 = R1

‹X(i−1)
1 with R1 ≤cx

N
(
0, πδ

2

2

)
. Applying Lemma A.4, we obtain ũ1 ≤cx N (0,Σ1). Next, assume that 63 holds for

t − 1 with t ≥ 2. By the induction hypothesis, we have ũt−1 ≤cx N (0,Σt−1). Using Lemma A.4
again, we get

P
X̃

(i−1)⊥
t

(ht) = P
X̃

(i−1)⊥
t

(ũt−1 + w̃t
‹X(i−1)
t )

≤cx N
(
P
X̃

(i−1)⊥
t

(w̃t
‹X(i−1)
t ), P

X̃
(i−1)⊥
t

Σt−1PX̃
(i−1)⊥
t

)
= N

(
0, P

X̃
(i−1)⊥
t

Σt−1PX̃
(i−1)⊥
t

)
.
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Additionally, conditioning on ũt−1, 69 implies

Rt
‹X(i−1)
t ≤cx N

(
0,
πδ2

2
‹X(i−1)
t

‹X(i−1)⊤
t

)
.

Then we apply Lemma A.5 to 68 by taking

X = P
X̃

(i−1)⊥
t

(ht), Y = ũt, W = N
(
0, P

X̃
(i−1)⊥
t

Σt−1PX̃
(i−1)⊥
t

)
, Z = N

(
0,
πδ2

2
‹X(i−1)
t

‹X(i−1)⊤
t

)
.

It follows that

ũt ≤cx W + Z

= N
(
0, P

X̃
(i−1)⊥
t

Σt−1PX̃
(i−1)⊥
t

+
πδ2

2
‹X(i−1)
t

‹X(i−1)⊤
t

)
= N (0,Σt).

Here, we used the independence of W and Z, and the definition of Σt. This establishes inequality
63 showing that ũt is dominated by N (0,Σt) in the convex order, where Σt is defined recursively
using orthogonal projections. So it remains to control the covariance matrix Σt. Recall that Σt is
defined as follows.

Σt = P
X̃

(i−1)⊥
t

Σt−1PX̃
(i−1)⊥
t

+
πδ2

2
‹X(i−1)
t

‹X(i−1)⊤
t with Σ0 = 0.

Then we apply Lemma C.1 with Mt = Σt, zt = ‹X(i−1)
t , and α = πδ2

2 , and conclude that Σt ⪯ σ2
t I

with σ2
t = πδ2

2 max1≤j≤t ∥‹X(i−1)
j ∥22. Note that ũt ≤cx N (0,Σt) and, by Lemma A.3, we have

N (0,Σt) ≤cx N (0, σ2
t I). Then we deduce from the transitivity of ≤cx that ũt ≤cx N (0, σ2

t I). It
follows from Lemma C.2 that, for γ ∈ (0, 1] and 1 ≤ t ≤ Ni−1,

P

Å
∥ũt∥∞ ≤ 2σt

»
log(

√
2m/γ)

ã
≥ 1− γ.

Picking γ =
√
2mN−p

i−1 and t = Ni−1,

∥ũNi−1∥2 ≤
√
m∥ũNi−1∥∞ ≤ 2σNi−1

√
pm logNi−1 = δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥‹X(i−1)
j ∥2

holds with probability exceeding 1−
√
2mN−p

i−1.

Next, we deduce a closed-form expression of ûrNi−1 showing that ∥ûrNi−1∥2 decays polynomially
with respect to r.

Lemma D.2 (Data alignment error). Assuming that the first i − 1 layers have been quantized, let
X(i−1), ‹X(i−1) be as in 7 and let w ∈ RNi−1 be a neuron in the i-th layer, i.e. a column of
W (i) ∈ RNi−1×Ni . Applying the r-th order data alignment procedure in 13 and 20, we have

ûNi−1 =

Ni−1∑
j=1

wjPX̃
(i−1)⊥
Ni−1

. . . P
X̃

(i−1)⊥
j+1

P
X̃

(i−1)⊥
j

(X
(i−1)
j ) (70)

and
ûrNi−1

= (P (i−1))r−1ûNi−1
(71)

where P (i−1) := P
X̃

(i−1)⊥
Ni−1

. . . P
X̃

(i−1)⊥
2

P
X̃

(i−1)⊥
1

.

Proof. We first prove the following identity by induction on t.

ût =

t∑
j=1

wjPX̃
(i−1)⊥
t

. . . P
X̃

(i−1)⊥
j+1

P
X̃

(i−1)⊥
j

(X
(i−1)
j ), 1 ≤ t ≤ Ni−1. (72)
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By 13, the case t = 1 is straightforward, since we have

û1 = w1X
(i−1)
1 − w̃1

‹X(i−1)
1

= w1X
(i−1)
1 − ⟨‹X(i−1)

1 , w1X
(i−1)
1 ⟩

∥‹X(i−1)
1 ∥22

‹X(i−1)
1

= w1X
(i−1)
1 − P

X̃
(i−1)
1

(w1X
(i−1)
1 )

= w1PX̃
(i−1)⊥
1

(X
(i−1)
1 )

where we apply the properties of orthogonal projections in 35 and 36. For 2 ≤ t ≤ Ni−1, assume
that 72 holds for t− 1. Then, by 13, one gets

ût = ût−1 + wtX
(i−1)
t − w̃t

‹X(i−1)
t

= ût−1 + wtX
(i−1)
t − ⟨‹X(i−1)

t , ût−1 + wtX
(i−1)
t ⟩

∥‹X(i−1)
t ∥22

‹X(i−1)
t

= ût−1 + wtX
(i−1)
t − P

X̃
(i−1)
t

(ût−1 + wtX
(i−1)
t )

= P
X̃

(i−1)⊥
t

(ût−1 + wtX
(i−1)
t ).

Applying the induction hypothesis, we obtain

ût = P
X̃

(i−1)⊥
t

(ût−1) + wtPX̃
(i−1)⊥
t

(X
(i−1)
t )

=

t−1∑
j=1

wjPX̃
(i−1)⊥
t

. . . P
X̃

(i−1)⊥
j+1

P
X̃

(i−1)⊥
j

(X
(i−1)
j ) + wtPX̃

(i−1)⊥
t

(X
(i−1)
t )

=

t∑
j=1

wjPX̃
(i−1)⊥
t

. . . P
X̃

(i−1)⊥
j+1

P
X̃

(i−1)⊥
j

(X
(i−1)
j ).

This completes the proof of 72. In particular, if t = Ni−1, then we obtain 70.

Next, we consider ût when t > Ni−1. Plugging t = Ni−1+1 into 20, and recalling that our indices
(except for û) are modulo Ni−1, we have

ûNi−1+1 = ûNi−1
+ w̃1

‹X(i−1)
1 −

⟨‹X(i−1)
1 , ûNi−1

+ w̃1
‹X(i−1)
1 ⟩

∥‹X(i−1)
1 ∥22

‹X(i−1)
1 = P

X̃
(i−1)⊥
1

(ûNi−1).

Similarly, one can show that ûNi−1+2 = P
X̃

(i−1)⊥
2

(ûNi−1+1) = P
X̃

(i−1)⊥
2

P
X̃

(i−1)⊥
1

ûNi−1
. Repeat-

ing this argument for all Ni−1 < t ≤ rNi−1, we can derive 71.

Combining Lemma D.1 and Lemma D.2, we can derive a recursive relation between the error in the
current layer and that of the previous layer.
Theorem D.3. Let Φ be anL-layer neural network as in 3 where the activation function is φ(i)(x) =
ρ(x) := max{0, x} for 1 ≤ i ≤ L. Let A = Aδ

∞ be as in 4 and p ∈ N.

(a) If we quantize Φ using Algorithm 1 with perfect data alignment, then, for each 2 ≤ i ≤ L,

max
1≤j≤Ni

∥X(i−1)W
(i)
j − ‹X(i−1)Q

(i)
j ∥2 ≤ δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥X(i−1)
j ∥2

+ δ
√

2πpm logNi−1 max
1≤j≤Ni−1

∥X(i−2)W
(i−1)
j − ‹X(i−2)Q

(i−1)
j ∥2.

holds with probability at least 1−
√
2mNi

Np
i−1

.

(b) If we quantize Φ using Algorithm 1 with approximate data alignment, then, for each 2 ≤ i ≤ L,

max
1≤j≤Ni

∥X(i−1)W
(i)
j − ‹X(i−1)Q

(i)
j ∥2 ≤ δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥X(i−1)
j ∥2

+
(
Ni−1∥W (i)∥max∥P (i−1)∥r−1

2 + δ
√

2πpm logNi−1

)
max

1≤j≤Ni−1

∥X(i−2)W
(i−1)
j − ‹X(i−2)Q

(i−1)
j ∥2
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holds with probability exceeding 1−
√
2mNi

Np
i−1

. Here, P (i−1) is defined in Lemma D.2.

Proof. (a) Note that, for each 1 ≤ j ≤ Ni, the j-th columns W (i)
j and Q(i)

j represent a neuron and
its quantized version respectively. Applying 19 and 62, we obtain

P
(
∥X(i−1)W

(i)
j − ‹X(i−1)Q

(i)
j ∥2 ≤ δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥‹X(i−1)
j ∥2

)
≥ 1−

√
2m

Np
i−1

.

Taking a union bound over all j,

max
1≤j≤Ni

∥X(i−1)W
(i)
j − ‹X(i−1)Q

(i)
j ∥2 ≤ δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥‹X(i−1)
j ∥2

holds with probability at least 1−
√
2mNi

Np
i−1

. By the triangle inequality, we have

max
1≤j≤Ni−1

∥‹X(i−1)
j ∥2 ≤ max

1≤j≤Ni−1

∥X(i−1)
j ∥2 + max

1≤j≤Ni−1

∥X(i−1)
j − ‹X(i−1)

j ∥2

= max
1≤j≤Ni−1

∥X(i−1)
j ∥2 + max

1≤j≤Ni−1

∥ρ(X(i−2)W
(i−1)
j )− ρ(‹X(i−2)Q

(i−1)
j )∥2

≤ max
1≤j≤Ni−1

∥X(i−1)
j ∥2 + max

1≤j≤Ni−1

∥X(i−2)W
(i−1)
j − ‹X(i−2)Q

(i−1)
j ∥2

(73)

It follows that, with probability at least 1−
√
2mNi

Np
i−1

,

max
1≤j≤Ni

∥X(i−1)W
(i)
j − ‹X(i−1)Q

(i)
j ∥2 ≤ δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥X(i−1)
j ∥2

+ δ
√

2πpm logNi−1 max
1≤j≤Ni−1

∥X(i−2)W
(i−1)
j − ‹X(i−2)Q

(i−1)
j ∥2.

(b) Applying Lemma D.2 with w = W
(i)
j and using the fact that ∥P∥2 ≤ 1 for any orthogonal

projection P , we have

∥ûNi−1∥2 =
∥∥∥Ni−1∑

k=1

W
(i)
kj PX̃

(i−1)⊥
Ni−1

. . . P
X̃

(i−1)⊥
k+1

P
X̃

(i−1)⊥
k

(X
(i−1)
k )

∥∥∥
2

≤
Ni−1∑
k=1

|W (i)
kj |
∥∥∥PX̃

(i−1)⊥
k

(X
(i−1)
k )

∥∥∥
2

=

Ni−1∑
k=1

|W (i)
kj |
∥∥∥PX̃

(i−1)⊥
k

(X
(i−1)
k − ‹X(i−1)

k )
∥∥∥
2

≤ Ni−1∥W (i)
j ∥∞ max

1≤j≤Ni−1

∥X(i−1)
j − ‹X(i−1)

j ∥2

= Ni−1∥W (i)
j ∥∞ max

1≤j≤Ni−1

∥ρ(X(i−2)W
(i−1)
j )− ρ(‹X(i−2)Q

(i−1)
j )∥2

≤ Ni−1∥W (i)∥max max
1≤j≤Ni−1

∥X(i−2)W
(i−1)
j − ‹X(i−2)Q

(i−1)
j ∥2. (74)

Then it follows from 21, 62, 73, and 74 that

∥X(i−1)W
(i)
j − ‹X(i−1)Q

(i)
j ∥2

≤ ∥ûrNi−1
∥2 + ∥ũNi−1

∥2
≤ ∥P (i−1)∥r−1

2 ∥ûNi−1∥2 + δ
√
2πpm logNi−1 max

1≤j≤Ni−1

∥‹X(i−1)
j ∥2

≤ Ni−1∥W (i)∥max∥P (i−1)∥r−1
2 max

1≤j≤Ni−1

∥X(i−2)W
(i−1)
j − ‹X(i−2)Q

(i−1)
j ∥2 + δ

√
2πpm logNi−1

×
(

max
1≤j≤Ni−1

∥X(i−1)
j ∥2 + max

1≤j≤Ni−1

∥X(i−2)W
(i−1)
j − ‹X(i−2)Q

(i−1)
j ∥2

)
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holds with probability at least 1−
√
2mN−p

i−1. By a union bound over all j, we obtain that

max
1≤j≤Ni

∥X(i−1)W
(i)
j − ‹X(i−1)Q

(i)
j ∥2 ≤ δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥X(i−1)
j ∥2

+
(
Ni−1∥W (i)∥max∥P (i−1)∥r−1

2 + δ
√

2πpm logNi−1

)
max

1≤j≤Ni−1

∥X(i−2)W
(i−1)
j − ‹X(i−2)Q

(i−1)
j ∥2

holds with probability exceeding 1−
√
2mNi

Np
i−1

.

Applying Theorem D.3 inductively for all layers, one can obtain an error bound for quantizing the
whole neural network. Now we are ready to prove Theorem 3.1.

Proof. (a) For 1 ≤ j ≤ NL, by 7, we have

Φ(X)j = X
(L)
j = ρ(X(L−1)W

(L)
j ) and Φ̃(X)j = ‹X(L)

j = ρ(‹X(L−1)Q
(L)
j )

where W (L)
j and Q(L)

j are the j-th neuron in the L-th layer and its quantized version respectively. It
follows from part (a) of Theorem D.3 with i = L that

max
1≤j≤NL

∥Φ(X)j − Φ̃(X)j∥2 = max
1≤j≤NL

∥ρ(X(L−1)W
(L)
j )− ρ(‹X(L−1)Q

(L)
j )∥2

≤ max
1≤j≤NL

∥X(L−1)W
(L)
j − ‹X(L−1)Q

(L)
j ∥2

≤ δ
√
2πpm logNL−1 max

1≤j≤NL−1

∥X(L−1)
j ∥2

+ δ
√
2πpm logNL−1 max

1≤j≤NL−1

∥X(L−2)W
(L−1)
j − ‹X(L−2)Q

(L−1)
j ∥2.

holds with probability at least 1 −
√
2mNL

Np
L−1

. Moreover, by applying part (a) of Theorem D.3 with
i = L− 1 to the result above, we obtain that

max
1≤j≤NL

∥Φ(X)j − Φ̃(X)j∥2 ≤ δ
√
2πpm logNL−1 max

1≤j≤NL−1

∥X(L−1)
j ∥2 + 2πpmδ2

×
√
logNL−1 logNL−2

(
max

1≤j≤NL−2

∥X(L−2)
j ∥2 + max

1≤j≤Ni−1

∥X(i−2)W
(i−1)
j − ‹X(i−2)Q

(i−1)
j ∥2

)
holds with probability at least 1 −

√
2mNL

Np
L−1

−
√
2mNL−1

Np
L−2

. Repeating this argument inductively for
i = L− 2, L− 3, . . . , 1, one can derive

max
1≤j≤NL

∥Φ(X)j − Φ̃(X)j∥2 ≤
L−1∑
i=0

(2πpmδ2)
L−i
2

(L−1∏
k=i

logNk

) 1
2

max
1≤j≤Ni

∥X(i)
j ∥2

with probability at least 1−
∑L

i=1

√
2mNi

Np
i−1

.

(b) The proof of 23 is similar to the one we had in part (a) except that we need to use part (b) of
Theorem D.3 this time. Indeed, for the case of i = L,

max
1≤j≤NL

∥Φ(X)j − Φ̃(X)j∥2 = max
1≤j≤NL

∥ρ(X(L−1)W
(L)
j )− ρ(‹X(L−1)Q

(L)
j )∥2

≤ max
1≤j≤NL

∥X(L−1)W
(L)
j − ‹X(L−1)Q

(L)
j ∥2

≤ δ
√
2πpm logNL−1 max

1≤j≤NL−1

∥X(L−1)
j ∥2 +

(
NL−1∥W (L)∥max∥P (L−1)∥r−1

2

+ δ
√
2πpm logNL−1

)
max

1≤j≤NL−1

∥X(L−2)W
(L−1)
j − ‹X(L−2)Q

(L−1)
j ∥2

holds with probability exceeding 1 −
√
2mNL

Np
L−1

. Then 23 follows by inductively using part (b) of
Theorem D.3 with i = L− 1, L− 2, . . . , 1.
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E PROOF OF COROLLARY 3.2

Proof. (a) Conditioning onX(i−1), the function f(z) := ∥ρ(X(i−1)z)∥2 is Lipschitz with Lipschitz
constant Lf := ∥X(i−1)∥2 ≤ ∥X(i−1)∥F and ∥X(i)

j ∥2 = ∥ρ(X(i−1)W
(i)
j )∥2 = f(W

(i)
j ) with

W
(i)
j ∼ N (0, I). Applying Lemma C.4 to f with X = W

(i)
j , Lipschitz constant Lf , and α =√

2p logNi−1∥X(i−1)∥F , we obtain

P
(∣∣∥X(i)

j ∥2 − E(∥X(i)
j ∥2 | X(i−1))

∣∣ ≤√2p logNi−1∥X(i−1)∥F
∣∣∣X(i−1)

)
≥ 1− 2

Np
i−1

. (75)

Using Jensen’s inequality and the identity E(∥ρ(X(i−1)W
(i)
j )∥22 | X(i−1)) = 1

2∥X
(i−1)∥2F , we have

E(∥X(i)
j ∥2 | X(i−1)) ≤

(
E(∥X(i)

j ∥22 | X(i−1))
) 1

2

=
(
E(∥ρ(X(i−1)W

(i)
j )∥22 | X(i−1))

) 1
2

=
1√
2
∥X(i−1)∥F .

It follows from the inequality above and 75 that, conditioning on X(i−1),

∥X(i)
j ∥2 ≤

( 1√
2
+
√
2p logNi−1

)
∥X(i−1)∥F ≤ 2

√
p logNi−1∥X(i−1)∥F

holds with probability at least 1 − 2
Np

i−1
. Conditioning on X(i−1) and taking a union bound over

1 ≤ j ≤ Ni, with probability exceeding 1− 2Ni

Np
i−1

, we have

∥X(i)∥F ≤
√
Ni max

1≤j≤Ni

∥X(i)
j ∥2 ≤ 2

√
pNi logNi−1∥X(i−1)∥F . (76)

Applying 76 for indices i, i− 1, . . . , 1 recursively, we obtain 24.

(b) Applying Jensen’s inequality and Proposition C.5, we have

E(∥X(i)
j ∥22 | X(i−1)) = E(∥ρ(X(i−1)W

(i)
j )∥22 | X(i−1))

≥
(
E(∥ρ(X(i−1)W

(i)
j )∥2 | X(i−1))

)2
≥ tr(X(i−1)X(i−1)⊤)

2π

=
∥X(i−1)∥2F

2π
.

By the law of total expectation, we obtain EΦ∥X(i)
j ∥22 ≥ 1

2πEΦ∥X(i−1)∥2F and thus

EΦ∥X(i)∥2F =

Ni∑
j=1

EΦ∥X(i)
j ∥22 ≥ Ni

2π
EΦ∥X(i−1)∥2F . (77)

Then 25 follows immediately by applying 77 recursively.

Now we are ready to evaluate the relative error in 26. It follows from 22 and the Cauchy-Schwarz
inequality that, with high probability,

∥Φ(X)− Φ̃(X)∥2F
EΦ∥Φ(X)∥2F

≤ NL max1≤j≤NL
∥Φ(X)j − Φ̃(X)j∥22

EΦ∥Φ(X)∥2F

≤ NL

EΦ∥Φ(X)∥2F

(L−1∑
i=0

(2πpmδ2)
L−i
2

(L−1∏
k=i

logNk

) 1
2

max
1≤j≤Ni

∥X(i)
j ∥2

)2
≤ LNL

EΦ∥Φ(X)∥2F

L−1∑
i=0

(2πpmδ2)L−i
(L−1∏

k=i

logNk

)
max

1≤j≤Ni

∥X(i)
j ∥22. (78)
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By Corollary 3.2, max1≤j≤Ni
∥X(i)

j ∥22 ≤ (4p)i∥X∥2F logN0

∏i−1
k=1(Nk logNk) with high proba-

bility, and EΦ∥Φ(X)∥2F = EΦ∥X(L)∥2F ≥ ∥X∥2
F

(2π)L

∏L
k=1Nk. Plugging these results into 78,

∥Φ(X)− Φ̃(X)∥2F
EΦ∥Φ(X)∥2F

≤ L(2π)L
( L∏
k=0

logNk

) L−1∑
i=0

(2πpmδ2)L−i(4p)i∏L−1
k=i Nk

≲
( L∏
k=0

logNk

) L−1∑
i=0

L−1∏
k=i

m

Nk
(79)

gives an upper bound on the relative error of quantization method in Algorithm 1 with perfect data
alignment. Further, if we assume Nmin ≤ Ni ≤ Nmax for all i, and 2m ≤ Nmin, then 79 becomes

∥Φ(X)− Φ̃(X)∥2F
EΦ∥Φ(X)∥2F

≲ (logNmax)
L+1

L−1∑
i=0

( m

Nmin

)L−i

≲
m(logNmax)

L+1

Nmin
.

F PROOF OF THEOREM 4.1

Proof. Fix a neuron w := W
(i)
j ∈ RNi−1 for some 1 ≤ j ≤ Ni. By our assumption 27, the aligned

weights w̃ satisfy ∥w̃∥∞ ≤ 1
2K

(i)δ. Then, we perform the iteration 15 in Algorithm 1 with perfect
data alignment. At the t-th step, similar to 64, 66, and 68, we have

ũt = P
X̃

(i−1)⊥
t

(ht) + (vt − q̃t)‹X(i−1)
t

where

ht = ũt−1 + w̃t
‹X(i−1)
t , vt =

⟨‹X(i−1)
t , ht⟩

∥‹X(i−1)
t ∥22

, and q̃t = QStocQ(vt). (80)

If t = 1, then h1 = w̃1
‹X(i−1)
1 , v1 = w̃1, and q̃1 = QStocQ(v1). Since |v1| = |w̃1| ≤ ∥w̃∥∞ ≤

1
2K

(i)δ, we get |v1 − q̃1| ≤ δ and the proof technique used for the case t = 1 in Lemma D.1 can
be applied here to conclude that ũ1 ≤cx N (0, σ2

1I) with σ2
1 = πδ2

2 ∥‹X(i−1)
1 ∥22. Next, for t ≥ 2,

assume that ũt−1 ≤cx N (0, σ2
t−1I) holds where σ2

t−1 = πδ2

2 max1≤j≤t−1 ∥‹X(i−1)
j ∥22 is defined as

in Lemma D.1. It follows from 80 and Lemma A.4 that

|vt| =
∣∣∣ ⟨‹X(i−1)

t , ũt−1⟩
∥‹X(i−1)

t ∥22
+ w̃t

∣∣∣ ≤ ∣∣∣ ⟨‹X(i−1)
t , ũt−1⟩
∥‹X(i−1)

t ∥22

∣∣∣+ ∥w̃∥∞ ≤
∣∣∣ ⟨‹X(i−1)

t , ũt−1⟩
∥‹X(i−1)

t ∥22

∣∣∣+ 1

2
K(i)δ

with ⟨X̃(i−1)
t ,ũt−1⟩
∥X̃(i−1)

t ∥2
2

≤cx N
(
0,

σ2
t−1

∥X̃(i−1)
t ∥2

2

)
. Then we have, by Lemma C.2, that

P(|vt| ≤ K(i)δ) ≥ P
(∣∣∣ ⟨‹X(i−1)

t , ũt−1⟩
∥‹X(i−1)

t ∥22

∣∣∣ ≤ 1

2
K(i)δ

)
≥ 1−

√
2 exp

(
− (K(i)δ)2

16σ2
t−1

∥‹X(i−1)
t ∥22

)
.

On the event {|vt| ≤ K(i)δ}, we can quantize vt as if the quantizer QStocQ used the infinite alphabet
Aδ

∞. So ũt ≤cx N (0, σ2
t I). Therefore, applying a union bound,

P
(
ũNi−1 ≤cx N (0, σ2

Ni−1
I)
)
≥ 1−

√
2

Ni−1∑
t=2

exp
(
− (K(i)δ)2

16σ2
t−1

∥‹X(i−1)
t ∥22

)
. (81)

Conditioning on the event above, that ũNi−1
≤cx N (0, σ2

Ni−1
I), Lemma C.2 yields for γ ∈ (0, 1]

P
(
∥ũNi−1

∥∞ ≤ 2σNi−1

»
log(

√
2m/γ)

)
≥ 1− γ.

Setting γ =
√
2mN−p

i−1 and recalling 19, we obtain that

∥X(i−1)W
(i)
j − ‹X(i−1)Q

(i)
j ∥2 = ∥ũNi−1∥2 ≤

√
m∥ũNi−1∥∞ ≤ 2σNi−1

√
mp logNi−1 (82)
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holds with probability at least 1−
√
2m

Np
i−1

. Combining 81 and 82, for each 1 ≤ j ≤ Ni,

∥X(i−1)W
(i)
j −‹X(i−1)Q

(i)
j ∥2 ≤ 2σNi−1

√
mp logNi−1 = δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥‹X(i−1)
j ∥2

holds with probability exceeding 1−
√
2m

Np
i−1

−
√
2
∑Ni−1

t=2 exp
(
− (K(i)δ)2

16σ2
t−1

∥‹X(i−1)
t ∥22

)
. Taking a union

bound over all 1 ≤ j ≤ Ni, we have

P
(

max
1≤j≤Ni

∥X(i−1)W
(i)
j − ‹X(i−1)Q

(i)
j ∥2 ≤ δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥‹X(i−1)
j ∥2

)
≥ 1−

√
2mNi

Np
i−1

−
√
2Ni

Ni−1∑
t=2

exp
(
− (K(i)δ)2

16σ2
t−1

∥‹X(i−1)
t ∥22

)

≥ 1−
√
2mNi

Np
i−1

−
√
2Ni

Ni−1∑
t=2

exp
(
− (K(i))2∥‹X(i−1)

t ∥22
8πmax1≤j≤t−1 ∥‹X(i−1)

j ∥22

)
.

G PROOF OF THEOREM 4.2

Proof. Pick a neuron w := W
(i)
j ∈ RNi−1 for some 1 ≤ j ≤ Ni. Then we have w ∼ N (0, I) and

since we are using Algorithm 1 with perfect data alignment, we must work with the resulting w̃, the
solution of 18. Applying Proposition C.11 to w with X = X(i−1) and ‹X = ‹X(i−1), we obtain

P
(
∥w̃∥∞ ≤ η(i−1)

√
2p logNi−1

)
≥ 1− 2

Np−1
i−1

,

so that using 30 gives

P
(
∥w̃∥∞ ≤ 1

2
K(i)δ

)
≥ 1− 2

Np−1
i−1

. (83)

Conditioning on the event {∥w̃∥∞ ≤ 1
2K

(i)δ} and applying exactly the same argument in Theo-
rem 4.1,

∥X(i−1)W
(i)
j − ‹X(i−1)Q

(i)
j ∥2 ≤ δ

√
2πpm logNi−1 max

1≤j≤Ni−1

∥‹X(i−1)
j ∥2 (84)

holds with probability exceeding 1−
√
2m

Np
i−1

−
√
2
∑Ni−1

t=2 exp
(
− (K(i))2∥X̃(i−1)

t ∥2
2

8πmax1≤j≤t−1 ∥X̃(i−1)
j ∥2

2

)
. Combin-

ing 83 and 84, and taking a union bound over all 1 ≤ j ≤ Ni, we obtain 31.

Table 1: Top-1/Top-5 validation accuracy for SPFQ on ImageNet.

Model m b C Quant Acc (%) Ref Acc (%) Acc Drop (%)

VGG-16 1024
4 1.02 70.48/89.77 71.59/90.38 1.11/0.61
5 1.23 71.08/90.15 71.59/90.38 0.51/0.23
6 1.26 71.24/90.37 71.59/90.38 0.35/0.01

ResNet-18 2048
4 0.91 67.36/87.74 69.76/89.08 2.40/1.34
5 1.32 68.79/88.77 69.76/89.08 0.97/0.31
6 1.68 69.43/88.96 69.76/89.08 0.33/0.12

ResNet-50 2048
4 1.10 73.37/91.61 76.13/92.86 2.76/1.25
5 1.62 75.05/92.43 76.13/92.86 1.08/0.43
6 1.98 75.66/92.67 76.13/92.86 0.47/0.19
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H EXPERIMENTS

In this section, we test the performance of SPFQ on the ImageNet classification task and compare it
with the non-random scheme GPFQ in (Zhang et al., 2023). In particular, we adopt the version of
SPFQ corresponding to 11, i.e., Algorithm 1 using approximate data alignment with order r = 1.
Note that the GPFQ algorithm runs the same iterations as in 11 except that QStocQ is substituted
with a non-random quantizer QDetQ, so the associated iterations are given by

u0 = 0 ∈ Rm,

qt = QDetQ

Å
⟨X̃(i−1)

t ,ut−1+wtX
(i−1)
t ⟩

∥X̃(i−1)
t ∥2

2

ã
,

ut = ut−1 + wtX
(i−1)
t − qt‹X(i−1)

t

(85)

where QDetQ(z) := argminp∈A |z − p|. For ImageNet data, we consider ILSVRC-2012 (Deng
et al., 2009), a 1000-category dataset with over 1.2 million training images and 50 thousand vali-
dation images. Additionally, we resize all images to 256 × 256 and use the normalized 224 × 224
center crop, which is a standard procedure. The evaluation metrics we choose are top-1 and top-5
accuracy of the quantized models on the validation dataset. As for the neural network architectures,
we quantize all layers of VGG-16 (Simonyan & Zisserman, 2015), ResNet-18 and ResNet-50 (He
et al., 2016), which are pretrained 32-bit floating point neural networks provided by torchvision
in PyTorch (Paszke et al., 2019). Moreover, we fuse the batch normalization (BN) layer with the
convolutional layer, and freeze the BN statistics before quantization.

Since the major difference between SPFQ in 11 and GPFQ in 85 is the choice of quantizers, we
will follow the experimental setting for alphabets used in (Zhang et al., 2023). Specifically, we use
batch size m, fixed bits b ∈ N for all the layers, and quantize each W (i) ∈ RNi−1×Ni with midtread
alphabets A = Aδ

K as in 5, where level K and step size δ are given by

K = 2b−1, δ = δ(i) :=
C

2b−1Ni

∑
1≤j≤Ni

∥W (i)
j ∥∞. (86)

Here, C > 0 is a constant that is only dependent on bitwidth b, determined by grid search with
cross-validation, and fixed across layers, and across batch-sizes. One can, of course, expect to do
better by using different values of C for different layers but we refrain from doing so, as our main
goal here is to demonstrate the performance of SPFQ even with minimal fine-tuning.

In Table 1, for different combinations of m, b, and C, we present the corresponding top-1/top-5 val-
idation accuracy of quantized networks using SPFQ in the first column, while the second and thrid
columns give the validation accuracy of unquantized models and the accuracy drop due to quanti-
zation respectively. We observe that, for all three models, the quantization accuracy is improved as
the number of bits b increases, and SPFQ achieves less than 0.5% top-1 accuracy loss while using 6
bits.

Next, in Figure 1, we compare SPFQ against GPFQ by quantizing the three models in Table 1.
These figures illustrate that GPFQ has better performance than that of SPFQ when b = 3, 4 and
m is small. This is not particularly surprising, as QDetQ deterministically rounds its argument to
the nearest alphabet element instead of performing a random rounding like QStocQ. However, as the
batch sizem increases, the accuracy gap between GPFQ and SPFQ diminishes. Indeed, for VGG-16
and ResNet-18, SPFQ outperforms GPFQ when b = 6. Further, we note that, for both SPFQ and
GPFQ, one can obtain higher quantization accuracy by taking larger m but the extra improvement
that results from increasing the batch size rapidly decreases.
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(a) Top-1 accuracy of VGG-16 (b) Top-5 accuracy of VGG-16

(c) Top-1 accuracy of ResNet-18 (d) Top-5 accuracy of ResNet-18

(e) Top-1 accuracy of ResNet-50 (f) Top-5 accuracy of ResNet-50

Figure 1: Top-1 and Top-5 validation accuracy for SPFQ (dashed lines) and GPFQ (solid lines) on
ImageNet.
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