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ABSTRACT

Bidirectional Associative Memory (BAM) trained by Bidirectional Backpropaga-
tion (B-BP) suffer from poor robustness and sensitivity to noise and adversarial
attacks. To address it, we propose a novel gradient-free training algorithm, the
Bidirectional Subspace Rotation Algorithm (B-SRA), designed to improve the
robustness and convergence behavior of BAM. Through comprehensive experi-
ments, two key principles, orthogonal weight matrices (OWM) and gradient-pattern
alignment (GPA), are identified as central to enhancing the robustness of BAM.
Motivated by these insights, new regularization strategies are introduced into
B-BP, yielding models with significantly improved resistance to corruption and
adversarial perturbations. We conduct an ablation study across different training
strategies to determine which approach achieves a more robust BAM. Additionally,
we evaluate the robustness of BAM under various attack scenarios and across
increasing memory capacities, including the association of 50, 100, and 200 pattern
pairs. Among all strategies, the SAME configuration—which combines OWM and
GPA—achieves the highest resilience. Our findings suggest that B-SRA and care-
fully designed regularization strategies lead to more reliable associative memories
and open new directions for building resilient neural architectures.

1 INTRODUCTION

Reliable memory and robust pattern association are fundamental requirements in many machine
learning applications, including pattern recognition, multimodal data association, and error correc-
tion (Bishop & Nasrabadi, 2006; Wang et al., 2024; 2021). Associative memory models, such as
Bidirectional Associative Memory (BAM), provide a promising framework by enabling two-way
retrieval between paired patterns (Kosko, 1988; Hopfield, 1982). Despite their theoretical appeal,
BAM trained via gradient-based methods such as Bidirectional Backpropagation (B-BP) (Adigun
& Kosko, 2019; Kosko, 2021; Rosenblatt et al., 1962) suffer from significant limitations. These
include slow convergence, high sensitivity to initialization and hyperparameters, and—most criti-
cally—vulnerability to noise and adversarial attacks. Such weaknesses hinder the deployment of
BAM in real-world applications, particularly those requiring robustness under uncertainty, such as
biometric authentication (Zhang & Yang, 2023), autonomous systems (Hsu et al., 2023), and secure
communications (Paraiso et al., 2021).

Recent advances in associative memory architectures, such as Dense Associative Memories (DAM)
(Krotov & Hopfield, 2016) and modern Hopfield Networks (MHN) (Ramsauer et al., 2022), of-
fer increased capacity and stability. Nevertheless, the challenge of achieving robust associative
retrieval—particularly under noisy and adversarial conditions—remains unresolved. Meanwhile, the
Subspace Rotation Algorithm (SRA), initially developed for Restricted Hopfield Networks (RHN)
(Lin et al., 2024; 2023), provides a mathematically principled way to train associative memories with-
out relying on gradients. Notably, RHNs trained with SRA have demonstrated significant robustness
against corrupted and noisy pattern inputs.
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1.1 MOTIVATION AND CONTRIBUTION

Traditionally, B-BP is a popular algorithm for training BAM (Adigun & Kosko, 2019). However, de-
spite its widespread use, B-BP suffers from several well-known drawbacks that limit its effectiveness
(Lin et al., 2024). Inspired by recent advances in training associative memories through subspace
rotation techniques (Lin et al., 2024; 2023; 2025), we extend SRA from RHN to BAM. Specifically,
we propose the Bidirectional Subspace Rotation Algorithm (B-SRA), a novel, gradient-free training
method that enhances the robustness and convergence speed of BAM by directly optimizing their
weight matrices through subspace rotation, thus avoiding the limitations of gradient-based approaches
like B-BP. Inspired by BAM trained by B-SRA, we further proposed two regularization that could
improve the robustness of BAM significantly. The key contributions of this paper are summarized as
follows:

• Extension of SRA to BAM: The SRA is extended to train BAM, resulting in a gradient-free
training method that accelerates convergence and enhances robustness.

• Introduction of Regularization to B-BP: Two regularizers, Orthogonal Weight Matrix
(OWM) and Gradient-Pattern Alignment (GPA), are incorporated into B-BP to improve the
robustness of BAM.

• Evaluation of BAM Robustness Against Adversarial Attacks: The performance of BAM
trained with B-SRA, B-BP, and B-BP regularized with OWM and GPA is evaluated under
several adversarial attacks, including the Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2014), Fast FGSM (FFGSM) (Wong et al., 2020), Basic Iterative Method (BIM) (Ku-
rakin et al., 2018), Projected Gradient Descent (PGD) (Madry et al., 2017), and Gaussian
Noise (GN).

1.2 ORGANIZATION

The rest of the paper is organized as follows: In Section 2, we introduce the definition of BAM and
describe its dynamical behavior in detail. In Section 3, we discuss the underlying mechanism of the
Subspace Rotation Algorithm (SRA) and propose B-SRA for training BAM. Section 4 presents a
comprehensive experimental evaluation of BAM trained using different strategies, including B-BP,
B-SRA, and B-BP with the proposed regularizers. We analyze robustness under various conditions,
such as corrupted inputs, GN, and adversarial attacks (FGSM, FFGSM, BIM, PGD). Finally, in
Section 5, we conclude that B-SRA outperforms B-BP in training a robust BAM. Inspired by B-SRA,
B-BP With the OWM and GPA regularizations can further enhance the resilience of BAM under
various adversarial attacks.

2 BIDIRECTIONAL ASSOCIATIVE MEMORY

Assuming we have a BAM with K layers, meaning we have K layers of weight matrix, which are
indexed as W1,W2, · · · ,WK . The paired patterns are called A and B. Without loss of generality, let
the input pattern A be considered as the first hidden layer 0 and the input pattern B as the last hidden
layer K, so the layers can be indexed as h0, h1, · · · , hK .

In the path from pattern A to pattern B, the signal before activation is represented by U , indexed as
U1, U2, · · · , UK , and the signal after activation is represented by H , indexed as H0, H1, · · · , HK .
Note that H0 is actually the input pattern A. In the path from pattern B back to pattern A, the
reconstructed signal before activation is represented by R, indexed as RK , · · · , R0, corresponding to
U1, U2, · · · , UK , and the signal after activation is represented by V , indexed as VK , VK−1, · · · , V1,
corresponding to H0, H1, · · · , HK .

The dynamical behavior of the BAM can then be described as follows:

In the Path from A End to B End:
dUk(t)

dt
= WkHk−1(t), Hk(t) = g ⊙ (Uk(t)) , k = 1, 2, . . . ,K. (1)

where Uk(t) is the pre-activation state of layer k, and Hk(t) is the post-activation state computed
using a non-linear activation function g ⊙ (·), which is an element-wise operation and is chosen as
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tanh in our study. Wk is the weight matrix at layer K. The state Uk(t) evolves dynamically over time
as the input Hk−1(t) propagates through the network, producing the output Hk(t) for each layer.

In the Path from B End to A End:
dRk−1(t)

dt
= Vk(t)W

T
k , Vk−1(t) = g ⊙ (Rk−1(t)) , k = K, . . . , 1. (2)

where Rk(t) is the pre-activation state of layer k, and Vk(t) is the post-activation state computed
using g ⊙ (·), which is also an element-wise operation and is chosen as tanh in our study. WT

k is the
transpose of the weight matrix for backward signals at layer k. In this context, it is necessary to keep
it mind that VK is equivalent to HK , and R0 is equivalent to H0.

2.1 STABILITY ANALYSIS

To analyze the dynamical stability of the BAM, we define an energy function E(t) that decreases
monotonically over time during inference. The energy function encompasses contributions from both
paths: the path from the A end to the B end and the path from the B end to the A end, representing
the interaction of states, weights, biases, and their temporal dynamics, as shown in Equation 3.

E(t) =− 1

2

K∑
k=1

Vk(t)
TWkHk−1(t) (3)

The time derivative of the energy function can be expressed in Equation 4.

dE(t)

dt
= −1

2

K∑
k=1

[(
dVk(t)

dt

)T

WkHk−1(t) + Vk(t)
TWk

(
dHk−1(t)

dt

)]
(4)

Using the dynamics described by the path from the A end to the B end, as shown in Equation 1,
and the backward path, as shown in Equation 2, the derivative can be further expanded as shown in
Equation 5.

dE(t)

dt
= −1

2

K∑
k=1

[(
dVk(t)

dt

)T
dUk(t)

dt
+

(
dRk−1(t)

dt

)T
dHk−1(t)

dt

]
(5)

Then, furthermore, we could obtain the Equation 6.

dE(t)

dt
= −1

2

K∑
k=1

[
(g⊙ (Rk(t))

′
(
dRk(t)

dt

)T
dUk(t)

dt
+(g⊙ (Uk−1(t))

′
(
dRk−1(t)

dt

)T
dUk−1(t)

dt

]
(6)

Since the activation function g ⊙ (·) is tanh, sigmoid, or ReLU, it satisfies dg
dt ≥ 0. Meanwhile,

Rk and Uk are at the same layer, and their rates of change have the same sign. Therefore, the inner
product of their derivatives is greater than zero. As a result, we have dE(t)

dt ≤ 0.

This implies that the energy function E(t) does not increase with time, ensuring the dynamical
stability of the BAM during inference. The network evolves toward a stable equilibrium, minimizing
the energy function during its operation.

3 BIDIRECTIONAL SUBSPACE ROTATION ALGORITHM

3.1 MATHEMATICAL MECHANISM FOR BIDIRECTIONAL SUBSPACE ROTATION ALGORITHM

In analyzing the mathematical mechanism of BAM, let us start with the most fundamental and original
BAM, Y = sign(WX), X = sign(WTY ).

For randomly initialized Ŵ , the outputs are Ŷ and X̂ respectively. Now, the question becomes how
can we rotate the Ŵ to make the distance between Y and Ŷ and X and X̂ minimum. Then we need
to optimize the Equation 7.

min
QTQ=Ip

∥Y − Ŷ Q∥F + ∥X − X̂QT ∥F (7)

Please refer to Appendix B for details on how this objective is achieved using subspace rotation
algorithm.
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3.2 PSEUDO-CODE FOR BIDIRECTIONAL SUBSPACE ROTATION ALGORITHM

In practice, BAM is normally a non-linear system, but the underlying mechanism is the same as
described in the Section 3.1. However, we will find the optimization subspace for A and B end
alternatively. Then finally, both ends will reach its minimum value. According to the mathematical
mechanism mentioned in Section 3.1, we could deduce the B-SRA, as shown in the following
pseudo-algorithm 1.

Algorithm 1 Bidirectional Subspace Rotation Algorithm

Input: Samples X, Y, and the epoch
Output: weight matrix WX and WY

Initialization: Initialize the orthogonal weight matrices WX and WY . For convenience, the two
ends of the BAM are referred to as follows: the input end X is called A, and the input end Y is
called B. The symbol × indicates matrix multiplication in this algorithm; we write it explicitly
to clearly show the process. g is the activation function; normally, it is the hyperbolic tangent
function.
for index← 1 to Epoch do

In the Path from A End to B End
Ŷ = WY × g ⊙ (WT

X ×X)

U,Σ, V ← SV D(Y T × Ŷ )
WY ← U × V ×WY

In the Path from B End to A End
X̂ = WX × g ⊙ (WT

Y × Y )

U,Σ, V ← SV D(XT × X̂)
WX ← U × V ×WX

end for
return WX and WY

This algorithm is designed for a 3-layer BAM. For multiple-layer BAM, it is necessary to adapt the
algorithm to make it suitable for training such architectures.

4 EXPERIMENT AND DISCUSSION

4.1 SAMPLE PREPARATION

This paper utilizes patterns from the MNIST dataset, each of which contains 784 nodes (28× 28),
and the character script dataset, which includes regular script (53× 40) and seal script (40× 40). The
goal of this exploration is to associate paired digit patterns and to associate regular script with its
corresponding seal script. All patterns are converted into bipolar form.

4.2 EXPERIMENT CONFIGURATION

In training BAM, B-BP uses the Adam optimizer with a learning rate set to 0.0001. The output logits
from the A end and the B end are used to compute the loss value, and the loss values from both
ends are combined to calculate the gradient of the weight matrix. In contrast, when using B-SRA
to train BAM, hyperparameters are not required, but the weight matrix is initialized orthogonally.
Additionally, for discrete BAM, a sign function is applied to the output during the inference, and
the result is compared against the corresponding bipolar pattern to determine whether the BAM can
retrieve all patterns correctly iteratively.

4.3 EXPLORING THE ROBUSTNESS OF BAM TRAINED BY B-SRA AND B-BP

Figures 1 present initial experiments evaluating the robustness of BAM trained solely with B-SRA and
B-BP. In Figure 1(a), we train BAM to associate 20 digit patterns with another 20 digit patterns. When
half of the query pattern is masked, the BAM trained by B-BP fails to retrieve the correct associations,
demonstrating multiple retrieval errors. In contrast, the BAM trained by B-SRA successfully recalls
the target patterns without any error bits, highlighting its larger basin of attraction under partial

4
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(a) Retrieval performance when half of the query
pattern is masked

(b) Retrieval performance under GN perturbation
(mean = 0, variance = 1)

(c) BAM trained by B-BP fails under mild FGSM
perturbation (ϵ = 0.2)

(d) BAM trained by B-SRA successfully retrieves
patterns under intensive FGSM attack (ϵ = 0.9)

Figure 1: Retrieval performance of BAM trained by B-BP and B-SRA under masking and GN

masking. Similarly, when GN (mean = 0, variance = 1) is added to the query inputs (Figure 1(b)),
only the BAM trained by B-SRA retains retrieval accuracy, while the BAM trained by B-BP degrades
significantly.

Figure 1(c) and 1(d) further investigates adversarial robustness using FGSM attacks. The BAM
trained by B-BP fails completely at even mild perturbation levels (ϵ = 0.2), whereas the BAM trained
by B-SRA accurately recalls the target patterns even under strong attacks (ϵ = 0.9). These results
consistently show that, in the absence of regularization, the B-BP algorithm fails to produce robust
associative memories. In contrast, the BAM trained by B-SRA, by design, produces models that are
naturally resilient to noise and adversarial perturbations.

These findings motivate the following section, where we introduce regularization techniques into the
B-BP framework. By enforcing weight orthogonality and gradient-pattern alignment, we show that
B-BP can be enhanced to achieve or exceed the robustness levels of BAM trained by B-SRA.

4.3.1 ROBUSTNESS ANALYSIS FOR BAM TRAINED BY B-SRA

As discussed in Section 4.3, the BAM trained by B-SRA is robust to corrupted or noisy pattern
inputs and resilient under adversarial attacks. Through multiple experiments and careful analysis, we
conclude that two key factors significantly contribute to this robustness: (i) the orthogonality of the
weight matrix and (ii) the alignment of the gradient and patterns.

∥f [W (x+ δ) ∥F ≤ ∥W (x+ δ)∥F = ∥Wx+Wδ∥F = ∥x+ δ∥F ≤ ∥x∥F + ∥δ∥F (8)

Assuming f is a nonlinear activation function, such as tanh or ReLU, used in the BAM, it typically
serves to squash or suppress the magnitude of signals. The robustness provided by the orthogonal
matrix can be understood through the lens of a condition number analysis. For an orthogonal matrix,
which preserves the norm and has a condition number of 1, the Equation 8 always holds.

This ensures that the signal can pass through the network without being distorted, and at the same
time, it guarantees that noise is not amplified as the signal propagates from end a to end b, or vice
versa. In our exploration, tanh is used for the activation function.

In terms of the GPA, for a well-trained deep BAM with non-linear activation where the gradient aligns
with the patterns, ∂L

∂X = αX . From the perspective of the loss landscape, it is straightforward to
understand that the loss increases most significantly along the direction of X. In other words, the loss
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landscape is relatively flat in directions perpendicular to X. Typically, noise that is perpendicular to the
pattern X is more harmful than noise that is aligned with X, since the latter is inherently suppressed
in deep learning models due to activation function damping or cancellation by normalization layers.
Therefore, combining GPA with OWM can significantly enhance the robustness of the BAM.

Therefore, to enhance the robustness of BAM trained via B-BP, it is essential to incorporate both the
OWM and GPA regularizers into the final objective function. In Section 4.3.2, we analyze how each
component contributes to the resilience of BAM.

4.3.2 ABLATION STUDY ON REGULARIZATION TECHNIQUES FOR BAM ROBUSTNESS

Table 1: Robustness-Related Metrics: GPA and OWM

Strategy GPA(A) GPA(B) OWM(A) OWM(B)
SRA -0.96 ± 0.001 0.561 ± 0.001 0.0 ± 0.0 0.0 ± 0.0
ORTH -0.31 ± 0.003 0.989 ± 0.0 18.796 ± 0.705 11.159 ± 0.253
SAME 0.99 ± 0.001 0.99 ± 0.0 37.442 ± 0.21 16.872 ± 0.076
DIFF -0.979 ± 0.003 0.969 ± 0.006 10.89 ± 1.0 7.268 ± 0.338
ALIGN 0.99 ± 0.0 0.999 ± 0.0 695.247 ± 1.997 524.527 ± 1.068
BP -0.09 ± 0.007 0.999 ± 0.0 684.59 ± 1.236 526.135 ± 0.799

In this section, we associate 50 pairs of regular and seal script patterns to perform an ablation
study and assess the individual contribution of each regularization technique to BAM’s robust-
ness. The following abbreviations are used throughout the paper: SRA denotes the Subspace
Rotation Algorithm; ORTH refers to BAM trained with the OWM regularizer; SAME applies both
OWM and GPA with aligned directions; DIFF uses both regularizers but with opposing alignment;
ALIGN applies only GPA without OWM; and BP denotes standard Bidirectional Backpropagation.

Table 2: Robustness of BAM Trained with Different Strategies Under Adversarial Attacks[1]

Attackers[2] Strategies Input A[3] Output B[3] Input B[3] Output A[3]

GN

SRA 12.27 ± 0.058 0.674 ± 0.036 12.243 ± 0.057 0.196 ± 0.036
ORTH 12.26 ± 0.057 0.06 ± 0.025 12.255 ± 0.048 0.038 ± 0.002
SAME 12.217 ± 0.046 0.42 ± 0.099 12.25 ± 0.036 0.066 ± 0.015
DIFF 12.279 ± 0.063 1.336 ± 0.012 12.231 ± 0.05 1.311 ± 0.013
ALIGN 12.268 ± 0.055 1.95 ± 0.007 12.251 ± 0.033 1.943 ± 0.004
BP 12.239 ± 0.052 1.964 ± 0.007 12.252 ± 0.052 1.958 ± 0.006

FGSM

SRA 1.21 ± 0.0 0.0 ± 0.0 1.21 ± 0.0 0.004 ± 0.0
ORTH 1.21 ± 0.0 0.006 ± 0.003 1.21 ± 0.0 0.037 ± 0.001
SAME 1.21 ± 0.0 0.005 ± 0.004 1.21 ± 0.0 0.04 ± 0.002
DIFF 1.21 ± 0.0 0.167 ± 0.012 1.21 ± 0.0 0.0 ± 0.0
ALIGN 1.21 ± 0.0 1.867 ± 0.013 1.21 ± 0.0 1.882 ± 0.007
BP 1.21 ± 0.0 1.903 ± 0.02 1.21 ± 0.0 1.899 ± 0.01

FFGSM

SRA 1.387 ± 0.004 0.0 ± 0.0 2.184 ± 0.007 0.004 ± 0.0
ORTH 1.388 ± 0.004 0.004 ± 0.001 2.187 ± 0.006 0.037 ± 0.001
SAME 1.388 ± 0.003 0.005 ± 0.004 2.18 ± 0.004 0.041 ± 0.005
DIFF 1.387 ± 0.004 0.672 ± 0.042 2.182 ± 0.006 0.985 ± 0.022
ALIGN 1.386 ± 0.006 1.894 ± 0.008 2.183 ± 0.006 1.921 ± 0.004
BP 1.388 ± 0.005 1.924 ± 0.012 2.184 ± 0.005 1.935 ± 0.014

PGD

SRA 1.648 ± 0.002 0.387 ± 0.051 2.042 ± 0.003 0.004 ± 0.0
ORTH 1.645 ± 0.005 0.011 ± 0.006 2.042 ± 0.003 0.038 ± 0.001
SAME 1.645 ± 0.005 0.168 ± 0.044 2.041 ± 0.004 0.04 ± 0.002
DIFF 1.649 ± 0.004 1.398 ± 0.025 2.042 ± 0.004 0.581 ± 0.023
ALIGN 1.649 ± 0.002 1.951 ± 0.008 2.041 ± 0.003 1.908 ± 0.006
BP 1.646 ± 0.006 1.964 ± 0.037 2.04 ± 0.003 1.925 ± 0.006

1 Notes apply to Table 1, 2, 3, and 4.
2 All attackers of the same type are configured with the same parameters across experiments for fair

comparison.
3 Input A and Input B columns report the mean squared error (MSE) of the adversarial noise added to

the respective inputs. Output B and Output A columns show the MSE of the retrieved patterns under
perturbation. Lower output values indicate better robustness.

As shown in Table 1, the BAM trained by B-SRA achieves optimal values for OWM regularization at
both ends, and reasonably good GPA (-0.96 at the a end and 0.561 at the b end). In contrast, while it is
challenging for the BAM trained by B-BP to achieve optimal OWM values, it can attain near-optimal
GPA values at b end (0.999), even without any regularizers.

It is also observed that the DIFF strategy achieves better OWM values than the SAME strategy (e.g.,
10.89 vs. 37.44 at the a end), but subsequent evaluations show that BAM trained with SAME or
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(a) Retrieval performance of models when half of
the query pattern is masked

(b) Retrieval performance of models under GN per-
turbation (mean=0, variance=2)

Figure 2: Comparison of retrieval performance for different models when query patterns are corrupted
or noisy

ORTH demonstrates greater robustness than DIFF, even when the latter has superior OWM metrics,
as shown in Figure 2. This discrepancy suggests that negative GPA values, such as the -0.979 seen in
DIFF, may contribute to the vulnerability of the BAM under corruption or noise.

Furthermore, the ALIGN strategy achieves nearly perfect GPA at both ends but suffers from extremely
high OWM (e.g., over 695 at a end), which significantly reduces its robustness, as shown in Figure 2.
These findings indicate that both GPA and OWM are critical and complementary indicators of BAM’s
robustness. Overemphasis on one while neglecting the other can compromise system reliability.

To further evaluate the robustness of BAM trained with different strategies, several adversarial attack
approaches are applied, including GN, FGSM, FFGSM, and PGD. As shown in Table 2, under strong
GN perturbation, the ORTH strategy performs the best, followed by SAME and then SRA. However,
for FGSM and FFGSM attackers, SRA achieves the best performance, while ORTH and SAME
perform similarly without significant difference. Under the PGD attacker, SRA is able to retrieve
patterns at the b-end with lower error, whereas ORTH and SAME yield better results at the a-end.
These results suggest that SRA, ORTH, and SAME strategies are comparably effective in resisting
various types of adversarial attacks, each showing strengths under different conditions.

4.4 CASE STUDY: BIDIRECTIONALLY ASSOCIATING 100 PAIRS OF REGULAR AND SEAL
SCRIPT

(a) Retrieval 100 patterns from corrupted patterns (b) Retrieval 100 patterns from noisy patterns
(mean=0, variance=1.3)

Figure 3: Retrieval performance of BAM trained with different strategies on 100 script pattern pairs

To further evaluate the robustness of BAM trained with different strategies, we conduct an ex-
periment where the BAM is tasked with associating 100 pairs of regular and seal script char-
acters. A quick inspection of Figure 3 shows that when 50% of the input pattern is masked,
the SRA and SAME strategies can retrieve the correct patterns with almost no error. Under
noisy input conditions (mean = 0, variance = 1.2), the SAME strategy achieves the best perfor-
mance among all methods. Table 3 further validates these observations by quantifying model
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robustness under a variety of adversarial attacks. The SAME strategy performs the best under
GN, FGSM, and BIM attacks, demonstrating significant advantages in both the A and B direc-
tions. For the FFGSM attack, SAME slightly underperforms compared to SRA at the B-end.
Under PGD attacks, SAME also performs slightly worse than SRA at the A-end. In conclusion,
the SAME strategy consistently performs well across a range of challenging conditions and ex-
hibits the most balanced and reliable robustness profile. These findings suggest that SAME has
strong potential to serve as an optimal training strategy for enhancing the robustness of BAM.

Table 3: Robustness of BAM Trained with Different Strategies on 100 Script Pattern Pairs

Attackers Strategies Input A Output B Input B Output A

GN

SRA 1.44 ± 0.004 0.407 ± 0.006 1.44 ± 0.004 0.097 ± 0.007
ORTH 1.442 ± 0.004 0.557 ± 0.023 1.44 ± 0.005 0.574 ± 0.04
SAME 1.441 ± 0.004 0.023 ± 0.014 1.44 ± 0.003 0.019 ± 0.011
DIFF 1.444 ± 0.006 0.354 ± 0.013 1.44 ± 0.004 0.319 ± 0.041

FGSM

SRA 1.21 ± 0.0 2.057 ± 0.008 1.21 ± 0.0 0.564 ± 0.011
ORTH 1.21 ± 0.0 1.468 ± 0.065 1.21 ± 0.0 0.101 ± 0.024
SAME 1.21 ± 0.0 0.0 ± 0.0 1.21 ± 0.0 0.0 ± 0.0
DIFF 1.21 ± 0.0 1.663 ± 0.029 1.21 ± 0.0 0.0 ± 0.0

FFGSM

SRA 0.575 ± 0.001 0.05 ± 0.003 0.95 ± 0.0 1.81 ± 0.006
ORTH 0.591 ± 0.001 0.669 ± 0.047 0.93 ± 0.002 1.373 ± 0.063
SAME 0.58 ± 0.006 0.075 ± 0.038 0.899 ± 0.007 0.115 ± 0.076
DIFF 0.57 ± 0.001 0.414 ± 0.015 0.893 ± 0.001 1.774 ± 0.018

BIM

SRA 0.94 ± 0.001 1.842 ± 0.004 0.998 ± 0.0 0.371 ± 0.009
ORTH 0.804 ± 0.004 1.937 ± 0.202 0.976 ± 0.002 0.187 ± 0.042
SAME 0.755 ± 0.006 0.062 ± 0.066 0.975 ± 0.004 0.0 ± 0.0
DIFF 0.845 ± 0.002 1.534 ± 0.017 0.947 ± 0.003 0.231 ± 0.102

PGD

SRA 0.885 ± 0.0 1.647 ± 0.004 0.984 ± 0.0 0.113 ± 0.006
ORTH 0.822 ± 0.002 2.304 ± 0.017 0.937 ± 0.002 1.055 ± 0.058
SAME 0.782 ± 0.006 1.258 ± 0.2 0.921 ± 0.008 0.125 ± 0.062
DIFF 0.823 ± 0.002 1.383 ± 0.012 0.897 ± 0.005 0.773 ± 0.058

4.5 EVALUATING THE RELATIONSHIP BETWEEN CAPACITY AND ROBUSTNESS IN BAM

(a) Retrieval performance from corrupted inputs at
different capacities

(b) Retrieval performance from noisy inputs at dif-
ferent capacities (mean=0, variance=1.3)

Figure 4: Effect of memory capacity on retrieval performance of BAM trained with different strategies

In this section, we analyze the relationship between memory capacity and the robustness of BAM
trained with SRA and SAME by comparing the results presented in Table 4 and Figure 4(a) and
4(b). The BAM models are evaluated under varying memory capacities—associating 50, 100, and
200 pattern pairs—across different adversarial attackers. It is important to note that for storing 50
and 100 pattern pairs, a 3-layer BAM is used, whereas a 5-layer BAM is employed for the 200-pair
configuration.

Figure 4(a) shows that, under 50% masking, all models are able to retrieve the correct patterns with
relatively low bit errors. However, Figure 4(b) reveals that the BAM trained with SAME to store 200
pairs of patterns (denoted as R(200)) achieves the best performance under noisy input conditions.
This indicates that the deeper BAM architecture may contribute to the improved robustness observed
under the SAME strategy.
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It is observed that for the BAM trained with SRA, retrieval performance gradually degrades
with increasing capacity, as shown in Table 4. In contrast, the BAM trained with the SAME
strategy to store 200 pairs of patterns achieves the best performance among all models, and
the BAM trained with SAME to store 50 pairs performs only slightly worse. This suggests
that increasing the number of layers may allow the SAME strategy to fully realize its poten-
tial, yielding the best possible robustness—even as the number of memorized patterns increases.

Table 4: Comparative Study of BAM Robustness Across Memory Sizes (50, 100, 200 Pairs)

Attackers Strategies Input A Output B Input B Output A

GN

SRA(50) 2.25 ± 0.013 0.46 ± 0.345 2.251 ± 0.009 0.192 ± 0.26
SAME(50) 2.253 ± 0.012 0.057 ± 0.086 2.247 ± 0.008 0.08 ± 0.098
SRA(100) 2.247 ± 0.011 0.455 ± 0.344 2.252 ± 0.008 0.195 ± 0.266
SAME(100) 2.253 ± 0.01 0.073 ± 0.1 2.251 ± 0.008 0.083 ± 0.098
SRA(200) 2.252 ± 0.013 0.493 ± 0.334 2.251 ± 0.008 0.205 ± 0.264
SAME(200) 2.253 ± 0.012 0.061 ± 0.088 2.246 ± 0.008 0.082 ± 0.101

FGSM

SRA(50) 1.21 ± 0.0 1.227 ± 0.717 1.21 ± 0.0 0.743 ± 0.71
SAME(50) 1.21 ± 0.0 0.002 ± 0.004 1.21 ± 0.0 0.013 ± 0.019
SRA(100) 1.21 ± 0.0 1.219 ± 0.737 1.21 ± 0.0 0.739 ± 0.711
SAME(100) 1.21 ± 0.0 0.001 ± 0.001 1.21 ± 0.0 0.013 ± 0.019
SRA(200) 1.21 ± 0.0 1.293 ± 0.697 1.21 ± 0.0 0.796 ± 0.706
SAME(200) 1.21 ± 0.0 0.002 ± 0.004 1.21 ± 0.0 0.011 ± 0.018

FFGSM

SRA(50) 0.565 ± 0.036 0.02 ± 0.019 0.962 ± 0.017 1.913 ± 0.075
SAME(50) 0.528 ± 0.036 0.023 ± 0.03 0.916 ± 0.017 0.038 ± 0.043
SRA(100) 0.565 ± 0.036 0.021 ± 0.02 0.962 ± 0.017 1.91 ± 0.079
SAME(100) 0.528 ± 0.037 0.034 ± 0.044 0.916 ± 0.017 0.056 ± 0.07
SRA(200) 0.568 ± 0.035 0.021 ± 0.019 0.961 ± 0.017 1.907 ± 0.074
SAME(200) 0.53 ± 0.036 0.025 ± 0.031 0.915 ± 0.017 0.037 ± 0.045

BIM

SRA(50) 0.856 ± 0.081 1.668 ± 0.197 0.957 ± 0.053 0.777 ± 0.933
SAME(50) 0.652 ± 0.077 0.694 ± 0.452 0.875 ± 0.161 0.255 ± 0.333
SRA(100) 0.856 ± 0.082 1.666 ± 0.201 0.957 ± 0.053 0.777 ± 0.936
SAME(100) 0.653 ± 0.078 0.68 ± 0.454 0.875 ± 0.159 0.253 ± 0.33
SRA(200) 0.864 ± 0.078 1.688 ± 0.189 0.954 ± 0.054 0.833 ± 0.942
SAME(200) 0.657 ± 0.077 0.679 ± 0.465 0.866 ± 0.163 0.27 ± 0.34

PGD

SRA(50) 0.843 ± 0.045 1.58 ± 0.116 0.936 ± 0.06 0.609 ± 0.819
SAME(50) 0.711 ± 0.051 1.205 ± 0.161 0.859 ± 0.147 0.29 ± 0.302
SRA(100) 0.843 ± 0.045 1.583 ± 0.117 0.936 ± 0.059 0.608 ± 0.824
SAME(100) 0.71 ± 0.052 1.228 ± 0.153 0.859 ± 0.146 0.297 ± 0.296
SRA(200) 0.848 ± 0.043 1.592 ± 0.112 0.933 ± 0.061 0.653 ± 0.831
SAME(200) 0.714 ± 0.052 1.211 ± 0.165 0.849 ± 0.148 0.307 ± 0.305

5 CONCLUSION AND FUTURE STUDY

This paper introduces a novel gradient-free training method, B-SRA, for training BAM. Experimental
results show that BAM trained with B-SRA demonstrates strong robustness against adversarial attacks.
Motivated by this phenomenon, we identify two key factors that contribute to the robustness of BAM:
OWM and GPA. Based on these insights, we design two regularization strategies for B-BP to enhance
the resilience of BAM significantly.

Through extensive experiments, including pattern association tasks with digits and Chinese character
scripts, we demonstrate that BAM trained with B-SRA achieves superior robustness compared
to traditional B-BP. Furthermore, the inclusion of GPA and OWM regularizers in B-BP leads
to significant gains in adversarial resilience. Among the training strategies studied, the SAME
strategy—using OWM and GPA in the same direction—consistently achieves the best performance,
especially in deeper BAM architectures with larger memory capacities.

For future work, we aim to extend our findings from BAM to broader deep learning frameworks.
Since BAM shares similarities with the attention mechanism and the architecture of modern Hopfield
networks, we plan to incorporate our insights into Transformer and Hopfield-based architectures to
develop more robust models. We would also like to develop adversarial attackers specifically designed
to target BAM. Since BAM is a purely recurrent neural network, it is fundamentally different from
standard feed-forward deep learning models. As such, existing gradient-based attacks may not be
suitable for effectively evaluating the vulnerabilities of BAM.
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A BIDIRECTIONAL BACKPROPAGATION ALGORITHM

B-BP is an extension of traditional backpropagation, designed to optimize both the forward and
backward mappings of a neural network (Adigun & Kosko, 2019).

The forward pass maps an input xi to an output yi using a function f(x; Θ), parameterized by
Θ = {θ0, θ1, · · · , θn}. For a dataset of N samples, the forward mapping is represented as in
Equation 9.

yi = f(xi; Θ), i = 1, 2, . . . , N (9)

The forward error Ef is defined as the sum of losses over all samples in the dataset, as shown in
Equation 10.
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Ef [Θ] =
1

N

N∑
i=1

Lf (f(xi; Θ), ytrue
i ) (10)

where Lf is the forward loss function, which can take various forms (e.g., mean squared error,
cross-entropy) and ytrue

i is the ground truth output for input xi.

The backward pass approximates the reconstruction of the input xi from the output yi using the same
parameters Θ. The backward mapping is represented as in Equation 11.

x̂i = g(yi; Θ), i = 1, 2, . . . , N (11)

The backward error Eb is defined similarly as the sum of losses over all samples in the dataset, as
shown in Equation 12.

Eb[Θ] =
1

N

N∑
i=1

Lb(g(yi; Θ), xtrue
i ) (12)

where Lb is the backward loss function, which can also vary depending on the task. xtrue
i is the

original input corresponding to the output yi.

The total error to be minimized is the sum of the forward and backward errors, as shown in Equation
13.

E[Θ] = Ef [Θ] + Eb[Θ] (13)

The gradients of the total error with respect to each parameter θk are calculated, as shown in Equation
14.

∆Θ = −η
(
∂Ef [Θ]

∂Θ
+

∂Eb[Θ]

∂Θ

)
(14)

Parameters Θ are iteratively updated using these gradients until the neural network converges.

A.1 REGULARIZATION STRATEGIES FOR ENHANCING B-BP TRAINING

To improve the robustness of the Bidirectional Backpropagation (B-BP) algorithm, we introduce two
regularization terms: orthogonal weight matrix (OWM) regularization and gradient-pattern alignment
(GPA) regularization. These are applied in the context of a neural network defined abstractly as
Y = f(X), with training based on the mean squared error loss:

Lreconstruction = ∥Ŷ − Y ∥2

This regularizer penalizes deviation from orthogonality in the weight matrix W , encouraging well-
conditioned mappings that preserve input signal magnitudes:

Lortho = λortho · ∥W⊤W − I∥2F
where ∥ · ∥F is the Frobenius norm, I is the identity matrix, and λortho is a coefficient controlling the
regularization strength.

This regularizer promotes alignment between the input pattern X and the gradient of the loss with
respect to X . The alignment is evaluated using cosine similarity:

Lalign = λalign · (1− cos θ) , where cos θ =
⟨∇XL, X⟩
∥∇XL∥ · ∥X∥

Here, ∇XL is the gradient of the loss with respect to input X , and λalign balances the contribution of
this term.
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The full training objective becomes:
Ltotal = Lreconstruction + Lortho + Lalign

B MATHEMATICAL MECHANISM FOR BIDIRECTIONAL SUBSPACE ROTATION
ALGORITHM

In analyzing the mathematical mechanism of BAM, let us start with the most fundamental and original
BAM, which consists of a Hopfield Neural Network (HNN), as shown in Equation 15.{

Y = WX

X = WTY
(15)

For randomly initialized Ŵ , the outputs are Ŷ and X̂ respectively. Now, the question becomes how
can we rotate the Ŵ to make the distance between Y and Ŷ and X and X̂ minimum. Then we need
to optimize the Equation 16.

min
QTQ=Ip

∥Y − Ŷ Q∥F + ∥X − X̂QT ∥F (16)

If Q ∈ Rp×p is orthogonal, we get Equation 17.

∥Y − Ŷ Q∥2F =

p∑
k=1

∥Y (:, k)− Ŷ Q(:, k)∥2F

=

p∑
k=1

(∥Y (:, k)∥2F + ∥Ŷ Q(:, k)∥2F

− 2Q(:, k)T Ŷ TY (:, k))

= ∥Y ∥2F + ∥Ŷ ∥2F − 2

p∑
k=1

[QT Ŷ TY ]kk

= ∥Y ∥2F + ∥Ŷ ∥2F − 2 tr(QT (Ŷ TY ))

(17)

Similarly, we could obtain the Equation 18.

∥X − X̂QT ∥2F = ∥X∥2F + ∥X̂∥2F − 2 tr((X̂TXQ)) (18)

Now, Optimizing the Equation 7 is equivalent to optimizing Equation 19.

max
QTQ=Ip

tr(QT Ŷ TY ) + tr(X̂TXQ) (19)

It is convenient to observed that the tr(QT Ŷ TY ) and tr(X̂TXQ) are equivalent with each other in
this case. Then assuming the SVD of Ŷ TY or X̂TX are UTΣV and V TΣU , respectively, then we
have Equation 20.

tr(QT Ŷ TY ) = tr(QTUTΣV ) = tr(QTUTV Σ)

= tr(ZΣ) =

p∑
i=1

ziiσi ≤
p∑

i=1

σi

(20)

With the same reason, we obtain the Equation 21.

tr(X̂TXQ) = tr(V TΣUQ) = tr(QTUTV Σ)

= tr(ZΣ) =

p∑
i=1

ziiσi ≤
p∑

i=1

σi

(21)

In both equations, Z is an orthogonal matrix defined by V TQTU . When Z is an identity matrix, the
upper bound is attained, and it is concluded that when Q = UV T , the optimization problem has been
solved (Schönemann, 1966).
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C ADVERSARIAL ATTACK ALGORITHMS

To evaluate the robustness of BAM trained with different strategy, several widely used adversarial
attack algorithms, including FGSM, FFGSM, BIM, and PGD, are used. We will briefly discuss each
algorithm in this section.

Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014): FGSM is a one-step gradient-based
attack that perturbs the input x in the direction of the gradient of the loss function with respect to the
input. The adversarial example is generated as:

xadv = x+ ϵ · sign(∇xL(θ,x, y))

where ϵ controls the perturbation magnitude, and L is the loss function.

Fast FGSM (FFGSM) (Wong et al., 2020): FFGSM is a variant of FGSM that adds random
initialization before applying the gradient step to increase attack diversity. It introduces a random
perturbation δ ∼ Uniform(−α, α) to the input before computing the FGSM update.

Basic Iterative Method (BIM) (Kurakin et al., 2018): BIM extends FGSM by applying it iteratively
with smaller steps. After each step, the perturbation is clipped to ensure it remains within the ϵ-ball
around the original input:

xadv
t+1 = Clipx,ϵ

{
xadv
t + α · sign(∇xL(θ,xadv

t , y))
}

Projected Gradient Descent (PGD) (Madry et al., 2017): PGD is a stronger version of BIM with
random initialization. It applies iterative updates similar to BIM and projects the adversarial example
back onto the allowed ℓ∞-ball centered at the clean input:

xadv
0 = x+ δ, δ ∼ Uniform(−ϵ, ϵ)

xadv
t+1 = ΠBϵ(x)

(
xadv
t + α · sign(∇xL(θ,xadv

t , y))
)

D EXTENDED EXPERIMENTAL RESULTS ON BAM ROBUSTNESS

To further support the findings presented in the main text, this appendix provides additional ex-
perimental results that examine the robustness and performance of BAM under a broader range of
scenarios. These include extended evaluations across multiple datasets, varying memory capacities,
and different adversarial conditions. The goal is to reinforce the key observations regarding the
effectiveness of the B-SRA algorithm and the proposed regularization strategies when compared to
standard B-BP training.

D.1 INITIAL EXPERIMENT ON B-SRA AND B-BP

(a) Retrieval performance when half of the query
pattern is masked

(b) Retrieval performance under GN perturbation
(mean=0, variance=1)

Figure 5: Association of uppercase and lowercase letters using BAM trained with B-BP and B-SRA

To assess the fundamental differences in robustness between B-BP and B-SRA, we conducted a
series of initial experiments using three distinct datasets: alphabet letters, MNIST digits, and Chinese
script patterns. For each dataset, BAM models were trained using both B-BP and B-SRA, and then
evaluated under two adversarial conditions: (i) partially covered patterns (half of the pattern masked),
and (ii) Gaussian noise perturbation (mean = 0, variance = 1).

As shown in Figures 5, 6, and 7, the BAM models trained using B-BP consistently failed to recover
the correct outputs under both covered and noisy conditions, often not retrieving any effective and
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(a) Retrieval performance when half of the query
pattern is masked

(b) Retrieval performance under GN perturbation
(mean=0, variance=1)

Figure 6: Association of 20 digital number with another 20 digital number in MNIST dataset using
BAM trained with B-BP and B-SRA

(a) Retrieval performance when half of the query
pattern is masked

(b) Retrieval performance under GN perturbation
(mean=0, variance=1)

Figure 7: Association of 50 regular scripts with 50 seal scripts using BAM trained with B-BP and
B-SRA
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clean associated patterns. In contrast, the BAM models trained with B-SRA demonstrated strong
resilience, successfully retrieving the clean and clear associated patterns even when the inputs were
heavily adversarially perturbed. These results highlight the inherent robustness advantage of B-SRA
over B-BP in associative memory tasks.

D.2 ABLATION STUDY FOR INDIVIDUAL REGULARIZATION

Figure 8: Retrieval performance of BAM trained with different strategies under FGSM attack
(ϵ = 0.9)

In this section, we present a comprehensive ablation study using six training strategies—B-BP,
ALIGN, SAME, DIFF, ORTH, and SRA—to evaluate the individual contributions of orthogonal
weight matrix regularization and gradient-pattern alignment to model robustness. These models are
tested under three adversarial attack scenarios: FGSM, FFGSM, and PGD. The corresponding results
are visualized in Figures 8, 9, and 10.

It is observed that the models trained with SRA, ORTH, SAME, and DIFF can resist strong FGSM
attacks (Figure 8). Under the more aggressive FFGSM and PGD attacks, only SRA, ORTH, and
SAME maintain robustness (Figures 9 and 10). Among all configurations, the SAME strategy
demonstrates the best overall performance across all attack types.

Notably, for these robust training strategies, the adversarial attacks are unable to generate impercepti-
ble perturbations that deceive the BAM models. To ensure the attack is intensive, we set the attack
parameters (e.g., α, ϵ) to values significantly larger than those typically used against conventional
deep learning models. These findings highlight the inherent robustness of BAM under the SRA,
ORTH, and SAME training strategies and suggest the feasibility of embedding BAM modules into
broader deep learning frameworks to improve their adversarial resilience.

D.3 CASE STUDY: ASSOCIATION OF 100 PAIRS OF SCRIPT PATTERNS

To further evaluate the robustness of BAM trained with the SRA, ORTH, SAME, and DIFF strategies,
we conducted an additional experiment involving the association of 100 pairs of regular and seal script
patterns. The retrieval performance under two adversarial conditions—partially covered patterns and
Gaussian noise perturbation—is illustrated in Figures 11 and 12.
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Figure 9: Retrieval performance of BAM trained with different strategies under FFGSM attack
(α = 2, ϵ = 1)

Figure 10: Retrieval performance of BAM trained with different strategies under PGD attack (α =
2, ϵ = 0.8, iteration = 20)
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It is observed that partially covered patterns remain a relatively weak form of attack for all four
strategies, with BAM still able to retrieve the associated patterns reliably, as shown in Figure 11.
However, when Gaussian noise (mean = 0, variance = 1.2) is added to the inputs, performance
differences become more pronounced. In this case, the SAME strategy clearly outperforms both SRA
and ORTH, which themselves perform better than DIFF, as shown in Figure 12. These results reaffirm
the robustness advantage of SAME, especially under more challenging perturbation scenarios.

(a) Retrieving 100 patterns from corrupted patterns
(from A to B)

(b) Retrieving 100 patterns from corrupted patterns
(from B to A)

Figure 11: Retrieving 100 associated patterns from corrupted patterns

(a) Retrieving 100 patterns from noisy patterns
(mean=0, variance=1.2)

(b) Retrieving 100 patterns from noisy patterns
(mean=0, variance=1.2)

Figure 12: Retrieving 100 patterns from noisy patterns

Further experiments will be required to comprehensively evaluate the consistency and limitations of
these training strategies across more complex datasets and adversarial conditions.

STATEMENT ON AI WRITING ASSISTANCE

ChatGPT was used to improve grammar and refine sentence structure, with all AI-generated edits
carefully reviewed and adjusted for relevance.
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