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Abstract

Contrastive learning is a highly effective method for learning representations from
unlabeled data. Recent works show that contrastive representations can transfer
across domains, leading to simple state-of-the-art algorithms for unsupervised
domain adaptation. In particular, a linear classifier trained to separate the
representations on the source domain can also predict classes on the target domain
accurately, even though the representations of the two domains are far from each
other. We refer to this phenomenon as linear transferability. This paper analyzes
when and why contrastive representations exhibit linear transferability in a general
unsupervised domain adaptation setting. We prove that linear transferability can
occur when data from the same class in different domains (e.g., photo dogs and
cartoon dogs) are more related with each other than data from different classes in
different domains (e.g., photo dogs and cartoon cats) are. Our analyses are in a
realistic regime where the source and target domains can have unbounded density
ratios and be weakly related, and they have distant representations across domains.

1 Introduction

In recent years, contrastive learning and related ideas have been shown to be highly effective for
representation learning [Chen et al., 2020a,b, He et al., 2020, Caron et al., 2020, Chen et al., 2020c,
Gao et al., 2021, Su et al., 2021, Chen and He, 2020]. Contrastive learning trains representations on
unlabeled data by encouraging positive pairs (e.g., augmentations of the same image) to have
closer representations than negative pairs (e.g., augmentations of two random images). The
learned representations are almost linearly separable: one can train a linear classifier on top of
the fixed representations and achieve strong performance on many natural downstream tasks [Chen
et al., 2020a]. Prior theoretical works analyze contrastive learning by proving that semantically
similar datapoints (e.g., datapoints from the same class) are mapped to geometrically nearby
representations [Arora et al., 2019, Tosh et al., 2020, 2021, HaoChen et al., 2021]. In other words,
representations form clusters in the Euclidean space that respect the semantic similarity; therefore,
they are linearly separable for downstream tasks where datapoints in the same semantic cluster have
the same label.

Intriguingly, recent empirical works show that contrastive representations carry richer information
beyond the cluster memberships—they can transfer across domains in a linear way as elaborated
below. Contrastive learning is used in many unsupervised domain adaptation algorithms[Thota
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Figure 1: The linear transferability of representations. We demonstrate the linear transferability of
representations when the unlabeled data contains images of two breeds of dogs (Brittanys, Bulldogs)
and two breeds of cats (Persians, Tabbies). Left: A visualization of the positive-pair graph with
four semantic clusters. Inter-cluster edges (dashed) have a much smaller weight than intra-cluster
edges (solid). Inter-cluster edges between two breeds of dogs (or cats) have more weight than that
between a dog cluster and a cat cluster. Middle and right: A visualization of two different types of
representations: both have linear separability, but only the middle one has linear transferability. The
red line is the decision boundary of a dog-vs-cat linear classifier trained in the representation space
on labeled Brittanys (Sdog) vs. Persians (Scat) images. The representation has linear transferability if
this classifier is accurate on unlabeled Bulldogs (Tdog) vs. Tabbies (Tcat) images.

and Leontidis, 2021, Sagawa et al., 2022] and the transferability leads to simple state-of-the-art
algorithms [Shen et al., 2022, Park et al., 2020, Wang et al., 2021]. In particular, Shen et al. [2022]
observe that the relationship between two clusters can be captured by their relative positions in
the representation space. For instance, as shown in Figure 1 (middle), suppose Sdog and Scat are
two classes in a source domain (e.g., Brittany dogs and Persian cats), and Tdog and Tcat are two
classes in a target domain (e.g., Bulldogs and Tabby cats). A linear classifier trained to separate
the representations of Sdog and Scat turns out to classify Tdog and Tcat as well. This suggests the
four clusters of representations are not located in the Euclidean space randomly (e.g., as in Figure 1
(right)), but rather in a more aligned position as in Figure 1 (middle). We refer to this phenomenon as
the linear transferability of contrastive representations.

This paper analyzes when and why contrastive representations exhibit linear transferability in a
general unsupervised domain adaptation setting. Evidently, linear transferability can only occur
when clusters corresponding to the same class in two domains (e.g., Brittany dogs and Bulldogs) are
somewhat related with each other. Somewhat surprisingly, we found that a weak relationship suffices:
linear transferability occurs as long as corresponding classes in different domains are more related
than different classes in different domains. Concretely, under this assumption (Assumptions 3.1
or 3.3), a linear head learned with labeled data on one domain (Algorithm 1) can successfully predict
the classes on the other domain (Theorems 3.2 and 3.4). Notably, our analysis provably shows that
representations from contrastive learning do not only encode cluster identities but also capture the
inter-cluster relationship, hence explains the empirical success of contrastive learning for domain
adaptation.

Compared to previous theoretical works on unsupervised domain adaptation [Shimodaira, 2000,
Huang et al., 2006, Sugiyama et al., 2007, Gretton et al., 2008, Ben-David et al., 2010, Mansour
et al., 2009, Kumar et al., 2020, Chen et al., 2020d, Cai et al., 2021], our results analyze a modern,
practical algorithm with weaker and more realistic assumptions. We do not require bounded density
ratios or overlap between the source and target domains, which were assumed in some classical
works [Sugiyama et al., 2007, Ben-David et al., 2010, Zhang et al., 2019, Zhao et al., 2019]. Another
line of prior works [Kumar et al., 2020, Chen et al., 2020d] assume that data is Gaussian or near-
Gaussian, whereas our result allows more general data distribution. Cai et al. [2021] analyze
pseudolabeling algorithms for unsupervised domain adaptation, but require that the same-class
cross-domain data are more related with each other (i.e., more likely to form positive pairs) than
cross-class same-domain data are. We analyze a contrastive learning algorithm with strong empirical

2



performance, and only require that the same-class cross-domain data are more related with each
other than cross-class cross-domain data, which is intuitively and empirically more realistic as shown
in Shen et al. [2022]. (See related work and discussion below Assumption 3.1 for details).

Technically, we significantly extend the framework of HaoChen et al. [2021] to allow distribution
shift—our setting only has labels on one subpopulation of the data (the source domain). Studying
transferability to unlabeled subpopulations requires both novel assumptions (Assumptions 3.1 and 3.3)
and novel analysis techniques (as discussed in Section 4).

Our analysis also introduces a variant of the linear probe—instead of training the linear head with the
logistic loss, we learn it by directly computing the average representations within a class, multiplied
by a preconditioner matrix (Algorithm 1). We empirically test this linear classifier on benchmark
datasets and show that it achieves superior domain adaptation performance in Section 5.

Additional Related Works. A number of papers have analyzed the linear separability of
representations from contrastive learning [Arora et al., 2019, Tosh et al., 2020, 2021, HaoChen et al.,
2021] and self-supervised learning [Lee et al., 2020], whereas we analyze the linear transferability.
Shen et al. [2022] also analyze the linear transferability but only for toy examples where the data is
generated by a stochastic block model. Their technique requires a strong symmetry of the positive-pair
graph (which likely does not hold in practice) so that top eigenvectors can be analytically derived.
Our analysis is much more general and does not rely on explicit, clean form of the eigenvectors
(which is impossible for general graphs).

Empirically, pre-training on a larger unlabeled dataset and then fine-tuning on a smaller labeled
dataset is one of the most successful approaches for handling distribution shift [Blitzer et al., 2007,
Ziser and Reichart, 2018, 2017, Ben-David et al., 2020, Chen et al., 2012, Xie et al., 2020, Jean et al.,
2016, Hendrycks et al., 2020, Kim et al., 2022, Kumar et al., 2022, Sagawa et al., 2022, Thota and
Leontidis, 2021, Shen et al., 2022]. Recent advances in the scale of unlabeled data, such as in BERT
and CLIP, have increased the importance of this approach [Wortsman et al., 2022, 2021]. Despite the
empirical progress, there has been limited theoretical understanding of why pre-training helps domain
shift. Our work provides the first analysis that shows pre-trained representations with a supervised
linear head trained on one domain can provably generalize to another domain.

2 Preliminaries

In this section, we introduce the contrastive loss, define the positive-pair graph, and introduce the
basic assumptions on the clustering structure in the positive-pair graph.

Positive pairs. Contrastive learning algorithms rely on the notion of “positive pairs”, which are pairs
of semantically similar/related data. Let X be the set of population data and P+ be the distribution
of positive pairs of data satisfying P+(x, x0) = P+(x0, x) for any x, x0 2 X . We note that though a
positive pair typically consists of semantically related data, the vast majority of semantically related
pairs are not positive pairs. In the context of computer vision problems [Chen et al., 2020a], these
pairs are usually generated via data augmentation on the same image.

For the ease of exposition, we assume X is a finite but large set (e.g., all real vectors in Rd with
bounded precision) of size N . We use PX to denote the marginal distribution of P+, i.e., PX (x) :=P

x02X P+(x, x0). Following the terminology in the literature [Arora et al., 2019], we call (x, x0) a
“negative pair” if x and x0 are independent random samples from PX .

Generalized spectral contrastive loss. Contrastive learning trains a representation function (feature
extractor) by minimizing a certain form of contrastive loss. Formally, let f : X ! Rk be a mapping
from data to k-dimensional features. In this paper, we consider a more general version of the spectral
contrastive loss proposed in HaoChen et al. [2021]. Let Ik⇥k be the k-dimensional identity matrix.
We consider the following loss with regularization strength � > 0:

L�(f) = E
(x,x+)⇠P+

⇥ ��f(x)� f(x+)
��2
2

⇤
+ � ·R(f), (1)

where the regularizer is defined as R(f) =
��� E
x⇠PX

⇥
f(x)f(x)>

⇤
� Ik⇥k

���
2

F

. The loss L� intuitively

minimizes the closeness of positive pairs via its first term, while regularizing the representations’
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covariance to be identity, avoiding all the representations to collapse to the same point. Simple
algebra shows that L� recovers the original spectral contrastive loss when � = 1 (see Proposition B.1
for a formal derivation). We note that this loss is similar in spirit to the recently proposed Barlow
Twins loss [Zbontar et al., 2021].

The positive-pair graph. One useful way to think of positive pairs is through a graph defined by
their distribution. Let the positive-pair graph be a weighted undirected graph G(X , w) such that the
vertex set is X , and for x, x0 2 X , the undirected edge (x, x0) has weight w(x, x0) = P+(x, x0). This
graph was introduced by HaoChen et al. [2021] as the augmentation graph when the positive pairs are
generated from data augmentation. We introduce a new name to indicate the more general applications
of the graph into other use cases of contrastive learning (e.g. see Gao et al. [2021]). We use
w(x) = PX (x) =

P
x02X w(x, x0) to denote the total weight of edges connected to a vertex x. We

call Ā 2 RN⇥N the normalized adjacency matrix of G(X , w) if Āxx0 = w(x, x0)/
p
w(x)w(x0),1

and call L := IN⇥N � Ā the Laplacian of G(X , w).

2.1 Clustering assumptions

Previous work accredits the success of contrastive learning to the clustering structure of the positive-
pair graph—because the positive pairs connect data with similar semantic contents, the graph can
be partitioned into many semantically meaningful clusters. To formally describe the clustering
structure of the graph, we will use the notion of expansion. For any subset A of vertices, let
w(A) , P

x2A
w(x) be the total weights of vertices in A. For any subsets A,B of vertices, let

w(A,B) , P
x2A,x02B

w(x, x0) be the total weights between set A and B. We abuse notation and
use w(x,B) to refer to w({x}, B) when the first set is a singleton.
Definition 2.1 (Expansion). Let A,B be two disjoint subsets of X . We use �(A,B), �̄(A,B) and

�(A,B) to denote the expansion, max-expansion and min-expansion from A to B respectively, defined

as

�(A,B) =
w(A,B)

w(A)
, �̄(A,B) = max

x2A

w(x,B)

w(x)
, �(A,B) = min

x2A

w(x,B)

w(x)
(2)

Note that �(A,B)  �(A,B)  �̄(A,B).

Intuitively, �(A,B) is the average proportion of edges adjacent to vertices in A that go to B, whereas
the max-(min-)expansion is an upper (lower) bound of this proportion for each x 2 A.

Our basic assumption on the positive-pair graph is that the vertex set X can be partitioned into m
groups C1, . . . , Cm with small connections (expansions) across each other.
Assumption 2.2 (Cross-cluster connections). For some ↵ 2 (0, 1), we assume that the vertices of the

positive-pair graph G can be partition into m disjoint clusters C1, . . . , Cm such that for any i 2 [m],

�̄(Ci,X\Ci)  ↵ (3)

We will mostly work with the regime where ↵ ⌧ 1. Intuitively, each Ci corresponds to all the data
with a certain semantic meaning or a class of interest. For instance, Ci may contain dogs from a certain
breed. Our assumption is slightly stronger than in HaoChen et al. [2021]. In particular, they assume
that the average expansions cross clusters is small, i.e.,

P
i2[m] �(Ci,X\Ci) · w(Ci)  ↵, whereas

we assume that the max-expansion is smaller than ↵ for each cluster. In fact, since
P

i2[m] w(Ci) = 1

and �(Ci,X\Ci)  �̄(Ci,X\Ci), Assumption 2.2 directly implies their assumption. However,
we note that Assumption 2.2 is still realistic in many domains. For instance, any bulldog x has
way more neighbors that are still bulldogs than neighbors that are Brittany dog, which suggests the
max-expansion between bulldogs and Brittany dogs is small.

We also introduce the following assumption about intra-cluster expansion that guarantees each cluster
can not broken into two well-separated sub-clusters.
Assumption 2.3 (Intra-cluster conductance). For all i 2 [m], assume the conductance of the subgraph

restricted to Ci is large, that is, every subset A of Ci with at most half the size of Ci expands to the

rest:

8A ⇢ Ci satisfying w(A)  w(Ci)/2, �(A,Ci\A) � �. (4)
1We index Ā by (x, x0) 2 X ⇥ X . Generally, we will index the N -dimensional axis of an array by x 2 X .
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We have � < 1 and we typically work with the regime where � is decently large (e.g., ⌦(1), or
inverse polynomial in dimension)2 and much larger than the cross-cluster connections ↵. This is the
same regime where prior work HaoChen et al. [2021] guarantees the representations of clusters are
linearly separable.

We also remark that all the assumptions are on the population positive-pair graph, which is sparse but
has reasonable connected components (as partially evaluated in Wei et al. [2020]). The rest of the
paper assumes access to population data, but the main results can be extended to polynomial sample
results by levering a model class for representation functions with bounded Rademacher complexity
as shown in HaoChen et al. [2021].3

3 Main Results on Linear Transferability

In this section, we analyze the linear transferability of contrastive representations by showing that
representations encode information about the relative strength of relationships between clusters.

Let S and T be two disjoint subsets of X , each formed by r clusters corresponding to r classes.
We say a representation function has linear transferability from the source domain S to the target

domain T if a linear head trained on labeled data from S can accurately predict the class labels on T .
E.g., the representations in Fig. 1 (middle) has linear transferability because the max-margin linear
classifier trained on Sdog vs. Scat also works well on Tdog vs. Tcat. We note that linear separability
is a different, weaker notion, which only requires the four groups of representations to be linearly
separable from each other.

Mathematically, we assume that the source domain and target domain are formed by r clusters among
C1, . . . , Cm for r  m/2. Without loss of generality, assume that the source domain consists of
cluster S1 = C1, . . . , Sr = Cr and the target domain consists of T1 = Cr+1, . . . , Tr = C2r. Thus,
S = [i2[r]Si and T = [i2[r]Ti. We assume that the correct label for data in Si and Ti is the cluster
identity i. Contrastive representations are trained on (samples of) the entire population data (which
includes all Ci’s). The linear head is trained on the source with labels, and tested on the target.

Our key assumption is that the source and target classes are related correspondingly in the sense
that there are more same-class cross-domain connections (between Si and Ti) than cross-class
cross-domain connections (between Si and Tj with i 6= j), formalized below.

Assumption 3.1 (Relative expansion). Let ⇢ , mini2[r] �(Ti, Si) be the minimum min-expansions

from Ti to Si. For some sufficiently large universal constant c (e.g., c = 8 works), we assume that

⇢ � c · ↵2
and that

⇢ = min
i2[r]

�(Ti, Si) � c ·max
i 6=j

·�̄(Ti, Sj) (5)

Intuitively, equation (5) says that every vertex in Ti has more edges connected to Si than to Sj .
The condition ⇢ & ↵2 says that the min-expansion ⇢ is bigger than the square of max-expansion
↵. This is reasonable because ↵ ⌧ 1 and thus ↵2 ⌧ ↵, and we consider the min-expansion ⇢ and
max-expansion ↵ to be somewhat comparable. In Section 3.1 we will relax this assumption and study
the case when the average expansion �(Ti, Si) is larger than �(Ti, Sj).

Our assumption is weaker than that in the prior work [Cai et al., 2021] which also assumes expansion
from Si to Ti (though their goal is to study label propagation rather than contrastive learning). They
assume the same-class cross-domain conductance �(Ti, Si) to be larger than the cross-class same-
domain conductance �(Si, Sj). Such an assumption limits the application to situations where the
domains are far away from each other (such as DomainNet [Peng et al., 2019]).

Moreover, consider an interesting scenario with four clusters: photo dog, photo cat, sketch dog, and
sketch cat. Shen et al. [2022] empirically showed that transferability can occur in the following two
settings: (a) we view photo and sketch as domains: the source domain is photo dog vs photo cat, and
the target domain is sketch dog vs sketch cat; (b) we view cat and dog as domains, whereas photo and

2E.g., suppose each cluster’s distribution is a Gaussian distribution with covariance I , and the data
augmentation is Gaussian blurring with a covariance 1

d · I , then the intra-cluster expansion is ⌦(1) by Gaussian
isoperimetric inequality [Bobkov et al., 1997]. The same also holds with a Lipschitz transformation of Gaussian.

3In contrast, the positive-graph built only on empirical examples will barely have any edges, and does not
exhibit any nice properties. However, the sample complexity bound does not utilize the empirical graph at all.
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sketch are classes: the source domain is photo dog vs sketch dog, and the target is photo cat vs sketch
cat. The condition that cross-domain expansion is larger than cross-class expansion will fail to explain
the transferability for one of these settings—if �(photo dog, sketch dog) < �(photo dog, photo cat),
then it cannot explain (a), whereas if �(photo dog, sketch dog) > �(photo dog, photo cat), it cannot
explain (b). In contrast, our assumption only requires conditions such as �(photo dog, sketch dog) >
�(photo dog, sketch cat), hence works for both settings.

We will propose a simple and novel linear head that enables linear transferability. Let PS be the
data distribution restricted to the source domain.4 For i 2 [r], we construct the following average
representation for class i in the source:5

bi = E
x⇠PS

[ [x 2 Si] · f(x)] 2 Rk. (6)

One of the most natural linear head is to use the average feature bi’s as the weight vector for class i,
as in many practical few shot learning algorithms [Snell et al., 2017].6 That is, we predict

g(x) = argmax
i2[r]

hf(x), bii . (7)

This classifier can transfer to the target under relatively strong assumptions (see the special cases in
the proof sketch in Section 4), but is vulnerable to complex asymmetric structures in the graph. To
strengthen the result, we consider a variant of this classifier with a proper preconditioning.

To do so, we first define the representation covariance matrix which will play an important role:

⌃ = E
x⇠PX

[f(x)f(x)>]. (8)

The computation of this matrix only uses unlabeled data. Since ⌃ 2 Rk⇥k is a low-dimensional
matrix for k not too large, we can accurately estimate it using finite samples from PX . For the ease
of theoretical analysis, we assume that we can compute this matrix exactly. Now we define a family
of linear heads on the target domain: for t 2 Z+, define

gt(x) = argmax
i2[r]

⌦
f(x),⌃t�1bi

↵
. (9)

The case when t = 1 corresponds to the linear head in equation (7). When t is large, gt will care more
about the correlation between f(x) and bi in those directions where the representation variance is
large. Intuitively, directions with larger variance tend to contain information also in a more robust way,
hence the preconditioner has a “de-noising” effect. See Section 4 for more on why the preconditioning
improve the target error. Algorithm 1 gives the pseudocode for this linear classification algorithm.

Algorithm 1 Preconditioned feature averaging (PFA)
Require: Pre-trained representation extractor f , unlabeled data PX , source domain labeled data PS ,

target domain test data x̃, integer t 2 Z+

1: Compute the preconditioner matrix ⌃ := Ex⇠PX

⇥
f(x)f(x)>

⇤
.

2: for every class i 2 [r] do
3: Compute the mean feature of the class i: bi := E(x,y)⇠PS

[ [y = i] · f(x)] .
4: return prediction argmax

i2[r]

⌦
f(x),⌃t�1bi

↵
.

We note that this linear head is different from prior work [Shen et al., 2022] where the linear head is
trained with logistic loss. We made this modification since this head is more amenable to theoretical
analysis. In Section 5 we show that this linear head also achieves superior empirical performance.

The error of a head g on the target domain is defined as:
ET (g) = E

x⇠PT

⇥ ⇥
x /2 Tg(x)

⇤⇤
. (10)

The following theorem (proved in Appendix E) shows that the linear head gt achieves high accuracy
on the target domain with a properly chosen t:

4Formally, we have PS(x) :=
w(x)
w(S) · [x 2 S], and PT (x) is defined similarly.

5We assume access to independent samples from PS and thus bi can be accurately estimated with finite
labeled samples in the source domain.

6We note that few-shot learning algorithms do not necessarily consider domain shift settings.
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Theorem 3.2. Suppose that Assumption 2.2 and 3.1 holds, PX (S)/PX (T )  O(1). Let f be a

minimizer of the contrastive loss L2(·) and the head gt be defined in (9). Then, for any 1  t 
⇢/(8↵2), we have

ET (gt) .
r

↵2�2
k+1

· exp(�1

2
t�k+1), (11)

where �k+1 is the k+1-th smallest eigenvalue of the Laplacian of the positive-pair graph.

Furthermore, suppose Assumption 2.3 also holds and k � 2m, with t = ⇢/(8↵2), we have

ET (gt) .
r

↵2�4
· exp

✓
�⌦

✓
⇢�2

↵2

◆◆
. (12)

To see that RHS of equation (12) implies small error, one can consider a reasonable setting where
the intra-cluster conductance is on the order of constants (i.e., � � ⌦(1)). In this case, so long as
⇢ � ↵2 log(r/↵), we would have error bound ET (gt) ⌧ 1. In general, as long as � � ↵1/2 (the
intra-cluster conductance is much larger than cross-cluster connections or its square root) and ⇢ is
comparable to ↵, we have ⇢�2 � ↵2 and thus a small upper bound of the error.

Theorem 3.2 shows that the error decreases as t increases. Intuitively, the PFA algorithm can be
thought of as computing a low-rank approximation of a “smoothed” graph with normalized adjacency
matrix Āt, where Ā is the normalized adjacency matrix of the original positive-pair graph. A larger t
will make the low-rank approximation of Āt more accurate, hence a smaller error. However, there’s
also an upper bound t  ⇢/(8↵2), since when t is larger than this limit, the graph would be smoothed
too much, hence the corresponding relationship in the graph between source and target classes would
be erased. A more formal argument can be found in Section 4.

We also note that our theorem allows “overparameterization” in the sense that a larger representation
dimension k always leads to a smaller error bound (since �k+1 is non-decreasing in k). Moreover,
our theorem can be easily generalized to the setting where only polynomial samples of data are used
to train the representations and the linear head, assuming the realizability of the function class.

3.1 Linear transferability with average relative expansion

In this section, we relax Assumption 3.1 and only assume that the total connections from Ti to Si is
larger than that from Ti to Sj , formalized below.

Assumption 3.3 (Average relative expansion (weaker version of Assumption 3.1)). For some

sufficiently large ⌧ > 0, we assume that

8i, �(Ti, Si) � ⌧ · ↵2 and 8i 6= j, �(Ti, Si) � ⌧ · �(Ti, Sj) (13)

The following theorem (proved in Appendix F) generalizes Theorem 3.2 in this setting.

Theorem 3.4. Suppose Assumptions 2.2, 2.3 and3.3 hold, PX (S)/PX (T )  O(1), and feature

dimension k � 2m. Then, for some t = ⌦
⇣

1
�2 · log

�
1
↵

�⌘
, we have

ET (gt) .
r

⌧�8
· log2

� 1
↵

�
. (14)

Again, consider a reasonable setting where the intra-cluster conductance is on the order of constants
(i.e., � � ⌦(1)). In this case, so long as ⌧ , the gap between same-class cross-domain connection and
cross-class cross-domain connection is sufficiently large (e.g., ⌧ � r log2(1/↵)), we would have an
error bound ET (gt) ⌧ 1.

We note that the intra-cluster connections (Assumption 2.3) are necessary, when we only use the
average relative expansion (Assumption 3.3 as opposed to Assumption 3.1). Otherwise, there may
exist subset T̃i ⇢ Ti that is completely disconnected from X\T̃i, hence no linear head trained on the
source can be accurate on T̃i.
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4 Proof Sketch

Key challenge: The analysis will involve careful understanding of how the spectrum of the normalized
adjacency matrix of the positive-pair graph is influenced by three types of connections: (i) intra-cluster
connections; (ii) connections between same-class cross-domain clusters (between Si and Ti), and
(iii) connections between cross-class and cross-domain clusters (between Si and Tj for i 6= j). Type
(i) connections have the dominating contribution to the spectrum of the graph, contributing to the top
eigenvalues. When analyzing the linear separability of the representations of the clusters, HaoChen
et al. [2021] essentially show that type (ii) and (iii) are negligible compared to type (i) connections.
However, this paper focuses on the linear transferability, where we need to compare how type (ii) and
type (iii) connections influence the spectrum of the normalized adjancency matrix. However, such a
comparison is challenging because they are both low-order terms compared to type (i) connections.
Essentially, we develop a technique that can take out the influence of the type (i) connections so that
they don’t negatively influence our comparisons between type (ii) and type (iii) connections.

Below we give a proof sketch of a sligthly weaker version of Theorem 3.2 under a simplified setting.
First, we assume r = 2, that is, there are two source classes S1 and S2, and two target classes T1 and
T2. Second, we assume the marginal distribution over x is uniform, that is, w(x) = 1/N as this case
typically capture the gist of the problem in spectral graph theory. Third, we will consider the simpler
case where the normalized adjacency matrix Ā is PSD, and the regularization strength � = 1.

Let f̃(x) =
p

w(x) · f(x) and eF 2 RN⇥k be the matrix with f̃(x) on its x-th row. HaoChen et al.
[2021] (or Proposition C.1) showed that matrix eF eF> contains the top-k eigenvectors of Ā. We will
first give a proof for the case where eF eF> exactly (Section 4.1) or near exactly (Section 4.2) recovers
Ā. Then we’ll give a proof for the more realistic case where eF eF> is not guaranteed to approximate
Ā accurately (Section 4.3).

4.1 Warmup case: when k = 1 and eF eF> = Ā

In this extremely simplified setting, the inner product between the embeddings perfectly represents
the graph (that is, hf̃(x), f̃(x0)i = Āx,x0 ). As a result, the connections between subsets of vertices, a
graph quantity, can be written as a linear algebraic quantity involving eF :

w(A,B) =
1

N
· 1>

A
Ā1B =

1

N
· 1>

A
eF eF>1B (15)

where 1A 2 {0, 1}N is the indicator vector for the set A,7 and we used the assumption w(x) = 1/N .

We start by considering the simple linear classifier which computes the difference between the means
of the representations in two clusters.

v = E
x⇠S1

[f(x)]� E
x⇠S2

[f(x)] = eF>(1S1 � 1S2) 2 Rk (16)

This classifier corresponds to the head g1 defined in Section 3,8 which suffices for the special case
when eF eF> = Ā. Applying v to any data point x 2 T1[T2 results in the output ŷ(x) = f(x)>v. For
notational simplicity, we consider ˆ̂y(x) = f̃(x)>v =

p
w(x)f(x)> eF>(1S1 � 1S2). Because ŷ(x)

and ˆ̂y(x) has the same sign, it suffice to show that ˆ̂y(x) > 0 for x 2 T1 and ˆ̂y(x) < 0 for x 2 T2.
Using equation (15) that links the linear algebraic quantity to the graph quantity,

ˆ̂y(x) = 1>
x
eF eF>(1S1 � 1S2) = 1>

x
Ā(1S1 � 1S2) = N · (w(x, S1)� w(x, S2)) (17)

In other words, the output ˆ̂y depends on the relative expansions from x to S1 and from x to S2. By
Assumption 3.1 or Assumption 3.3, we have that when x 2 T1, x has more expansion to S1 than S2,
and vice versa for x 2 T2. Formally, by Assumption 3.1, we have that

8x 2 T1, �(x, S1) � ⇢ & �(x, S2) and 8x 2 T2, �(x, S2) � ⇢ & �(x, S1) (18)
Because �(x, Si) = w(x, Si)/w(x) = N ·w(x, Si), we have for x 2 T1, w(x, S1) > w(x, S2), and
therefore by equation (17), ˆ̂y(x) > 0. Similary when x 2 T2, ˆ̂y(x) < 0.

7Formally, we have (1A)x = 1 iff x 2 A.
8Here because of the binary setting, the classifier can only involve one weight vector v in Rd; this is equivalent

to using two linear heads and then compute the maximum as in equation (7).
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4.2 When k ⌧ N and Ā is almost rank-k

Assuming k = 1 is unrealistic since in most cases the feature is low-dimensional, i.e., k ⌧ N .
However, so long as Ā is almost rank-k, the above argument still works with minor modification.
More concretely, suppose Ā’s (k+1)-th largest eigenvalue, 1� �k+1, is less than ✏. Then we have
kĀ� eF eF>kop = 1� �k+1  ✏. It turns out that when ✏ ⌧ 1, we can straightforwardly adapt the
proofs for the warm-up case with an additional ✏ error in the final target performance. The error
comes from second step of equation (17).

4.3 When Ā is far from low-rank

Unfortunately, a realistic graph’s �k+1 is typically not close to 1 when k ⌧ N (unless there’s
very strong symmetry in the graph as those cases in Shen et al. [2022]). We aim to solve the more
realistic and interesting case where �k+1 is a relatively small constant, e.g., 1/3 or inverse polynomial
in d. The previous argument stops working because eF eF> is a very noisy approximation of Ā:
the error kĀ � eF eF>kop = 1 � �k+1 is non-negligible and can be larger than k eF eF>kop = �k.
Our main approach is considering the power of Ā, which reduces the negative impact of smaller
eigenvalues. Concretely, though kĀ� eF eF>kop = 1� �k+1 is non-negligible, ( eF eF>)t is a much
better approximation of Āt:

kĀt � ( eF eF>)tkop = (1� �k+1)
t = ✏ (19)

when t � ⌦(log(1/✏)). Inspired by this, we consider the transformed linear classifier

v0 = ⌃t�1 eF>(1S1 � 1S2), (20)

where ⌃ = eF> eF is the covariance matrix of the representations. Intuitively, multiplying ⌃ forces the
linear head to pay more attention to those large-variance directions of the representations, which are
potentially more robust. The classifier outputs the following on a target datapoint x (with a rescaling
of

p
w(x) for convenience)

ˆ̂y0(x) =
p
w(x)f(x)>v = 1>

x
eF⌃t�1 eF t(1S1 � 1S2)

= 1>
x
( eF eF>)t(1S1 � 1S2) ⇡ 1>

x
Āt(1S1 � 1S2) (21)

where the last step uses equation (19). Thus, to understand the sign of ˆ̂y0(x), it suffices to compare
1>
x
Āt1S1 with 1>

x
Āt1S2 . In other words, it suffices to prove that for x 2 T1, 1>

x
Āt1S1 > 1>

x
Āt1S2 .

We control the quantity 1>
x
Āt1S1 by leveraging the following connection between Ā and a random

walk on the graph. First, let D = diag(w) be the diagonal matrix with Dxx = w(x), A 2 RN⇥N be
the adjacency matrix, i.e., Axx0 = w(x, x0). Observe that AD�1 is a transition matrix that defines
a random walk on the graph, and (AD�1)t correspond to the transition matrix for t steps of the
random walk, denoted by x0, xt, . . . , xt. Because Āt = (D�1/2AD�1/2)t = D1/2(D�1A)tD�1/2

and D = 1/N · IN⇥N , we can verify that 1>
x
Āt1S1 = Pr[xt 2 S1 | x0 = x]. That is, 1>

x
Āt1S1

and 1>
x
Āt1S2 are the probabilities to arrive at S1 and S2, respectively. form x0 = x. Therefore, to

prove that 1>
x
Āt1S1 � 1>

x
Āt1S2 > 0 for most x 2 T1, it suffices to prove that a t-step random walk

starting from T1 is more likely to arrive at S1 than S2. Intuitively, because T1 has more connections
to S1 than S2, hence a random walk starting from T1 is more likely to arrive at S1 than at S2. In
Section E, we prove this by induction.

5 Simulations
We empirically show that our proposed Algorithm 1 achieves good performance on the unsupervised
domain adaptation problem. We conduct experiments on BREEDS [Santurkar et al., 2020]—a dataset
for evaluating unsupervised domain adaptation algorithms (where the source and target domains
are constructed from ImageNet images). For pre-training, we run the spectral contrastive learning
algorithm [HaoChen et al., 2021] on the joint set of source and target domain data. Unlike the
previous convention of discarding the projection head, we use the output after projection MLP as
representations, because we find that it significantly improves the performance (for models learned
by spectral contrastive loss) and is more consistent with the theoretical formulation. Given the
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pre-trained representations, we run Algorithm 1 with different choices of t. For comparison, we use
the linear probing baseline where we train a linear head with logistic regression on the source domain.
The table below lists the test accuracy on the target domain for Living-17 and Entity-30—two datasets
constructed by BREEDS. Additional details can be found in Section A.

Linear probe PFA (ours, t = 1) PFA (ours, t = 2)
Living-17 54.7 67.4 72.0
Entity-30 46.4 62.3 65.1

Our experiments show that Algorithm 1 achieves better domain adaptation performance than linear
probing given the pre-trained representations. When t = 1, our algorithm is simply computing the
mean features of each class in the source domain, and then using them as the weight of a linear
classifier. Despite having a lower accuracy than linear probing on the source domain (see section A
for the source domain accuracy), this simple algorithm achieves much higher accuracy on the target
domain. When t = 2, our algorithm incorporates the additional preconditioner matrix into the linear
classifier, which further improves the domain adaptation performance. We note that our results on
Entity-30 is better than Shen et al. [2022] who compare with many state-of-the-art unsupervised
domain adaptation methods, suggesting the superior performance of our algorithm.

6 Conclusion

In this paper, we study the linear transferability of contrastive representations, propose a simple linear
classifier that can be directly computed from the labeled source domain, and prove that this classifier
transfers to target domains when the positive-pair graph contains more cross-domain connections
between the same class than cross-domain connections between different classes. We hope that our
study can facilitate future theoretical analyses of the properties of self-supervised representations and
inspire new practical algorithms.

References
Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saunshi.

A theoretical analysis of contrastive unsupervised representation learning. In International

Conference on Machine Learning, 2019.

Eyal Ben-David, Carmel Rabinovitz, and Roi Reichart. Perl: Pivot-based domain adaptation for pre-
trained deep contextualized embedding models. Transactions of the Association for Computational

Linguistics, 8:504–521, 2020.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79(1-2):151–175, 2010.

John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In Proceedings of the 45th annual meeting of the

association of computational linguistics, pages 440–447, 2007.

Sergey G Bobkov et al. An isoperimetric inequality on the discrete cube, and an elementary proof of
the isoperimetric inequality in gauss space. The Annals of Probability, 25(1):206–214, 1997.

Tianle Cai, Ruiqi Gao, Jason Lee, and Qi Lei. A theory of label propagation for subpopulation shift.
In International Conference on Machine Learning, pages 1170–1182. PMLR, 2021.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint

arXiv:2006.09882, 33:9912–9924, 2020.

Minmin Chen, Zhixiang Xu, Kilian Q Weinberger, and Fei Sha. Marginalized denoising autoencoders
for domain adaptation. In Proceedings of the 29th International Coference on International

Conference on Machine Learning, pages 1627–1634, 2012.

10



Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
volume 119 of Proceedings of Machine Learning Research, pages 1597–1607. PMLR, PMLR,
13–18 Jul 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big
self-supervised models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029,
2020b.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. arXiv preprint

arXiv:2011.10566, pages 15750–15758, June 2020.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020c.

Yining Chen, Colin Wei, Ananya Kumar, and Tengyu Ma. Self-training avoids using spurious features
under domain shift. In Advances in Neural Information Processing Systems (NeurIPS), 2020d.

Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American Mathematical
Soc., 1997.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence

and statistics, pages 215–223. JMLR Workshop and Conference Proceedings, 2011.

Geoffrey French, Michal Mackiewicz, and Mark Fisher. Self-ensembling for visual domain adaptation.
arXiv preprint arXiv:1706.05208, 2017.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
The journal of machine learning research, 17(1):2096–2030, 2016.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt, and Bernhard
Schölkopf. Covariate shift by kernel mean matching. In Dataset Shift in Machine Learning. 2008.

Jeff Z. HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 9729–9738, June 2020.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Song.
Pretrained transformers improve out-of-distribution robustness. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, pages 2744–2751, 2020.

Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard Schölkopf, and Alex J Smola.
Correcting sample selection bias by unlabeled data. In Advances in neural information processing

systems, pages 601–608, 2006.

Neal Jean, Marshall Burke, Michael Xie, W. Matthew Davis, David B. Lobell, and Stefano Ermon.
Combining satellite imagery and machine learning to predict poverty. Science, 353, 2016.

Donghyun Kim, Kaihong Wang, Stan Sclaroff, and Kate Saenko. A broad study of pre-training for
domain generalization and adaptation. arXiv preprint arXiv:2203.11819, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding self-training for gradual domain
adaptation. In International Conference on Machine Learning (ICML), 2020.

11



Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054,
2022.

James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-
order cheeger inequalities. Journal of the ACM (JACM), 61(6):1–30, 2014.

Jason D Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. Predicting what you already know helps:
Provable self-supervised learning. arXiv preprint arXiv:2008.01064, 2020.

Anand Louis and Konstantin Makarychev. Approximation algorithm for sparsest k-partitioning.
In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
1244–1255. SIAM, 2014.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds
and algorithms. arXiv preprint arXiv:0902.3430, 2009.

Changhwa Park, Jonghyun Lee, Jaeyoon Yoo, Minhoe Hur, and Sungroh Yoon. Joint contrastive
learning for unsupervised domain adaptation. arXiv preprint arXiv:2006.10297, 2020.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1406–1415, 2019.

Viraj Prabhu, Shivam Khare, Deeksha Kartik, and Judy Hoffman. Sentry: Selective entropy
optimization via committee consistency for unsupervised domain adaptation. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, pages 8558–8567, 2021.

Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Kendrick Shen Sang Michael Xie, Ananya
Kumar, Weihua Hu, Michihiro Yasunaga, Sara Beery Henrik Marklund, Etienne David, Ian
Stavness, Wei Guo, Jure Leskovec, Tatsunori Hashimoto Kate Saenko, Sergey Levine, Chelsea Finn,
and Percy Liang. Extending the wilds benchmark for unsupervised adaptation. In International

Conference on Learning Representations, 2022.

Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for subpopulation
shift. arXiv, 2020.

Kendrick Shen, Robbie Jones, Ananya Kumar, Sang Michael Xie, Jeff Z. HaoChen, Tengyu Ma,
and Percy Liang. Connect, not collapse: Explaining contrastive learning for unsupervised domain
adaptation. In International Conference on Machine Learning (ICML), 2022.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances

in neural information processing systems, 30, 2017.

Yixuan Su, Fangyu Liu, Zaiqiao Meng, Tian Lan, Lei Shu, Ehsan Shareghi, and Nigel Collier. Tacl:
Improving bert pre-training with token-aware contrastive learning, 2021.

Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert MÃžller. Covariate shift adaptation by
importance weighted cross validation. Journal of Machine Learning Research, 8(May):985–1005,
2007.

Mamatha Thota and Georgios Leontidis. Contrastive domain adaptation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2209–2218, 2021.

Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive estimation reveals topic
posterior information to linear models. arXiv:2003.02234, 2020.

Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive learning, multi-view
redundancy, and linear models. In Algorithmic Learning Theory, pages 1179–1206. PMLR,
2021.

12



Rui Wang, Zuxuan Wu, Zejia Weng, Jingjing Chen, Guo-Jun Qi, and Yu-Gang Jiang. Cross-domain
contrastive learning for unsupervised domain adaptation. arXiv preprint arXiv:2106.05528, 2021.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training
with deep networks on unlabeled data, 2020. URL

.

Mitchell Wortsman, Gabriel Ilharco, Mike Li, Jong Wook Kim, Hannaneh Hajishirzi, Ali Farhadi,
Hongseok Namkoong, and Ludwig Schmidt. Robust fine-tuning of zero-shot models. arXiv

preprint arXiv:2109.01903, 2021.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. arXiv preprint arXiv:2203.05482, 2022.

Sang Michael Xie, Ananya Kumar, Robbie Jones, Fereshte Khani, Tengyu Ma, and Percy Liang. In-
n-out: Pre-training and self-training using auxiliary information for out-of-distribution robustness.
In International Conference on Learning Representations, 2020.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. arXiv preprint arXiv:2103.03230, 2021.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm for
domain adaptation. In International Conference on Machine Learning, pages 7404–7413. PMLR,
2019.

Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant
representations for domain adaptation. In Proceedings of the 36th International Conference on

Machine Learning, pages 7523–7532. PMLR, 09–15 Jun 2019. URL
.

Yftah Ziser and Roi Reichart. Neural structural correspondence learning for domain adaptation. In
Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017),
pages 400–410, 2017.

Yftah Ziser and Roi Reichart. Deep pivot-based modeling for cross-language cross-domain transfer
with minimal guidance. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 238–249, 2018.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes]
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]

13

https://openreview.net/forum?id=rC8sJ4i6kaH
https://openreview.net/forum?id=rC8sJ4i6kaH
http://proceedings.mlr.press/v97/zhao19a.html
http://proceedings.mlr.press/v97/zhao19a.html


(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running

experiments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [No]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


