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ABSTRACT

Spuriousness arises when there is an association between two or more variables in
a dataset that are not causally related. Left unchecked, they can mislead a machine
learning model into using the undesirable “spurious” features in decision-making
over the “core” features, hindering generalization. In this work, we propose a novel
explainability framework to disentangle the nature of such spurious associations,
i.e., how the information about a target variable is distributed among the spuri-
ous and core features. Our framework leverages a body of work in information
theory called Partial Information Decomposition (PID) to first decompose the
total information about the target into four non-negative quantities namely unique
information (in core and spurious features respectively), redundant information,
and synergistic information. Next, we leverage this decomposition to propose a
novel measure of the spuriousness of a dataset that steers models into choosing
the spurious features over the core. We arrive at this measure systematically by
examining several candidate measures, and demonstrating what they capture and
miss through intuitive canonical examples and counterexamples. Our proposed
explainability framework Spurious Disentangler consists of segmentation, dimen-
sionality reduction, and estimation modules, with capabilities to specifically handle
high dimensional image data efficiently. Finally, we also conduct empirical evalua-
tion to demonstrate the trends of unique, redundant, and synergistic information,
as well as our proposed spuriousness measure across several benchmark datasets
under various settings. Interestingly, we observe a novel tradeoff between our
measure of dataset spuriousness and empirical model generalization metrics such
as worst-group accuracy, further supporting our proposition.

1 INTRODUCTION

While machine learning is rapidly percolating into almost every aspect of our lives, its success
is heavily determined by the datasets used for training or fine-tuning. Spurious patterns (Haig,
2003) arise when two or more variables are associated in a dataset even though they do not have

Figure 1: Spurious pat-
terns due to sampling bias.

a causal relation. For example, image classifiers trained on the Waterbird
dataset (Wah et al., 2011) learn to use the background rather than the
foreground (actual characteristics of the bird) for classification, because
most waterbirds are photographed on a water background (see Fig. 1).
This pattern in the dataset misleads a machine learning classifier into
learning an undesirable spurious link between the target label (bird type)
and background (“spurious” feature) as opposed to the foreground (core
feature). Spuriousness in datasets may result in deceptively high perfor-
mance on in-distribution datasets but significantly hinders generalization
on out-of-distribution datasets, e.g., accuracy on minority groups like
waterbirds with land background is low (Lynch et al., 2023; Sagawa et al., 2019; Puli et al., 2023).

Despite advances in dataset-based and model-training-based approaches to mitigate such spurious
patterns (Kirichenko et al., 2022; Izmailov et al., 2022; Wu et al., 2023; Ye et al., 2023; Liu et al.,
2023), this notion of spuriousness in any given dataset has classically lacked a formal definition. To
address this gap, in this work, we ask the following question: Given a dataset and a split of core
and spurious features, how do we quantify the undesirable spuriousness of the dataset which steers
machine learning models into choosing the spurious features over the core features?
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Towards answering this question, we present an information-theoretic explainability framework
to disentangle the nature of such spurious associations, i.e., how the information about the target
variable is distributed among the spurious and core features. To this end, we leverage a body of
work in information theory called Partial Information Decomposition (PID) (Bertschinger et al.,
2014; Banerjee et al., 2018), which has its roots in statistical decision theory. We note that classical
information-theoretic measures such as mutual information (Cover & Thomas, 2012) captures the
entire statistical dependency between two random variables but fail to capture how this dependency is
distributed among those variables, i.e., the structure of the multivariate information. Partial Informa-
tion Decomposition (PID) addresses this nuanced issue by providing a formal way of disentangling
the joint information content between the core and spurious features into non-negative terms, namely,
unique, redundant, or synergistic information (see in Section 2). We leverage this decomposition
to systematically arrive at a novel measure of dataset spuriousness with empirical evaluation on
high-dimensional image datasets. This work provides a more nuanced understanding of the interplay
between spurious and core features in a dataset that can better inform dataset quality assessment.

Our main contributions can be summarized as follows:

Unraveling nature of spurious associations leveraging Partial Information Decomposition:
Novel to this work, we investigate the problem of learning spurious patterns from a dataset through
the lens of partial information decomposition (PID). We leverage PID to disentangle the total
information about a target (Y ) in the core (F ) and spurious (B) features into four non-negative
terms: unique information (in core and spurious features respectively), redundant information, and
synergistic information (see Proposition 1). We elucidate four types of statistical dependencies
captured by these PID terms (see Fig. 3), providing pre-emptive insights on when an optimal classifier
might find a spurious feature more informative or useful than the core features. We establish how
unique information quantifies the informativeness of a random variable over another for predicting Y
(see Theorem 1 for interpretability insights, also leveraging Blackwell Sufficiency). Then, redundant
information turns out to be the common information that can be obtained from either the spurious or
core features, allowing a predictor to potentially choose either without a preference. An interesting
term is the synergistic information that captures scenarios when both spurious and core features are
jointly informative about the target Y but not individually.

Novel information-theoretic measure of spuriousness: Though many works attempt to prevent a
model from learning spurious patterns, there is limited theoretical understanding of how to quantify
the spuriousness of a dataset, given a choice of core and spurious features. In this work, we leverage
PID to propose a novel measure of the undesirable spuriousness of a dataset (Msp) that steers
predictors into choosing the spurious features over the core (see Proposition 2). We arrive at this
measure systematically by examining several candidate measures, and demonstrating what they
capture and miss through intuitive canonical examples and counterexamples. Our measure provides a
fundamental understanding of which features can be more informative for a classification task, paving
a pathway for dataset quality assessment and interpretability.

Spuriousness Disentangler: An autoencoder-based explainability framework: We propose an
autoencoder-based explainability framework that we call – Spuriousness Disentangler – to compute
the PID values and our spuriousness measure for high dimensional image data. The framework con-
sists of three modules: (i) Segmentation: If desired, our framework performs segmentation to separate
the foreground (core features F ) and background (spurious features B) for every image; (ii) Di-
mensionality Reduction: An autoencoder converts high-dimensional images into lower-dimensional,
discrete feature representations. Along the lines of Guo et al. (2017), the dimensionality reduction
and clustering are efficiently performed through minimization of a joint loss function. We also
incorporate a bottleneck structure from Sadeghi & Armanfard (2023) to have a more informative
lower dimensional representation; (iii) Estimation: The final step includes the estimation of the joint
probability distribution of the acquired lower-dimensional representation followed by computing
PID values and our measure Msp. The computation is performed by solving a convex optimization
problem using the Discrete Information Theory (DIT) package (James et al., 2018).

Empirical results: Since our proposed framework is a pre-emptive dataset explainability framework,
the goal of our experiments is to show broad agreement between our anticipations from the dataset
before training and the post-training behavior of models for various experimental setups. We observe
a negative correlation between our proposed measure of dataset spuriousness Msp and post-training
model generalization metrics, such as the worst-group accuracy. We also study Grad-CAM (Selvaraju
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et al., 2017) visualizations and intersection-over-union (IoU) metric (Rezatofighi et al., 2019) to
further confirm which features are actually being emphasized by the model.

Related Works: There are several perspectives on spurious correlation (see Haig (2003); Kirichenko
et al. (2022); Izmailov et al. (2022); Wu et al. (2023); Ye et al. (2023); Liu et al. (2023); Stromberg
et al. (2024); Singla & Feizi (2021); Moayeri et al. (2023); Lynch et al. (2023) and the references
therein; also see surveys Ye et al. (2024); Srivastava (2023); Ghouse et al. (2024)). Spuriousness
mitigation techniques are broadly divided into two groups: (i) Dataset-based techniques (Goel et al.,
2020; Kirichenko et al., 2022; Wu et al., 2023; Moayeri et al., 2023; Liu et al., 2021) and (ii) Learning-
based techniques (Liu et al., 2023; Yang et al., 2023; Ye et al., 2023; Zhang et al., 2022). Among
dataset-based techniques, Kirichenko et al. (2022) shows that last-layer fine-tuning of a pre-trained
model with a group-balanced subset of data is sufficient to mitigate spurious correlation. Wu et al.
(2023) proposes a concept-aware spurious correlation mitigation technique. A recent work (Wang
& Wang, 2024) looks into the problem of spurious correlations through the mathematical lens of
separability of the spurious and core features under mixture of Gaussian assumptions (also assuming
a split between core and spurious). Ye et al. (2023) discusses how the noise in the core feature
plays a role in a model’s reliance on it. Our novelty lies in investigating the problem of spurious
patterns through the lens of Partial Information Decomposition, rooted in statistical decision theory,
focusing on quantifying the spuriousness of a dataset for interpretability and quality assessment. Our
work isolates four specific types of statistical dependencies in the dataset, providing a more nuanced
understanding (see Fig. 3) going beyond identifying a model’s reliance on a specific feature.

Partial Information Decomposition (Williams & Beer, 2010; Bertschinger et al., 2014) is an active
area of research. PID measures are beginning to be used in different domains of neuroscience
and machine learning (Tax et al., 2017; Dutta et al., 2021; Hamman & Dutta, 2024; Ehrlich et al.,
2022; Liang et al., 2024; Wollstadt et al., 2023; Mohamadi et al., 2023; Venkatesh et al., 2024).
However, interpreting spuriousness in datasets through the lens of PID and observing novel empirical
tradeoffs between spuriousness and worst-group accuracy is unexplored. Additionally, there is limited
work on calculating PID values for high dimensional multivariate continuous data. Some existing
works (Dutta et al., 2021; Venkatesh et al., 2024) handle continuous data with Gaussian assumptions
while (Pakman et al., 2021) considers one-dimensional multivariate case. Hence, estimating PID
for high-dimensional data through proper dimensionality reduction and discretization is also fairly
open. For dimensionality reduction, different learning based methods exist (Hotelling, 1933; Law &
Jain, 2006; Lee & Verleysen, 2005; Wang et al., 2015; 2014; Sadeghi & Armanfard, 2023). Similarly,
for discretization, different clustering algorithms exist, e.g., k-means clustering (MacQueen et al.,
1967; Bradley et al., 2000), deep embedded clustering (Xie et al., 2016). There are also some works
that try to separate spurious and core features in the feature space of deep neural networks using
external feedback (Sohoni et al., 2020; Kattakinda et al., 2022). In this work, along the lines of an
autoencoder-based clustering setup in Guo et al. (2017), we train an autoencoder to jointly learn a good
lower-dimensional representation of the input image data in a self-supervised manner (with additional
bottleneck structure from Sadeghi & Armanfard (2023)) while also clustering simultaneously to deal
with the challenge of high dimensional and continuous image data.

2 PRELIMINARIES

Let X = (X1, X2, . . . , Xd) be the random variable denoting the input (e.g., an image) where each
Xi ∈ X which denotes a finite set of values that each feature can take. The core features (e.g., the
foreground) will be denoted by F ⊆ X , and the spurious features (e.g., the background) will be
denoted by B = X\F . We typically use the notation B and F to denote the range of values for the
spurious and core features. Let Y denote the target random variable, e.g., the true labels which lie in
the set Y , and the model predictions are given by Ŷ = fθ(X) (parameterized by θ). Generally, we use
the notation PA to denote the distribution of random variable A, and PA|B to denote the conditional
distribution of random variable A conditioned on B. Depending on the context, we also use more than
one random variable as sub-script, e.g., PABY denotes the joint distribution of (A,B, Y ). Whenever
necessary, we also use the notation QA to denote an alternate distribution on the random variable
A that is different from PA. We also use the notation PA|B ◦ PB|C to denote a composition of two
conditional distributions given by: PA|B ◦PB|C(a|c) =

∑
b∈B PA|B(a|b)PB|C(b|c) ∀a ∈ A, c ∈ C,

where A, B and C denote the range of values that can be taken by random variables A, B, and C.
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Background on Partial Information Decomposition: We provide a brief background on PID that
would be relevant for the rest of the paper. The classical information-theoretic quantification of the
total information that two random variables A and B together hold about Y is given by the mutual
information I(Y ;A,B) (see (Cover & Thomas, 2012) for a background on mutual information).
Mutual information I(Y ;A,B) is defined as the KL divergence (Cover & Thomas, 2012) between
the joint distribution PY AB and the product of the marginal distributions PY ⊗ PAB and would go
to zero if and only if (A,B) is independent of Y . Intuitively, this mutual information captures the
total predictive power about Y that is present jointly in (A,B) together, i.e., how well can one learn
Y from (A,B) together. However, I(Y ;A,B) only captures the total information content about Y
jointly in (A,B) and does not unravel anything about what is unique or shared between A and B.

PID (Bertschinger et al., 2014; Banerjee et al., 2018) provides a mathematical framework that
decomposes the total information content I(Y ;A,B) into four non-negative terms (also see Fig. 2):

I(Y ;A,B) = Uni(Y :B|A) + Uni(Y :A|B) + Red(Y :A,B) + Syn(Y :A,B). (1)

Figure 2: I(Y ;A,B) is
decomposed into four non-
negative terms: unique infor-
mation in A, unique informa-
tion in B, redundant informa-
tion in both, and synergistic
information in both.

Here, Uni(Y :A|B) denotes the unique information about Y that is
only in A but not in B and Uni(Y :B|A) denotes the unique infor-
mation about Y that is only in B but not in A. Next, Red(Y :A,B)
denotes redundant information (common knowledge) about Y in
both A and B. Lastly, Syn(Y :A,B) is an interesting term that de-
notes the synergistic information that is present only jointly in A,B
but not in any one of them individually, e.g., a public and private key
can jointly reveal information not in any one of them alone.

Example to Understand PID. Let Z=(Z1, Z2, Z3) with each Zi∼
i.i.d. Bern(1/2). Let A = (Z1, Z2, Z3 ⊕ N), B = (Z2, N), and
N ∼ Bern(1/2) which is independent of Z. Here, I(Z;A,B) = 3
bits. The unique information about Z that is contained only in A
and not in B is effectively in Z1, and is given by Uni(Z:A|B) =
I(Z;Z1) = 1 bit. The redundant information about Z that is
contained in both A and B is effectively in Z2 and is given by
Red(Z:A,B) = I(Z;Z2) = 1 bit. Lastly, the synergistic infor-
mation about Z that is not contained in either A or B alone, but
is contained in both of them together is effectively in the tuple (Z3 ⊕ N,N), and is given by
Syn(Z:A,B)=I(Z; (Z3 ⊕N,N)) = 1 bit. This accounts for the 3 bits in I(Z;A,B).

Defining any one of the PID terms suffices for obtaining the others. This is because of an-
other relationship among the PID terms as follows (Bertschinger et al., 2014): I(Y ;A) =
Uni(Y :A|B) + Red(Y :A,B). Essentially Red(Y :A,B) is viewed as the sub-volume between
I(Y ;A) and I(Y ;B) (see Fig. 2). Hence, Red(Y :A,B) = I(Y ;A) − Uni(Y :A|B). Lastly,
Syn(Y :A,B) = I(Y ;A,B)−Uni(Y :A|B)−Uni(Y :B|A)−Red(Y :A,B) (can be obtained once
both unique and redundant information has been obtained). Here, we include a popular definition of
Uni(Y :A|B) from (Bertschinger et al., 2014) which is computable using convex optimization.
Definition 1 (Unique Information (Bertschinger et al., 2014)). Let ∆ be the set of all joint distributions
on (Y,A,B) and ∆P be the set of joint distributions with same marginals on (Y,A) and (Y,B) as
the true distribution PY AB , i.e., ∆P = {QY AB∈∆: QY A = PY A and QY B = PY B}. Then,

Uni(Y :A|B) = min
Q∈∆P

IQ(Y ;A|B). (2)

Here IQ(Y ;A|B) denotes the conditional mutual information when (Y,A,B) have joint distribution
QY AB instead of PY AB .

3 MAIN RESULTS

3.1 UNRAVELING THE NATURE OF SPURIOUS ASSOCIATIONS LEVERAGING PID

Proposition 1 (Proposed Disentanglement). For a given data distribution, the total predictive power
of the spurious features B and core features F about the target variable Y can be decomposed into
four non-negative components as follows:

I(Y ;F,B) = Uni(Y :B|F ) + Uni(Y :F |B) + Red(Y :F,B) + Syn(Y :F,B). (3)
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Figure 3: Canonical examples distilling four types of statistical dependencies involving core and
spurious features when any one PID term is dominant and its effect on the Bayes optimal classifier.
In the first two cases, unique information in either F or B is dominant, and they are indispensable to
the optimal classifier. When redundant information is dominant, the optimal classifier can pick either
F or B without preference. The fourth scenario is interesting where B is independent of the label Y ,
and yet it contributes to the optimal classifier along with F .

For each term in Proposition 1, we now explain their nuanced role for any given dataset.

Interpreting Unique Information Uni(Y :B|F ) and Uni(Y :F |B): Unique information captures in-
formation that is unique in one feature and cannot be obtained from another. To explain the role of
unique information in interpreting spuriousness, we draw upon a concept in statistical decision theory
called Blackwell Sufficiency (Blackwell, 1953) which investigates when a random variable is “more
informative” (or “less noisy”) than another for inference (also relates to stochastic degradation of chan-
nels (Venkatesh et al., 2023; Raginsky, 2011)). Let us first discuss this notion intuitively when trying

Figure 4: Blackwell
Sufficiency

to infer Y using two random variables F and B. Suppose, there exists a trans-
formation on F to give a new random variable B′ which is always equivalent
to B for predicting Y (similar predictive power). We note that B′ and B do
not necessarily have to be the same since we only care about inferring Y . In
fact, B and B′ can have additional irrelevant information that do not pertain to
Y , but solely for the purpose of inferring Y , they need to be equivalent. Then,
F will be regarded as “sufficient” with respect to B for predicting Y since F
can itself provide all the information that B has about Y (see Fig. 4 and first two cases of Fig. 3).

Definition 2 (Blackwell Sufficiency (Blackwell, 1953)). A conditional distribution PF |Y is Blackwell
sufficient with respect to another conditional distribution PB|Y if and only if there exists a stochastic
transformation (equivalently another conditional distribution PB′|F with both B and B′ ∈ B) such
that PB′|F ◦ PF |Y = PB|Y .

In fact, the unique information Uni(Y :B|F ) is 0 if and only if PF |Y is Blackwell sufficient with
respect to PB|Y (see Theorem 1, the proof is given in the Appendix F).

Theorem 1 (Interpretability Insights from Unique Information). The following properties hold:

• Uni(Y :B|F ) ≤ I(Y ;B) and goes to 0 if the spurious feature B is independent of the target Y .
However, Uni(Y :B|F ) may be 0 even if I(Y ;B) > 0.

• Uni(Y :B|F ) = 0 if and only if PF |Y is Blackwell sufficient with respect to PB|Y .

• Uni(Y :B|F ) ≤ Uni(Y :B′|F ′), i.e., it is non-decreasing if some features from the core set are
moved to the spurious set, i.e., B′ = B ∪W and F ′ = F\W .

Since unique information Uni(Y :B|F ) = 0 if and only if PF |Y is Blackwell Sufficient with respect to
PB|Y , we note that Uni(Y :B|F ) > 0 captures the “departure” from Blackwell Sufficiency, and thus
quantifies relative informativeness. Intuitively, what this means is that for a data distribution, there is
no such transformation on core feature F that is equivalent to the spurious feature B for the purpose
of predicting Y . This essentially makes spurious feature B indispensable for predicting Y , forcing
a model to emphasize it in decision-making. A similar argument can be made for Uni(Y :F |B).
Furthermore, Uni(Y :B|F ) also satisfies an intuitive property that as more features get categorized as
spurious instead of core, the unique information in the spurious set would keep increasing.

Interpreting Redundant Information Red(Y :F,B): Redundant information about the target variable
Y is the information that can be obtained from either the spurious features B or the core features F
without any preference towards either. We consider the following canonical example to interpret the
role of redundant information Red(Y :F,B) for predicting the target variable Y (third case of Fig. 3).

5
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Lemma 1 (Redundancy). Let B = Y +NB , F = Y +NF where noise NB and NF are Gaussian
such that NB = NF = N ∼ N (0, σ2

N ) and N ⊥⊥ Y . In this case, (i) an optimal predictor Ŷ can
either utilize B or F with neither being indispensable, i.e., Ŷ = f(B) or f(F ) or f(B,F ); and (ii)
B and F will only have redundant information with the other PID terms being 0.

Interpreting Synergistic Information: Synergistic information Syn(Y :F,B) is an interesting term that
emerges when spurious features B and core features F together reveal more about the target variable
Y than what can be revealed by either of them alone. In essence, it is the “extra” or “emergent”
information that arises only when multiple features interact, rather than when they are considered
separately. Consider the example below to have an intuition on the role of this component.
Lemma 2 (Synergy). Let B=N , F=Y + N where Y∼Bern(1/2), N∼N (0, σ2

N ), N ⊥⊥ Y and
σ2
N≫1. Then, (i) an optimal predictor Ŷ = f(F,B) = F −B (uses both F and B); and (ii) I(Y ;B)

and I(Y ;F ) ≈ 0 but I(Y ;B,F ) is still significant due to synergistic information Syn(Y :B,F ).

For this example (fourth case in Fig. 3), both F and B alone will have limited predictive power
when N has high variance. However, using F and B together, one can perfectly predict Y , e.g., an
optimal predictor is Ŷ = f(F,B) = F −B. Here I(Y ;B) = 0, and we also show that I(Y ;F ) ≈ 0
(see Lemma 8 in Appendix F). However, the synergistic information Syn(Y :F,B) is still significant.
Since I(Y ;F ) ≈ 0, we contend that here B essentially denoises the core feature F , enhancing its
predictive power. Thus, synergistic information captures an interesting nuanced interplay between
core and spurious, not captured by the other PID terms.

3.2 NOVEL INFORMATION-THEORETIC MEASURE OF SPURIOUSNESS

Our objective is to quantify a dataset’s spuriousness which steers machine learning models towards
the spurious features over the core features. To this end, we will examine some candidate measures
(Msp) of spuriousness through examples and counterexamples and systematically arrive at a measure
that meets our requirements. Since we are trying to capture spuriousness which arises when the target
variable Y is associated with the spurious features B, we might first consider the mutual information
I(Y ;B) as a candidate measure for spuriousness since it captures the dependence between Y and B.
Candidate Measure 1. Msp = I(Y ;B).

Counterexample 1. We refer to the example in Lemma 1 where Uni(Y :B|F ) = 0. Hence,
I(Y ;B) = Uni(Y :B|F ) + Red(Y :F,B) = Red(Y :F,B). Here, our candidate measure Msp =
I(Y ;B) is positive which would indicate “spuriousness,” i.e., undesirable steering towards B. How-
ever, in this case the model can use either spurious features B or core features F (see Lemma 1)
without any preference. Thus, I(Y ;B) is not well suited to be a measure of undesirable spuriousness.

Since redundant information can lead to the utilization of either spurious or core features, another
candidate measure of spuriousness might be obtained by subtracting the desirable dependence
I(Y ;F ) from the undesirable dependence I(Y ;B), i.e., Msp = I(Y ;B)− I(Y ;F ). For the example
in Lemma 1, this new Msp = 0, indicating no preference towards spurious or core features.
Lemma 3. Let B = Y +NB , F = Y +NF where noise NB and NF are standard Gaussian noises
with NB ∼ N (0, σ2

NB
), NF ∼ N (0, σ2

NF
) and NB ⊥⊥ Y , NF ⊥⊥ Y . Now if σ2

NF
≫ σ2

NB
, (i) the

optimal classifier relies strongly on spurious feature B; and (ii) Uni(Y :B|F ) > 0.

If σ2
NF

≫ σ2
NB

, then I(Y ;B) > I(Y ;F ), i.e., Msp > 0 (see Lemma 8 in Appendix F). In this case,
the output of a model is more likely to be Ŷ = f(B) and the model might be more prone to utilizing
the spurious features B (see Fig. 3). On the other hand, if σ2

NF
≪ σ2

NB
, then I(Y ;F ) > I(Y ;B),

i.e., Msp < 0 . In this case, the output of the model is also more likely to be Ŷ = f(F ) and the
model might lean towards the core features F . Hence, Msp = I(Y ;B)− I(Y ;F ) might seem like a
suitable measure to quantify spuriousness, i.e., steering models towards B over F .
Candidate Measure 2. Msp = I(Y ;B)− I(Y ;F ) = Uni(Y :B|F )−Uni(Y :F |B).

Counterexample 2. Consider Lemma 2 where the optimal predictor Ŷ = F −B utilizing both the
spurious features B and core features F . Here, this Msp ≈ 0 (Lemma 2). However, for this particular
example, since the prediction is jointly influenced by both core features F and spurious features B,
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Figure 5: Spuriousness Disentangler: An autoencoder-based explainability framework to handle high
dimensional continuous image data with 3 modules: (i) Segmentation of images into background
(spurious features) and foreground (core features); (ii) Dimensionality reduction involving an autoen-
coder with bottleneck and clustering; and (iii) Estimation of the joint distribution followed by the
computation of PID values through convex optimization and computing Msp.

we contend that a measure of spuriousness should not be 0. The measure should therefore include
a term that considers the joint contribution of both of these features, capturing the fact that here
B simply helps in denoising and enhancing the predictive capabilities of the core features F . This
aspect is precisely captured by synergistic information Syn(Y :F,B). Hence, we also include it in
Msp, leading to the following proposed measure.
Proposition 2 (Measure of Spuriousness Msp). Our proposed measure of spuriousness is given by:

Msp = Uni(Y :B|F )−Uni(Y :F |B)− Syn(Y :F,B). (4)

3.3 PROPOSED EXPLAINABILITY FRAMEWORK: SPURIOUSNESS DISENTANGLER

We propose an autoencoder-based explainability framework – that we call Spuriousness Disentangler
– to disentangle the PID values and compute the measure Msp (see Fig. 5) for a given dataset. The
framework mainly consists of three modules: segmentation, dimensionality reduction, and estimation.

Segmentation: The first step involves separating the foreground (F ) from the background (B). For
the Waterbird and CelebA datasets, publicly available segmentation masks (m) are utilized to achieve
this separation, as illustrated in Fig.5. Since the Dominoes dataset is constructed synthetically by
concatenating the foreground and background, we need not use segmentation mask for this dataset.
For the Spawrious dataset, we generate masks using a pre-trained semantic segmentation model (see
Appendix C.3.3 for details). For datasets lacking group labels or explicit information about spurious
features, an Open-Vocabulary Semantic Segmentation model can be applied, as in Appendix A.

Dimensionality Reduction: Since we are dealing with high dimensional image data, our next module

Figure 6: Dimensionality reduction mod-
ule: Autoencoder with clustering to have
discrete lower-dimensional embedding.

compresses them into lower-dimensional discrete vectors.
We propose to use an autoencoder, a deep neural network
consisting of an encoder and a decoder, as shown in Fig. 6
to jointly do dimensionality reduction and clustering. We
incorporate a bottleneck structure from (Sadeghi & Ar-
manfard, 2023) in the encoder and decoder to obtain more
informative lower-dimensional representation of the in-
put image (see Fig. 17 in Appendix C). Along the lines
of Guo et al. (2017), we obtain the clusters of the low-
dimensional data q by optimizing a joint loss function
defined as L = Lr + γLc where Lr is the representation
loss, Lc is the clustering loss, and γ is a non-negative
constant. The representation loss is the mean square error between the input of the encoder x and
output of the decoder x′ defined as Lr = ∥x− x′∥22. The cluster centers {µj}K1 (trainable weights of
clustering layer) and embedded point zi (output of the encoder) are used to calculate the soft label
qij =

(1+∥zi−µj∥2)−1∑
j(1+∥zi−µj∥2)−1 where qij is the jth entry of the soft label qi, denoting the probability of zi

belonging to cluster µj . The clustering loss Lc is the KL divergence between the soft assignments (qi)
and an auxiliary distribution (pi). First, the autoencoder is pre-trained using only Lr to initialize the
auxiliary distribution and the cluster centers are initialized by performing k-means on the embeddings
of all images. After pretaining, the cluster centers and autoencoder weights are updated with the joint
loss L iteratively while the auxiliary distribution is only updated after T iterations.
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Estimation: The final step includes the estimation of joint distribution and the PID values, also
leading to the proposed measure Msp. The joint distribution is obtained by computing normalized
3D histogram of the discrete clusters of foreground, background, and binary target variable. Then,
the PID values are estimated from the joint distribution using the DIT package (James et al., 2018)
which is a python package for discrete information theory. We use IBROJA (BROJA Information)
developed in (Bertschinger et al., 2014) to compute PID which solves the convex optimization
problem in Definition 1 and results in four non-negative terms, namely, Uni(Y :B|F ), Uni(Y :F |B),
Red(Y :F,B), and Syn(Y :F,B). We use them to calculate the measure Msp = Uni(Y :B|F ) −
Uni(Y :F |B)− Syn(Y :F,B).

4 EXPERIMENTS

To support our theoretical findings, we provide experimental results for different datasets with
different variants to capture different types of sampling biases, i.e., unbalanced, class-balanced, group-
balanced, and mixed background (addition and concatenation). Here, we illustrate how information
is distributed in the core and spurious features and how we can relate the worst-group accuracy (W.G.
Acc.) with the proposed measure of the spuriousness Msp of a dataset. We conduct experiments on
four datasets: Waterbird (Wah et al., 2011), CelebA (Lee et al., 2020), Dominoes (Shah et al., 2020),
and Spawrious (Lynch et al., 2023). We begin with using our explainability framework, namely
Spuriousness Disentangler, on each dataset (with dataset-specific variations) to compute the PID
values and Msp. We fine-tune the pre-trained ResNet-50 (He et al., 2016) model and calculate the
worst-group accuracy over all groups. More details of the experiments are in Appendix C. Also see
Appendix A (automatic segmentation of features), and Appendix B (Tabular datasets).

1. Waterbird: The Waterbird dataset (Wah et al., 2011) is a popular spurious correlation benchmark.
The task is to classify the type of the bird (waterbird = 1, landbird = 0). However, there exists
spurious correlation between the backgrounds (water = 1, land = 0) and the labels (bird type). The
two types of backgrounds and foregrounds result in total four groups (details in Appendix C.3.1).

Figure 7: This bar-plot shows the redundant information (R), unique information in background
(Uniq-B) and foreground (Uniq-F), and Synergistic information (Syn) for the Waterbird dataset for
unbalanced, class balanced, group balanced, addition and concatenation setups. Observe that the
Uniq-B decreases and Uniq-F increases for group balanced, addition, and concatenation dataset
compared to that of unbalanced dataset. Note that the y-axis is in log scale.

Figure 8: Trend between worst-group accuracy and measure of spuriousness Msp across datasets.

Observations: Fig. 7 shows our findings regarding PID values and the worst-group accuracy for
the five variants of the Waterbird dataset. Firstly, we can observe that the unique information in
background (Uniq-B) is significantly higher than the other PID values for unbalanced and class
balanced cases. We also find an increase in unique information in foreground (Uniq-F) for the group
balanced and background mixed versions. Secondly, the worst-group accuracy increases when any
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Figure 9: Examples of Grad-CAM images of Waterbird dataset: Observe that for the unbalanced
dataset (1st from left), the model adds more emphasis (red regions) to the background while in the
class balanced, group balanced, addition and concatenation versions (2nd, 3rd, 4th and 5th from left),
the foreground gets more emphasis.

technique is applied to reduce the sampling bias, namely, group balancing or background mixing.
Fig. 8 depicts a negative trend between worst-group accuracy and measure of spuriousness Msp.
Individual PID values do not give a complete understanding of the spuriousness, i.e., dataset’s
undesirable steering towards spurious features over core features. However the negative correlation
between our proposed dataset measure Msp and the model generalization metric worst-group
accuracy indicates that Msp is a good measure of dataset quality. Finally, Fig. 9 shows through the
Grad-CAM (Selvaraju et al., 2017) images that when the dataset is balanced or mixed background,
the model emphasizes more on the core features (the red regions) while in the unbalanced dataset, the
background is more emphasized which results in poor worst-group accuracy.

2. CelebA: CelebA is an another popular dataset for spurious correlation benchmarking which
consists of images of male-female celebrities. We use a subset of this dataset namely CelebAMask-
HQ (Lee et al., 2020) to utilize the segmentation mask of the hair while calculating the PID values.
The objective is to identify blonde (= 1) and non-blonde (= 0) hair. However, there exists a spurious
correlation between the gender (men (= 1), women (= 0)) and the label which makes the model focus
on the face rather than the hair to find out the hair color (Moayeri et al., 2023). For this, we consider
hair as the foreground and anything but the hair as background. We do not perform background
mixing for this dataset since it is not practical to add or concatenate two faces randomly. More details
are in Appendix C.3.2.

Figure 10: The distribution of the redundant information (R), unique information in background (Uniq-
B) and foreground(Uniq-F) and Synergistic information (Syn) for the unbalanced, class balanced, and
group balanced CelebA dataset. Observe that the Uniq-F and Synergy increase for class balanced and
group balanced dataset compared to that of unbalanced dataset. Note that the y-axis is in log scale.

Observations: Fig. 10 shows the PID values for unbalanced, class balanced, and group balanced
CelebA dataset. Firstly, the unique information in the foreground is the most prominent one among
all other PID values. Observe that, the Uniq-F increases while the dataset is class balanced or
group balanced along with the increasing worst-group accuracy. There is a negative trend between
worst-group accuracy and the measure of spuriousness Msp (see Fig. 8). Secondly, the Grad-CAM
images (see Fig. 21 in Appendix. C.3.2) show that the model focuses on the hair for the balanced
dataset, but for the unbalanced dataset, it emphasizes more on the face.

3. Dominoes: Dominoes is a synthetic dataset created by combining handwritten digits (zero and
one) from MNIST (Deng, 2012) and images of cars and trucks from CIFAR10 (Krizhevsky et al.,
2009) (digit 0 or 1 at the top, car (= 0) or truck (= 1) at the bottom of an image). We make two
version of this synthetic dataset namely Dominoes 1.0 and Dominoes 2.0 inducing different degrees
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of sampling biases. The task is to classify whether the image contains a car or a truck; hence the car
or truck corresponds to the core features (foreground). On the other hand, the digits are considered as
the spurious features (background) (details in Appendix C.3.3).

Figure 11: The distribution of the redundant information (R), unique information in background
(Uniq-B) and foreground(Uniq-F) ,and Synergistic information (Syn) for the unbalanced, group
balanced, addition and concatenation Dominoes dataset. Observe that the uniq-B decreases group
balanced and background mixed datasets and the uniq-F increases for background mixed datasets
compared to that of unbalanced dataset. Note that the y-axis is in log scale.

Observations: Fig. 11 shows the PID values for all four variations of Dominoes dataset. Firstly, the
unique information in the background is really high for the unbalanced dataset. When the dataset is
balanced or background mixed, this value decreases significantly. For the addition and concatenation
cases, we observe that unique information in the foreground becomes significant. The worst-group
accuracy improves when the training dataset is balanced or background mixed. Secondly, Fig. 8 shows
a negative relationship between the worst-group accuracy and the spuriousness Msp for this dataset
as well. Finally, in Fig. 22 of Appendix. C.3.3, we observe that the model focuses on the core features
when there is reduced spuriousness, e.g., when the training dataset is balanced or background mixed.

4. Spawrious: Spawrious (Lynch et al., 2023) is a synthetic image dataset created by employing a
text-to-image model. We use a subset of this dataset where we classify dog breeds - dachshund (= 0)
and labrador (= 1). We select the subset in a way that most of the dachshunds are in beach (= 0)
background and rest of them are in desert (= 1) background (see Appendix. C.3.4 for more details).
We use a segmentation model with FPN (Lin et al., 2017) encoder and ResNet-34 (He et al., 2016)
decoder pre-trained with Oxford-IIIT Pet Dataset to create the segmentation mask of the dogs of
our dataset. Using this mask we separate the foreground “dog” from the background. After having
the backgrounds and foregrounds, we use principal components analysis (PCA) (Maćkiewicz &
Ratajczak, 1993) followed by k-means clustering to have discrete lower dimensional representation.
We do not use our autoencoder module since for this dataset because a simpler dimensionality
reduction also seems to have a low reconstruction loss.

Observations Fig. 12 shows that the redundancy and unique information in the background decrease
and unique information in the foreground and synergy increase when the dataset is group balanced.
We also observe that there is still a negative trend between the measure of spuriousness and the
worst-group accuracy showing the effectiveness of the measure.

Figure 12: The first two plot shows the change in redundancy, unique information, and the synergistic
information. The last plot shows a negative relationship between the worst-group accuracy and the
measure of spuriousness Msp. Note that the y-axis of first two subplots is in log scale.
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A ADDITIONAL EXPERIMENT 1: AUTOMATIC SEGMENTATION OF FEATURES

Segmentation, a component of our Spurious Disentangler, plays a pivotal role in identifying core
features from spurious ones. Identifying spurious features (pixels) without any additional information
is challenging in image datasets, particularly if they lack group labels. However, in supervised classi-
fication tasks, the availability of target labels corresponding directly to the goal of the classification
task (and hence some partial knowledge of what the core features should be if not the exact pixels)
often offers a practical workaround. Specifically, one can leverage automatic segmentation to at least
perform object detection and choose the most relevant objects as the “core”. Then, the regions of an
image not associated with the “core” objects can often be considered a subset of spurious features.

Advances in Open-Vocabulary Semantic Segmentation (OVSS) have significantly reduced the de-
pendence on task-specific training by enabling generalization to unseen categories without requiring
labeled data. To leverage these advancements, we employ CLIPSeg (Lüddecke & Ecker, 2022),
a state-of-the-art OVSS model, to generate masks for various objects in a zero-shot manner using
partial knowledge of the classification task in mind. For instance, in the Waterbird dataset, we specify
the prompt "bird" to obtain a mask for the bird object. This approach utilizes publicly available
fine-grained weights, enabling efficient and accurate segmentation without additional labeled data.

The generated mask is applied to the original image to extract the foreground, while the background
is obtained by multiplying the original image with 1−mask, as illustrated in Fig. 13. Fig. 14 reveals
a negative correlation between the worst-group accuracy and increasing values of Msp, calculated
using the obtained background and foreground.

Figure 13: The segmentation mask is obtained by zero-shot image segmentation using CLIPSeg (Lüd-
decke & Ecker, 2022). We get the foreground by multiplying the input image with the mask and
background by multiplying (1−mask).

Figure 14: Waterbird Dataset: The first two plots show the change in redundancy, unique information,
and the synergistic information. The last plot shows a negative relationship between the worst-group
accuracy and the measure of spuriousness Msp. Note that the y-axis of the first two plots is in log
scale.

Thus, our proposed technique of dataset evaluation can be applied in conjunction with such automatic
segmentation methods to any image dataset where the group information is not available, enabling us
to first identify an approximation of the core features using partial knowledge of the target objects for
the classification task, and then explain the nature of spurious patterns.
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B ADDITIONAL EXPERIMENT 2: TABULAR DATASET

The applicability of our proposed framework goes beyond images, and can also be applied for
explainability on tabular datasets. For instance, one might want to understand and interpret the
dependencies of any specific feature with respect to another set of features in the dataset, prior to
training. We perform an experiment on the Adult (Becker & Kohavi, 1996) dataset. The task is
to predict whether annual income of an individual exceeds $50k per year or not (> 50k = 1,<=
50k = 0). Here we consider “gender” as a spurious feature vector (male = 1, female = 0) and ”age”,
”education-num”, ”hours-per-week” jointly as core feature matrix. Since the core feature matrix is
high dimensional, we use k-means clustering to reduce the dimension and discretize the features.
Then we use estimation module to calculate PID values with core features, spurious features, and
target label. Fig. 15 shows the values for redundancy, unique information, and synergy. Observe that
the unique information in the background and the redundant information approach zero, indicating
that the correlation between gender and the target label has been effectively mitigated. We also
observe a negative relationship between our proposed measure and worst-group accuracy which
implies that Msp corresponds to the quality of the dataset. Furthermore, we observe a negative
correlation between the proposed spurious measure Msp and the worst-group accuracy, highlighting
that Msp serves as an indicator of dataset quality, i.e., spuriousness prior to training.

Figure 15: Adult Dataset: The first two plots show the PID values. The last plot shows a negative
relationship between the worst-group accuracy and the measure of spuriousness Msp. Note that the
y-axis of first two subplots is in log scale.

We train XGBoost (Chen & Guestrin, 2016) model for prediction task and calculated the worst-group
accuracy which corresponds to the accuracy of the minority group (see Table 1, minority group 10
corresponds to female individuals with >50k income.).

Table 1: Summary of Adult dataset
Adult Group 00 Group 01 Group 10 Group 11
Train 10116 15930 1214 6929
Test 4307 6802 555 2989
Total 14423 22732 1769 9918

C APPENDIX TO EXPERIMENTS

This section includes additional results and figures for a more comprehensive understanding.

C.1 ADDITIONAL RESULTS

Our explainability framework is pre-emptive or anticipative of spuriousness using just the dataset
before training the model. The goal of our experiments is to show broad agreement between our
anticipations from the dataset before training any model and the post-training behavior of actual
models (when trained regularly to optimize performance without doing anything else specifically
targeted towards avoiding spurious features). Apart from Worst-Group Accuracy, we also observe the
Grad-CAM visualizations to check if the model demonstrates a stronger emphasis on the relevant
core features or not (see Fig. 9, 21, 22). To further justify this, we calculate intersection-over-union
(IoU) metric (Rezatofighi et al., 2019) over the entire test Waterbird dataset. Table 2 shows that when
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the dataset is modified from unbalanced to the other variants, the IoU score increases. The IoU score
is calculated using the ground-truth segmentation masks of birds and the masks obtained from the
Grad-CAM explanation.

Table 2: IoU between the ground truth masks and Grad-CAM masks for Waterbird dataset
Test Dataset Unbalanced Class Balanced Groupd Balanced Addition Concatenation
Minority Group 0.22 0.29 0.24 0.28 0.32
All Groups 0.19 0.23 0.22 0.29 0.30

Table 3 shows a comparison between our proposed measure of spuriousness Msp and other possible
measures.

Table 3: Comparison of our proposed measure of spuriousness Msp with other possible measures.
Dataset Measures Unbalanced Class Balanced Group Balanced Addition Concatenation

Waterbird
I(Y ;B) 0.1726 0.0315 0.0028 0.0005 0.0002
I(Y ;B)− I(Y ;F ) 0.1669 0.0298 -0.0089 -0.0052 -0.0054
Proposed Msp 0.1486 0.0185 -0.0322 -0.0208 -0.0195

Dominoes 1.0
I(Y ;B) 0.1882 - 0.0005 0.0010 0.0010
I(Y ;B)− I(Y ;F ) 0.1728 - -0.0010 -0.0203 -0.0144
Proposed Msp 0.1660 - -0.0165 -0.0279 -0.0207

Dominoes 2.0
I(Y ;B) 0.5913 - 0.2610 0.0002 0.0001
I(Y ;B)− I(Y ;F ) 0.5619 - 0.2462 -0.0426 -0.0477
Proposed Msp 0.5557 - 0.2237 -0.0501 -0.0574

CelebA
I(Y ;B) 0.0238 0.0005 0.0151 - -
I(Y ;B)− I(Y ;F ) -0.3038 -0.3713 -0.4051 - -
Proposed Msp -0.3091 -0.3775 -0.4797 - -

Spawrious
I(Y ;B) 0.0437 - 0.0096 - -
I(Y ;B)− I(Y ;F ) 0.0012 - -0.0056 - -
Proposed Msp -0.0007 - -0.0176 - -

C.2 ADDITIONAL DETAILS ON CLUSTERING

At the dimensionality reduction step, we need to choose the number of clusters. We calculate the
PID values for cluster number 5, 10, and 20. In Table 4, we observe that the relevant information
can be preserved while reducing the dimensionality. We select 10 clusters to have a balance between
retaining sufficient information and ensuring faster computational time.

Table 4: PIDs for Waterbird dataset with different number of clusters.
Unbalanced Red(Y :F,B) Uni(Y :B|F ) Uni(Y :F |B) Syn(Y :F,B)
# Cluster 5 0.0065 0.1220 0.0000 0.0085
# Cluster 10 0.0057 0.1669 0.0000 0.0184
# Cluster 20 0.0025 0.1736 0.0000 0.0163
Standard Deviation 0.0017 0.0229 0.0000 0.0043
Class Balanced Red(Y :F,B) Uni(Y :B|F ) Uni(Y :F |B) Syn(Y :F,B)
# Cluster 5 0.0008 0.0221 0.0000 0.0012
# Cluster 10 0.0016 0.0300 0.0001 0.0114
# Cluster 20 0.0008 0.0128 0.0000 0.0097
Standard Deviation 0.0004 0.0070 0.0000 0.0045

C.3 ADDITIONAL DETAILS ON DATASETS

C.3.1 WATERBIRD

A summary of the Waterbird dataset is given in Table 6. At first we use Spurious Disentangler for
calculating PID values. The segmentation masks of the birds are given with the dataset. We multiply
the given mask of each image with the corresponding whole image and get the foreground, i.e., the
bird with black background and the backgrounds also come with the dataset (see Fig. 16 for the
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Table 5: Worst-group accuracy(%) for different datasets with standard deviations.
Dataset Unbalanced Class Balanced Group Balanced Addition Concatenation
Waterbird 25.71±2.88 74.49±0.58 85.82±0.71 88.18±2.17 92.60±0.39
Dominoes 1.0 86.29±4.44 - 90.19±1.23 94.42±0.24 96.06±0.39
Dominoes 2.0 78.78±1.02 - 88.06±1.12 86.74±1.22 90.72±3.37
CelebA 71.41±0.81 85.29±2.94 98.34±1.66 - -
Spawrious 91.91±1.94 - 95.24±0.28 - -

Table 6: Summary of the Waterbird dataset
Waterbird Group 00 Group 01 Group 10 Group 11
Train 3498 184 56 1057
Validation 467 466 133 133
Test 2255 2255 642 642
Total 6220 2905 831 1832

Figure 16: Samples of Waterbird dataset (original, concatenation, and addition).

examples of the dataset). For dimensionality reduction, we use autoencoder jointly with clustering
as shown in Fig. 17. To obtain the clusters, the model is pre-trained with only mean square error
loss function (MSEloss). Then, the model is again trained with weighted loss function which is
a weighted sum of MSEloss and KL divergence loss with γ = 0.1 where the hyperparameter is
chosen from standard implementations (Guo et al., 2017). The weights of the clustering layer are
initialized with the cluster centers obtained by k-means clustering after the pre-training step. The
training process is terminated if the change of label assignments between two consecutive updates
for target distribution is less than 0.01. The hyperparameters are as follows: a batch size of 64, a
learning rate of 0.001, a CosineAnnealingLR scheduler, an Adam optimizer with a weight decay of
0.0001, 150 pretraining epochs, followed by 50 epochs of additional training. Next, the clusters of
the foreground, background, and the binary labels are used to estimate the joint distribution using 3D
histograms followed by the PID estimation with DIT James et al. (2018) package which uses BROJA
Information. See Table 7 for the details of PID values.

To calculate the worst-group accuracy we do fine-tuning of the pre-trained ResNet-50 He et al. (2016)
model. The worst-group accuracy is defined as the accuracy of the minority group having the lowest
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Figure 17: Architecture of the proposed autoencoder for the Waterbird and CelebA dataset. Here, BN
stands for Batch Normalization.

Table 7: PID values for Waterbird dataset
Waterbird Red(Y :F,B) Uni(Y :B|F ) Uni(Y :F |B) Syn(Y :F,B) Msp

Unbalanced 0.0057 0.1669 0.0000 0.0184 0.1486
Class Balanced 0.0016 0.0300 0.0001 0.0114 0.0185
Group Balanced 0.0026 0.0001 0.0091 0.0233 -0.0322
Addition 0.0004 0.0001 0.0053 0.0156 -0.0208
Concatenation 0.0002 0.0001 0.0055 0.0140 -0.0195

number of training sample. The worst-group accuracy is defined as the accuracy of the minority group
with the fewest training samples. The hyperparameters used are as follows: batch size of 64, learning
rate of 0.0001, CosineAnnealingLR scheduler, stochastic gradient descent (SGD) optimizer with a
weight decay of 0.0001, binary cross-entropy as the loss function, and 100 epochs. For balanced
datasets, we use a weighted random sampler, where the weights are selected based on the proportion
of the groups or classes. See Table 5 for the worst-group accuracies of different variants of Waterbird
dataset.

C.3.2 CELEBA

Table 8: Summary of the CelebA dataset
CelebA Group 00 Group 01 Group 10 Group 11
Train 11111 8305 4003 188
Test 1391 997 525 18
Total 12502 9302 4528 206

The summary of the CelebA (Lee et al., 2020) dataset is given in Table 8. The steps and hyperpa-
rameters for calculating PIDs are same as Waterbird dataset. However, we get the background, by
multiplying (1-mask) with the whole image. See Fig. 18 for the examples.

Table 9: PID values for CelebA dataset
CelebA Red(Y :F,B) Uni(Y :B|F ) Uni(Y :F |B) Syn(Y :F,B) Msp

Unbalanced 0.0238 0.0000 0.3038 0.0053 -0.3091
Class Balanced 0.0005 0.0000 0.3713 0.0063 -0.3775
Group Balanced 0.0151 0.0000 0.4051 0.0746 -0.4797
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Figure 18: Samples of CelebA dataset.

The details of PID values and worst-group accuracies for several variations of this dataset are shown
in Table 9 and Table 5 respectively.

Figure 19: Samples of Dominoes dataset (original, concatenation, and addition).

C.3.3 DOMINOES

The summary of Dominoes 1.0 and Dominoes 2.0 are given in Table 10 and Table 11 respectively.
Fig. 19 shows the examples of original, addition, and concatenation variants of the dataset.

Table 10: Summary of the Dominoes 1.0 dataset
Dominoes 1.0 Group 00 Group 01 Group 10 Group 11
Train 3750 1250 1250 3750
Test 473 507 507 473
Total 4223 1772 1757 4208
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Table 11: Summary of the Dominoes 2.0 Dataset
Dominoes 2.0 Group 00 Group 01 Group 10 Group 11
Train 3000 500 1250 3000
Test 245 490 245 490
Total 3245 990 1495 3490

Table 12: PID values for Dominoes dataset
Dominoes 1.0 Red(Y :F,B) Uni(Y :B|F ) Uni(Y :F |B) Syn(Y :F,B) Msp

Unbalanced 0.0154 0.1728 0.0000 0.0068 0.1660
Group Balanced 0.0003 0.0002 0.0013 0.0155 -0.0165
Addition 0.0009 0.0000 0.0203 0.0076 -0.0279
Concatenation 0.0009 0.0000 0.0144 0.0063 -0.0207
Dominoes 2.0 Red(Y :F,B) Uni(Y :B|F ) Uni(Y :F |B) Syn(Y :F,B) Msp

Unbalanced 0.0294 0.5619 0.0000 0.0061 0.5557
Group Balanced 0.0148 0.2462 0.0000 0.0225 0.2237
Addition 0.0001 0.0000 0.0426 0.0075 -0.0501
Concatenation 0.0001 0.0000 0.0477 0.0096 -0.0574

For PID calculation, The hyperparameters are as follows: a batch size of 8, a learning rate of 0.001, a
CosineAnnealingLR scheduler, an Adam optimizer with a weight decay of 0.0001, 100 pretraining
epochs, followed by 50 epochs of additional training. The architecture of the autoencoder is given in
Table 13. See Table 12 for the details of PID values and Msp. For Dominoes 1.0 dataset, since group
01 and group 10 have the same number of training and test samples, the worst-group accuracy is
calculated by taking the average of the accuracies of these two groups. Table 5 shows the worst-group
accuracies for unbalanced, group balanced, addition, and concatenation datasets.

Table 13: Architecture details of autoencoder for Dominoes dataset
Sl. No. Layer Filter No. Kernel Size Stride Padding Output Padding Output Shape Param No.
1 Conv2d 32 5 2 2 - (32,16,16) 2432
2 LeakyReLU - - - - - (32,16,16) 0
3 BatchNorm2d - - - - - (32,16,16) 64
4 Conv2d 64 5 2 2 - (64,8,8) 51264
5 LeakyReLU - - - - - (64,8,8) 0
6 BatchNorm2d - - - - - (64,8,8) 128
7 Conv2d 128 3 2 0 - (128,3,3) 73856
8 LeakyReLU - - - - - (128,3,3) 0
9 Flatten - - - - - 1152 0
10 Linear (embedding) - - - - - 10 11530
11 Clustering Layer - - - - - 10 100
12 Linear(deembedding) - - - - - 1152 12672
13 LeakyReLU - - - - - 1152 0
14 ConvTranspose2d 64 3 2 0 1 (64, 8, 8) 73,792
15 LeakyReLU - - - - - (64, 8, 8) 0
16 BatchNorm2d - - - - - (64, 8, 8) 128
17 ConvTranspose2d 32 5 2 2 1 (32, 16, 16) 51,232
18 LeakyReLU - - - - - (32, 16, 16) 0
19 BatchNorm2d - - - - - (32, 16, 16) 64
20 ConvTranspose2d 3 5 2 2 1 (3, 32, 32) 2403

C.3.4 SPAWRIOUS

The summary of the subset of Spawrious dataset Lynch et al. (2023) that we use for our experiment is
given in Table 14. The samples of this dataset are shown in Fig. 20.

Table 14: Summary of the subset of the Spawrious dataset
Spawrious Group 00 Group 01 Group 10 Group 11
Train 3072 2275 175 1056
Test 96 893 2993 2112
Total 3168 3168 3168 3168
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Figure 20: Samples of the subset of Spawrious dataset we use in this work.

Table 15: PID values for Spawrious dataset
Spawrious Red(Y :F,B) Uni(Y :B|F ) Uni(Y :F |B) Syn(Y :F,B) Msp

Unbalanced 0.039589 0.004067 0.002883 0.001921 -0.00074
Group Balanced 0.00891 0.000699 0.006276 0.012068 -0.01765

We use pre-trained segmentation model to generate the mask of the dog and separate the foreground
and background using this mask. We use PCA followed by k-means clustering to have lower
dimensional discrete representation of the foreground and background. Then we use our estimation
module for the calculation of PID values and Msp. Table 15 and Table 5 shows all PID values along
with the measure and the worst-group accuracy respectively. All the experiments are executed on
NVIDIA RTX A4500.

Figure 21: Examples of Grad-CAM images CelebA dataset: Observe that for the unbalanced dataset
(1st from left), the model adds more emphasis (red regions) to the face (background) while in the
class balanced and group balanced (2nd and 3rd), the hair (foreground) is more emphasized.
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Figure 22: Examples of Grad-CAM images Dominoes dataset: Observe that for the unbalanced
dataset (1st from left), the model adds more emphasis (red regions) to the digits (background) while
in the group balanced, addition and concatenation versions (2nd, 3rd, and 4th from left), the car
(foreground) is more emphasized.

D DISCUSSION AND FUTURE WORK

Formalizing and analyzing the information distribution among spurious and core features can provide
a theoretical understanding of the biases or spuriousness of any dataset. Calculating the measure
of spuriousness introduces an efficient way to assess dataset quality before performing the actual
training or fine-tuning which can be computationally intensive, particularly in the era of foundational
models. In this work, we theoretically justify the importance of each component of partial information
decomposition (PID) for understanding the nature of dataset and the prediction. We also justify the
validation of the proposed measure of spuriousness with examples and counterexamples along with
experimental findings that proposed measure has a relationship with worst-group accuracy (and hence,
dataset quality). We also introduce the use of Spurious Disentangler for handling high dimensional
image data and estimating the PIDs (Broader Impacts in Appendix E).

Limitations: (i) Identifying spurious features and core features of a given dataset automatically
is not always straightforward. Future work will look into alternate techniques, such as causal
discovery (Zanga et al., 2022) (recently using LLMs (Liu et al., 2024)) as well as validation on NLP
datasets. (ii) The estimation is highly data-dependent. A small change in the dataset can greatly
affect the PID values. Future work will look into sensitivity and estimation error analysis. (iii) The
efficiency and robustness of the Spurious Disentangler can also be improved. (iv) Additionally, there
can be groups of spurious features rather than just one which can have nuanced interplay among
them, which is another interesting direction.

E BROADER IMPACT

Quantifying spurious patterns has significant broader impacts across multiple domains. Quantification
of dataset spuriousness might improve the trustworthiness of AI in several high-stakes and safety-
critical applications such as healthcare which can directly impact people’s lives. Spurious patterns
often lead to biased predictions, particularly in sensitive domains such as hiring, lending, or criminal
sentencing. Going beyond existing works, our research paves the way for improved understanding
of the nature of spurious relationships, enabling interpretability which could also have significant
implications in auditing and preventing discrimination.
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F APPENDIX TO MAIN RESULTS

F.1 RELEVANT MATHEMATICAL RESULTS

PID (Bertschinger et al., 2014; Banerjee et al., 2018) provides a mathematical framework that
decomposes the total information content I(Y ;A,B) into four non-negative terms:

I(Y ;A,B) = Uni(Y :B|A) + Uni(Y :A|B) + Red(Y :A,B) + Syn(Y :A,B). (5)

In addition to this equation, the PID terms also satisfy the following relationships (Bertschinger et al.,
2014; Banerjee et al., 2018):

I(Y ;A) = Uni(Y :A|B) + Red(Y :A,B). (6)

I(Y ;A|B) = Uni(Y :A|B) + Syn(Y :A,B). (7)

Now, defining any one of the PID terms is sufficient to obtain all four by using these relationships.
In this work, we use a popular definition of unique information from (Bertschinger et al., 2014;
Banerjee et al., 2018) as defined in Definition 1 in Section 2 which can be computed by solving a
convex optimization problem (Bertschinger et al., 2014; Banerjee et al., 2018).

One of the most desirable property of this definition is that all four PID terms are non-negative.
Lemma 4 (Nonnegativity of PID). All four PID terms Uni(Y :B|A), Uni(Y :A|B), Red(Y :A,B),
and Syn(Y :A,B) are nonnegative as per Definition 1.

This result is proved in Bertschinger et al. (2014, Lemma 5).
Lemma 5 (Monotonicity under local operations on B). Let B = f(B′) where f(·) is a deterministic
function. Then, we have:

Uni(Y :B|A) ≤ Uni(Y :B′|A).

This result is derived in Banerjee et al. (2018, Lemma 31).
Lemma 6 (Monotonicity under adversarial side information). For all (Y,B,A,W ), we have:

Uni(Y :B|A,W ) ≤ Uni(Y :B|A).

This result is derived in Banerjee et al. (2018, Lemma 32).
Lemma 7. Uni(Y :B|F ) = 0 if and only if there exists a row-stochastic matrix T ∈ [0, 1]|F|×|B|

such that: PY B(Y = y,B = b) =
∑

f∈F PY F (Y = y, F = f)T (f, b) for all y ∈ Y and b ∈ B.

Proof. This result is from Bertschinger et al. (2014). Here, we include a proof for completeness.

If Uni(Y :B|F ) = 0, then we have: minQ∈∆P
IQ(Y ;B|F ) = 0 where ∆P = {Q∈∆ : QY F (Y =

y, F = f) = PY F (Y = y, F = f) and QY B(Y = y,B = b) = PY B(Y = y,B = b)}. Thus, there
exists a distribution Q ∈ ∆P such that Y and B are independent given F under the joint distribution
Q. Then, we have

PY B(Y = y,B = b) = QY B(Y = y,B = b) (8)

=
∑
f∈F

QY FB(Y = y, F = f,B = b) (9)

=
∑
f∈F

QB|Y F (B = b|Y = y, F = f)QY F (Y = y, F = f) (10)

(a)
=
∑
f∈F

QB|Y F (B = b|Y = y, F = f)PY F (Y = y, F = f) (11)

(b)
=
∑
f∈F

QB|F (B = b|F = f)PY F (Y = y, F = f) (12)

(c)
=
∑
f∈F

T (f, b)PY F (Y = y, F = f). (13)
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Here, (a) holds because PY F = QY F for all Q ∈ ∆P , (b) holds because under joint distribution Q,
variables Y and B are independent given F , and (c) simply chooses T (f, b) = QB|F (B = b|F = f)
which is a function of (f, b) and will lead to a row-stochastic matrix T since

∑
b∈B T (f, b) =∑

b∈B QB|F (B = b|F = f) = 1.

Next, we prove the converse. Suppose, such a row-stochastic matrix T exists such that:

PY B(Y = y,B = b) =
∑
f∈F

T (f, b)PY F (Y = y, F = f).

Now, we can define a joint distribution Q∗ such that:

Q∗(Y = y, F = f,B = b) = PY F (Y = y, F = f)T (f, b). (14)

We can show that Q∗ is a valid probability distribution since T is row stochastic.∑
y∈Y

∑
b∈B

∑
f∈F

Q∗(Y = y, F = f,B = b) =
∑
y∈Y

∑
b∈B

∑
f∈F

PY F (Y = y, F = f)T (f, b)

=
∑
y∈Y

∑
f∈F

PY F (Y = y, F = f)

(∑
b∈B

T (f, b)

)
=
∑
y∈Y

∑
f∈F

PY F (Y = y, F = f) = 1. (15)

Also, we can show that Q∗ ∈ ∆P since:

Q∗
Y B(Y = y,B = b) =

∑
f∈F

PY F (Y = y, F = f)T (f, b) = PY B(Y = y,B = b), (16)

which holds since such a row-stochastic matrix T exists. Also, we have:

Q∗
Y F (Y = y, F = f) =

∑
b∈B

PY F (Y = y, F = f)T (f, b) = PY F (Y = y, F = f), (17)

which holds since T is row-stochastic.

Then, Uni(Y :B|F ) = minQ∈∆P
IQ(Y ;B|F ) ≤ IQ∗(Y ;B|F ) = 0.

F.2 PROOF OF THEOREM 1

For the first claim, notice that Uni(Y :B|F ) = I(Y ;B) − Red(Y :B,F ) (from equation 6) and
Red(Y :B,F ) ≥ 0 (nonnegativity of PID, see Lemma 4). Thus,

Uni(Y :B|F ) ≤ I(Y ;B).

For the second claim, we will use Lemma 7. Uni(Y :B|F ) = 0 if and only if there exists a row-
stochastic matrix T ∈ [0, 1]|F|×|B| such that: PY B(Y = y,B = b) =

∑
f∈F PY F (Y = y, F =

f)T (f, b) for all y ∈ Y and b ∈ B. The existence of such a row-stochastic matrix is equivalent to
Blackwell Sufficiency as per Definition 2 from (Blackwell, 1953).

For the third claim, first observe that if B′ = B ∪W , then B can be written as a local operation on
B′, i.e., B = f(B′). Thus, from Lemma 5, we have:

Uni(Y :B|F ) ≤ Uni(Y :B′|F ). (18)

Next, observe that since F ′ = F\W , then from Lemma 6, we have:

Uni(Y :B′|F ) = Uni(Y :B′|F ′,W ) ≤ Uni(Y :B′|F ′). (19)

Combining equation 18 and equation 19, we have the claim

Uni(Y :B|F ) ≤ Uni(Y :B′|F ′).
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F.3 PROOF OF ADDITIONAL RESULTS

F.3.1 PROOF OF LEMMA 1

Proof of Lemma 1. Here, B = Y + N and F = Y + N where Y and N are independent. Any
optimal predictor is a function of the inputs F and B, i.e., Ŷ = f(F,B). Since F = B, this function
can always be rewritten as a function of B alone or F alone.

Next, we will show that only the redundant information Red(Y :B,F ) is positive and all other PID
terms Uni(Y :B|F ), Uni(Y :F |B), and Syn(Y :F,B) are zero.

Here I(Y ;B|F ) = I(Y ;F |B) = 0 since B = F .

I(Y ;B|F ) = H(B|F )−H(B|Y, F ) = 0.

According to the Definition 1 and non-negativity of PID terms, Uni(Y :B|F ) = I(Y ;B|F ) −
Syn(Y :F,B) ≤ I(Y ;B|F ) = 0.

Similarly, we have, Uni(Y :F |B) ≤ I(Y ;F |B) = 0.

Then, Syn(Y :F,B) = I(Y ;F |B)−Uni(Y :F |B) (from equation 7) is also 0.

Now, Red(Y :B,F ) = I(Y ;B) − Uni(Y :B|F ) = I(Y ;B) = H(Y ) −H(Y |B) which is positive
as long as there is a significant dependence between Y and B.

F.3.2 PROOF OF LEMMA 2

We first include another lemma that will be useful in proving our main result.

Lemma 8 (Noisy Feature). Let A = Y +N where Y ∼ Bern(1/2) is a random variable taking
values +1 or −1 and the noise N ∼ N (0, σ2

N ) is a Gaussian random variable independent of Y .
Then, the mutual information

I(Y ;A) ≤ 1

2
log2

(
1 +

1

σ2
N

)
.

Proof.

I(Y ;A) = H(A)−H(A|Y ) = H(Y +N)−H(Y +N |Y ) (20)
= H(Y +N)−H(N |Y ) (21)
= H(Y +N)−H(N), since N ⊥⊥ Y (22)
(a)

≤ 1

2
log2 2πe

(
1 + σ2

N

)
− 1

2
log2 2πe

(
σ2
N

)
(23)

=
1

2
log2

(
1 +

1

σ2
N

)
. (24)

Here (a) holds because the entropy of Y +N is bounded by 1
2 log2 2πe

(
1 + σ2

N

)
(proved in Cover &

Thomas (2012, Theorem 8.6.5)). We also refer to Cover & Thomas (2012, Chapter 9) for a discussion
on Gaussian channels.

If we keep the distribution of Y fixed and vary the noise variance σ2
N , then we will observe a

decreasing trend of I(Y ;B) with increasing σ2
N . Fig.23 shows the exact trend where Y is a Bernoulli

random variable.

Proof of Lemma 2. Here B = N and F = Y +N where Y ∼ Bern(1/2) takes values +1 or −1,
and the noise N ∼ N (0, σ2

N ) with N ⊥⊥ Y and σ2
N ≫ 1.

First observe that the predictor Ŷ = f(B,F ) = F −B = Y . Thus, it is perfectly predictive of Y ,
and is an optimal predictor.
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Figure 23: Mutual Information vs. Noise Level (Y is Bernoulli)

Now, we will compute the values of the PID terms and show that Syn(Y :B,F ) > 0 and all the other
three PID terms are negligible.

Since B ⊥⊥ Y , we have I(Y ;B) = 0.

Since F = Y +N , we use Lemma 8 to first show that: I(Y ;F ) ≤ 1
2 log2

(
1 + 1

σ2
N

)
. Now, as the

variance σ2
N becomes high, we have I(Y ;F ) ≈ 0.

Since N ⊥⊥ Y , we have I(Y ;B) = 0. Now, from equation 6, we have

I(Y ;B) = Uni(Y :B|F ) + Red(Y :B,F ) = 0. (25)

According to Lemma 4, Uni(Y :B|F ) and Red(Y :B,F ) are nonnegative. As their summation is 0,
each term should be 0 as well, i.e., Uni(Y :B|F ) = 0 and Red(Y :B,F ) = 0.

Again, since N has a high variance, we have (from Lemma 8):

I(Y ;F ) ≤ 1

2
log2

(
1 +

1

σ2
N

)
≈ 0. (26)

This leads to Uni(Y :F |B) = I(Y ;F )− Red(Y :B,F ) ≤ 1
2 log2

(
1 + 1

σ2
N

)
≈ 0.

However, I(Y ;F |B) = H(Y |B)−H(Y |B,F ) = H(Y |N)−H(Y |Y +N,N) = H(Y ) which is
positive and significant. This holds because H(Y |Y +N,N) = 0 since Y is completely determined
by Y +N and N together.

Now,

Syn(Y :B,F ) = I(Y ;F |B)−Uni(Y :F |B) ≥ H(Y )− 1

2
log2

(
1 +

1

σ2
N

)
≈ H(Y ). (27)

F.3.3 PROOF OF LEMMA 3

Proof of Lemma 3. Here the input feature X = (F,B). Observe that, we have the following con-

ditional distributions: X|Y=0 ∼ N ([0 0],

[
σ2
NF

0
0 σ2

NB

]
), and X|Y=1 ∼ N ([1 1],

[
σ2
NF

0
0 σ2

NB

]
).

For simplicity, assume P (Y = 0) = P (Y = 1). We let Σ =

[
σ2
NF

0
0 σ2

NB

]
.
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For the Bayes optimal classifier at the decision boundary, we have:

P (X|Y = 0) = P (X|Y = 1)

⇒ log(P (X|Y = 0)) = log(P (X|Y = 1))

⇒ −1

2
XΣ−1X⊤ = −1

2
(X − [1 1])Σ−1(X − [1 1])⊤

⇒ ∥F∥22
σ2
NF

+
∥B∥22
σ2
NB

=
∥F − 1∥22

σ2
NF

+
∥B − 1∥22

σ2
NB

⇒ F

σ2
NF

+
B

σ2
NB

=
1

2σ2
NF

+
1

2σ2
NB

This is the decision boundary for the Bayes optimal classifier. Thus, we can show that when
σ2
NB

≫ σ2
NF

, the boundary relies heavily on core feature F . Similarly, when σ2
NF

≫ σ2
NB

, the
boundary relies heavily on spurious feature B. Also refer to Fig. 3 (first two cases) for a pictorial
illustration on how the optimal classifier behaves.

Next, observe that when σ2
NF

≫ σ2
NB

, we have I(Y ;B) > I(Y ;F ) with strict equality (see
Lemma 8).

From the definition of PID, I(Y ;B) = Uni(Y :B|F )+Red(Y :B,F ) and I(Y ;F ) = Uni(Y :F |B)+
Red(Y :B,F ).

Since I(Y ;B) > I(Y ;F ), we therefore have:

Uni(Y :B|F ) + Red(Y :B,F ) > Uni(Y :F |B) + Red(Y :B,F ).

This leads to Uni(Y :B|F ) > Uni(Y :F |B) ≥ 0 since each PID term is nonnegative.

28


	Introduction
	Preliminaries
	Main Results
	Unraveling the Nature of Spurious Associations Leveraging PID
	Novel information-theoretic measure of spuriousness
	Proposed Explainability Framework: Spuriousness Disentangler

	Experiments
	Additional Experiment 1: Automatic Segmentation of Features
	Additional Experiment 2: Tabular Dataset
	Appendix to Experiments
	Additional Results
	Additional Details on Clustering
	Additional Details on Datasets
	Waterbird
	CelebA
	Dominoes
	Spawrious


	Discussion and Future Work
	Broader Impact
	Appendix to Main Results
	Relevant Mathematical Results
	Proof of Theorem 1
	Proof of Additional Results
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3



