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ABSTRACT

Large-scale Question-Answering (QA) models have shown remarkable capabili-
ties in various domains, but they often suffer from low confidence and reliability
in their answers. To address this issue, most existing methods rely on supervised
calibration, which requires labeled data and fine-tuning. However, these methods
are costly, time-consuming, prone to overfitting, and lack interpretability and non-
intrusiveness. In this paper, we propose a novel unsupervised learning paradigm
called “Generalized Adversarial Learning” (GAL) to improve the calibration of
large QA models. GAL views adversarial learning as a multi-agent game process,
consisting of three components: the generator, the processor, and the inspector.
The generator is the original large model that produces answers to questions. The
inspector is a module that evaluates the answers and poses additional questions to
probe the generator’s knowledge. The inspector also updates a matrix that mea-
sures the confidence level of each answer and a vector that guides the processor.
The processor is a module that adjusts the model weights using a convolutional
kernel prediction method, which enables parallel processing of billions of param-
eters within acceptable time and memory cost. We explain the core principles and
ideas behind GAL and present empirical evidence demonstrating its effectiveness,
interpretability, and non-intrusive nature, achieving performance surpassing the
state-of-the-art in some metrics even within the field of supervised learning.

1 INTRODUCTION

Question-Answering (QA) is a fundamental task in natural language processing (Lewis & Fan
(2018)). With the development of large-scale pre-trained language models, such as GPT-4 (Ope-
nAI (2023)) and Llama (Touvron et al. (2023)), QA models have achieved remarkable performance
in various domains and applications. However, these models also have some limitations, such as
generating incorrect or inconsistent answers (Azamfirei et al. (2023)), or being overconfident or un-
derconfident in their answers. These limitations pose serious challenges for the trustworthiness and
robustness of QA systems, especially in critical scenarios, such as medical diagnosis or legal advice.
Therefore, it is essential to calibrate the QA models, that is, to align their confidence and accuracy,
and to ensure that they can provide reliable and interpretable answers (Chen et al. (2022)).

Existing state-of-the-art calibration methods are mostly supervised methods refined from their un-
supervised version and require labeled data or fine-tuning dataset (Wang et al. (2023)) , which are
costly, time-consuming, and prone to overfitting. Moreover, they lack interpretability (Ye & Durrett
(2021)) and non-intrusiveness, making them less suitable for practical applications. For example,
learnable temperature scaling (Balanya et al. (2022)) requires a separate calibration dataset and can-
not be learned during training.Learnable label smoothing (Chen et al. (2022)) introduces noise to the
training labels, which may degrade the accuracy and confidence of the model.Learnable Ensembling
involves multiple models, which increases the computational complexity and memory consumption
. Unsupervised calibration methods, such as those based on hidden states or sample temperature,
like label smoothing, deep ensembling (Lakshminarayanan et al. (2017b)) and data augmentation
(Wei & Zou (2019)),are more easy-to-use and scalable, but they do not provide any feedback or
explanation for the calibration process, nor do they allow for fine-grained control over the model’s
parameters.
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In this paper, we propose a novel unsupervised learning paradigm called Generalized Adversarial
Learning (GAL) to improve the calibration of LLMs without the need for supervision, while also
enhancing their interpretability and non-intrusiveness. GAL views adversarial learning as a multi-
agent game process, consisting of three components: the generator, the processor, and the inspector.
The generator is the pre-trained LLM itself, which does not require any modification of model
structure, and no extra train is needed. The inspector is a dynamic interactive module that poses
additional questions based on the generator’s answers and recursively updates a confidence matrix
and a guidance vector. The processor is a module that directly operates on the model weights using a
convolutional kernel prediction method, which enables parallel processing of billions of parameters
within acceptable time and memory cost. The inspector and the processor cooperate to fine-tune
the generator’s weights in an unsupervised manner, while preserving its structure and function, and
improving its calibration and reliability.

Our main contributions are as follows:

• We introduce a novel learning paradigm that separates the generator from the conventional
adversarial framework and improves the model’s interpretability, which avoids modifying
or fine-tuning the generator, additional adversarial training or regularization, thus saving
computation and complexity.

• We devise an unsupervised algorithm to enhance the confidence of large question-
answering models, creating new opportunities for this field, which does not depend on
labeled data or human evaluation, or limit by the domain or task, showing better general-
ization and scalability.

• We design a convolution-based method for weight-level fine-tuning, enabling smooth inte-
gration of the calibration process with the standard training process of large-scale models,
which preserves the shape and structure of the weights, allowing low-invasive and parallel
operations on a large number of parameters, thus increasing the efficiency and flexibility.

2 RELATED WORK

Unsupervised Calibration Techniques Recently, there has been a shift towards developing unsu-
pervised calibration methods for LLMs (Lester et al. (2021)). Unlike traditional calibration tech-
niques that often involve extensive model parameter modifications, unsupervised approaches utilize
algorithms like temperature scaling (Guo et al. (2023)) and deep ensemble (Lakshminarayanan et al.
(2017b)). These methods aspire to improve the performance of LLMs without resorting to super-
vised fine-tuning. However, they also introduce unique challenges that warrant further investigation
(Bohdal et al. (2023)).The rise of Pre-trained Language Models (PLMs) has been accompanied by
several calibration methodologies, such as temperature scaling (Kull et al. (2019)), label smoothing
(Ghoshal et al. (2020)). Although promising, these methods are mostly unlearnable and hence leave
certain facets of PLM calibration unaddressed (Jiang et al. (2021)).

Calibration Enhancements via Collaborative Training One significant advancement in the do-
main of LLM calibration is the collaborative training with various language model subsets (Chen
et al. (2022)). This technique has showcased potential in elevating the calibration accuracy. No-
tably, recent studies have highlighted that the improvements brought about by this technique are
robust and relatively unaffected by external variables (Wang et al. (2021)).Relying heavily on cal-
ibration datasets, they come with challenges such as high data collection costs. Furthermore, the
need for extensive computational power and memory resources for fine-tuning large-scale models
is another concern, especially in unsupervised setups.An important yet unresolved issue in the field
is the interpretability gap: existing calibration techniques provide limited insights, thus potentially
hindering their application in critical scenarios().

3 METHOD

In this section, we introduce the three components of GAL: the generator, the processor, and the
inspector. We explain how they interact with each other to achieve unsupervised calibration of large
QA models.
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Figure 1: The main pipeline of calibration model using GAL paradigm. First, we evaluate the
generator using data from the training set. Then, we pass the task and response to the inspector,
which will generate an evaluation of the response and output guidance vectors to the processor. The
processor will then optimize the generator by manipulating its weights. This approach overcomes the
aforementioned challenges without altering the model structure and leveraging the existing training
set, producing promising results. We refer to this paradigm as ”Generalized Adversarial Learning”.

3.1 PROCESSOR : WEIGHT CONVOLUTION MODEL

The role of our processor model is to optimize the model parameters based on the guidance vector
generated by the inspector model. Considering that convolution is essentially the impulse response
process, we implement this suggestion process by predicting the convolution kernel and convolving
the weight matrix of model as shown in figure 2. To ensure that the shape of the weight matrix
remains unchanged after convolution, we have designed padding, where the matrix is padded to
make sure that the generator model continues to work normally after convolution. The specific
formula is as follows:

Pi =

⌊
ki − 1

2

⌋
, ∀i ∈ K (1)

Consequently, the overall description of the entire weight convolution section can be formalized as
follows:

The forward function is described as:

O(ki) = Conv
(
D(ki),RFC(G)→3×3(K(G))

)
∀ki ∈ D (2)

Where G denote the guide vector, D represent the input dictionary, O be the output dictionary,
K(G) be the convolution kernel generated from the guide vector, Conv(v, k) denote the convolution
operation on input v with kernel k, Ra×b→m×n(x) denote the reshaping of vector x from dimensions
a× b to m× n.

3.2 INSPECTOR: RECURSIVE BAYESIAN APPROXIMATOR

Drawing inspiration from the human cognition process, we abstract the process of judging the confi-
dence level of propositions into a system called Propositional Long-range Dependency System, and
provide theoretical support in mathematics for studying this systemn, named as Recursive Bayesian
Approximation.

We propose a system named proposition long-range dependency system to model the process of
judging the confidence level of a proposition, as shown in figure 3. The system, denoted by S,
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Figure 2: Weight conv. Through this design, adaptive updates for a large number of weights (on the
order of magnitude of B) can be performed within an acceptable timeframe.

consists of n sub-propositions P1, P2, . . . , Pn, each with a confidence level C1, C2, . . . , Cn, where
1 ≤ i ≤ n. The system evolves over time according to a function F , which captures the mutual

Figure 3: Example of tree-structural proposition and sub-proposition. The propositions and sub-
propositions in the diagram are organized in a recursively constructed format, similar to the ”follow-
up questions” phenomenon in language. Each pair of question, answer, and confidence forms a node
in the tree.

influence among the confidence levels of sub-propositions. The function F can be written as a vector
function, as follows:

C(t+1) = F (C(t)) (3)

Here, C(t) is the vector of confidence levels of all sub-propositions at time step t. This equation
shows how the vector C(t+1) is derived from the vector C(t) through the function F , which describes
the interactions between sub-propositions.

We assume that there are causal dependencies among the sub-propositions, meaning that a change
in the confidence level of one sub-proposition may affect the confidence levels of others. These de-
pendencies can be reflected by specific mathematical relationships within the function F , depending
on the nature of the system and the details of the propositions.

The equation in line 8 represents the dynamic evolution of the system, describing how the confidence
levels of sub-propositions change over time to reflect their mutual influence.

We consider a scenario where we have two hypotheses, H and H(n+ 1), with a causal relationship
between them, and we want to update their relationship given some evidence. We can use conditional
probabilities to express this relationship:
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P (H|H(n+ 1), E) and P (H(n+ 1)|H,E)

These represent how to update H given H(n+1) and E, and how to update H(n+1) given H and
E, respectively.

Using Bayes’ theorem, we can compute these conditional probabilities based on likelihood and prior
probabilities. For example:

P (H|H(n+ 1), E) =
P (H(n+ 1)|H,E) · P (H|E)

P (H(n+ 1)|E)
(4)

P (H(n+ 1)|H,E) =
P (H|H(n+ 1), E) · P (H(n+ 1)|E)

P (H|E)
(5)

We can use these equations to update the relationship between H and H(n+1) given new evidence
E. This can help us infer changes in their causal relationship to reflect new information.

We regard the process of judging the confidence level of a proposition as a system that evolves
from the initial proposition. The evolutionary equation is shown in the algorithm 1. The inspector
introduced below is an implementation of this theory.

We apply the above theory to the inspector. We first enrich the statement and the generator’s answer
with background information. Then, we use the label module to compute their confidence scores.
We update the confidence matrix of all the remaining statements with each new score. Based on the
current matrix and statement, we generate multiple questions with the question module and iterate
the process for each question. Our aim is to approximate the true confidence level with external
knowledge through effective and sufficient questioning.

Algorithm 1 Propositional Long-range Dependency System Evolutionary Algorithm
1: Input: Initial truth value P , number of sub-propositions M , number of iterations N
2: Output: Final truth value Pfinal
3: P0 ← P
4: for i = 1 to M do
5: Si ← f(Pi)
6: for t = 1 to N do
7: Pi ← g(Si)
8: end for
9: end for

10: Pfinal ← h(P
(N)
1 , P

(N)
2 , . . . , P

(N)
M )

11: return Pfinal

Where: P : Initial truth value of the proposition. M : Number of sub-propositions. N : Number of
iterations. Pi: Truth value of the i-th sub-proposition. Si: Score of the i-th sub-proposition. f():
Function that computes scores based on truth values. g(): Function that computes truth values based
on scores. h(): Function that aggregates the truth values after N iterations to produce the final score.

3.3 GENERATOR: PRE-TRAINED LLM

The generator is the large language model itself. It does not need any modifications to its structure
or loss function, which is still cross-entropy. Unlike traditional adversarial generation methods, it
interacts dynamically with the inspector and processor. The responses it generates are the basis for
the next actions of the processor and inspector.

3.4 GAL MODEL TRAINING

For each training of the GAL model, the inspector is trained first. The generator can choose whether
or not to update based on the training set. Then, the guidance vector output by the inspector is input
to the processor, and the V-PPO algorithm is used for iterative modification and evaluation until the
requirements are met.
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For the training of the inspector, we applied the following regularization to ensure its good general-
ization.

R(θ) = λ∥θ∥22 + αD(θ) + βN(θ) (6)

where: R(θ) is the total regularization term, λ∥θ∥22 represents the L2 regularization with λ being the
weight for this term, D(θ) denotes the dropout regularization term, weighted by α, N(θ) represents
the noise introduced during the label phase, weighted by β.

The training of GAL involves gradient descent for other parts, but we emphasize the training meth-
ods we designed for the processor part.

Validiation Proximal Policy Optimization (VPPO) is a reinforcement learning algorithm for the
processor. It maximizes the performance of the processor based on proximal policy optimization
(Schulman et al. (2017)). Here is the mathematical representation of the VPPO algorithm:

The objective is to adjust the model’s weights to optimize its task performance. The state st is the
current weights, and the action at is the weight changes. The reward rt is the model’s performance,
usually as the negative error. The model’s state is its weights, and the action is a slight modification
to them. The reward function r(s, a) is the negative error after weight adjustments, using a cross-
entropy loss.

The VPPO objective function is:

Lclip(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(7)

where, - rt(θ) is the ratio between the new and old policies, defined as rt(θ) =
π(at|st,θ)
πold(at|st) . - Ât is the

normalized advantage function, representing the advantage of taking action at in state st relative to
the average action. In the code, this is typically the reward the model gets for a given action minus
the average reward.

The optimization goal of VPPO is to update the model’s weights for better performance in the new
state.

4 EXPERIMENTS AND RESULTS

We apply this method and mainstream methods in the training and fine-tuning processes of various
datasets, testing and analyzing changes in their calibration. 1

4.1 DO INSPECTOR WORKS?

To demonstrate the capability of the inspector, we tested and compared the metrics of various large
language models and their Inspector Generator Score (Igs) on the test set. The results prove that the
inspector possesses the ability to reflect quantity and trend in indicators such as confidence and can
act as a supervisor within the model.

4.2 DO METHODS USED IN CALIBRATION USEFUL FOR QA?

We conducted comparisons across multiple methods on various datasets as shown in Table 2 and Ta-
ble 3. . It can be observed that our model has achieved state-of-the-art (SOTA) performance in both
supervised and unsupervised domain, and this method is even capable of elevating the performance
level of vanilla models beyond that of some fine-tuned models.

4.3 TO HOW MUCH CAN WE EXPLAIN THIS METHOD?

Important intermediate quantities in this method, such as follow-up questions, confidence scores,
and even the content of convolutional kernels, can all be intuitively observed and manipulated as
shown in figure 5. Therefore, this provides our model with strong interpretability, which is undoubt-
edly crucial in the application domain of this model.

1For certain models that require excessively large training resources, we do not have sufficient computa-
tional power to conduct training tests.
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Model Acc SConf Satisf Igs
GPT2−medium 0.20 0.91 0.18 0.53
LLama2 0.73 0.92 0.68 0.62
GPT3.5 0.93 0.91 0.82 0.68
GPT4 0.95 0.94 0.93 0.73

Table 1: Comparision between different metric on different models. The value of the Igs metric is
positively correlated with other indicators.

Method Pre Squad1 DailyDialog1 TED1

V anilla 0.20 0.31 0.35 0.33
LS2(Guoet al. (2017)) 0.18 0.33 - -

EDA2(Wei&Zou (2019)) 0.26 - - -
Ensemble2(Lakshminarayananet al. (2017a)) 0.18 0.25 0.27 0.31

GAL2 0.36 0.36 0.42 0.35

Table 2: Comparision between different calibration methods on different datasets. the 1 means that
the original model is fine-tuned on a dataset, the 2 means that it is unsupervised method. the 3 means
that it is the SOTA of the supervised method.

Method Acc ↑ ECE ↓ Satisfy ↑ BLEU ↑
V anilla 0.20 0.921 0.18 0.018

LS1(Guoet al. (2017)) 0.18 0.934 0.20 0.014
EDA1(Wei&Zou (2019)) 0.26 0.908 0.25 0.028

Ensemble1(Lakshminarayananet al. (2017a)) 0.18 0.916 0.20 0.021
E −MLP 2Chenet al. (2022) 0.22 0.905 0.21 0.024
DELP 2(Chenet al. (2022)) 0.27 0.863 0.23 0.022
TSLP 2(Chenet al. (2022)) 0.21 0.874 0.17 0.018
I − Iter3(Chenet al. (2022)) 0.33 0.883 0.22 0.025

GAL1 0.36 0.834 0.22 0.020

Table 3: Comparision between different calibration methods. the 1 means that it is unsupervised
method. The 2 means that it is supervised method. the ∗ means that it is the SOTA of the supervised
method. LS is label smooth, implemented in QA with the smooth of ids label in training period, EDA
is a data augmentaion method that can be used to boost performance on training period. Ensemble
is combination average score of 5 models

Module O1 O2 O3
Orig. mod. FT with SQuAD FT with SQuAD (sub.) + GAL

Dat 0.20 0.31 0.36
Orig. mod. Rem. Insp; rand. out. to Proc. guide vec. Complete mod.

Insp 0.20 0.28 0.36
Orig. mod. Further-query with chatglm2-6b Complete mod. with gpt3.5

Fur 0.20 0.28 0.36
Orig. mod. Without Proc. Complete mod.

Proc 0.20 0.31 0.36
GPT2-med GPT2-large rwkv4-430m

Gen 0.16 0.08 0.11

Table 4: Ablation study. From the accuracy results, it can be observed that both the GAL module
and its internal design have an impact, and having these modules yields better results compared
to fine-tuning with the dataset alone. Although the quality of the prompts can affect the model’s
performance, its reliance on prompting falls within an acceptable range (opting for models with
over 100 billion parameters only yields a 0.05 improvement in accuracy over models with 6 billion
parameters). Furthermore, experimental evidence with models of different architectures (RNN and
Transformer) demonstrates that models of different architectures can benefit from this optimization
method. Detailed settings can be seen in A.3

7



Under review as a conference paper at ICLR 2024

Figure 4: Evaluation and Trend Analysis of Various Metrics for the GPT-4 Model. From the graphs,
it can be observed that there is a certain correlation between IGS and metrics led by accuracy (Acc),
demonstrating the potential of IGS as an objective QA calibration metric to replace human interven-
tion.

Figure 5: Visual workflow of our method. The intermediate results can be read, and the internals of
the entire model are highly observable and controllable.

4.4 ABLATION STUDY

We conducted ablation experiments to investigate the model size independence (ranging from 430m
to 1.5b), model architecture independence (from Transformer-based GPT to RNN-based RWKV),
and pre-training module independence (from using ChatGLM to using the significantly different-
performing GPT-3.5), among other aspects, and further validated the roles of these modules. De-
tailed results and analysis are shown in Table 4
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5 DISCUSSION

5.0.1 INTERPRETABLE CALIBRATION

Interpretable Machine Learning: The inspector evaluates the credibility of content from the gen-
erator. Coupled with an operator, it offers insights into the generator’s weight and semantic layers,
promoting model interpretability.

Recursive Inquiry: Recursive questioning naturally elucidates the inspector’s decisions. Each in-
quiry can target distinct facets of the generated output, acting as explanations that aid external ob-
servers in discerning the quality of results.

Credibility Quantification: Upon concluding the recursive inquiry, the inspector outputs a credi-
bility score. When well-designed, this score aids in elucidating the model’s decisions.

5.1 PARADIGM INNOVATION

We have developed a novel adversarial learning paradigm that maintains the modularity of individual
components and using external information for unsupervised training. Furthermore, we introduce
model training combined with reinforcement learning, offering novel insights for further research in
this domain and providing some inspiration for the traditional adversarial learning field.

5.2 LOW-INVASIVE INTEGRATION

Unlike the traditional adversarial learning paradigm, we do not have specific requirements for the
loss functions of components and the datasets used for training. This results in a lower intrusiveness
and allows for easy integration into various modules and tasks.

5.3 UNSUPERVISED ADVANTAGE

The unsupervised nature of the model allows for its convenient integration into existing large lan-
guage model training processes. Moreover, because it operates on the model parameters using con-
volution rather than gradient descent, it opens up possibilities for distributed and multi-threaded
optimization. Our goal is for this approach to become a crucial component in future large language
model training pipelines without introducing additional overhead.

5.4 CHALLENGES AND DEVELOPMENT AVENUES FOR GAL

GAL, while promising, faces challenges such as the necessity for precise tuning of the processor’s
training environment and tendencies like reiteration of queries during response, possibly due to the
convolutional kernel’s effects. Moreover, its use of external databases suggests potential advance-
ments using knowledge graph techniques. On the development front, the weight convolution module
offers alternatives to gradient descent for fine-tuning, and the inception of a large inspector can be
pivotal for QA-calibration. This inspector also has potential integration benefits for semi-supervised
algorithms, offering improvement in related tasks. This paper’s version serves as a foundation for
future explorations in these directions.

6 CONCLUSION

In summary, we propose a novel machine learning paradigm, which we apply to the task of large-
scale model unsupervised calibration. We provide both theoretical analysis and experimental valida-
tion of our approach. It can be demonstrated that our method offers significant advantages in terms
of paradigm innovation, low intrusiveness to the original model, and unsupervised nature. Addi-
tionally, our approach showcases the potential of a new interpretable machine learning paradigm.
This method is poised to have a significant impact on various domains, including the deployment
of large models, the development of machine learning interpretability, and unsupervised adversarial
learning. We have high expectations for the potential of this model.
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A APPENDIX

A.1 PROMPTS USED IN EXPERIMENT

For the assessment phase in the article, we have chosen the following prompts: “I will give you 20
questions. Please answer each of these questions one by one and tell me the truthfulness of
your answers, indicating your confidence with a number from 0 to 1.”

For the follow-up phase within the module, we have selected the following prompts: “I will provide
you with a question, please provide additional background knowledge about this question in
order to assess its authenticity.”

A.2 DETAILS OF EXPERIMENTS

LS is label smooth, implemented in QA with the smooth of ids label in training period, EDA is a
data augmentaion method that can be used to boost performance on training period

A.3 DETAILS OF ABLATION STUDY

To assess the contribution and significance of different modules and configurations in our model,
we embarked on a systematic ablation study. The study spanned across five pivotal modules: Dat
(Dataset), Insp (Inspiration), Fur (Further Query), Proc (Processor), and Gen (Generator).

In the Dat module, three distinct configurations were examined. The first, representing the orig-
inal model, served as our baseline. The second configuration fine-tuned the original model with
the SQuAD dataset, showcasing an evident improvement in performance. Pushing the boundaries
further, the third setup incorporated not just a subset of the SQuAD dataset but also the GAL method-
ology, which, unsurprisingly, resulted in the best performance among the three.

The Insp module’s exploration began with the original model. In our next experiment, we took
the audacious step of removing the Insp module altogether and introduced a random output to the
Processor guiding vector. Despite the drastic change, the performance dip was modest. However,
the complete model, represented in the third configuration, still stood unmatched in its efficacy.

For the Fur module, our starting point was, once again, the original model. The second iteration
witnessed the model adapting the further-query component from chatglm2-6b, leading to a notable
uptick in the performance metric. The pinnacle, however, was the third configuration which com-
bined the prowess of the complete model with the gpt3.5 architecture.

The Proc module’s exploration was initiated with the unaltered original model. The subsequent con-
figuration stripped the model of its Processor, leading to a slight decline in performance. However,
the third and final setup, the complete model, regained and even surpassed the original performance
metrics.

Lastly, in the Gen module, our focus was on accuracy growth across three distinct setups: GPT2-
medium, GPT2-large, and rwkv4-430m. Interestingly, the medium-sized GPT2 model outperformed
its larger counterpart, whereas the rwkv4-430m held its ground with a respectable score.

In summary, the ablation study provided invaluable insights, underscoring the importance of fine-
tuning, architectural decisions, and module inclusions. Each tweak, removal, or addition brought
with it a new dimension of understanding, emphasizing the intricate interplay of components in
determining overall model performance.
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A.4 EXPERIMENTAL SETTINGS

For the selection of experimental models, we chose several base models that performed well in
previous tasks. They are all open-source implementations available on Hugging Face, or offering
api to measure. The method used for calibartion is our implementation according to source paper. As
for the model’s logits sampling method, we employed random sampling with the same temperature
(0.1). In terms of experimental resources, we conducted inference using two RTX 4090 GPUs.
Details regarding the experiment will be elaborated upon in the following sections.

A.5 ANOTHER WAY OF TRAINING A PROCESSOR

In addition to the methods mentioned above, we also introduce a new approach to training within this
paradigm. This method enables operators to co-evolve directly with the generator, making it highly
suitable for scenarios where this paradigm is applied during the training process. This approach is a
gradient-based algorithm, which offers advantages in terms of training speed and required resources.
If we want to train the model with gradient descent, we need to prove that:

∂L

∂W
̸= 0,

Using the chain rule:

∂L

∂W
=

∂L

∂y

∂y

∂M ′
∂M ′

∂K

∂K

∂W

=
∂L

∂y
· f ′(x;M ′) ·M ∗ ∂K

∂W
.

Where ∂L
∂y , f ′(x;M ′), and M are all non-zero, ensuring that ∂L

∂W ̸= 0, L(y, label) is the loss
function, y = f(x;M ′) is the forward propagation of the generator, M ′ = M ∗K is the procedure
of updating generator weight using convolution, and K = W (x1) is the pridiction of conv-kernal.
This proves that the weights of the pridiction layer will be updated during training.
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