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ABSTRACT

The evolving sophistication and intricacies of Large Language Models (LLMs)
yield unprecedented advancements, yet they simultaneously demand considerable
computational resources and incur significant costs. To alleviate these challenges,
this paper introduces a novel, simple, and effective method named “GrowLength”
to accelerate the pretraining process of LLMs. Our method progressively increases
the training length throughout the pretraining phase, thereby mitigating computa-
tional costs and enhancing efficiency. For instance, it begins with a sequence
length of 128 and progressively extends to 4096. This approach enables models to
process a larger number of tokens within limited time frames, potentially boost-
ing their performance. In other words, the efficiency gain is derived from training
with shorter sequences optimizing the utilization of resources. Our extensive ex-
periments with various state-of-the-art LLMs have revealed that models trained
using our method not only converge more swiftly but also exhibit superior per-
formance metrics compared to those trained with existing methods. Furthermore,
our method for LLMs pretraining acceleration does not require any additional en-
gineering efforts, making it a practical solution in the realm of LLMs.

LLM1024 Trained
with 1024 only

LLM128 Trained
with 128 only

GrowLength

Figure 1: Training curves comparison of our proposed method and the baselines are given the same
training time. It shows the training loss curves for Large Language Models (LLMs) trained with
fixed sequence lengths of 128 (LLM128), 1024 (LLM1024), and our method. Compared with
LLM1024, GrowLength attains a lower loss. This can be attributed to that our method processes
more tokens within the same training time, allowing the model to have a broader context. Similarly,
the comparison between LLM128 and GrowLength reveals that our method also secures a lower loss
in this scenario. This is because, the model trained by our method has experienced longer sequences,
enabling better learning ability. Compared with both short or long sequence length instances, our
proposed method demonstrates enhanced performance within the same pertaining time, establish-
ing its efficacy over the baseline models.
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1 INTRODUCTION

The recent surge in the development of Large language models (LLMs) in the realm of natural lan-
guage processing has dramatically altered the capabilities and applications in the real world (Zhao
et al., 2023; Yang et al., 2023). LLMs, with their tremendous parameters and intricate architectures,
are facilitating new benchmarks in various tasks that span from text classification to the genera-
tion of coherent and contextually relevant narratives. However, the evolution in their capabilities is
concomitant with an increased number of model parameters (Li et al., 2023; Touvron et al., 2023a;
OpenAI, 2023). LLMs training process demands substantial computational resources with surg-
ing costs and has formed obstacles for practitioners and researchers with limited access to such
resources.

To mitigate the extensive computational resources and substantial training time requirements, var-
ious methods have been introduced to expedite the pretraining of LLMs. Among these, Flash-
Attention has been proposed as a solution to accelerate both the training and inference of LLMs (Dao
et al., 2022). Quantization-based methods (Dettmers et al., 2022; Liu et al., 2023) seek to reduce the
model size by representing model parameters with fewer bits and thus significantly decrease both
memory usage and computation cost (Dettmers et al., 2022). Pruning (Ma et al., 2023; Sun et al.,
2023) is also commonly adopted to remove redundant model parameters and thus improve efficiency.
Existing acceleration methods are essentially model-centric without considering data perspective.

This paper is driven by two key observations: Firstly, LLMs are generally pretrained with relatively
short sentences, while many downstream tasks necessitate the processing of long context inputs.
This disparity has led to numerous attempts to extend the context window for inference in previ-
ous works (Chen et al., 2023; kaiokendev, 2023), demonstrating that content window extension is a
feasible solution, requiring only a minimal amount of training with examples during the fine-tuning
stage. Secondly, it is well-recognized that training models with shorter sentences are substantially
more time-efficient than with longer sequences, a phenomenon explored in detail in Section 3.2.
From this understanding, we infer that models trained with shorter sequence lengths can effectively
predict long sequences, as evidenced by the success of content window extension. These observa-
tions imply that optimizing sentence length during training can lead to more efficient models in the
fine-tuning stage. A fundamental question is raised:

Can content window extension be adapted to the pretraining stage to reduce training time?

We provide a positive answer for this question via devising a method, named “GrowLength”, with
progressively grow training length during the pre-training of LLM. This method is inspired by the
principles of context window extension training paradigms, extending their application to the pre-
training phase. Contrary to the fixed sequence length in the pretraining, our proposed method utilizes
a dynamic, progressively growing training sentence length. The superiority of this method lies in
its adaptability and its capacity to significantly optimize the utilization of computational resources,
enabling models to process more tokens in a constrained time frame. Furthermore, by coordinating
the training curves with fixed sequence length, we observe considerable improvements in model
performance using the same training time, particularly in position extrapolations.

To validate our hypothesis and to demonstrate the superiority of Length Growth over conventional
training methods, we designed a series of rigorous experiments encompassing multiple state-of-
the-art LLMs. The empirical evidence was compelling. Models nurtured with our approach not
only achieved faster convergence rates but also surpassed their counterparts in terms of overall per-
formance metrics. Besides its performance improvement, it also signifies a potential reduction in
training costs, a boost in model proficiency, and a democratization of access to high-performance
LLMs. We highlight our main contributions as follows:

• We extend the context window extension method to accelerate the pretraining stage of Large
Language Models.

• Based on preliminary experiments, we proposed a simple and effective method to accelerate the
pretraining of LLMs, without any engineering effort.

• Experimental results demonstrate the effectiveness of our proposed method in the pretraining
acceleration of LLMs.
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2 PRELIMINARIES AND MOTIVATION

In this section, we outline the preliminaries of our proposed method and subsequently present the
two key observations that motivate our approach.

2.1 POSITIONAL EMBEDDING

In this work, we focus on the Rotary Position Embedding (RoPE) introduced in (Su et al., 2022).
RoPE is shown to have excellent position extrapolation ability for context windows extension for
instruction tuning (Peng et al., 2023a; Longpre et al., 2023; Gupta et al., 2022). Hereby, we briefly
introduce the basic idea of RoPE. We use w1, w2, · · · , wL to denote a sequence of tokens, and denote
their embedding as x1, · · · , xL ∈ R|D| where |D| is the dimension of the embedding.

The basic idea of RoPE is to impose the positional embeddings into the query and the key vectors.
Then, the inner product qTk will contain the relative positional embedding information. The query
and key vectors will be transformed as follows

qm = fq(xm,m) ∈ R|L|, kn = fk(xn, n) ∈ R|L|, (1)

where |L| is the hidden dimension per head. The functions fq, fk are given by

fq(xm,m) = Wqxmeimθ, fk(xn, n) = Wkxneinθ, (2)

where θd = b−2d/|D|, b = 10000 and Wq,Wk : R|D| → R|L|. The inner product qTk becomes the
real part of the inner product Re(q∗k). This operation guarantees that the dot product of the query
and key vectors will depend solely on the relative distance m− n as follows

⟨fq(xm,m), fk(xn, n)⟩R =Re(⟨fq(xm,m), fk(xn, n)⟩C) = Re(x∗
mW ∗

q Wkxneiθ(m−n)) (3)

=g(xm, xn,m− n). (4)

The following studies (Rozière et al., 2023; Peng et al., 2023b) indicate that the RoPE possesses
the capability to adapt to longer sequences when trained with shorter ones. This advantageous and
critical property ensures that progressively increasing the length of the training sequence is viable in
our scenario, preventing substantial jumps in loss when transitioning between training sentences of
varying lengths.

2.2 CONTENT WINDOWS EXTENSION IN FINE-TUNING PHASE

Language models are typically pre-trained with a fixed context length, prompting inquiries into
effective methodologies for extending the context length through fine-tuning on relatively smaller
datasets. For Large Language Models (LLMs) utilizing positional embedding RoPE, two predom-
inant techniques exist for extending their input length: Direct Position Extrapolation and Position
Interpolation (PI). Direct Position Extrapolation enables the model to work on sequences longer than
those encountered during the original training. However, its effectiveness diminishes for sequences
significantly longer than the pre-trained sequence length. This limitation has led to the development
of alternative approaches, notably Position Interpolation (PI), as proposed in works (Chen et al.,
2023; kaiokendev, 2023). These studies demonstrate that interpolating the position indices achieves
favorable results when fine-tuned with longer sequences, even with a limited number of steps (Chen
et al., 2023; kaiokendev, 2023).

Our research is motivated by the principles of applying Direct Position Extrapolation on longer se-
quences and the advantages offered by fine-tuning with longer sequences. It forms the conceptual
foundation upon which we build our methodologies and conduct our explorations, allowing us to
critically assess and refine the strategies employed to extend the context length of pre-trained lan-
guage models.

2.3 MOTIVATION

The previous works (Chen et al., 2023; kaiokendev, 2023) have demonstrated that the Content Win-
dows Extension is effective and requires training with only a few examples during the fine-tuning
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stage. It is also known that training with shorter sentences consumes significantly less time than
training with longer sequences (a detailed analysis is provided in Section 3.2). Based on this knowl-
edge, the following observations can be made:

• Using models trained with shorter sequence lengths has proven to be more effective than training
with long sequences, as proven by the Content Window Extension.

• Training with shorter sentences is more time-efficient compared to training with longer se-
quences.

Motivated by these observations, and considering that the pretraining of LLMs usually requires
extensive time, we pose the following question: Can this paradigm be adapted to the pretraining
stage to reduce the pretraining time of LLMs?

3 METHOD

Algorithm 1 PyTorch-style Pseudocode of GrowLength

# loader_list: data loaders with different
lengths.

# LLM: language model
# {nubmer}_loader: data loader for text

sequences with a length of {number}

loader_list = [128_loader, 256_loader,...]

# Train LLMs for N epochs
for loader in loader_list:

for batch in loader:
loss = LLM(**batch)
loss.backward()
optimizer.step()

In this section, we introduce our proposed method,
GrowLength, elucidating its principles and mechan-
ics, derived from the understanding that a dynamic
and responsive training timeline can significantly
optimize model performance. Given the efficacy of
models trained with shorter sequence lengths in pre-
dicting longer sequences and their time efficiency,
as demonstrated by the Content Windows Extension,
we explore adapting this paradigm to the pretraining
stage. The aim is to significantly reduce the pretrain-
ing time, which is inherently more time-consuming
than the fine-tuning stage.

The fundamental concept behind GrowLength is that
pretraining Large Language Models (LLMs) with shorter sequences is substantially faster than train-
ing with longer sequences. Additionally, transitioning from shorter to longer sequences does not
induce a loss jump and preserves the degradation trend. In this approach, the pretraining phase be-
gins with shorter sequences and progressively extends the sequence length as training advances. Our
proposed method is straightforward, and we present the pseudocode for our method below.

3.1 IMPLEMENTATION

In this section, we outline two key methods of implementation: Positional Extrapolation and Posi-
tional Interpolation.

• Positional Extrapolation This method involves estimating unknown positions utilizing known
positions in the sequence. It is particularly beneficial for generating predictions outside the range
of available data points. This method usually works well when the length of the long text is close
to the training length.

• Positional Interpolation Positional Interpolation, on the other hand, is the method of estimating
unknown positions by using two or more known positions within the range of available data
points. This method is crucial for generating accurate and reliable predictions within the known
range, enabling us to fill in the gaps in our knowledge with confidence.

Based on our experiments, we noticed the direct positional extrapolation works quite well in our
method, as shown in Figure 1. Thus in our implementation, we adopt direct positional extrapolation.

3.2 WHAT ADVANTAGES CAN BE GAINED BY TRAINING LLMS WITH SHORTER SEQUENCES?

In this section, we experimentally analyze the computational complexity of Large Language Models
(LLMs) with varying lengths of sequence1. Three primary factors under consideration are running
time, memory usage, and the number of tokens processed. We have summarized the results in the
tables below. Through this analysis, we infer that the computational complexity of LLMs is heavily

1The experiments are conducted on a single A100-80G GPU.
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influenced by the length of the sequence, impacting the running time, memory usage, and the number
of tokens processed by the models.

Table 1: Comparison of the running time of Large Language Models (LLMs) with different sequence
lengths. The row ”Running time ratio” is computed by normalizing each running time value by the
running time observed for a sequence length of 16384.

Length of Sequence 128 256 512 1024 2048 4096 8192 16384

Running Time (s) 0.18 0.18 0.19 0.22 0.30 0.27 0.39 0.60
Running Time Ratio 30% 30% 32% 37% 49% 44% 66% 100%

Table 2: The comparison of the memory of LLMs with different lengths of sequence. In this experi-
ment, we measure the memory usage for one training step across varying sequence lengths, ranging
from 128 to 16384. The row ”Memory Usage Ratio” is computed by normalizing each running time
value by the running time observed for a sequence length of 16384.

Length of Sequence 128 256 512 1024 2048 4096 8192 16384

Memory Usage (GB) 9.49 10.06 11.19 13.45 17.95 17.95 22.35 41.63
Memory Usage Ratio 30% 30% 32% 37% 49% 44% 66% 100%

Table 3: Comparison of the total number of tokens accommodated while utilizing the full capacity
of the GPU’s available memory. In this experiment, we assess the number of tokens processed, with
sequence lengths varying from 128 to 16384, exploiting the entire available memory of the GPU.
The ”Num of Tokens Ratio” row is computed by normalizing each value against the total number of
tokens counted for a sequence length of 16384.

Length of Sequence 128 256 512 1024 2048 4096 8192 16384

Num of Tokens 97010 91621 89043 69228 52663 54805 33211 28248
Num of Tokens Ratio 343% 324% 315% 245% 186% 194% 118% 100%

Table 1 shows that, as expected, the running time for one training step increases with the increase
in sequence length. Specifically, the running time is the lowest (0.18 seconds) for a sequence length
of 128 and the highest (0.60 seconds) for a sequence length of 16384. We conclude that training
LLMs with shorter sequences is much faster than training with longer sequences.2.

Table 2 shows that the memory usage significantly increases with the increase in sequence length.
For a sequence length of 128, the memory usage is 9.49 GB, while it escalates to 41.63 GB for a
sequence length of 16384. We conclude that when consuming the same GPU memory, training
with shorter sequences allows the use of a larger batch size.

Table 3 shows that the total number of tokens accommodated decreases with the increase in sequence
length when utilizing the full capacity of the GPU’s available memory. We conclude that for smaller
sequence lengths, the model can process a higher number of tokens simultaneously, exploiting
the entire available memory of the GPU.

3.3 DISCUSSION

We discuss how our proposed methods relate to other techniques and their implications.

• Orthogonal to Other LLM Acceleration Methods Our proposed method is distinct and or-
thogonal to other Large Language Model (LLM) acceleration techniques, implying that it can
be integrated with them without causing redundancy. This unique characteristic enables the en-
hancement of the efficiency and effectiveness of existing acceleration methods through the incor-
poration of our approach, offering new dimensions for exploration in the acceleration of LLMs.

2In the experiment for Table 1 and Table 2, we keep the total number of tokens in one batch same for
different sequence length. Each batch contains 16384 tokens
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Figure 2: Comparison of the LLMs trained with the same total of tokens.

The orthogonality of our proposed method allows for its seamless integration with existing ac-
celeration strategies, thereby opening new pathways for exploring synergies and augmenting the
overall efficiency and effectiveness of Large Language Models.

• Observe More Tokens for Enhanced Performance It is obvious that examining more tokens
can significantly enhance the model’s comprehension and performance. Our method is especially
proficient in this regard, being able to process more tokens quickly. Given the accelerated token
processing capability of our method, it serves as an efficient strategy to expedite the preliminary
stages of training for LLMs. By assimilating a greater number of tokens in a limited time, the
model can gain additional advantages, enabling it to make more precise and informed predictions.

4 EXPERIMENTS

In this section, we conduct experiments to demonstrate the effectiveness of our proposed method.
The experiments, by default, are conducted using a 160M LLM. All models utilized in our exper-
iments adopt the consistent configurations as the Pythia model (Biderman et al., 2023), albeit with
varying sizes.

4.1 HOW FAST CAN THE PROPOSED METHOD ACCELERATE THE LLMS PRETRAINING?

In this subsection, we perform experiments to evaluate the efficiency of our proposed method in
accelerating the pretraining of LLMs. We vary the training sequence length to train LLMs and
our proposed method, and then we compare the running time associated with different lengths. To
maintain a fair comparison, we ensure that the total number of tokens used for training remains
constant across different settings. Our experimental setups for LLM pretraining are as follows:

• LLM128: In this setting, we utilize a fixed training sentence length of 128 tokens, totaling 0.36B
tokens across all sentences.

• LLM1024: This setup involves a fixed training sentence length of 1024 tokens, maintaining the
same total number of tokens as in LLM128, allowing for a direct comparison of running times at
different sequence lengths.

• GrowLength: We employ our method, which trains the LLMs starting from 128 tokens and pro-
gressively grows to 1024 tokens. Pretraining with a length of 128 significantly saves time, and
the final stage of pretraining at a length of 1024 enhances the performance of LLMs.

From Figure 2, we have the following two main observations: Firstly, when maintaining an equiv-
alent count of tokens, LLM1024 requires a longer pretraining duration in comparison to LLM128.
This training time is also increased with the growed computational requisites using longer sequence
lengths. Secondly, in contrast to LLM1024, our method requires significantly less time for training,
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Figure 3: Comparison of the different sizes of models w/ and w/o GrowLength. Three model
pairs (70M, 160M, 410M) are trained at the same time.

demonstrating superior computational efficiency for the same number of tokens. Last, when com-
pared to LLM128, GrowLength exhibits a lower loss, indicating a more powerful and efficacious
training. These findings highlight GrowLength’s capability in terms of computational efficiency,
and the practical value in resources-constrained scenarios.

4.2 WILL THE PROPOSED METHOD RESULT IN THE SAME OR LOWER LOSS ?

In this section, we conduct a series of experiments to assess the effectiveness and efficiency of our
proposed method. We aimed to understand whether our approach could reach the same loss as that
of baselines when LLMs are trained within the same time span. We systematically compared our
proposed method against standard approaches under identical settings, primarily focusing on the
training of LLMs within the same time span. This comparative analysis allowed us to observe the
inherent advantages and potential limitations of our method, providing a comprehensive understand-
ing of its practical implications. The LLMs were trained using the same datasets, and the training
parameters were kept consistent across different models to avoid any discrepancies in the results.
Each model’s performance was evaluated based on the loss. The results are shown in Figure 1.

It shows the training loss curves for LLMs trained with fixed sequence lengths of 128 (LLM128),
1024 (LLM1024), and our method. Compared with LLM1024, GrowLength attains a lower loss.
This can be attributed to the ability that process more tokens within the specific training time,
allowing the model to have a broader context. Similarly, the comparison between LLM128 and
GrowLength reveals that our method also secures a lower loss in this scenario. This is because,
the model trained by our method has experienced longer sequences, enabling better learning abil-
ity. In both short or long sequence length instances, our proposed method demonstrates enhanced
performance within the same pertaining time, establishing its efficacy over the baseline models.

4.3 HOW DOES OUR PROPOSED METHOD PERFORM ON DIFFERENT SIZES OF THE LLMS?

In this section, we evaluate the efficiency of our proposed methods across LLMs of diverse scales,
specifically focusing on different LLMs with 70M, 160M, and 410M parameters. Our assessment
involves various sizes of models, including 70M, 160M, and 410M. Experiments utilize the most
conducive training schedules, determined by preliminary analyses, ensuring optimal conditions for
each model size and mitigating potential biases in our assessments.

Results. From Figure 3, we can obtain two observations: firstly, while maintaining an equivalent
length of time, GrowLength can consistently obtain lower loss across the three different sizes of
models. This observation suggests that GrowLength can scale up to larger LLMs effectively. Second,
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Figure 5: Comparison of the different ratios of the training length. There are three different ratios:
128, 256, 512, 1024; 128, 512, 1024; 128, 102.

our GrowLength does not influence the scaling property of LLMs. We can see, that the smaller model
still has a higher loss compared to the larger model with the same training time. In the meantime,
we can notice that, with the help of GrowLength, the smaller model can achieve a very close loss to
the larger model with normal pretraining. For example, in this figure, at the end of the training, the
70M model with GrowLength reached the same or even slightly lower loss compared to the 160M
model.

4.4 WILL OUR METHODS SHOW BETTER CONTEXT WINDOWS EXTENSION ABILITIES?
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Figure 4: Comparison of the context window
extension abilities

In this section, we delve into a comparative analy-
sis to determine whether our proposed method ex-
hibits enhanced context window extension abilities.
compared the baselines. For the long evaluation
text, we utilized the dataset used by (Peng et al.,
2023b), ensuring that we had diverse and representa-
tive samples to validate the robustness and versatil-
ity of our methods. Within our experimental setting,
GrowLength-1, LLM128, and LLM1024 are trained
with the same number of tokens, while GrowLength-
1 is trained with more tokens.

When comparing GrowLength-1, LLM1024, and
LLM128, GrowLength-1 consistently outperforms
the others across all input sizes, illustrating its su-
periority among all the baselines. LLM128 displays significant deterioration, especially with larger
input sizes, highlighting potential limitations in scalability. GrowLength-2 provides a more stable
performance since it was trained with more tokens. This concise analysis underscores the effective-
ness of our proposed methods in extending context windows.

4.5 THE INFLUENCE FROM RATIOS OF DIFFERENT WINDOW SIZE DURING TRAINING

In this subsection, we delve deeper into understanding how varying the ratio of sequence lengths
impacts the efficiency and efficacy of LLMs pretraining. Our primary goal is to examine whether
there is a significant difference in pretraining efficiency and model performance when using different
sequence lengths, and if so, we can adjust the ratio of different training lengths for pertaining. For
example, we can enlarge the ratio of the shorter sequence to future accelerate the pretraining.
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To control the ratio of length 128, we adjust the ratio of training time with different context window
sizes. This allows us to systematically study the influence of sequence length on model training
dynamics and final performance. We didn’t pay effort in the ratio selection and we heuristically
selected the ratio in each setting.

Our observations from the controlled experiments reveal two key insights:

• GrowLength is not sensitive to the ratio of different window size. For either w/ or w/o the 256
window size during pretraining, the model can reach almost the same time at the end of training.
The loss transition is smooth. [Ratio1& Ratio2]

• However, the substantial difference between consecutive training window sizes in GrowLength
can lead to dramatic loss rising and a drop in performance [Ratio3]

5 RELATED WORKS

This section introduces two lines of work that are related to our method, namely, Efficient LLMs
and positional encodings within LLMs.

Efficient LLMs. There has been increasing interest in developing an efficient method for pretri-
aning large language models (LLMs) Kim et al. (2023). Dao et al. (2022); Choi et al. (2022); Kwon
et al. (2023) optimize the CUDA kernels to reduce memory access and improve both training and in-
ference speed. Approaches involving pipeline parallelism Shoeybi et al. (2019); Huang et al. (2019)
and tensor parallelism Shoeybi et al. (2019); Li et al. (2021) have facilitated the distribution of
workload across multiple GPUs, enhancing the efficiency of scaling LLM inference. Quantization,
another pivotal method, has been explored for compressing LLM parameters to optimize inference
efficiency Wu et al. (2023); Dettmers et al. (2022); Frantar et al. (2022). In the development of new
LLMs, managing computational costs and time is crucial, making these advancements paramount
for progress in the field. Our method is orthogonal to existing methods and can be integrated with
them to further enhance training acceleration.

Positional Encodings in LLMs. Various transformer architectures typically incorporate position
information, e.g., positional encodings (Vaswani et al., 2017; Black et al., 2022; Penedo et al., 2023;
Kazemnejad et al., 2023). The initial design of positional embedding is absolute positional encod-
ings, which are learnable position embeddings (Kenton & Toutanova, 2019) that provide the absolute
positions. Then, sinusoidal position embeddings, fixed position embeddings, encode the token po-
sitional information embeddings (Vaswani et al., 2017). Subsequently, a learnable or fixed bias is
proposed to be added to the dot product between two tokens’ position embeddings on the attention
score (Ke et al., 2020). The modern LLMs architecture usually adopts relative positional encodings,
which only use distance information between tokens instead. The relative embedding usually adds
a learnable bias to the attention score (Raffel et al., 2020; Dai et al., 2019). Alibi Press et al. (2021)
proposes adding a fixed linear attention bias. Then, Su et al. (2022) creatively proposes rotating pos-
itive embedding RoPE (Su et al., 2022; Touvron et al., 2023a; Rozière et al., 2023; Touvron et al.,
2023b), and XPos (Sun et al., 2022) extends the RoPE for extrapolation ability.

6 CONCLUSION AND IMPACT

We propose the GrowLength method aimed at accelerating the pretraining of Large Language Mod-
els (LLMs) by progressively increasing the training length. Given that the pretraining phase con-
sumes the majority of the training time for LLMs, and considering the recent successes in extending
the context window during fine-tuning of pretrained LLMs, we believe that expanding the context
windows during the training of LLMs holds significant promise. Motivated by these observations,
we extend and adopt the context window extension technique to the pretraining stage to reduce the
overall pretraining time. Our method allows LLMs to process more tokens using shorter sequence
lengths in the initial stages of training. We conducted experiments to demonstrate the effectiveness
of our method. To the best of our knowledge, our paper is the first work that accelerates LLM pre-
training from the input sequence perspective and is compatible with existing acceleration methods.
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