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Abstract

Treatment effect estimation involves assessing the impact of different treatments on in-
dividual outcomes. Current methods estimate Conditional Average Treatment Effect
(CATE) using observational datasets where covariates are collected before treatment
assignment and outcomes are observed afterward, under assumptions like positivity
and unconfoundedness. In this paper, we address a scenario where both covariates
and outcomes are gathered after treatment. We show that post-treatment covariates
render CATE unidentifiable, and recovering CATE requires learning treatment-
independent causal representations. Prior work shows that such representations can
be learned through contrastive learning if counterfactual supervision is available in ob-
servational data. However, since counterfactuals are rare, other works have explored
using simulators that offer synthetic counterfactual supervision. Our goal in this paper
is to systematically analyze the role of simulators in estimating CATE. We analyze the
CATE error of several baselines and highlight their limitations. We then establish a
generalization bound that characterizes the CATE error from jointly training on real
and simulated distributions, as a function of the real-simulator mismatch. Finally, we
introduce SimPONet, a novel method whose loss function is inspired from our general-
ization bound. We further show how SimPONet adjusts the simulator’s influence on
the learning objective based on the simulator’s relevance to the CATE task. We exper-
iment with various DGPs, by systematically varying the real-simulator distribution
gap to evaluate SimPONet’s efficacy against state-of-the-art CATE baselines.

1 Introduction

In Conditional Average Treatment Effect (CATE) task, the goal is to estimate the difference in an
outcome Y , as an individual Z is subject to different treatments T . The gold standard to estimating
such effects is Randomized Control Trials, which are often expensive, and with the easy availability of
observational data, there is extensive interest in harnessing them for deriving these estimates. The first
step in estimating treatment effects from observational datasets is to determine the set of covariates
that, when conditioned upon, make the treatment effects identifiable. Prior works (Künzel et al., 2019;
Nie & Wager, 2021; Curth & van der Schaar, 2023; Shalit et al., 2017; Nie et al., 2021; Shalit et al., 2016;
Chauhan et al., 2023; Curth & van der Schaar, 2021; Zhang et al., 2020; Shi et al., 2019; Stuart, 2010),
assume that such covariates are observed, and gathered prior to treatment, with outcomes Y observed
after the treatment is given. However, collecting such datasets is challenging as it requires tracking
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the same individuals over two distinct time points. As a result, readily available observational datasets
can sometimes contain both covariates X and the outcomes Y recorded together post-treatment. X,
Y are observed for individuals characterized by a latent representation Z. For example, in economics,
policymakers implement different taxation policies T aimed at improving an outcomes Y like Gross
Domestic Expenditure of the individuals Z. To identify effective policies, they may rely on domain
expertise or conduct small-scale RCTs where collecting pre-treatment covariates is feasible. However,
the true effectiveness of a policy is only revealed through large-scale testing on the population after
its implementation. Collecting such datasets typically involves obtaining post-treatment covariates X
and their associated outcomes Y together (Ashenfelter, 1978; Angrist, 1995). Even in other domains
such as voluntary healthcare surveys, only post-treatment data about patients might be accessible. In
medical imaging, an image taken under a specific instrument setting (treatment) may be evaluated to
determine whether switching to a different setting would improve a subsequent diagnosis (outcome).

We present our setup in the top panel of Fig. 1 marked RealDGP (Data Generating Process for the
real distribution), where the latent variables Z causally produce the observed treatment T , outcome
Y , and covariates X. We begin this paper by presenting an impossibility result in this context.

Lemma 1. The causal effect of T on Y is not identifiable given i.i.d. samples of the observed nodes
from the real DGP shown in top panel of Fig. 1.
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Figure 1: The Data Generating pro-
cess for Real and Simulator.

proof. Since X is a collider, conditioning on it opens the backdoor
path T→X←Z→Y . Furthermore, as Z is latent, this backdoor
path remains open, making CATE unidentifiable from X, T ,
and Y alone (Pearl, 2015).

The main takeaway from the lemma is that certain additional
assumptions are unavoidable for achieving identifiability. The
lemma further emphasizes that the key to identifiability lies in
extracting treatment-independent causal representations from
the post-treatment X that affect Y . One such assumption that
allows for the recovery of causal representations is counterfactual
supervision in real data. Prior work (Von Kügelgen et al., 2021)
demonstrates that, under such an assumption, contrastive losses
can be applied to pairs of covariates that differ by treatment to
extract Z from X and T . While some works (Nagalapatti et al.,
2022; Bachman et al., 2019) assume direct access to such coun-
terfactual supervision in real data, others rely on simulators that
generate high-quality synthetic counterfactuals (Von Kügelgen
et al., 2021; Zimmermann et al., 2021). However, these are strong assumptions since counterfactuals
are rarely available in real-world scenarios, and while simulators are more feasible, assessing their
quality or relevance to the downstream task during training is challenging. Therefore, our goal in this
paper is to leverage simulators only to the extent they remain relevant to the CATE task. We conduct
a theoretical analysis to derive generalization bounds that show how CATE error worsens as the
mismatch between real and simulated distributions increases. These insights motivate our proposed
algorithm, SimPONet, which uses simulated data to apply regularizers inspired by our generalization
bound. SimPONet’s aim is to enhance CATE estimates beyond what is achievable with observational
data alone. Through experiments, we systematically vary the distributional gap between real and
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synthetic data across various DGPs, demonstrating that SimPONet consistently outperforms multiple
baselines in estimating CATE.

Contributions: 1) We address Treatment Effect Estimation with post-treatment covariates —- a
non-identifiable challenge – by leveraging a simulator that offers synthetic counterfactual supervision.
2) We assess the CATE errors for three baselines that can be trained on real/simulated data, and
highlight their limitations. 3) Next, we consider a joint training framework, and derive a generalization
bound that characterizes the CATE error as a function of real-simulator distributional mismatch.
4) This analysis motivates our method, SimPONet, a novel algorithm that uses simulated samples
to improve CATE estimates beyond what can be achieved from observational data alone. 5) To
our knowledge, this is the first systematic study on the role of simulators in CATE estimation. 6)
Experiments across various DGPs confirm SimPONet’s effectiveness.

2 Related Work

2.1 CATE with Pre-Treatment Covariates

The primary challenge addressed here is handling confounding that arises out of biased treatment
assignment in observational datasets. The main ideas explored include: estimating pseudo-outcomes
for missing treatments in the training dataset and then using these to train effect predictors (Gao
& Han, 2020; Curth & van der Schaar, 2021; Nie & Wager, 2021; Kennedy, 2020; Yoon et al., 2018;
Zhang et al., 2020; Nagalapatti et al., 2024a); adding targeted regularizers to ensure consistent ITE
estimates (Shi et al., 2019; Nie et al., 2021; Zhang et al., 2022); learning balanced representation of
covariates across treatment groups (Shalit et al., 2016; 2017; Yao et al., 2018; Chauhan et al., 2023;
Wang et al., 2024; Wu et al., 2023); matching to near-by covariates (Stuart, 2010; Rosenbaum & Rubin,
1983; Iacus et al., 2012; Schwab et al., 2018; Kallus, 2020; Nagalapatti et al., 2024b); and weighing
losses to mitigate confounding (Hassanpour & Greiner, 2019a;b; Jung et al., 2020; Ozery-Flato et al.,
2018).
2.2 CATE with Post-Treatment Covariates

This is our setting, and is more challenging because it falls into the third rung (counterfactual) of Pearl’s
causal ladder (Pearl & Press, 2000). Please refer (Pearl, 2015) to for a formal proof. In economics,
post-treatment variables in trials are known to exacerbate estimated causal effects (Coppock, 2019;
HOMOLA et al., 2024; King, 2010). Post-treatment variables have been used to estimate selection
bias P (T |Z) in observational data (Bareinboim & Pearl, 2012; Bareinboim & Tian, 2015; Correa
et al., 2018). A closely related work is (Huang et al., 2023) that leverages post-treatment variables for
estimating treatment effects but differs from us since they assume: (1) covariates X causally affect
Y , and (2) an entangled version of X,Z is observed; they simply focus on disentangling Z through
representation learning.
2.3 Real-World Applications of using Simulators for Estimating CATE

We provide two examples from medicine and electrochemistry to show how simulators aid CATE
estimation in practice:

Medicine. Simulators play a crucial role in pharmacology, particularly for assessing drug efficacies.
For instance, the SimBiology toolbox 1 in MATLAB is commonly used to predict the effects of SGLT2

1https://in.mathworks.com/videos/series/simbiology-tutorials-for-qsp-pbpk-and-pk-pd-modeling-and-analysis.html
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inhibitors (T ) on type-2 diabetes (Y ) while considering post-treatment covariates (X) such as plasma
glucose levels, gut glucose levels, urinary glucose excretion, and liver insulin levels. SimBiology enables
modeling these effects using differential and algebraic equations that are often calibrated on target
populations to minimize the real-simulator mismatch. Despite not perfectly replicating reality, such
simulators are invaluable for early-stage clinical trial decisions and have demonstrated utility in
modeling short-term treatment effects (Dalla Man et al., 2007).

Electrochemistry. Another application involves recommending optimal electrode materials to
maximize battery capacity (Y ). By observing Y under various electrode materials (T ) and post-
treatment variables like charge/discharge rate, internal resistance, and temperature distribution
(X), the Ansys Battery Cell and Electrode Simulator 2 provides electrochemical simulations. This
tool has been used by Volkswagen Motorsport for comprehensive multiphysics simulations to design
and validate battery models. Such simulators are highly relevant for practical decision-making in
industries.

These examples illustrate the practical relevance of simulators across different fields. While simulators
cannot fully replace real data or randomized controlled trials (RCTs), they offer valuable insights
that can reduce the number of RCTs needed for optimal treatment identification. Our paper aims to
characterize the CATE error when using imperfect simulators in conjunction with real observational
data. Additionally, SimPONet maximizes the utility of simulators by leveraging the highly correlated
simulator’s treatment effects with real-world effects, without relying on the exact correlation of
individual potential outcomes.

3 Problem Formulation
We use random variables X,T,Y to denote post-treatment covariates, binary treatments, and outcomes
respectively. The observational dataset has n samples: Dtrn = {(xi,ti,yi)}n

i=1 where ti ∈T = {0,1}
denotes treatment, xi∈X ⊂Rnx denotes covariates observed after ti is applied, and yi the resulting
outcome. We use the Neyman-Rubin potential outcomes framework to denote Yi(t),Xi(t) as the
potential outcome and covariate for unit i under a treatment t. The main challenge is the absence
of counterfactuals in Dtrn, i.e., for each unit i, we observe covariates and outcomes under only one
treatment ti.

We use the random variable Z ∈Z ⊂Rnz to denote the causal representations of covariates X. Z
generates X via treatment-specific covariate generating functions gt :Z 7→X for t∈{0,1}. We assume
that gt is diffeomorphic (Locatello et al., 2019a;b; Von Kügelgen et al., 2021); i.e., it is smooth,
invertible, and has a smooth inverse. The assumption that gt is diffeomorphic is required to establish
the theoretical identifiability of τ . A non-invertible transformation risks losing information when
mapping Z,T to X. If this lost information includes features necessary for identifiability, then τ
becomes unidentifiable from the observed X,T,Y . Diffeomorphism ensures that all factors involved
in generating X are preserved within X so that there exists inverse functions ft :X 7→Z,∀t∈{0,1}
that could recover the causal representations Z back. In Sec. 5.6, we experiment with non-invertible
transformations and find that both the baselines and SimPONet maintain robust performance, even
when these assumptions are violated in practice.

A sample is obtained from the real DGP as follows: (1) zi∼PZ , (2) ti∼P (T |zi), (3) xi∼P (X|zi,ti)=
δ(X−gti

(zi)), where δ denotes the dirac-delta distribution, (4) yi ∼ P (Y |zi,ti) =N (µti
(zi),σ2

y) is
2https://www.ansys.com/applications/battery/battery-cell-and-electrode
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sampled from a Gaussian with mean µti(zi) and constant variance σ2
y. Here, µt :Z 7→Y ∀t generates

responses for individuals with latent representations z under treatment t. We express the factual
observed outcome for i as Yi(ti)=µti

(fti
(xi)), and the missing counterfactual (CF) outcome under

1−ti as Yi(1−ti)=µ1−ti
(fti

(xi)).

Our Goal is Conditional Average Treatment Effect (CATE) estimation which quantifies the difference
in outcomes due to a change in treatment. Given a test unit (xj ,tj), its CATE is given by τj =E[Yj(T =
1)−Yj(T =0)|xj ,tj ]. As argued earlier, estimating τ from post-treatment data involves the sub goal of
learning causal representations of observed covariates X using a function ft :X 7→Z. We use τ :Z 7→Y
to express the treatment effect using the latent zj as τ(zj)=µ1(zj)−µ0(zj). Since ft inverts X to give
Z, the same effect can also be expressed for (xj ,tj) using τX as τX(xj ,tj)=µ1(ftj (xj))−µ0(ftj (xj))
where τX :X ×T 7→Y. Notice that τX(•,t) = τ ◦ft(•). When estimating τX , the factual outcome is
easy, all we need to do is fit a regression model on the observation data. The main challenge lies in
estimating the counterfactual outcome under treatment 1−tj .

Theorem 1 in (Locatello et al., 2019a) presents an impossibility result stating that ft which maps
covariates X to their treatment-independent causal representations Z is not identifiable solely using
Dtrn. The main hurdle is that multiple DGPs can yield the same marginal distribution P (X,T ), making
it impossible to isolate the true DGP. However, prior work has shown how to learn ft with counterfactuals,
requiring that Dtrn includes both covariates Xi(ti) and Xi(1−ti). Theorem 4.4 of (Von Kügelgen
et al., 2021) shows that such counterfactual supervision allows for recovery of Z up to a diffeomorphic
transformation h using contrastive learning. Proposition 2 in (Zimmermann et al., 2021) further shows
that h is, in particular, a rotation in an nz dimensional unit-normalized hypersphere. While some
prior works assume direct access to counterfactual supervision in real data (Nagalapatti et al., 2022;
Bachman et al., 2019), others rely on high-quality synthetic counterfactuals from simulators (Xie,
2018; Kaur et al., 2021). In contrast, our approach seeks to leverage simulators only to the extent that
they improve the downstream CATE task. We next formally define the simulator’s data generating
process.

Simulator DGP The simulator generates paired instances giving rise to a counterfactual dataset
Dsyn ={xS

i (0),xS
i (1),yS

i (0),yS
i (1)} generated using the DGP as shown in the lower panel in Figure 1.

The simulated instances are obtained as follows: (1) zi ∼ PZ ; i.e., Z is sampled from the same
distribution as real, (2) post-treatment covariates xS

i (t)∼P (XS |Z =zi,T = t)=δ(XS−gS
t (zi)) under

both treatments t={0,1}. gS
t :Z 7→X ∀t are diffeomorphic functions, and (3) corresponding outcomes

yS
i (0), yS

i (1) are sampled from P (Y S |Z =zi,T = t)=N (µS
t (zi),σ2

yS ), where µS
t :Z 7→Y,∀t. Note that

zi remains hidden even in Dsyn. We use “S” in the superscript to indicate a simulator component.
Now we describe some metrics that assess the distance between real and simulator DGP.

Definition 1 [dx|t(ft,f
S
t )] We assess the distance between the real and synthetic causal representation

extractors ft and fS
t using the following expected distance: dx|t(ft,f

S
t )=Ex∼P (X|t)

[
||ft(x)−fS

t (x)||22
]
.

Definition 2 [dz(τ,τS)] We assess the distance between the real and simulator CATE functions on
the PZ distribution as: dz(τ,τS)=Ez∼PZ

[
(τ(z)−τS(z))2]

. Under composition with a diffeomorphic
function h, we write dh(τ,τS)=Ez∼PZ

[
(τ(h(z))−τS(h(z)))2]

.

Assumptions for Identifying CATE τX . We summarise the assumptions that are needed on
the real dataset Dtrn and simulated counterfactual dataset Dsyn to identify the CATE function τX :
(A1) Positivity: P (T = t|Z = z) > 0, ∀t ∈ T ,z ∈ Z. (A2) Diffeomorphic Covariate Generation:
Covariates in both real and synthetic distributions are obtained through diffeomorphic transformations
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of Z under any treatment T . (A3) Identifiability of τ given Z: The causal factors Z that generate X
form a sufficient adjustment set, blocking backdoor paths between T and Y , thus making τ identifiable
from Z. Note that A2 and A3 together ensure that X contains information about all the relevant latent
factors that affect the outcome Y and is a weaker notion of the commonly used unconfoundedness
assumption.

CATE Error (ECATE). Given a test dataset Dtst ={(xj ,tj ,yj(0),yj(1))}m
j=1, with each xj rendered

under tj , we compute the empirical error incurred in estimating CATE using mean squared error as
ECATE = 1

m

∑
j∈Dtst

[τj−τ̂j ]2 where τj =yj(1)−yj(0) is the true effect and τ̂j is the predicted effect for
the instance (xj ,tj).

The CATE error in general can be decomposed across treatment T as

ECATE =
∑
t∈T

P (T = t) Et
CATE where Et

CATE =
∫

x∈X
[τX(x,t)−τ̂X(x,t)]2P (x|t)dx

Definition 3. Let us define factual error Et
F and counterfactual error Et

CF on samples with observed
treatment t and missing treatment 1−t as follows:

Et
F =

∫
x∈X

[µt(ft(x))−µ̂t(f̂t(x))]2P (x|t)dx and Et
CF =

∫
x∈X

[µ1−t(ft(x))−µ̂1−t(f̂t(x))]2P (x|t)dx

Lemma 2. The CATE error is related to the factual and counterfactual error as: Et
CATE≤2Et

F +2Et
CF

[Proof in Appendix A.5.1]

4 Learning Causal Representations for CATE

Our task involves learning four functions: f̂t that extracts the causal representations from X(t) and µ̂t

that estimates the outcomes Y (t) for t∈{0,1}. With access to counterfactual simulated data Dsyn and
observational real data Dtrn, one can come up with the following approaches for estimating CATE: 1)
SimOnly, which only uses Dsyn, and 2) RealOnly which only uses Dtrn to estimate µt, (3) RealµSimf ,
which uses Dsyn to estimate ft and subsequently, Dtrn to estimate µt. We now discuss the training
approach for each of these methods, delve into their shortcomings, and then present our proposed
method SimPONet.

To illustrate the shortcomings, we consider a test instance x⋆ generated under treatment T =1 (without
loss of generality) and derive the CATE error expression for it in the population setting, as |Dtrn|→∞
and |Dsyn|→∞.
4.1 The SimOnly Estimator
SimOnly solely uses Dsyn. It leverages the counterfactual supervision provided by the simulator and
identifies the simulator’s DGP as follows:

(Step 1) Estimate the synthetic causal representation extractor fS from covariate pairs {xS
i (0),xS

i (1)}
using contrastive learning Von Kügelgen et al. (2021):

{f̃S
0 ,f̃S

1 }=argmin
{f̂S

0 ,f̂S
1 }

|Dsyn|∑
i=1

[
−log exp(sim(ẑi(1),ẑi(0))∑

j ̸=i

∑
t,t′exp(sim(ẑi(t),ẑj(t′)))

]
where ẑi(t)= f̂S

t (xS
i (t)) (1)
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where sim(•,•) is cosine similarity, (xS
i (t),xS

i (1−t)) denotes a positive pair with the same underlying
latent zi. A negative pair (xS

i (t),xS
j (t′)) has different (zi,zj). Contrastive learning increases similarity

of representations of positive pairs (ẑi(0),ẑi(1)) while pushing apart the negative pairs (ẑi(t),ẑj ̸=i(t′)).
Lemma 3. As |Dsyn|→∞, contrastive training with paired counterfactual covariates as shown in
Eq. 1 recovers f̃S

t = h◦fS
t where h is a diffeomorphic transformation. Moreover, when the latent

space Z⊂S(nz−1) (unit-norm hypersphere in Rnz ), h is a rotation transform by Extended Mazur-Ulam
Theorem as shown in (Zimmermann et al., 2021) (Proposition 2).

[Refer Appendix A.5.2 for more details.]

The main insight from the above lemma is that, given counterfactual supervision, it is possible to
recover causal representations Z from post-treatment covariates X up to a rotation h, making CATE
identifiable in the simulated distribution, as we demonstrate below.

(Step 2) Estimate τ̃S(z)= µ̃S
1 (z)−µ̃S

0 (z) with supervision on difference of outcomes τS(fS
t (xS

i (t)))=
yS

i (1)−yS
i (0) as

τ̃S =argmin
τ̂S

∑
xS∈Dsyn

[
τS(fS

t (xS(t)))−τ̂S(f̃S
t (xS(t)))

]2
(2)

The SimOnly method uses these estimates as-is on real data, i.e. τ̂ = τ̃S and f̂t = f̃S
t , ∀t∈T . We

analyze below the error incurred with such estimates on real data.

CATE error: In the population setting, since f̃S
t =h◦fS

t , we see that the optimization problem in
Eq. 2 yields τ̃S =τS ◦h−1 as its solution. Thus, for an instance x⋆ from the real distribution under
treatment 1, the true CATE is τ(f1(x⋆)). The CATE error using SimOnly becomes:

[
τ(f1(x⋆))−τS◦h−1(h◦fS

1 (x⋆))
]2 =

[
τ(f1(x⋆))−τS(fS

1 (x⋆))
]2

.

This shows that for SimOnly to provide accurate CATE estimates, the simulator must perfectly align
with the real world; i.e., τS = τ and ft = fS

t for all t. However, designing such simulators is highly
challenging in practice, making this method unsuitable for CATE.
4.2 The RealOnly Estimator

RealOnly solely uses real observational data Dtrn. Since Dtrn lacks counterfactual covariates, this
model cannot apply contrastive training and therefore cannot explicitly supervise the recovery of causal
representations. Instead, it focuses on regressing the factual outcomes yi(ti) from post-treatment
covariates xi(ti). In terms of the four learning parameters, its learning objective is:

argmin
{µ̂0,µ̂1,f̂0,f̂1}

|Dtrn|∑
i=1

(yi−µ̂ti
(f̂ti

(xi)))2

However, since µ̂t,f̂t are not individually supervised, we might as well collapse them into a composition
µF

t =µt◦ft; yielding µF
ti

(xi)=yi, and thereby CATE as τ̂X(x,t)= µ̂F
1 (x)−µ̂F

0 (x).

RealOnly is consistent in estimating the factual outcomes, because as |Dtrn| → ∞, we have
µ̂F

t = argmin
µ̂F

t
Ex∼P (x|t)

[(
µ̂F

t (x)−µF
t (x)

)2
]

= µF
t and therefore, the factual error Et

F = 0. How-
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ever, RealOnly incurs a significant error when estimating the counterfactual outcome, which in turn
contributes to the CATE error, as shown below.

CATE error: The true CATE for x⋆ obtained using treatment 1 can be written as τ(f1(x⋆)) =
µ1(f1(x⋆))−µ0(f1(x⋆)). Then, the CATE error for RealOnly is computed as:[(

µ1(f1(x⋆))−µ0(f1(x⋆))
)
−

(
µ̂F

1 (x⋆)−µ̂F
0 (x⋆)

)]2 =
[(

µ1(f1(x⋆))−µ̂F
1 (x⋆)

)
−

(
µ0(f1(x⋆))−µ̂F

0 (x⋆)
)]2

In the population setting, using the consistency of factual estimates, the CATE error reduces to[
µ0(f1(x⋆))−µF

0 (x⋆)
]2. This error is zero when f1(x⋆) = f0(x⋆). Thus, for RealOnly to provide

accurate CATE estimates, the treatment must not affect the post-treatment covariates, i.e., g0(z)=
g1(z) ∀z in which case their inverse are equal f0 =f1. However, this assumption is often unrealistic.
For instance, in pharmacology, different drugs typically induce distinct effects on patient covariates,
limiting the applicability of this model in such settings.

Remark: The post-treatment covariates X can be viewed as a special case of the pre-treatment
covariates Z when the covariate-generating functions g0 =g1. In such cases, our proposed SimPONet
algorithm offers no distinct advantage, and existing CATE methods designed for pre-treatment
covariates suffice and should be used instead.
4.3 The RealµSimf Estimator
Unlike SimOnly, which uses Dsyn to learn both f̂t and µ̂t, this approach leverages Dsyn solely to
learn the representation extractor f̂t. Specifically, it assumes that f̂t = f̃S

t , as obtained from Eq. 1.
Thereafter, it learns the µ̂t parameters by applying a factual loss on Dtrn to estimate

µ̂0,µ̂1 =argmin
{µ̂0,µ̂1}

∑
Dtrn

(yi−µ̂ti
(f̃S

ti
(xi)))2

We call this method RealµSimf since it learns the outcome parameters µ from real samples while
learning representation extractor ft from the simulator.

CATE error: One condition under which the RealµSimf model achieves zero CATE error is when
f̃S

t = ft for each treatment t. This requires that the simulator aligns with real-world covariates,
specifically xt =gt(z)=gS

t (z)=xS
t . This limitation arises because the model learns the representation

extractor solely from Dsyn, without making adjustments for real covariates.

In summary, we described three possible CATE estimators and showed that each method would
provide accurate CATE estimates under certain strong assumptions about the real and simulator
DGPs. Given that none of these assumptions would hold in practice, we now turn to exploring a joint
training framework that learns simultaneously from both real and simulated samples.
4.4 The SimPONet Estimator
We first conduct a theoretical analysis to derive a generalization bound that characterizes the CATE
error as a function of the mismatch between the real and simulator distributions. This analysis forms
the basis for our proposed method, SimPONet, whose loss function is inspired by the bound.
Lemma 4. Assume τ is Kτ -Lipschitz, and f̃S and τ̃S are estimates from the simulator DGP obtained
from the optimization in Eq. 1, 2. Then, the CATE error on the estimates f̂t and τ̂ admits the following
bound:

Et
CATE(f̂t,τ̂)≤ [8Et

F +12dh(τ̂ ,τ̃S)+12K2
τ dx|t(f̂t,f̃

S
t )]+[12dz(τ,τS)+12K2

τ dx|t(ft,f
S
t )]
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where dx|t,dz,dh(z) are distance functions in Sec. 3 and Et
F is the factual loss. [Proof in Appendix A.5.2.]

The expressions in blue are constants that capture the discrepancy between real and simulated
distributions and cannot be minimized. In contrast, the remaining terms can be minimized by training
on Dtrn and Dsyn. As |Dtrn| approaches infinity, the factual error Et

F can be made to approach zero,
while the other minimizable distance terms act as regularizers. The term dh(τ̂ , τ̃S) can assist in
regularizing the outcome parameters µ̂t, whereas dx|t(f̂t,f̃

S
t ) can aid in regularizing the parameters

of the causal representation extractor functions f̂t. This analysis leads to our proposed approach
SimPONet whose overall loss is as follows:

min
{µ̂t,f̂t}

∑
Dtrn

(
yi−µ̂ti(f̂ti(xi))

)2

︸ ︷︷ ︸
Factual Loss on Dtrn

+λf

∑
Dtrn

∥f̃S
ti

(xi)−f̂ti(xi)∥2
2︸ ︷︷ ︸

d(f̃S
t ,f̂t) regularizer

+λτ

∑
Dsyn

∑
t∈{0,1}

(
τS

i −τ̂(f̃S
t (xS

i (t)))
)2

︸ ︷︷ ︸
τS regularizer on Dsyn

(3)
where τS

i =yS
i (1)−yS

i (0) and λτ ,λf >0 are loss weights. τ̂(•)= µ̂1(•)−µ̂0(•) denotes the estimated
CATE.

SimPONet relaxes the strict equality f̂t = f̃S
t used by RealµSimf , and instead uses f̃S

t as a regularizer,
while ensuring that µ̂t accurately predicts the factual outcomes for instances in Dtrn. It also imposes
the τS loss on simulated instances to leverage any potential similarity between the true treatment
effect, τ , and the simulated treatment effect, τS . Furthermore, the τS loss is essential to prevent
degenerate solutions that would cause SimPONet to collapse to the RealµSimf estimator. This is
because applying regularization solely on f̂t can drive the regularizer ||f̂t(x)−f̃S

t (x)||22 to zero, leading
to f̂t = f̃S

t , while still minimizing the factual error Et
F by updating µ̂t accordingly. Consequently,

SimPONet would collapse into the RealµSimf estimator, making the τS loss critical in avoiding such
degeneracies.

Adjusting Loss Weights. SimPONet adjusts the loss weight λf for learning f̂t by comparing the
factual errors of the RealOnly model, which trains on X, with those of the RealµSimf model, trained
using simulated causal representations f̃S

t (x). If RealOnly consistently outperforms RealµSimf in
factual error, we infer that the simulated representations may not generalize well to the real distribution,
prompting SimPONet to reduce λf . By default, λf is set to 1; however, if RealµSimf exhibits a
notably higher factual error, SimPONet lowers λf to 10−4.

In contrast, tuning λτ requires τ supervision on real data, which is unavailable. Prior work (Curth
& van der Schaar, 2021; Nagalapatti et al., 2024b; Künzel et al., 2019) argue that while outcome
functions µt can be complex, the difference function τ =µ1−µ0 is often simpler. For instance, if we
consider µS

t =µt+c (with c>0), we can make the factual outcomes to diverge arbitrarily while their
corresponding τ and τS remain equal. Therefore, while comparing the factual errors between SimOnly
and RealOnly models to set λτ is appealing, it maybe a poor choice in practice. So, SimPONet always
sets λτ to its default 1.

We present the SimPONet’s pseudocode in Appendix A.4.
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5 Experiments

We conduct experiments that are designed to address the following research questions:

RQ1 How do different methods compare with varying discrepancies between real and simulator in
settings with closed form estimates; i.e., without errors due to finite-sample training?

RQ2 How does SimPONet compare to other SOTA baselines that assume pre-treatment covariates?
RQ3 What are the contributions of individual loss terms in SimPONet?
RQ4 How does SimPONet fare against the baselines when µt exhibits complex non-linear behavior?
RQ5 How do CATE methods perform when trained directly on (a) post-treatment covariates X, or

(b) pre-treatment Z, or (c) simulated causal representations f̃S from Eq. 1?

5.1 Neural Architecture and Hyperparameters

For the Linear experiments in RQ1, we omit shared layers in Fig. 5, and set f̂0 and f̂1 as nx×nx

matrices, and µ̂0 and µ̂1 as nx×1 vectors. For the real-world experiments in RQ2, with both ft,µt as
non-linear functions, we set µ̂0 and µ̂1 as 2-layer MLPs with hidden layers of 100 and 50 neurons. The
shared layers have 2 hidden layers with 50 and nx neurons, respectively. We impose the d(f̂t,f̃

S
t ) loss

for SimPONet on outputs of the shared layers. For experiments in RQ4, we omit the shared layers
while setting f̂t as linear layer. But since µ is non-linear, we use an MLP with one hidden layer of 50
neurons and ReLU activations for each µ̂t.

Hyperparameters: We implemented all baselines and SimPONet using jax within CATENets (Curth
et al., 2021), a standard library for benchmarking state-of-the-art CATE estimation methods. To ensure
consistency, we used the same MLP architecture, learning rates, optimizers, and other hyperparameters
as the default settings in CATENets for baseline approaches. The unique hyperparameters for
SimPONet are the loss weights λf and λτ . As described in Sec. 4.4, SimPONet tunes λf by comparing
the factual errors of the RealOnly and RealµSimf models, while λτ is always set to 1. CATENets
applies early stopping based on factual error in the validation dataset, a common practice in CATE
training. To ensure a fair comparison, we maintained consistent training and validation splits across
all methods.

Assessing Statistical Significance: For CATE experiments, standard deviation is sometimes
misleading to comment on the statistical significance of empirical results as noted in (Curth et al.,
2021). So, for all experiments, we conduct a one-sided paired t-test with SimPONet as the baseline
and enclose p-values in brackets to indicate statistical significance. Lower p-values favor SimPONet.

5.2 RQ1: Assessing Baselines Under Settings Without Finite Training Sample Errors

To address RQ1, we consider a setting where both the real and simulator DGPs as shown in Fig. 1 are
linear. In particular, we generate the training datasets Dtrn and Dsyn as follows: (1) Latent variables
z∈Rnz are sampled from distribution PZ . (2) Real and simulated covariates for a treatment t are
computed as gt(z)=zRt and gS

t (z)=zSt, where Rt and St are invertible matrices. (3) Outcomes are
generated as µt(z)=z⊤wt and µS

t (z)=z⊤wS
t , where wt and wS

t are vectors in Rnz . We consider two
datasets for RQ1: (1) Synthetic-Gaussian and (2) Real World-IHDP, differing in how Z is obtained.
In setting (1), z∈R10 is sampled from a standard Gaussian N (0,1), while for (2), Z is taken from the
real-world IHDP dataset (Appendix A.7) as-is.

10
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Table 1: RQ1: In a linear DGP setting, we vary the gaps using γR for d(f0,f1) in the first column, γRS for
d(ft,f

S
t ), and γτ for d(τ,τS). “low” refers to 0.1 that simulates small distance, while “high” refers to 0.4. We

run all experiments with five different seeds and report p-values of comparing the mean performance in bracket.

Synthetic-Gaussian Real World-IHDP
d(f0,f1) d(ft,f

S
t ) d(τ,τS) SimOnly RealOnly RealµSimf SimPONet SimOnly RealOnly RealµSimf SimPONet

0.00 high high 2.82 (0.27) 0.00 (1.00) 15.75 (0.01) 2.58 (0.00) 3.57 (0.11) 0.00 (1.00) 48.76 (0.05) 3.20 (0.00)

low low low 0.63 (0.00) 2.47 (0.02) 1.19 (0.01) 0.54 (0.00) 1.00 (0.44) 3.43 (0.02) 2.73 (0.00) 0.97 (0.00)

low low high 1.57 (0.16) 2.47 (0.08) 1.19 (0.83) 1.39 (0.00) 1.62 (0.26) 3.43 (0.04) 2.73 (0.02) 1.49 (0.00)

low high low 2.14 (0.22) 2.47 (0.00) 15.75 (0.01) 1.85 (0.00) 3.67 (0.31) 3.43 (0.48) 48.76 (0.05) 3.37 (0.00)

low high high 2.82 (0.26) 2.47 (0.56) 15.75 (0.01) 2.57 (0.00) 3.57 (0.11) 3.43 (0.39) 48.76 (0.05) 3.19 (0.00)

high low low 0.63 (0.00) 13.86 (0.02) 1.19 (0.01) 0.54 (0.00) 1.00 (0.47) 47.78 (0.06) 2.73 (0.00) 0.98 (0.00)

high low high 1.57 (0.16) 13.86 (0.03) 1.19 (0.83) 1.39 (0.00) 1.62 (0.27) 47.78 (0.06) 2.73 (0.02) 1.50 (0.00)

high high low 2.14 (0.21) 13.86 (0.03) 15.75 (0.01) 1.85 (0.00) 3.67 (0.31) 47.78 (0.06) 48.76 (0.05) 3.38 (0.00)

high high high 2.82 (0.26) 13.86 (0.04) 15.75 (0.01) 2.57 (0.00) 3.57 (0.11) 47.78 (0.06) 48.76 (0.05) 3.19 (0.00)

Now, to systematically control the real-simulator mismatch, we need means to vary the following
distances: d(R−1

0 ,R−1
1 ), d(R−1

t ,S−1
t ), and d(τ,τS). We achieve this as follows: (1) Initialize R−1

0 ,w0∼
N (0,1). (2) To inject a distance γR∈(0,0.5) between R−1

0 and R−1
1 , set R−1

1 =(1−γR)R−1
0 +γRN (0,1).

(3) Set w1∼γw0 +(1−γ)N (0,1). We use γ =0.4 in all experiments. (4) Similarly, inject a γRS gap
between R−1

t and S−1
t . (5) For treatment effect parameters wτ =w1−w0 in the real DGP, we sample

its simulator counterpart with a gap γτ as wS
τ =(1−γτ )wτ +γτN (0,1) and set wS

t accordingly.

In linear settings, the optimization problems for the CATE estimators SimOnly, RealOnly, and
RealµSimf admit closed-form solutions. We show the closed-form solutions in Table 7 in the Appendix,
and a detailed derivation in Appendix A.6.

For SimPONet, a closed-form solution is not possible, so we solve it to a local optimum using alternating
minimization over µ̂t and f̂t, with each alternating update in closed-form. We show the SimPONet’s
update equations in Appendix A.6.4. In summary, the setting of RQ1 allows study of the impact of
varying discrepancies between the real and simulator distributions without approximation errors due
to finite training samples.

We show the results comparing SimPONet with the three baselines in Table 13 where we observe:
(a) Across both synthetic and real-world settings, SimPONet achieves either the best or second-best
performance. The CATE error for SimPONet remains controlled primarily due to its ability to bound
errors in the counterfactual distribution. (b) In contrast, the RealOnly and RealµSimf models perform
well only under certain restrictive conditions favorable to them, providing zero error on the factual
distribution but very high counterfactual error, leading to poor CATE estimates.

5.3 RQ2: Comparing SimPONet with State-of-the-art CATE Baselines
We conduct experiments using semi-synthetic observational datasets commonly used to assess efficacy
of treatment effect estimation methods in the literature: the Infant Health Development Program

3Each entry in the table reports the CATE Error alongside its corresponding p-value as CATE Error (p-value).
The p-value denotes the statistical significance of the hypothesis that SimPONet outperforms the baseline. We use a
one-sided paired t-test for this assessment. Smaller p-values indicate stronger evidence in favor of SimPONet. We show
the best performing method in green, and the second best method in yellow across all our tables.
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(IHDP) and the Atlantic Causal Inference Conference (ACIC) datasets. These datasets contain
real-world pre-treatment covariates (Z). Please refer Appendix A.7 for more details on these datasets.

To align these datasets with our study, we apply RealNVP Normalizing Flows (Dinh et al., 2016)
to transform pre-treatment covariates Z into post-treatment X. Flows are non-linear deep neural
networks that ensure invertibility of the covariate generating functions gt,g

S
t . We consider randomly

initialized flows with two coupling layers. We used the flows g0,g1 on real data, and two other distinct
flows gS

0 ,gS
1 to obtain covariates in synthetic data from Z. We borrow the real outcomes as-is from

the ground truth dataset. However, we synthesize simulator outcomes with a gap of γτ as follows:
(1) sample wS

τ ∈Rnz ∼N (0,1) (2) set τS(z) = τ(z)+(σ(τ) ·γτ ·z⊤wS
τ ), where σ(τ) is the standard

deviation of CATE labels in the real dataset. Scaling by σ(τ) ensured comparability between τ and
τS . Thus, when γτ =0, τ =τS ; when γτ =1, τ is disparate from τS .

We evaluated SimPONet against various baselines from the well-known CATENets (Curth et al.,
2021), a benchmarking library for CATE estimation. Since the baseline methods are not designed to
extract the causal representations, we provided them with representations extracted by simulated
causal representation extractor f̃S

t (x) as input for a fair comparison. Running these baselines with
post-treatment covariates X directly as input yielded much poorer results as shown in Fig. 3. We also
compared SimPONet with SimOnly, RealOnly, and RealµSimf baselines that we developed in our
theoretical analysis. We present the results in Table 2 for γτ =0.1, and defer the results for larger γτ

to Appendix 5.7. We make the following key observations:

IHDP ACIC-2 ACIC-7 ACIC-26
Dataset
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Comparing Factual Errors on Validation Data
RealOnly
Real Simf

Figure 2: Factual errors with p-values
shown above bars. For IHDP, RealOnly
consistently outperforms RealµSimf .

(a) IHDP: This dataset contains 25 pre-treatment covariates,
19 of which are binary. Contrastive training struggled to capture
these binary features, causing RealµSimf , which uses f̃S

t (x) as
input, to consistently underperform RealOnly, which directly
uses x. As shown in Fig 2, the p-value is zero for the IHDP
dataset, but significantly larger for the others. As a result, we set
the weight of the regularizer d(f̂t,f̃

S
t ), controlled by λf , to 1e-4

for IHDP, while keeping λf at its default value of 1 for ACIC.
Overall, SimPONet achieved the best performance.

(b) ACIC-2: This dataset is unique in that the true CATE,
τ , is constant across all individuals in the observational data, implying that its standard deviation
σ(τ)=0 for real samples. As a result, our approach to synthesizing the simulated CATE, τS , given by
τS(z)=τ(z)+

(
σ(τ)·γτ ·z⊤wS

τ

)
, yields τS(z)=τ(z) for all z. This leads to perfect alignment between

the synthetic and true CATE, causing SimOnly to outperform all other methods on this dataset.
Although SimPONet could have improved by assigning a higher weight to the τS regularizer, tuning
this weight would typically require supervision on τ , which we avoid.

(c) ACIC-7 and ACIC-26: The CATENets baselines significantly outperform the RealOnly model,
because of high-quality causal representations extracted by f̃S

t . This is demonstrated by RealµSimf

outperforming RealOnly on factual error (see Fig. 2). In ACIC-7 and ACIC-26, SimPONet achieves
the best results by leveraging the closeness between τ and τS . FlexTENet (Curth & van der Schaar,
2021), which shares parameters between µ̂0 and µ̂1, and PairNet (Nagalapatti et al., 2024b), which
applies losses on pairs of close-by samples are strong contenders to SimPONet.

ACIC-All: The last column in the table presents results across all 77 seeds of the ACIC dataset.
SimPONet achieves the lowest mean CATE error overall. However, for certain seeds, SimPONet’s
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Table 2: RQ2: Comparison of SimPONet with several pre-treatment baselines and post-treatment proposals.
p-values for paired t-tests against SimPONet are in brackets. Lower p-values indicate statistical significance.
SimPONet outperforms others overall, while SimOnly performs best on ACIC-2 since τ =τS .

Method IHDP ACIC-2 ACIC-7 ACIC-26 ACIC-All
RNet (Nie & Wager, 2021) 1.54 (0.00) 3.30 (0.00) 5.91 (0.04) 6.06 (0.18) 5.78 (0.03)
XNet (Künzel et al., 2019) 1.0 (0.00) 0.43 (0.15) 5.49 (0.17) 5.1 (0.38) 4.45 (0.41)
DRNet (Schwab et al., 2020) 0.96 (0.00) 0.24 (0.59) 5.53 (0.15) 5.08 (0.39) 4.45 (0.40)
CFRNet (Shalit et al., 2017) 0.96 (0.00) 0.36 (0.26) 5.55 (0.15) 5.09 (0.38) 4.67 (0.32)
FlexTENet (Curth & van der Schaar, 2021) 0.96 (0.00) 0.32 (0.32) 5.46 (0.19) 5.04 (0.40) 4.85 (0.37)
DragonNet (Shi et al., 2019) 0.96 (0.00) 0.29 (0.41) 5.57 (0.14) 5.09 (0.38) 4.60 (0.40)
IPW (Robins et al., 1994) 0.96 (0.00) 0.36 (0.24) 5.56 (0.15) 5.09 (0.38) 4.45 (0.40)
k-NN (Stuart, 2010) 0.96 (0.00) 0.33 (0.33) 5.48 (0.18) 5.13 (0.37) 4.44 (0.40)
PerfectMatch (Schwab et al., 2018) 0.98 (0.00) 0.56 (0.11) 5.75 (0.08) 5.13 (0.37) 4.56 (0.28)
StableCFR (Wu et al., 2023) 1.01 (0.00) 1.09 (0.03) 5.56 (0.15) 5.08 (0.43) 4.82 (0.14)
ESCFR (Wang et al., 2024) 0.96 (0.00) 0.27 (0.47) 5.55 (0.15) 5.79 (0.21) 4.73 (0.18)
PairNet (Nagalapatti et al., 2024b) 0.97 (0.00) 0.12 (0.85) 5.46 (0.23) 5.05 (0.37) 4.44 (0.41)

SimOnly 0.94 (0.00) 0.00 (0.98) 6.65 (0.00) 6.60 (0.12) 6.45 (0.02)
RealOnly 0.83 (0.13) 11.23 (0.01) 14.81 (0.05) 8.18 (0.01) 9.82 (0.00)
RealµSimf 0.96 (0.00) 0.17 (0.76) 5.57 (0.14) 5.09 (0.38) 4.52 (0.38)
SimPONet 0.79 (0.00) 0.26 (0.00) 5.04 (0.00) 4.67 (0.00) 4.36 (0.00)

Table 3: RQ3: Impact of regularizers. Here, −d(f̂t,f̃
S
t ) represents our loss 3 with λf = 0, and −τS means

λτ =0. A negative value implies SimPONet with all regularizers outperforms the ablation where one regularizer
is disabled.

IHDP - Linear ft, Linear µt GP - Linear ft, Non-Linear µt

d(f0,f1) d(ft,f
S
t ) d(τ,τS) −d(f̂t,f̃

S) −τS −d(f̂t,f̃
S) −τS

0.00 high high +1.29 (1.00) -1.07 (0.18) -0.55 (0.31) -0.62 (0.26)
high low low -0.64 (0.04) +0.01 (0.51) -0.29 (0.24) -0.04 (0.47)
high low high -0.40 (0.11) +0.00 (0.50) -0.42 (0.10) -0.19 (0.34)
high high low +1.74 (0.99) -0.03 (0.48) -0.66 (0.27) -0.71 (0.25)
high high high +1.30 (1.00) -0.03 (0.45) -0.72 (0.21) -0.97 (0.18)

CATE error remains comparable to baselines such as PairNet, k-NN, as indicated by them having
p-values close to 0.4. The RealOnly model consistently performs worse across all seeds due to the
covariate functions g0 and g1 producing disparate post-treatment covariates X0 and X1 when applied
to Z. Similarly, the SimOnly model suffers due to the distributional mismatch between the real and
simulator data.

5.4 RQ3: Ablation of SimPONet Losses

We evaluate the impact of the d(f̂t,f̃
S
t ) and τS regularizers in SimPONet’s objective 3. We experiment

with the Linear IHDP dataset (Sec. 5.2) and the Non-Linear Gaussian process dataset (Sec. 5.5).
For the Linear IHDP dataset, in the −τS case, we added an L2 penalty on wt for the alternating
minimization to work. Table 3 presents the difference in CATE errors of SimPONet and the ablation,
averaged over five seeds with p-values. A negative entry means SimPONet does better than the
ablation. We observe that τS loss is very effective since SimPONet outperforms the −τS in both
datasets. For IHDP, removing d(f̂t,f̃

S
t ) loss helps. We could not set λf weight to be small because both

RealOnly and RealµSimf achieved zero factual error. Despite this, SimPONet with both regularizers
comfortably outperformed the other proposals demonstrating it as a better candidate for our task.
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Table 4: RQ4: Results for linear covariate and GP-based nonlinear outcome functions. We run each experiment
5 times and show the p-values. SimPONet outperforms others in many settings. RealOnly is a strong contender.

d(f0,f1) d(ft,f
S
t ) d(τ,τS) SimOnly RealOnly RealµSimf SimPONet

0.00 high high 5.30 (0.09) 2.99 (0.11) 3.17 (0.09) 1.94 (0.00)

low low low 1.77 (0.15) 1.06 (0.73) 1.05 (0.77) 1.26 (0.00)

low low high 1.56 (0.08) 0.98 (0.65) 1.07 (0.44) 1.05 (0.00)

low high low 4.60 (0.04) 2.87 (0.07) 3.12 (0.04) 1.88 (0.00)

low high high 4.15 (0.04) 2.96 (0.02) 3.11 (0.01) 1.60 (0.00)

high low low 2.39 (0.14) 1.19 (0.68) 1.12 (0.77) 1.37 (0.00)

high low high 1.94 (0.11) 0.98 (0.83) 1.16 (0.58) 1.21 (0.00)

high high low 7.42 (0.09) 2.65 (0.38) 2.95 (0.25) 2.37 (0.00)

high high high 5.70 (0.07) 2.80 (0.17) 3.16 (0.09) 2.10 (0.00)

5.5 RQ4: Linear covariate function g and non-linear outcome function µ

Now, we consider a more complex setup where the covariate functions gt and gS
t remain linear, but

the outcome functions µt and µS
t are nonlinear in Z. In particular, we sample the outcomes y and yS

using Gaussian Processes (GPs) (Rasmussen & Williams, 2005). Let GP (0,Kγ) denote a GP with an
RBF kernel of width γ, so a higher γ results in a more complex function. To sample the µ0,µ1 such
that their difference τ has a gap γ, we follow: (1) Sample τ using a GP: τ ∼GP (0,Kγ). (2) Sample
µ0 ∼GP (0,K1). (3) Set µ1 ∼ µ0 + τ . As before, we set γ = 0.4. Now, to sample µS

0 ,µS
1 such that

d(τ,τS)=γτ : (1) Set τS∼τ +GP (0,Kγτ
). (2) Sample yS

0 ∼GP (0,K1). (3) Set yS
1 =yS

0 +τS .

We estimate f̃S in Eq. 1 in closed-form, whereas we learn other parameters using gradient descent.
We show the results in Table 4 where we observe: (a) SimPONet outperforms the other baselines in
five out of nine settings (b) In alignment with our theory, RealµSimf performs better than others
only when d(ft,f

S
t ) is small. In summary, when the properties of the underlying DGP are unclear,

SimPONet proves to be an effective approach for learning τ .

5.6 RQ5: Comparing CATE methods when trained on Z vs X vs f̃S(X)

To address RQ5, we use the IHDP dataset to evaluate the baseline models when trained on post-
treatment covariates X directly, and we compare these results with those from Table 2, where the
baselines were trained on simulated causal representations, f̃S

t (x). We also evaluate the baselines
trained on pre-treatment Z to explicitly show the detrimental impact of post-treatment covariates on
the CATE error.

In addition, we extend Table 2 by considering non-invertible, non-linear transformations with Multi-
Layer Perceptrons (MLPs) on the IHDP dataset to assess the robustness of SimPONet and baselines
when the diffeomorphism assumption is violated. To this end, we used two-layer MLPs for gt and gS

t

to generate covariates from Z. We present the results in Fig. 3, and make the following observations:

In the pre-treatment setting, causal representation extraction is unnecessary, making simulator
supervision inconsequential; thus, we omit the four post-treatment CATE methods introduced in this
paper. For other baselines, Fig. 3 shows that they perform significantly worse with post-treatment X
than with pre-treatment Z, underscoring the importance of causal representation recovery. DragonNet
achieved the best performance with pre-treatment covariates.
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For Normalizing Flow-generated covariates, CATE error consistently decreased when baselines used
simulator-based causal representations, S̃t(X), rather than X, validating the utility of simulators in
extracting causal representations. However, the CATE error remains significantly higher compared
to using pre-treatment covariates Z, highlighting that simulators, while helpful, are not ideal and
exhibit a distributional gap between real and simulator distributions. This gap impacts all CATE
methods. Notably, SimPONet, specifically designed to leverage simulator supervision and incorporate
regularizers using simulator-generated data, achieves the best results.

In the MLP-based covariate experiments with non-invertible covariate functions g0,g1, SimPONet
consistently outperformed all baselines, exhibiting trends similar to those observed with Normalizing
Flow-generated covariates. This suggests that the diffeomorphism assumption, while necessary for our
theoretical results, may be inconsequential in practice.
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Figure 3: Comparing CATE errors under pre-treatment Z, and MLP, Normalizing flow generated
post-treatment covariates X.

5.7 Varying γτ in Arbitrary DGP Experiment

The results of the varying γτ experiment are presented in Fig. 4, where we compare two approaches
that leverage simulator data during training: SimOnly and SimPONet. Across all γτ gaps, we
observe that SimPONet consistently outperforms SimOnly in three out of four datasets, with ACIC-2
being the exception. This is expected, as ACIC-2 satisfies the condition τs = τ . The performance
gains of SimPONet are particularly notable in the ACIC-7 and ACIC-26 datasets, where the CATE
error for SimOnly escalates significantly at larger γτ values. The exact error values for these cases
are shown in the inset subplot at the top-right. These findings underscore our argument: while
SimOnly can perform well on simulators closely aligned with the real world, it struggles with real-world
simulators that diverge from reality. In contrast, SimPONet’s adjustment strategies—enabled by
theoretically grounded regularizers derived from the CATE error analysis—yield much more reliable
CATE estimates.

5.8 On the Quality of Z Extracted by SimPONet

In this experiment, we evaluate the quality of representations learned by SimPONet. If SimPONet’s
regularizers in the losses enable the recovery of representations identifiable for CATE, then a RealOnly
model trained on these representations should outperform the RealµSimf model trained on representa-
tions extracted using contrastive training on the simulator dataset. We focus on the Linear IHDP and
non-linear GP datasets, as they provide closed-form solutions for Objective 1, and and gives us a fine
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Figure 4: We vary γτ , which controls the gap between the synthetic CATE, τS , and the real CATE, τ . Each
dataset is represented by a distinct color, where the pale version of the color indicates SimOnly and the darker
version denotes SimPONet. For ACIC-7 and ACIC-26, as γτ increases, the CATE error grows significantly.
Therefore, we present these results as an inset figure in the top-right corner.

Table 5: RQ5: Evaluating RealµSimf performance with Z from SimPONet’s f̂t vs. f̃S
t obtained from Dsyn.

RealµSimf with SimPONet’s f̂t significantly outperforms in many settings indicating SimPONet extracts
better Z.

IHDP - Linear ft, Linear µt GP - Linear ft, Non-Linear µt

d(f0,f1) d(ft,f
S
t ) d(τ,τS) RealµSimf RealµSimPONetf RealµSimf RealµSimPONetf

0.00 high high 48.76 (0.05) 3.28 (0.00) 3.17 (0.32) 2.67 (0.00)

low low low 2.73 (0.00) 0.97 (0.00) 1.05 (0.81) 1.55 (0.00)

low low high 2.73 (0.02) 1.49 (0.00) 1.07 (0.78) 1.55 (0.00)

low high low 48.76 (0.05) 3.48 (0.00) 3.12 (0.23) 2.53 (0.00)

low high high 48.76 (0.05) 3.21 (0.00) 3.11 (0.34) 2.73 (0.00)

high low low 2.73 (0.00) 0.98 (0.00) 1.12 (0.72) 1.29 (0.00)

high low high 2.73 (0.02) 1.49 (0.00) 1.16 (0.76) 1.42 (0.00)

high high low 48.76 (0.05) 3.37 (0.00) 2.95 (0.57) 3.11 (0.00)

high high high 48.76 (0.05) 3.23 (0.00) 3.16 (0.42) 2.97 (0.00)

grained control to set the gaps between real and simulated datasets and assess the performance across
many settings of these gaps. Specifically, we train the RealOnly model using Z extracted from f̂t via
SimPONet, and call it as RealµSimPONetf , and compare it to RealµSimf trained from f̃S . Results
in Table 5 show that RealµSimPONetf significantly outperforms the baseline RealµSimf across many
DGP settings, with particularly strong results in the Linear IHDP case where p-values are consistently
small. This demonstrates that SimPONet effectively learns high-quality representations Z.

5.9 Sensitivity to Loss Weights

In this experiment, we analyze the sensitivity of SimPONet’s performance to the loss weights λf and
λτ in its objective function. Using the IHDP covariates, we conduct this analysis across the three
variants used in our study. For the Synthetic datasets, we set the real simulator gaps, as specified
in Tables 1 and ??, to high. In the Semi-Synthetic IHDP setting, we evaluate performance on five
randomly selected dataset versions. The results, summarized in Table 6, report the mean CATE
error along with its standard deviation across dataset seeds. All methods consistently performed
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Table 6: This table assesses the sensitivity of the loss weights on all three versions of the IHDP dataset
considered in our work – Synthetic Linear Sec. 5.2, Synthetic Non-Linear Sec. 5.5, and Semi-synthetic Sec. 5.3.
We consider nine different settings of the loss weights in SimPONet’s objective 3. The table shows mean ±
standard deviation of the CATE Error.

λµ λϕ Synthetic Linear Synthetic Non-Linear Semi-Synthetic
0.1 0.1 3.46±0.91 4.23±2.21 0.72±0.19
0.1 0.5 3.42±0.84 3.55±1.21 0.70±0.19
0.1 1.0 3.43±0.78 3.40±1.15 0.71±0.20
0.5 0.1 3.41±0.90 4.06±2.21 0.74±0.19
0.5 0.5 3.38±0.88 3.32±1.06 0.73±0.19
0.5 1.0 3.37±0.82 3.23±1.00 0.71±0.20
1.0 0.1 3.38±0.86 3.99±2.17 0.71±0.20
1.0 0.5 3.39±0.87 3.24±1.02 0.72±0.19
1.0 1.0 3.38±0.85 3.14±0.93 0.71±0.21

poorly when the loss weights are small. This indicates tht the regularizers are important to impose on
post-treatment covariates. Across other settings, overall, we observe that SimPONet is sensitive to
the choice of hyperparameter settings in non-linear and semi-synthetic versions, and remains fairly
robust in the linear setting. However, tuning these hyperparameters is challenging in practice due to
the absence of counterfactual data in real observational datasets. Despite this sensitivity, SimPONet
outperforms achieves either comparable performance or manages to surpass the baseline methods
across different loss weight configurations.

6 Conclusion

This paper addressed the challenge of estimating treatment effects from post-treatment covariates a
setting not identifiable from observational data alone. We proposed to tackle this task using off-the-
shelf simulators that synthesize counterfactuals, in contrast to prior work that relied on real-world
counterfactuals, which limited their practical applicability. Our theoretical analysis established a
bound on the CATE error based on the distributional mismatch between real and simulated data.
Notable, ours is the first work to systematically analyze the role of simulators in CATE estimation. We
introduced SimPONet, a framework that jointly learns from real and simulated samples to enhance
CATE estimates beyond what could be achieved from observational data alone. Extensive experiments
across various DGPs demonstrated that SimPONet is a robust and effective method for estimating
CATE from post-treatment data.
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A Appendix / supplemental material

A.1 Code
We have released the code in the anonynous URL https://anonymous.4open.science/r/
catenets-simponet/README.md. We have also uploaded the code along with our submission.
A.2 Learning Counterfactual Simulators
Here we discuss prior works that train generative models for synthesizing counterfactuals. In general, to
obtain counterfactuals in the real distribution, we need to follow three steps (Pawlowski et al., 2020): (a)
abduction, inverting X to obtain Z, (b) action, applying a new treatment, and (c) prediction generating
a new X under the new treatment. These steps require prior knowledge of the DGP specifications,
which are often difficult to define and cannot be learned from observational data alone (Pawlowski
et al., 2020). Consequently, many methods bypass the principled approach and use pre-trained models
like Diffusion models and Large Language models to generate pseudo counterfactuals from a related
synthetic domain. Such simulators are proposed across various modalities, including images (Pawlowski
et al., 2020; Gu et al., 2023; Thiagarajan et al., 2021; Pan & Bareinboim, 2024; Sauer & Geiger, 2021;
Jeanneret et al., 2022), text (Madaan et al., 2020; Calderon et al., 2022; Chen et al., 2023; Dixit et al.,
2022; Robeer et al., 2021), and healthcare (Lang et al., 2023; Wang et al., 2020; Dhinagar et al., 2024).
Prior research (Gondal et al., 2019) shows that while such simulated data is not directly usable for
downstream tasks, they provide strong inductive biases that transfer well to the real distribution. Our
method can incorporate any such counterfactual generators as simulators, provided they contribute to
learning causal representations that are predictive of CATE.
A.3 SimPONet Architecture

Shared
Layers

Figure 5: SimPONet’s model architecture.

We present an overview of the Sim-
PONet model architecture in Figure
5. Our model has four primary pa-
rameters: f̂0 and f̂1 for extracting
causal representations, and µ̂0 and µ̂1
for predicting outcomes. Shared layers
project f̂0 and f̂1 into a common space.
A.4 SimPONet Pseudocode
Here, we present the SimPONet pseudocode. The steps involved in our algorithm are:

line 1 First we use the simulator dataset Dsyn to apply contrastive losses on the counterfactual
covariates using Eq. 1. This optimization gives us a Z extractor in the simulator distribution,
which we denote as f̃S

t .

line 2 We partition the training dataset into train, validation dataset using stratified split based
on T . We then initialize the loss weigts λf ,λτ to their defaults.

lines 4,5 We now decide upon the loss weight λf . To do so, we train RealOnly and RealµSimf models.
We then assess the factual prediction errors of these models on the validation split of the
training dataset. If RealOnly model performs much better than the RealµSimf model, it
means that the f̃S

t obtained from line2 above is of inferior quality. Therefore, we scale λf

that regularizes the SimPONet’s f̂t based on f̃S
t to a very small value, 1e-4.
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line 6 We can now apply gradient descent algorithm on the SimPONet’s objective in Eq. 3 to train
the µ̂t,f̂t parameters of the model.

Algorithm 1 SimPONet Algorithm
Require: Observational Data Dtrn: {(xi,ti,yi)}, Simulator Data Dsyn: {(xS

i (0),xS
i (1),yS

i (0),yS
i (1))}

1: Let {f̂(•,t)}← Z extraction functions, and {µ̂(•,t)}← outcome functions for t=0,1.
2: Let f̃S

t ← Eq. 1 (Minimize Contrastive loss on Dsyn)
3: Set Dtrn,Dval← split(Dtrn,pc=0.3, stratify=T ), and init default hyperparameters λf ,λτ←1,1
4: RealOnly←min

{µ̂,f̂}

∑
Dtrn

(yi−µ̂ti (f̂ti (xi)))2; RealµSimf←min
µ̂

∑
Dtrn

(yi−µ̂ti (f̃S
ti

(xi)))2

5: Set λf← 1e-4 if FactualErr(RealOnly,Dval)>>FactualErr(RealµSimf ,Dval)
6: {f̂t,µ̂t}← Eq. 3 (perform gradient descent on SimPONet’s objective using Dtrn,Dsyn while early stopping

using Factual Error on Dval)
7: Return {f̂t,µ̂t} for t=0,1

We present the pseudocode for SimPONet in Alg. 1.

A.5 Theoretical Analysis

In this section, we present the proofs for our theoretical results.

A.5.1 Proof of Lemma 2

The CATE error is related to the factual and counterfactual error as: Et
CATE≤2Et

F +2Et
CF

Proof. We decompose the CATE error into factual and counterfactual estimation error as follows:

Et
CATE =

∫
x∈X

[τX(x,t)−τ̂X(x,t)]2P (x|t)dx=
∫

x∈X
[τ(ft(x))−τ̂(f̂t(x))]2P (x|t)dx

=
∫

x∈X
[(µ1(ft(x))−µ0(ft(x)))−(µ̂1(f̂t(x))−µ̂0(f̂t(x)))]2P (x|t)dx

=
∫

x∈X
[(µ1(ft(x))−µ̂1(f̂t(x)))−(µ0(ft(x))−µ̂0(f̂t(x)))]2P (x|t)dx

Let t′ =1−t denote the counterfactual treatment. We can then rewrite the above expression as:

Et
CATE =

∫
x∈X

[(µt(ft(x))−µ̂t(f̂t(x)))−(µt′(ft(x))−µ̂t′(f̂t(x)))]2P (x|t)dx

Now using the inequality (a−b)2≤2a2+2b2, we can separate the factual and counterfactual terms:

Et
CATE≤2

∫
x∈X

[µt(ft(x))−µ̂t(f̂t(x))]2P (x|t)dx+2
∫

x∈X
[µt′(ft(x))−µ̂t′(f̂t(x))]2P (x|t)dx

=2Et
F +2Et

CF
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A.5.2 Recovery of fS upto a diffeomorphic transformation

Lemma 5. As |Dsyn|→∞, contrastive training with paired covariates recovers f̃S
t =h◦fS

t while paired
outcome supervision recovers τ̃S =τS◦h−1 where h is a diffeomorphic transformation. Moreover, when
the latent space Z⊂S(nz−1) (unit-norm hypersphere in Rnz ), h is a rotation transform by Extended
Mazur-Ulam Theorem as shown in (Zimmermann et al., 2021) (Proposition 2).

Proof. Theorem 4.4 of (Von Kügelgen et al., 2021) shows that contrastive training with covariate
pairs {xS

i (0),xS
i (1)} recovers Z upto a diffeomorphic transformation h, i.e. for the simulator DGP

our estimate ẑi = f̃S(xS
i (t), t) = h(zi) = h(fS(xS

i (t), t),∀t ∈ T . Moreover for unit-norm latent
representations, Z⊂Sdz−1, (Zimmermann et al., 2021) show that h is an isometric (norm-preserving)
function and therefore, a rotation transform by an extension of Mazur-Ulam Theorem. Mazur-Ulam
Theorem states that any smooth, invertible and isometric function is necessarily affine. Moreover, in
our setting, the norm of z as well as ẑ is always one and thus, h is necessarily a rotation. Therefore, we
recover f̃S =h◦fS upto a rotation of the true inverse map fS with sufficient paired samples from the
simulator.

Next, we recover τ̃S from the following minimisation:

τ̃S =argmin
τ̂S

ExS

[
τ̂S(f̃S(xS(t),t))−τS(fS(xS(t),t))

]2
=argmin

τ̂S

Ez

[
τ̂S(h(z))−τS(z)

]2

The above optimization gives τ̃S = τS ◦h−1 and hence we recover the CATE function τS for the
simulator DGP composed with h−1.

Proof of Lemma 4.

Assume τ is Kτ -Lipschitz, and f̃S and τ̃S are estimates from the simulator DGP obtained from the
optimization in Eq. 1, 2. Then, the CATE error on the estimates f̂t and τ̂ admits the following bound:

Et
CATE(f̂t,τ̂)≤ [8Et

F +12dh(τ̂ ,τ̃S)+12K2
τ dx|t(f̂t,f̃

S
t )]+[12dz(τ,τS)+12K2

τ dx|t(ft,f
S
t )]

where dx|t,dz,dh(z) are distance functions in Sec. 3 and Et
F is the factual loss.

Proof. We now construct at upper bound on counterfactual error Et
CF that relies on both observational

data and simulator estimates to motivate the SimPONet objective:

Et
CF =

∫
x∈X

[µt′(ft(x))−µ̂t′(f̂t(x))]2P (x|t)dx

=
∫

x∈X
[(µt′(ft(x))−µt(ft(x)))−(µ̂t′(f̂t(x))−µ̂t(f̂t(x)))+µt(ft(x))−µ̂t(f̂t(x))]2P (x|t)dx

=
∫

x∈X
[(21t=0−1)·(τ(ft(x))−τ̂(f̂t(x)))+µt(ft(x))−µ̂t(f̂t(x))]2P (x|t)dx
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Where 1t=0 =1 when t=0 and zero otherwise, and thus, (21t=0−1)=±1 adjusting the sign of CATE
terms. Now we utilise the inequality (a+b+c)2≤3(a2+b2+c2) to obtain:

Et
CF =

∫
x∈X

[(21t=0−1)·(τ(ft(x))−τ̂(h◦ft(x))+τ̂(h◦ft(x))−τ̂(f̂t(x)))+µt(ft(x))−µ̂t(f̂t(x))]2P (x|t)dx

≤3
∫

x∈X
[τ(ft(x))−τ̂(h◦ft(x))]2P (x|t)dx+3

∫
x∈X

[τ̂(h◦ft(x))−τ̂(f̂t(x))]2P (x|t)dx

+3
∫

x∈X
[µt(ft(x))−µ̂t(f̂t(x))]2P (x|t)dx

=3
∫

z∈Z
[τ(z)−τ̂(h(z))]2P (z|t)dz+3

∫
x∈X

[τ̂(h(ft(x)))−τ̂(f̂t(x))]2P (x|t)dx+3Et
F

Here h denotes the unknown rotation transformation that relates the estimated simulator functions
(f̃S ,τ̃S) with the ground-truth simulator functions (fS ,τS) as shown in Lemma 5. Let Kτ be the
Lipschitz constant for τ̂ . We can bound the second term in the above expression as follows:

Et
CF ≤3

∫
z∈Z

[τ(z)−τ̂(h(z))]2P (z|t)dz+3K2
τ

∫
x∈X
||h(ft(x))−f̂t(x)||2P (x|t)dx+3Et

F

=3dz(τ,τ̂ ◦h)+3K2
τ dx|t(h◦ft,f̂t)+3Et

F

Now we can add and subtract simulator function estimates to bound the two distance terms as follows:

Et
CF ≤3

∫
z∈Z

[τ(z)−τS(z)+τS(z)−τ̂(h(z))]2P (z|t)dz

+3K2
τ

∫
x∈X
||h(ft(x))−h(fS

t (x))+h(fS
t (x))−f̂t(x)||2P (x|t)dx+3Et

F

≤6
∫

z∈Z
[τ(z)−τS(z)]2P (z|t)dz+6

∫
z∈Z

[τS(z)−τ̂(h(z))]2P (z|t)dz

+6K2
τ

∫
x∈X
||h(ft(x))−h(fS

t (x)||2P (x|t)dx+6K2
τ

∫
x∈X
||h(fS

t (x))−f̂t(x)||2P (x|t)dx+3Et
F

=6dz(τ,τS)+6dz(τ̂ ◦h,τS)+6K2
τ dx|t(h◦ft,h◦fS

t )+6K2
τ dx|t(f̂t,h◦fS

t )+3Et
F

Now, using Lemma 5, we can rewrite τS = τ̃S◦h in the second term. Thus, dz(τ̂ ◦h,τS)=dz(τ̂ ◦h,τ̃S◦h).
Now making use of Definition 2, we can rewrite this as dh(z)(τ̂ ,τ̃S) which is a distance function defined
on the space of rotated latents h(z). We also rewrite h◦fS as f̃S in the fourth term.

Moreover, dx|t(h◦ft,h◦fS
t )=dx|t(ft,f

S
t ) since h is a rotation transform and preserves the distance

between any two vectors. Thus, ||ft(x)−fS
t (x)||2 = ||h◦ft(x)−h◦fS

t (x)||2. Combining these results,
we can evaluate the above bound to the following:
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Et
CF ≤ [6dh(z)(τ̂ ,τ̃S)+6K2

τ dx|t(f̂t,f̃
S
t )+3Et

F ]+[6dz(τ,τS)+6K2
τ dx|t(ft,f

S
t )]

A.6 Linear DGP Derivation

We derive expressions for CATE estimates τ̂X(x,t) as well as Et
CATE for each of our proposed estimators

in the linear setting below. Note that ground truth CATE τX(x,t)= xR−1
t (w1−w0). We consider

factual treatment t=1 to illustrate the errors.
A.6.1 SimOnly

For SimOnly, we use R̂−1
t =S−1

t and ŵt =wS
t which are obtained by training on simulator data. Thus,

the CATE estimate τ̂X(x∗,t)=x∗S−1
t (wS

1 −wS
0 ). The CATE error on a sample x∗, with treatment

t=1 is given by [τ̂X(x∗,1)−τX(x∗,1)]2 =[(x∗(S−1
1 (wS

1 −wS
0 )−R−1

1 (w1−w0))]2

A.6.2 RealOnly

For RealOnly, the factual objective Et
F = ||xR̂−1

t ŵt−y||22 = ||xR̂−1
t ŵt−xR−1

t wt||22. Thus, the closed
form solution of the estimator R̂−1

t ŵt =R−1
t wt,∀t∈T . Since we can’t decouple the terms R̂−1

t and ŵt,
the CATE estimate is given by τ̂X(x∗,t)=x∗R̂−1

1 ŵ1−x∗R̂−1
0 ŵ0 =x∗R−1

1 w1−x∗R−1
0 w0.

CATE error on sample x∗ with treatment t = 1 is given by [τ̂X(x∗,1)−τX(x∗,1)]2 = [(x∗R−1
1 w1−

x∗R−1
0 w0)−xR−1

1 (w1−w0)]2 =[x(R−1
1 −R−1

0 )w0]2

A.6.3 RealµSimf

For RealµSimf , we first set R̂−1
t = S−1

t which is obtained by training on simulator data. Next,
we train ŵt on the factual objective: ||xR̂−1

t ŵt−xR−1
t wt||22 = ||xS−1

t ŵt−xR−1
t wt||22. This, gives

us a closed form solution for the minimising ŵt = StR
−1
t wt. The CATE estimate τ̂X(x∗, t) =

x∗S−1
t (ŵ1− ŵ0) = x∗S−1

t (S1R−1
1 w1−S0R−1

0 w0). Fixing treatment t = 1, this simplifies further:
τ̂X(x∗,1) = x∗S−1

1 (S1R−1
1 w1 − S0R−1

0 w0) = x∗(R−1
1 w1 − S−1

1 S0R−1
0 w0). CATE Error is given

by [τ̂X(x∗, 1) − τX(x∗, 1)]2 = [x∗(R−1
1 w1 − S−1

1 S0R−1
0 w0) − x∗R−1

1 (w1 − w0)]2 = [x∗R−1
1 w0 −

x∗S−1
1 S0R−1

0 w0]2 =[x∗(R−1
1 −S−1

1 S0R−1
0 )w0]2

Table 7: This table presents the predicted CATE and the corresponding CATE errors obtained from the three
CATE proposals computed analytically for a test instance x⋆ observed under treatment 1.

Method Estimate for CATE τ̂X(x⋆,1) CATE Error [τ̂X(x⋆,1)−τ(x⋆,1)]2

SimOnly x⋆S−1
1 wS

τ

[
x⋆

(
R−1

1 wτ−S−1
1 wS

τ

)]2

RealOnly x⋆
(
R−1

1 w1−R−1
0 w0

) [
x⋆(R−1

0 −R−1
1 )w0

]2

RealµSimf x⋆S−1
1 S1R−1

1 w1−x⋆S−1
1 S0R−1

0 w0
[
x⋆(R−1

1 −S−1
1 S0R−1

0 )w0
]2

A.6.4 SimPONet

We train both R̂−1
t ,ŵt on the following objective jointly:

L({R̂−1
t ,ŵt}t=0,1)=

[ ∑
t=0,1
||xR̂−1

t ŵt−xR−1
t wt||22+λf

∑
t=0,1
||xR̂−1

t −xS−1
t ||2F +λτ ||z(ŵ1−ŵ0)−z(w1−w0)||22

]
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Here, z=xS
t′S

−1
t′ are the latents for simulated covariates xS

t′ (which are identifiable from Dsyn). Due to
the joint nature of this optimisation, it is not possible to derive closed form solutions for the optimum.
However, one can compuet gradients of the objective with respect to R̂−1

t and ŵt separately. This,
gives us an alternating minimisation algorithm with closed form updates.

∂L
∂R̂−1

t

= ∂

∂R̂−1
t

[
||xR̂−1

t ŵt−y||22+λf ||xR̂−1
t −xS−1

t ||2F
]

=2xT xR̂−1
t (ŵtŵt

T +λf I)−2xT yŵt+−2λf xT xS−1
t

Setting the derivative to zero, we obtain the following update rule:

R̂−1
t ←(x†yŵt+λf S−1

t )·(ŵtŵt
T +λf I)−1

where x† =(xT x)−1xT is the pseudoinverse of x.

∂L
∂ŵt

= ∂

∂ŵt

[
||xR̂−1

t ŵt−y||22+λτ ||z(ŵt−ŵt′)−(yS
1 −yS

0 )||22
]

=2(ẑT ẑ)ŵt−2ẑT y+2λτ (zT zŵt−zT (zŵt′ +(yS
1 −yS

0 )))
=2[(ẑT ẑ)+λτ (zT z)]ŵt−2(ẑT y+λτ zT (zŵt′ +(yS

1 −yS
0 )))

Where ẑ =xR̂−1
t . Setting the derivative to zero, we obtain the following update rule:

ŵt←((ẑT ẑ)+λτ (zT z))−1 ·(ẑT y+λτ zT (zŵt′ +(yS
1 −yS

0 )))

For SimPONet, we perform alternating updates of ŵt and R̂−1
t fixing the other estimate.

A.7 Summary of Datasets

IHDP. The Infant Health and Development Program (IHDP) is a randomized controlled trial designed
to assess the impact of physician home visits on the cognitive test performance of premature infants.
The dataset exhibits selection bias due to the deliberate removal of non-random subsets of treated
individuals from the training data. Since outcomes are observed for only one treatment, we generate
both observed and counterfactual outcomes using a synthetic outcome generation function based on
the original covariates for both treatments, making the dataset suitable for causal inference.

The IHDP dataset includes 747 subjects and 25 variables. While the original dataset discussed
in (Shalit et al., 2017) had 1000 versions, our work uses a smaller version with 100 iterations, aligning
with the CATENets benchmark. Each version varies in the complexity of the assumed outcome
generation function, treatment effect heterogeneity, etc. As outlined in (Curth et al., 2021), reporting
the standard deviation of performance across the 100 different seeds is inappropriate. Therefore, we
calculate p-values through paired t-tests between our method (SimPONet) and other baseline methods,
using SimPONet as the baseline for all experiments. We follow setting D of the IHDP dataset as
mentioned in (Curth & van der Schaar, 2021) where response surfaces are modified to suppress the
extremely high variance of potential outcomes in certain versions of the IHDP dataset.

ACIC. The Atlantic Causal Inference Conference (ACIC) competition dataset (2016)4 consists of 77
datasets, all containing the same 58 covariates derived from the Collaborative Perinatal Project. Each

4https://jenniferhill7.wixsite.com/acic-2016/competition
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Table 8: Effect of varying training sizes on CATE using the IHDP dataset. We experiment with training
proportions of 10%, 25%, 50%, and 75% of the full training set. Results demonstrate how the performance of
SimPONet and baseline methods evolves with varying amounts of training data.

Training Percentage 0.10 0.25 0.50 0.75
RNet 3.08 (0.08) 2.52 (0.07) 2.30 (0.12) 2.30 (0.14)
XNet 2.43 (0.09) 1.90 (0.12) 1.16 (0.19) 1.10 (0.35)
DRNet 3.28 (0.04) 2.01 (0.03) 1.05 (0.40) 1.05 (0.44)
CFRNet 1.41 (0.03) 1.06 (0.21) 0.95 (0.59) 1.02 (0.50)
FlexTENet 2.97 (0.08) 2.33 (0.07) 1.04 (0.40) 1.03 (0.49)
DragonNet 3.48 (0.04) 2.02 (0.04) 0.97 (0.53) 1.02 (0.50)
IPW 3.44 (0.03) 1.74 (0.06) 0.94 (0.60) 1.03 (0.49)
NearNeighbor 2.10 (0.19) 1.65 (0.05) 2.65 (0.11) 1.07 (0.47)
PerfectMatch 3.44 (0.03) 2.54 (0.03) 3.32 (0.01) 1.05 (0.45)
PairNet 1.64 (0.13) 1.18 (0.11) 1.09 (0.30) 1.09 (0.36)
SimOnly 1.45 (0.23) 1.45 (0.07) 1.45 (0.15) 1.45 (0.04)
RealOnly 2.28 (0.13) 2.92 (0.07) 0.97 (0.54) 0.86 (0.75)
RealµSimf 3.35 (0.03) 2.01 (0.04) 1.07 (0.31) 1.02 (0.25)
SimPONet 1.01 (0.00) 0.93 (0.00) 0.95 (0.00) 0.87 (0.00)

dataset simulates binary treatment assignments and continuous outcome variables, with variations in
the complexity of the treatment assignment mechanism, treatment effect heterogeneity, the ratio of
treated to control observations, overlap between treatment and control groups, dimensionality of the
confounder space, and the magnitude of the treatment effect.

All datasets share common characteristics, such as independent and identically distributed observations
conditional on covariates, adherence to the ignorability assumption (selection on observables with
all confounders measured and no hidden bias), and the presence of non-true confounding covariates.
Of the 77 datasets, we selected a subset of three: versions 2, 7, and 26, aligning with the CATENets
benchmark. These versions present non-linear covariate-to-outcome relationships and maximum
variability in treatment effect heterogeneity. Version 2, notably, exhibits no heterogeneity, meaning the
treatment effect is constant across all individuals. However, accurately estimating outcome differences
even for this version is challenging due to the inherent noise in potential outcome realizations in the
dataset.

A.8 Experiments with Limited Training Data

In this experiment, we evaluate the performance of CATE methods with varying training sizes. We
use 10 randomly selected dataset versions of the IHDP dataset. For each version, the methods are
trained using 10%, 25%, 50%, and 75% of the training data. Importantly, the simulator dataset is
not subsampled, so the SimOnly model maintains the same CATE error across all training sizes. The
results are presented in Table 8. At extremely low training sizes (10%), SimPONet achieves the lowest
CATE error with a significant margin over all baselines. With 25% of the training data, the baseline
methods improve, but SimPONet continues to deliver the best CATE error. At 50% training size, the
baselines further improve and perform comparably to SimPONet. While SimPONet’s CATE error
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increases slightly in this setting, it remains close, trailing the best-performing baseline by only 0.01.
Finally, at 75% training size, SimPONet’s CATE error decreases significantly, while many baselines
plateau in performance. Overall, SimPONet demonstrates exceptional robustness in estimating CATE,
particularly in limited training data scenarios.
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A.9 Table of Symbols

Symbol Definition
X Real post-treatment covariates: Random Variable
Y Real outcomes: Random Variable

XS Simulator post-treatment covariates: Random Variable
Y S Simulator outcomes: Random Variable

T Treatment: Random Variable
Z Latent (unobserved) pre-treatment representations: Random Variable

Dtrn Observational training dataset from Real DGP
Dsyn Counterfactual dataset from Simulator DGP
Dtst Test dataset from Real DGP

x,xS ,z,t,y,yS Realisations of random variables X,XS ,Z,T,Y,Y S respectively
X Space of post-treatment covariate values: Set
T Space of treatment values: Set ={0,1}
Z Space of latents: Set
Y Space of outcomes: Set

nz,nx Dimensions of vector spaces in which Z,X lie
Yi(t) Potential outcome for ith unit under treatment t
Xi(t) Potential post-treatment covariate for ith unit under treatment t

gt Mapping from Z 7→X , transforms latents to real post-treatment covariates under t
gS

t Mapping from Z 7→X , transforms latents to simulated post-treatment covariates under t
ft Mapping from X 7→Z, transforms real post-treatment covariates under t to latents

fS
t Mapping X 7→Z, transforms simulated post-treatment covariates under t to latents

PZ Probability distribution of latents Z
µt Outcome function for real data under t
µS

t Outcome function for simulated data under t
τ Conditional Average Treatment Effect for real data, µ1−µ0, Mapping Z 7→Y

τS Conditional Average Treatment Effect for simulated data, µS
1 −µS

0 , Mapping Z 7→Y
◦ Composition of functions

τX(x,t) Conditional Average Treatment Effect for real data, τ ◦ft(x), Mapping X×T 7→Y
τS

X(xS ,t) Conditional Average Treatment Effect for simulated data, τS◦fS
t (xS), Mapping X×T 7→Y

h Diffeomorphic transformation, arises due to contrastive learning
Sd Unit-norm hypersphere of dimension d, Subset of R(d+1)

dx|t Expected squared-distance between two functions on P (X|T ), see Section 3 for definition
dz Expected squared-distance between two functions on PZ , see Section 3 for definition

dh(z) dz under transformation h on z, see Section 3 for definition
sim(•,•) Cosine similarity

f̂t Estimate for ft

f̂S
t Estimate for fS

t

µ̂t Estimate for µt

µ̂S
t Estimate for µS

t

f̃S
t Estimate for fS

t recovered from contrastive learning
µ̃S

t Estimate for µS
t on recovering Simulator DGP

ECATE CATE estimation error
Et

CATE CATE estimation error on covariates x under treatment t
Et

F Factual error on treatment t samples
Et

CF Counterfactual error on treatment t samples
Kµ Lipschitz constant for µt,µ̂t

Kτ Lipschitz constant for τ,τ̂
KµS Lipschitz constant for µS

t ,µ̂S
t ,µ̃S

t

KτS Lipschitz constant for τS ,τ̂S ,τ̃S

Rt gt for linear DGP: Matrix
St gS

t for linear DGP: Matrix
wt µt for linear DGP: Vector
wS

t µS
t for linear DGP: Vector

wτ τ for linear DGP: Vector
wS

τ τS for linear DGP: Vector
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