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Abstract

In predict and optimize, machine learning models
are trained to predict parameters of optimization
problems using task performance as the objective.
A key challenge is computing the Jacobian of the
solution with respect to its parameters. While lin-
ear problems typically use approximations due to
a zero or undefined gradient, non-linear convex
problems often utilize the exact derivative. This
paper demonstrates that the zero-gradient problem
also occurs in the non-linear case and introduces
a smoothing technique which, combined with
quadratic approximation and projection distance
regularization, solves the zero-gradient problem.
Experiments on a portfolio optimization problem
confirm the method’s efficiency.

1. Introduction
Predict and optimize (P&O) [1] combines machine learning
(ML) with mathematical programming, focusing on opti-
mization problems with unknown parameters that need to be
predicted before solving the problem. Instead of training ML
models to match the distribution of unknown parameters,
P&O uses task performance as the objective for training. To
train P&O models with gradient descent [2], the Jacobian of
the optimization problem solution with respect to the param-
eter should be computed. For linear problems, this Jacobian
is either zero or undefined and is usually approximated [1],
[3], [4]. In the non-linear case, differential optimization
method introduced by Agrawal et al. [5] allows for exact
computation of the Jacobian.

This paper demonstrates that the zero-gradient problem
occurs not only in the linear case but also in general non-
linear convex settings. Specifically, the null space of the
true Jacobian of a convex optimization problem depends on
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the number of active constraints. Hence, the zero-gradient
occurs when the solution approaches the boundary of the
feasible set, activating the constraints. We propose a method
that combines quadratic programming approximation sim-
ilar to [6] with projection distance regularization from [7]
and a novel idea of local smoothing. The resulting algorithm
has a simple geometric interpretation and is theoretically
justified. Using a portfolio optimization problem [8], we
demonstrate that a) the zero-gradient problem indeed oc-
curs in the non-linear setup, and b) the proposed solution
resolves this problem and significantly outperforms the ap-
proach using the exact Jacobian.

2. Related work
The P&O framework was first introduced by Elmachtoub et
al. [1], who consider combinatorial optimization problems
and derive a convex sub-differentiable approximation of the
task performance function to enable training. Vlastelica et
al. [3] obtain a piecewise-linear approximation of the task
performance, Berthet et al. [9] employ stochastic perturba-
tions to approximate the Jacobian, and Sahoo et al. [4] show
that using projections on top of the predictor enables using
the identity matrix as an approximation of the Jacobian.

In convex optimization, exact differentiation is possible [5]
for disciplined convex programs [10]. This result gave rise
to new applications of P&O in convex optimization, such as
the portfolio optimization problem [11] and surrogate model
learning [8]. Moreover, several studies use this technique to
approximate the Jacobian of combinatorial problems. For
example, Wilder et al. [6] construct a quadratic approxima-
tion of the problem and use its Jacobian. This approach is
then extended by using logarithmic approximations [12].

3. Problem formulation
In this section, we define the P&O problem. We refer readers
to Elmachtoub et al. [1] for further details. In predict and
optimize, the original optimization problem is of the form

arg max
x

f(x,w) s. t. x ∈ C, (1)

where x ∈ Rn is the decision variable, w ∈ Ru is a vector
of unknown parameters, f : Rn × Ru → R is the objective
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Figure 1. Gradient cones x̂ + G(x̂) (orange cones) and internal
gradients ∇xf(x̂, ŵ) (black arrows) at different points x̂ (red dots)
in different feasible sets C (blue cube and cylinder).

function, C is the feasible set, and w are unknown parame-
ters. P&O employs predictions ŵ and the decision can be
computed by solving the internal problem:

x∗(ŵ) = arg max
x

f(x, ŵ) s. t. x ∈ C. (2)

As the true parameters w are unknown, we assume that we
observe a feature vector o that in some way relates to w. We
employ a prediction model ϕθ to compute predictions ŵ, i.e.,
ŵ = ϕθ(o). To train ϕθ, we have a dataset D = {(ok, wk)}.

In P&O, the predictive model ϕθ is trained to maximize
the task performance f(x,w) and not to accurately predict
the unknown parameters. Therefore, the loss function mini-
mized during training is

L(θ) = − 1
|D|

∑
(o,w)∈D

f
(
x∗(ϕθ(o)

)
, w

)
. (3)

To train ϕθ with a gradient-based algorithm, we need to
differentiate L over θ, and hence we need to compute the
gradient ∇θf

(
x∗(ŵ), w

)
, where ŵ = ϕθ(o). Applying the

chain rule, it can be decomposed into three terms:
∇θf

(
x∗(ŵ), w

)
=∇xf

(
x∗(ŵ), w

)
∇ŵx

∗(ŵ) ∇θŵ (4)
The term ∇ŵx

∗(ŵ) is the Jacobian of the solution of the
optimization problem with respect to the prediction ŵ. In
non-linear convex problems, it can be computed exactly [5].
However, properties of this Jacobian are not well studied.
In the next section, we show that ∇ŵx

∗(ŵ) can have a large
null space thereby causing suboptimal performance.

4. Differentiable optimization
Without loss of generality, we consider a single instance of
the problem, i.e., one sample (o, w) ∈ D. We denote the
prediction by ŵ = ϕθ(o) and the corresponding decision x̂
is then computed as a solution to the internal problem (2).
We make the following assumptions:
Assumption 4.1. The objective function f(x,w) is concave
and twice continuously differentiable in x for any w.

Assumption 4.2. The feasible set C = {x|gi(x) ≤ 0,
i = 1, . . . , l} is convex, i.e., gi(x) are convex and differ-
entiable. Also, the gradients {∇xgi(x)|gi(x) = 0} of the
active constraints are linearly independent1 ∀ x ∈ C.

1For clarity, Assumption 2 does not include equality constraints.
In the appendix, we show that all our results hold with those, too.

Assumption 4.3. The objective function f(x,w) is twice
continuously differentiable in w.

Next, we establish some crucial properties of ∇ŵx
∗(ŵ).

4.1. The zero-gradient theorem

Let ni := ∇xgi(x̂), i = 1, . . . , l be the normals of the
constraints at x̂, and let α1, . . . , αl be the KKT multipli-
ers [13]. According to Theorem 2.1 by Fiacco et al. [14],
strict complementary slackness (SCS) conditions (i.e., αi >
0 ∀i ∈ I(x)) are sufficient for differentiability of x∗(ŵ).
We concentrate on these, since the points violating SCS are
a measure-zero set, and can thus be neglected in practice.

First, we obtain a geometrical perspective of the KKT con-
ditions by introducing the following definition:
Definition 4.4. For x ∈ C let I(x) = {i|gi(x) = 0} be
the set of indices of the constraints active at x. Let ni =
∇xgi(x) be the normal vectors of these constraints for i ∈
I(x). The gradient cone, G(x) :=

{∑
i∈I αini|αi ≥ 0

}
,

is the positive linear span of normal vectors ni.

Combining the KKT conditions with Definition 4.4, we
immediately arrive at the following property:
Property 4.5. Let x ∈ C and let ∇xf(x, ŵ) be the internal
gradient at x. Then, x is a solution to the problem in Eq. (2)
if and only if ∀i ∈ I(x),∃αi ≥ 0, such that ∇xf(x, ŵ) =∑

i∈I(x) αini ∈ G(x), where I(x) is the set of indices of
active constraints, I(x) = {i|gi(x) = 0}.

While trivial, this property provides a geometrical interpre-
tation of the problem: a point x is a solution to the problem
in Eq. (2) if and only if the internal gradient at this point lies
inside its gradient cone. Figure 1 illustrates this property.

Now, we have all the necessary tools to describe the struc-
ture of the Jacobian ∇ŵx

∗(ŵ). Assume that we perturb ŵ
and obtain ŵ′. Let x̂′ = x∗(ŵ′). Strict complementary
slackness implies that the constraints active at x̂ will remain
active at x̂′ if the difference ∥ŵ′ − ŵ∥22 is small enough.
Therefore, the decision x̂′ can only move within the tan-
gent space of C at x̂, i.e., orthogonally to all ni, i ∈ I(x̂).
Hence, when more constraints are active, x̂′ can move in
less directions. Formally, we obtain the following lemma:
Lemma 4.6. Suppose that the SCS conditions hold at x̂
and let ∇xf(x̂, ŵ) =

∑
i∈I(x̂) αini, αi > 0, ∀i ∈ I(x̂) be

the internal gradient. Let N (x̂) = span({ni | i ∈ I(x̂)})
be the linear span of the gradient cone. Then N (x̂) is
contained in the left null space of ∇ŵx

∗(ŵ).

The proof can be found in Appendix A. Lemma 4.6 is very
important, as it specifies in what directions x∗(ŵ) can move
as a consequence of changing ŵ. The first term in the chain
rule in Eq. (4), ∇xf(x̂, w), specifies in what directions
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Figure 2. Left: Illustration of the QP approximation. Right: Illus-
tration of local smoothing.

x∗(ŵ) should move in order for the true objective to in-
crease. Naturally, if these directions are contained in the
null space of ∇ŵx

∗(ŵ), then the total gradient in Eq. (4) is
zero. This constitutes the main result of this paper:
Theorem 4.7 (Zero-gradient theorem). Let ŵ be a predic-
tion, and x̂ be the internal problem in Eq. (2). Suppose the
SCS conditions hold at x̂ and let N (x̂) = span({ni | i ∈
I(x̂)}) be the linear span of the gradient cone at x̂. Then,
∇xf(x̂, w) ∈ N (x̂) =⇒ ∇θf(x̂, w) = 0.

This theorem claims that the gradient of the P&O loss in
Eq. (3) can be zero in points outside the optimal solution.
Hence, any gradient-following method “shall not pass” these
points. In particular, this phenomenon happens in points
x̂ where the true gradient ∇xf(x̂, w) is contained in the
space N (x̂) spanned by the gradient cone G(x̂). As the
dimensionality of this space grows with the number of active
constraints, the zero-gradient issue is particularly important
for problems with a large number of constraints. In the worst
case, N (x̂) can be as big as the whole decision space Rn,
thereby making the total gradient ∇θf(x̂, w) from Eq. (4)
zero for any value of the true gradient ∇xf(x̂, w).

4.2. Quadratic programming approximation

The models trained with predict and optimize can output ŵ
that is significantly different from the true w, yet result in
good decisions. Hence, we claim that the objective function
f(x, ŵ) in the internal problem also does not need to be
the same as the true objective f(x,w). In particular, we
suggest computing decisions using a quadratic program
(QP) resembling the method proposed in Wilder et al. [6]:

x∗
QP (ŵ) = arg max

x
−∥x− ŵ∥22︸ ︷︷ ︸

fQP (x,ŵ)

s.t. x ∈ C. (5)

The main advantage of using QP is that it has the small-
est reasonable prediction vector ŵ (one scalar per decision
variable). Besides, QP approximation can represent any
solution, and its Jacobian has a simple analytic form, which
allows computing it cheaply and allows for studying its the-
oretical properties. Specifically, the Jacobian ∇ŵ x∗

QP is
described by the following lemma:
Lemma 4.8. Let {ej |j = 1, . . . , n− |I(x̂|)} be an orthog-
onal complement of vectors {ni|i ∈ I(x̂)} to a basis of Rn.
Then, the Jacobian ∇ŵxQP (ŵ) in the basis {ni} ∪ {ej} is

a diagonal matrix. Its first |I(x̂)| entries are zero, and the
others are one.

While providing computational benefits, QP approximation
does not address the zero-gradient problem. Below, we
introduce a smoothing technique that reduces the size of the
null space to one.

4.3. Local smoothing

Above, we concluded that the null space of the Jacobian
∇ŵx(ŵ) depends on the number of constraints active at x̂.
Therefore, to solve the zero-gradient problem, we propose a
local smoothing method, that reduces the number of active
constraints to one during the Jacobian computation.

Let ∇xfQP (x̂, ŵ) =
∑

i∈I(x̂) αini be the internal gradient
at x̂ for some αi ≥ 0, ∀i ∈ I(x̂). Then, we introduce the
following definition:

Definition 4.9. Let c = x̂ − r
∇xfQP (x̂,ŵ)

∥∇xfQP (x̂,ŵ)∥2
, with real

r > 0, and let Cr(x̂, ŵ) := {y|y ∈ Rn, ∥y − c∥2 ≤ r}. The
local smoothed problem Pr(x̂, ŵ) with parameters x̂, ŵ is
defined as x∗

r(ŵ) := arg maxx∈Cr(x̂,ŵ) fQP (x, ŵ).

Now, let x̂r = x∗
r(ŵ) denote the solution of Pr(x̂, ŵ). By

construction, x̂r = x̂. The main purpose of smoothing
is to approximate the gradient in Eq. (4) by substituting
∇ŵx

∗
QP (ŵ) with ∇ŵx

∗
r(ŵ). We emphasize that the deci-

sions are still computed using the non-smoothed problem.
Thus, we use the following approximation for Eq. (4):

∇θf(x
∗(ŵ), w) ≈ ∇xf

(
x̂, w

)
∇ŵx

∗
r(ŵ) ∇θŵ (6)

Applying Lemma 4.8, we obtain the following:
Property 4.10. Let x̂ = x∗

QP (ŵ) be a decision derived
via QP. Suppose that the SCS conditions hold for Pr(x̂, ŵ)
and let e1 = ∇xfQP (x̂, ŵ) be the internal gradient. Let
{e2, . . . , en} be a complement of e1 to an orthogonal basis
of Rn. Then, the Jacobian ∇ŵx

∗
r(ŵ) of the locally smoothed

problem in the basis {e1, e2, . . . , en} is a diagonal matrix.
Its first entry is zero, others are ones.

Using this property, we can show that the smoothed Jacobian
is consistent with the loss function:
Theorem 4.11. Let x̂ = x∗

QP (ŵ) be the decision obtained
via QP and let ∇ŵx

∗
r(ŵ) be the Jacobian of the local

smoothed QP problem. Let ∆ŵ = ∇xf(x̂, w) ∇ŵx
∗
r(ŵ)

be the prediction perturbation obtained by using this Ja-
cobian and let ŵ′(t) = ŵ + t∆ŵ be the updated pre-
diction. Then, for t → 0+, using ŵ′(t) results in a
non-decrease in the task performance. In other words,
f
(
x∗
QP (ŵ

′(t)), w
)
≥ f

(
x∗
QP (ŵ), w

)
.

As we see from Property 4.10, the value of r does not
affect the Jacobian. We keep it only for clarity of the nota-
tion. As Cr(x̂, ŵ) is defined by a single constraint, the null
space of ∇ŵx

∗
r(x̂, ŵ) is always one-dimensional. Hence,
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Figure 3. Results on the portfolio optimization problem: (a) the final test regret for each of the algorithms for varying λ’s. (b) Evolution of
the l2 norm of the gradient during training for λ = 0.1 and λ = 1.

the zero-gradient problem only occurs when the internal
gradient ∇xfQP (x̂, ŵ) and the true gradient ∇xf(x̂, w) are
collinear. To deal with this case, we use the projection
distance regularization method first suggested in [7]. Specif-
ically, we add a penalty p(ŵ) = α∥x̂− ŵ∥22, where α ∈ R+

is a hyperparameter. Minimizing this term, we push ŵ along
the null space of the Jacobian towards the feasible set and
eventually move x̂ inside C.

5. Experiments
We consider the portfolio optimization problem [8], where
we aim to maximize the immediate return but minimize the
risk penalty under the budget constraint:

arg max
x

p⊤x− λx⊤Qx︸ ︷︷ ︸
f(x,p,Q)

s. t.
n∑

i=1

xi = 1, x ≥ 0. (7)

The decision x ∈ Rn is the investment, p ∈ Rn is the
immediate return, and Q ∈ Rn×n is the covariance matrix.
The unknown parameters are defined as w := (p,Q) and
λ ≥ 0 represents the risk-aversion weight. We use historical
data from QUANDL WIKI [15] and we refer the readers to
the appendix for more details. We consider different values
of λ from the set {0, 0.1, 0.25, 0.5, 1, 2}, in order to obtain
a spectrum of problems, from the linear (λ = 0) to the
“strongly quadratic” (λ = 2).

We compare the performance of four methods: minimization
of the MSE of the prediction (labeled “MSE”); differenti-
ation of the original problem in Eq (7) (“True problem”);
differentiation of the QP approximation (“QP”); and combi-
nation of QP, smoothing, and projection distance regulariza-
tion (“Smoothed QP”). For the performance metric, we use
regret [1], defined as

regret(o, w) = f
(
x∗(ϕθ(o)

)
, w

)
−max

x
f
(
x,w

)
. (8)

The results in Figure 3 demonstrate that the smoothed QP
approach is dominant – it outperforms the competitors by
a significant margin across all values of λ. Figure 3 (b)
suggests the reason for this result is indeed the zero-gradient
problem: for the methods using the exact Jacobian (QP and

Regret Runtime (sec)
True problem 0.834 ± 0.120 7965 ± 52
QP 0.506 ± 0.009 762 ± 52
Smoothed QP 0.438 ± 0.009 801 ± 54

Table 1. Final (normalized) test regret and training time for the
different methods on the LogSumExp portfolio problem.

true problem), the gradient norm decreases rapidly with
training. In accordance with theory, this effect is more sig-
nificant for smaller values of λ. In the more quadratic cases,
the relative difference in performance becomes smaller.

Figure 3 suggests that the QP approximation is sufficient in
portfolio optimization. However, it might be explained by
the fact that the true problem in Eq. (7) is also quadratic. To
gain more insight into the performance of our method, we
also consider a LogSumExp objective function:

flse(x, p,Q) = − log
∑
i

e−pixi (9)

The LogSumExp function acts as a soft maximum, and the
corresponding problem can be interpreted as maximization
of the most profitable investment. The results in Table 1
demonstrate that the QP approximation outperforms the true
problem in terms of regret and significantly reduces the com-
putation time. Moreover, smoothed QP again outperforms
the other approaches, which suggests that the zero-gradient
problem occurs in the LogSumExp case as well.

6. Conclusions
In this work, we theoretically demonstrate that the zero-
gradient problem in the non-linear convex P&O setting ex-
tends beyond the linear case. To address this, we introduce
a Jacobian approximation method by smoothing the feasi-
ble set, thereby reducing the null space’s dimensionality to
one. This approach, combined with ideas from prior work,
enables effective gradient updates and escapes from zero-
gradient cones. Our experiments with portfolio optimization
problem confirm that the zero-gradient issue impedes stan-
dard differential optimization and show that our smoothed
QP method solves it effectively.
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A. Proofs
Proof of Lemma 4.6. Let ∆ŵ denote an arbitrary direction and let d = ∇ŵ x∗(ŵ)∆ŵ be the corresponding directional
derivative of the decision. The existence of d is guaranteed by the strict complementary slackness conditions. Let t → 0+.
Then, we have

x̂′(t) := x∗(ŵ + t∆ŵ) = x̂+ td+ ox(t),

where ox(t) is the “little o” notation, i.e., limt→0+
∥ox(t)∥2

t = 0. To prove the lemma, we first want to show that d⊤ni =
0, ∀i ∈ I(x̂). Then, we will show that it implies the lemma’s claim.

By definition, ni = ∇xgi(x̂). Then, since gi(·) is differentiable and gi(x̂) = 0, ∀i ∈ I(x̂), we have the following first-order
approximation for gi

(
x̂′(t)

)
:

gi
(
x̂′(t)

)
= gi

(
x̂+ td+ o(t)

)
=

gi(x̂) + tn⊤
i d+ og(t) = tn⊤

i d+ og(t).

Since x̂′ is the solution of the internal optimization problem, the inequality gi(x̂
′(t)) ≤ 0 holds. Hence, the equation above

implies that n⊤
i d ≤ 0. Now, we want to show that, in fact, n⊤

i d = 0. For a proof by contradiction, suppose that n⊤
i d < 0.

Then, by definition of og(t), there exists ϵ > 0, such that
0 < t < ϵ =⇒ gi

(
x̂′(t)

)
< 0.

Now, we will to show that gi
(
x̂′(t)

)
< 0 contradicts the complementary slackness condition at x̂. From the work by Fiacco

et al. [14], we know that the KKT multiplier, α′
i(t) := αi(ŵ + t∆ŵ), is a continuous function of t. On the one hand, from

the KKT conditions, we know that gi
(
x̂′(t)

)
< 0 =⇒ α′

i(t) = 0. Therefore, α′
i(t) = 0 for t < ϵ. Hence, we have

lim
t→0+

α′
i(t) = 0.

On the other hand, the continuity implies that limt→0+ α′
i(t) = α′

i(0) = αi and, due to strict complementary slackness,
αi > 0. Hence, we also have

lim
t→0+

α′
i(t) > 0.

We arrived at a contradiction and therefore can claim that d⊤ni = 0 for all ni. Since {ni|i ∈ I(x̂)} is a basis of N (x̂),
this implies that for any direction v ∈ N (x̂) and for any ∆ŵ, we have v⊤ ∇ŵ x∗(ŵ)∆ŵ = 0. In other words, vector
v⊤ ∇ŵ x∗(ŵ) is orthogonal to the whole space of ŵ and hence it must be zero, v⊤ ∇ŵ x∗(ŵ) = 0, ∀v ∈ N (x̂). Hence
N (x̂) is contained in the left null space of ∇ŵ x∗(ŵ).

Proof of Lemma 4.8. First, consider the case when the unconstrained maximum ŵ is in the interior of C. By definition of
x∗
QP , it means that x̂ = x∗

QP (ŵ) is also in the interior of C and x̂ = ŵ. Then, x∗
QP is the identity function around ŵ, and

hence x∗
QP (ŵ+∆ŵ) = x(ŵ) +∆ŵ for small enough ∆ŵ. Hence, ∇ŵx

∗
QP (ŵ) = I. Since no constraints are active in this

case (I(x̂) = ∅), the lemma’s claim holds.

Now, consider the case when some constraints are active, and thus x̂ lies on the boundary of C. To get the exact form of the
Jacobian ∇x x

∗
QP (ŵ), we will compute limt→0 x

∗
QP (ŵ + t∆ŵ) for all possible ∆ŵ. As in the QP case the predictions ŵ

lie in the same space as x̂, we can do it first for ∆ŵ ∈ N (x̂) and then for ∆ŵ ⊥ N (x̂).

1. ∆ŵ ∈ N (x̂). For ∆ŵ ∈ N (x̂), we want to show that the corresponding directional derivative is zero. We begin by
computing the internal gradient ∇xfQP (x̂, ŵ) :

∇xfQP (x̂, ŵ) = −∇x ∥x− w∥22 = 2(ŵ − x̂).

Using this formula, we can write the internal gradient for the perturbed prediction ŵ + t∆ŵ at the same point x̂:
∇xfQP (x̂, ŵ + t∆ŵ) = ∇xfQP (x̂, ŵ) + 2t∆ŵ.

By definition, N (x̂) is a linear span of the vectors {ni|i ∈ I(x̂)}. Hence, since ∆ŵ ∈ N (x̂), it can be expressed as

∆ŵ =
∑

i∈I(x̂)

δini, δi ∈ R. (∗)

By Property 4.5, the internal gradient has the following representation:

∇xfQP (x̂, ŵ) =
∑

i∈I(x̂)

αini, αi > 0. (∗∗)
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Then, combining (∗) and (∗∗), we obtain

∇xfQP (x̂, ŵ + t∆ŵ) = ∇xfQP (x̂, ŵ) + 2t∆ŵ =
∑

i∈I(x̂)

(αi + 2tδi)ni

Since αi > 0, ∀i ∈ I(x̂), there exists ϵ > 0, such that αi − 2tδi > 0 for |t| < ϵ. Therefore, ∇xfQP (x̂, ŵ + t∆ŵ) lies in
the gradient cone of x̂, and hence, by Property 4.5, x∗

QP (ŵ + t∆ŵ) = x̂ for |t| < ϵ. Therefore, the directional derivative of
x∗
QP (ŵ) along ∆ŵ ∈ N (x̂) is zero.

2. ∆ŵ ⊥ N (x̂). Next, let ∆ŵ be orthogonal to N (x̂). We begin with the first order approximation of x̂′(t) :

x̂′(t) = x̂+ td+ o(t).

From the proof of Lemma 4.6, we know that d ⊥ N . By definition of x∗
QP , we know that x̂ is the point on C closest to

ŵ. Likewise, x̂′(t) is the point on C closest to ŵ + t∆ŵ. Hence, d = ∆ŵ. Therefore, for any ∆ŵ ⊥ N , the directional
derivative of xQP (ŵ) along ∆ŵ is one.

So, we have shown that

∇ŵ x∗
QP (ŵ)∆ŵ =

{
0 for ∆ŵ ∈ N (x̂)

∆ŵ for ∆ŵ ⊥ N (x̂).

Therefore, the lemma is proven.

Proof of Theorem 4.11. First, we want to construct an orthogonal basis {e1, . . . en} of Rn that will greatly simplify the
calculations. We start by including the internal gradient in this basis, i.e., we define e1 = ∇xfQP (x̂, ŵ). Then, let I(x̂) =
{i|gi(x̂) = 0} be the set of indices of the active constraints of the original problem and let N (x̂) = span({ni|i ∈ I(x̂)})
be a linear span of their normals. By the liner independence condition from Assumption 2, dim

(
N (x̂)

)
= |I(x̂)|. Moreover,

by Property 4.5, we know that e1 ∈ N (x̂). Then, we can choose vectors e2, . . . , e|I(x̂)| that complement e1 to an orthogonal
basis of N (x̂). The remaining vectors e|I(x̂)|+1, . . . , en, are chosen to complement e1, . . . , e|I(x̂)| to an orthogonal basis
of Rn. The choice of this basis is motivated by Lemma 6: e1 is a basis of the null-space of the r−smoothed Jacobian,
e1, . . . , e|I(x̂)| form a basis of the null space of the true QP Jacobian, and the remaining vectors form a basis of space in
which we can move x∗

QP (ŵ).

For brevity, let fx = ∇xf(x̂, w) denote the true gradient vector. By definition, ∆ŵ = fx ∇ŵx
∗
r(x̂, ŵ) is obtained via the

r−smoothed problem. From Property 4.10, we know that ∆ŵ is a projection of fx on the vectors e2, . . . , en. Then, since
e1, . . . , en is an orthogonal basis, we have

∆ŵ =

n∑
i=2

βiei, βi = f⊤
x ei, i = 2, . . . , n.

Now, let’s see how this ∆ŵ affects the true decision x∗
QP (ŵ + t∆ŵ) for t → 0+. First, we have a first-order approximation

x∗
QP (ŵ + t∆ŵ) = x̂+ td+ o(t),

for some d ∈ R. From Lemma 4.6, we know that d is actually a projection of ∆ŵ onto the vectors e|I(x̂)|+1, . . . , en.
Therefore, we have

x∗
QP (ŵ + t∆ŵ) = x̂+

n∑
i=|I(x̂|+1

βiei + o(t).

Finally, the change in the true objective can be expressed as

f
(
x∗
QP (ŵ + t∆ŵ), w

)
− f

(
x∗
QP (ŵ), w

)
= tf⊤

x

( n∑
i=|I(x̂|+1

βiei

)
+ o(t) =

= t

n∑
i=|I(x̂|+1

βif
⊤
x ei + o(t) = t

n∑
i=|I(x̂|+1

β2
i + o(t) ≥ 0.

Therefore, perturbing prediction along ∆ŵ does not decrease the true objective f(x̂, w), and hence
f
(
x∗
QP (ŵ + t∆ŵ), w

)
≥ f

(
x∗
QP (ŵ), w

)
for t → 0+.
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Parameter Search space Best value
Learning rate {0.5, 1, 5, 10}×10−5 5× 10−5

Training epochs {40, 80, 160} 80
Batch size {1, 4, 8, 32} 1
xshift {0, 0.1, 1} 0.1
xscale {0.1, 1} 1

Table 2. Hyperparameters for methods from Figure 3 for standard portfolio optimization problem with different λ’s.

B. Equality constraints
Assumption 2 postulates that for any x ∈ C, the gradients of active constraints, {∇xgi(x)|gi(x) = 0}, are linearly
independent. Now, suppose we include equality constraints in our problem. e.g., we have a constraint geq(x) ≤ 0 and
−geq(x) ≤ 0 for some g. Clearly, the gradients of geq(x) and −geq(x) violate the independence assumption. However, we
claim that it does not affect our results. Let ŵ and x̂ be a prediction and a corresponding decision and let neq = ∇x g

eq(x̂).
Suppose the equality constraint geq(x̂) = 0 is active. Let I(x̂) be the set of indices of the active constraints not including
geq(x). Then, we have a representation of the internal gradient,

∇xf(x̂, ŵ) = αeq
1 neq − αeq

2 neq +
∑

i∈I(x̂)

αini.

Suppose that αeq
1 ̸= αeq

2 , e.g., without loss of generality, αeq
1 > αeq

2 . Then,

∇xf(x̂, ŵ) = (αeq
1 − αeq

2 )neq +
∑

i∈I(x̂)

αini

and hence removing the constraint −geq(x) ≤ 0 would not change the optimality of x̂. The remaining problem would
satisfy complementary slackness and hence would have all the properties demonstrated in Section 3. Therefore, for the case
with equality constraints, we need to extend the complementary slackness conditions by demanding αeq

1 ̸= αeq
2 .

C. Experimental details
In this section, we provide the details of the experiments reported in the paper. All experiments were conducted on a machine
with 32gb RAM and NVIDIA GeForce RTX 3070. The code is written in Python 3.8, and neural networks are implemented
in PyTorch 1.11. For methods requiring differentiation of optimization problems, we use the implementation by Agrawal et.
al [2019].

Experimental results reported in Figures 3 and 4 show the average and the standard deviation (shaded region) of the measured
quantities across 4 random seeds. For each seed, we randomly split data into train, validation, and test sets by using 70%,
20%, and 10% of the whole dataset respectively. In Figure 3a, for each method and at each run, we take the model version
corresponding to the best performance on the validation set and report its performance on the test set. In Figure 4, we do the
same procedure at each training iteration.

In all experiments and methods, the predictor ϕθ is represented by a fully connected neural network with two hidden layers
of 256 neurons each, and LeakyReLU activation functions. The output layer has no activation function. Instead, the output
of the neural network is scaled by the factor xscale and shifted by xshift. For the methods using QP approximation, the
output layer predicts vector ŵ of the same dimensionality as the decision variable. For the method using the true model, the
prediction size is defined by the number of unknown parameters in the true objective function. For training, we used the
Adam optimizer from PyTorch, with custom learning rate and otherwise default parameters.

Hyperparameters of all methods were chosen based on the results of the grid search reported in Tables 2-3. The weight
α of the projection distance regularization term is λ−dependent. Specifically, α = 0 for λ ∈ {0, 0.1}, α = 0.01 for
λ ∈ {0.25, 0.5}, and α = 0.1 for λ ∈ {1, 2}. Configuration files to reproduce the experiments and the code can be found at
placeholder for GitHub link.

Portfolio optimization problem

Following Wang et. al [2020], we use historical data from QUANDL WIKI prices [15] for 505 largest companies on
the American market for the period 2014-2017. The dataset is processed and for every day we obtain a feature vector
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Parameter Search space Best value
Learning rate {0.5, 1, 5, 10}×10−5 5× 10−5

Batch size {1, 4, 8, 32} 1
xshift {0, 0.1, 1} 0.1
xscale {0.1, 1} 0.1

Table 3. Hyperparameters for methods from Table 1 for LogSumExp portfolio optimization problem.

summarizing the recent price dynamic. For further details on the processing, we refer readers to the code and to Wang et. al
[2020]. The processed dataset contained historical data describing the past price dynamics for each of the 505 securities. For
every random seed, 50 securities (thus, 50 decision variables) were chosen randomly. The experiments on the LogSumExp
variation of the portfolio optimization problem were conducted similarly. The hyperparameters for normal and LogSumExp
portfolio problems are reported in Tables 2 and 3.
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