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Bridging Visual Affective Gap: Borrowing Textual Knowledge by
Learning from Noisy Image-Text Pairs

Anonymous Authors

ABSTRACT
Visual emotion recognition (VER) is a longstanding field that has
garnered increasing attention with the advancement of deep neural
networks. Although recent studies have achieved notable improve-
ments by leveraging the knowledge embedded within pre-trained
visual models, the lack of direct association between factual-level
features and emotional categories, called the “affective gap”, limits
the applicability of pre-training knowledge for VER tasks. On the
contrary, the explicit emotional expression and high information
density in textual modality eliminate the “affective gap”. Therefore,
we propose borrowing the knowledge from the pre-trained textual
model to enhance the emotional perception of pre-trained visual
models.We focus on the factual and emotional connections between
images and texts in noisy social media data, and propose Partitioned
Adaptive Contrastive Learning (PACL) to leverage these connec-
tions. Specifically, we manage to separate different types of samples
and devise distinct contrastive learning strategies for each type.
By dynamically constructing negative and positive pairs, we fully
exploit the potential of noisy samples. Through comprehensive
experiments, we demonstrate that bridging the “affective gap” sig-
nificantly improves the performance of various pre-trained visual
models in downstream emotion-related tasks.

CCS CONCEPTS
• Information systems→ Sentiment analysis; • Computing
methodologies→ Computer vision tasks.

KEYWORDS
visual emotion recognition, affective gap, factual connection, emo-
tional connection, contrastive learning
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1 INTRODUCTION
Visual emotion recognition (VER) aims at identifying human emo-
tions towards different visual stimuli [41]. As a vital facet of human
engagement with the world, perceiving emotions through visual
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Figure 1: Illustration of the “affective gap” in the pre-trained
visual model and how our proposed method bridges it using
knowledge from the pre-trained textual model.

cues is progressively emerging as a pivotal challenge on the path
toward the next generation of artificial general intelligence [22, 50].
Therefore, it has drawn increasing attention in recent years [9, 24]
and exhibited broad applications in opinion mining [37], business
intelligence [14], and autonomous driving [17].

Prior studies in VER have greatly enhanced their performance
by leveraging the powerful generalizable knowledge of pre-trained
models [61]. However, a misalignment exists between the objec-
tives of their pre-training and downstream tasks, leading to the
“affective gap” phenomenon, as depicted in Fig. 1. Specifically, the
commonly adopted pre-training tasks, such as classification on
ImageNet [4] and CLIP [28]-type vision-language pretraining, en-
courage models to acquire non-trivial factual-level features under
semantic guidance. Yet, these features lack a direct association with
the emotional categories, leading to the incomplete applicability
of pre-training knowledge for downstream VER tasks. To bridge
the “affective gap”, the pre-trained model needs the capability of
encoding emotional-level features, which serves as an intermediate
link between factual-level features and emotion categories.

An intuitive way to acquire such capability is learning from
large-scale emotional annotated datasets, while it would encounter
two primary challenges in practice. Firstly, the perception subjectiv-
ity of emotion [25, 63] results in high annotation costs, restricting
the scale of high-quality datasets. Secondly, the sparse informa-
tion density of visual data [3, 39] causes a dispersed distribution of
emotional information, requiring models to extract features across
multiple regions and scales, thereby increasing the demand for
computational resources. However, language has natural advan-
tages in these two aspects compared with vision, as it explicitly
conveys emotions through specific words and possesses higher and
more consistent information density [34]. These advantages allow
pre-trained textual models to simultaneously learn generalizable
factual-level and emotional-level features from large corpora in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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unsupervised manners, eliminating the “affective gap” in textual
modality.

Inspired by this discovery, we propose to bridge the visual “affec-
tive gap” by enhancing pre-trained visual models with the unified
factual-level and emotional-level features from pre-trained textual
models, as illustrated in Fig. 1. To transfer this knowledge from
texts to images, we focus on image-text datasets where samples gen-
erally possess relatively strong factual and emotional connections
between their images and texts. Specifically, we adopt TumEmo
[45], an image-text dataset sourced from social media. Due to the in-
herent factual inconsistencies and emotional discrepancies of user-
generated posts [46], the dataset inevitably incorporates certain
noisy samples that are factual-mismatched, emotional-mismatched
samples, or both. Given such characteristics, we proposePartitioned
Adaptive Contrastive Learning (PACL) to leverage these connec-
tions within all samples. It comprises three stages. Firstly, we quan-
titatively assess the factual and emotional connections between the
image and text of each sample, dividing the dataset into separate
partitions. It allows us to formulate distinct learning strategies for
different types of data. Secondly, we cluster on two unimodal sub-
sets of the dataset, revealing the inter-sample relationships from
both factual and emotional aspects. Thirdly, we design an adaptive
contrastive strategy by utilizing the outcomes from the preceding
stages. We dynamically filter out false negative pairs and recon-
struct false positive pairs for different dataset partitions, thereby
ensuring the consistent superiority of positive pairs over negative
pairs, both factually and emotionally.

We follow the network architecture of CLIP [28], with its textual
encoder initialized by SKEP [36] and its visual encoder initialized
by the to-be-enhanced visual model. In this manner, the enhanced
visual model can encode emotional-level features from an image
while retaining the original perception of factual-level features. It
effectively bridges the “affective gap" in visual models and signifi-
cantly improves their performance in downstream VER tasks.

The overall contributions of this paper are three-fold:
• We harness the advantages of language over vision. As far as
we know, this is the first attempt to bridge the “affective gap” in
pre-trained visual models with pre-trained textual knowledge.

• We propose a method called PACL. It leverages the factual and
emotional connections within noisy image-text pairs by dynami-
cally constructing contrastive pairs for different types of samples.

• We conduct extensive experiments on six VER benchmarks and
four kinds of downstream tasks with four pre-trained visual
models. The results demonstrate the consistent improvements
achieved by our method, underscoring the effectiveness and ne-
cessity of bridging the “affective gap”.

2 RELATEDWORKS
2.1 Visual Emotion Recognition
Vision plays a crucial role in human emotional perception, and re-
search on VER has been conducted for over two decades [64]. Early
studies mainly focus on designing hand-crafted features based on
psychology and art theories, including low-level elements [48], mid-
level principals [54, 60], and high-level adjective-noun pairs [1].
Later on, the rapid advancements in deep learning reveal the superi-
ority of learning-based features [29, 53], catalyzing the emergence

of numerous methods built upon it [43, 52]. As their performance
gradually approaches the bottleneck, researchers shift focus to-
wards perceiving emotions at multiple regions and scales[44, 51].
More recently, various correlative subfields witness increased atten-
tion, such as personalized prediction [47, 63], domain adaptation
[59, 65] and zero-shot learning [49, 55].

The rapid development of VER in recent years is inseparable
from the emergence of pre-trained models. The non-trivial knowl-
edge embedded in these models has significantly aided them in
perceiving emotions [58]. However, the misalignment between
pre-training objectives and downstream VER tasks leads to the
“affective gap”- the absence of intermediate emotional-level fea-
tures between factual-level features and emotional categories. To
tackle this problem, Feng et al. [10] imitate human’s visual sen-
timent perception mechanism and design six pre-training tasks
to guide the model in learning factual-level and emotional-level
features from scratch. Although achieving impressive performance
gains for several backbones, they expand the original network size
by threefold and demand extensive annotated data from diverse
datasets, imposing significant computational costs on the training
process. In contrast to them, we enhance the emotional perception
of pre-trained visual models on top of the original factual-level
knowledge, significantly reducing the demand for data.

2.2 Learning from Text Supervision
Language and vision have their respective pros and cons in different
aspects. In recent years, many studies have explored harnessing
the advantages of language to enhance visual models. Out of them,
CLIP [28] demonstrates the efficacy of text supervision in guiding
the acquisition of robust and transferable visual representations.
Following works are proposed by considering such as fine-grained
alignment [3, 30, 66], additional supervision [7, 66], external knowl-
edge [11, 33] and non-contrastive objective [67].

Inspired by their success, EmotionCLIP [58] transfers this para-
digm to VER, by guiding the visual model in learning emotion-level
features with a subject-aware context encoding and a sentiment-
guided contrastive learning. It incorporates the knowledge of a
pre-trained textual model during training, similar to ours, but only
employs it for computing relationships between samples. Addition-
ally, their approach requires substantial video and text data strictly
correlated in both factual and emotional aspects. However, they
haven’t released their training data yet, and to our knowledge, no
publicly available dataset meets this requirement. Consequently,
subsequent works following them entail not only significant train-
ing costs, akin to [10], but also necessitate additional expenses for
data collection. In comparison, our comprehensive utilization of
pre-training textual knowledge and the noisy image-text pairs mit-
igates the demands on both the quantity and quality of training
data and enables stronger performance on downstream tasks.

3 METHOD
The pipeline of our proposed PACL is demonstrated in Fig. 2. It
comprises three stages: Dataset Partition (Section 3.1), Unimodal
Sample Cluster (Section 3.2) and Adaptive Contrastive Learning
(Section 3.3). We provide a detailed explanation of each stage below.
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Figure 2: Overview of PACL’s three-stage pipeline. In the first stage, we divide the dataset into four partitions according to
whether samples are factual-matched, emotional-matched, or not. In the second stage, we perform k-means clustering on
image and text separately to obtain the factual and emotional pseudo-label for each of them. In the third stage, we guide the
knowledge transfer from text to image with an adaptive contrastive learning. It dynamically constructs positive and negative
pairs for different partitions by leveraging the pseudo-labels of samples.

3.1 Dataset Partition
We represent a total of 𝑁 image-text pairs in the training dataset as
{(𝑣𝑖 , 𝑡𝑖 ) |𝑖 = 1, 2, · · · , 𝑁 }. Due to being collected from social media,
images and texts from the same sample may suffer from inherent
factual inconsistencies and emotional discrepancies. To prevent the
model from learning misleading factual or emotional connections,
we first divide the dataset into four partitions by quantitatively
assessing the factual and emotional connections of each sample.

We employ CLIP [28] as the grounding evaluator of the factual
connection, with its visual and textual encoder denoted by 𝐶𝑣 (·)
and𝐶𝑡 (·). Given a sample (𝑣𝑖 , 𝑡𝑖 ), we consider it is factual-matched
if its CLIP-similarity score is larger than a threshold 𝜎 :

𝐶𝑣 (𝑣𝑖 ) ⊙ 𝐶𝑡 (𝑡𝑖 )
| |𝐶𝑣 (𝑣𝑖 ) | | · | |𝐶𝑡 (𝑡𝑖 ) | |

> 𝜎. (1)

Otherwise, we consider it factual-mismatched.
We employ DeepSentiBank [2], denoted by 𝐷 (·) and pre-trained

BERTweet [26], denoted by 𝐵(·), as the grounding evaluator of
the emotional connection. For sample (𝑣𝑖 , 𝑡𝑖 ), we first transform
its image 𝑣𝑖 into the top-3 adjective-noun pairs 𝐷 (𝑣𝑖 ). Then, we
determine whether it is emotional-matched based on a calculation
similar to the above:

𝐵(𝐷 (𝑣𝑖 )) ⊙ 𝐵(𝑡𝑖 )
| |𝐵(𝐷 (𝑣𝑖 )) | | · | |𝐵(𝑡𝑖 ) | |

> 𝜎. (2)

Following this, we divide the dataset into four partitions: 1.
strong-coupled samples that are factual-matched and emotional-
matched; 2. partial-coupled samples that are emotional-matched
but factual-mismatched; 3. partial-coupled samples that are
factual-matched but emotional-mismatched; 4.weak-coupled sam-
ples that are factual-mismatched and emotional-mismatched. We

My dog turns 16 years old 
today! Obviously, she’s 

proud of her age.

Factual-matched 
Emotional-matched

Strong-coupled Sample

Here’s a scene that makes 
me smile. It’s a small 
window to my world.

Factual-mismatched
Emotional-matched

Partial-coupled Sample

My bear line art which I did 
today. I’m pretty happy 

with him.

Factual-matched 
Emotional-mismatched

Partial-coupled Sample

Oh, the lies you told, across 
the wire, but I still really 
feel it, don’t know why…

Factual-mismatched
Emotional-mismatched

Weak-coupled Sample

Figure 3: Samples from four partitions of TumEmo [45].

display a sample from each partition in Fig. 3 for intuitive under-
standing. It should be noted that we employ CLIP, DeepSentiBank,
and BERTweet to simulate the partition conducted by humans,
which can be replaced with other off-the-shelf tools.

3.2 Unimodal Sample Cluster
To optimize the construction of sample pairs in the subsequent
contrastive learning, we utilize the knowledge embedded in the
pre-trained visual and textual models to explore the unimodal inter-
sample relationships from both factual and emotional perspectives.
We adopt the network architecture of CLIP, as shown in Fig. 4. In
this stage, none of the gradients are involved in the calculation.

For the visual encoder, we initialize it with parameters from a
pre-trained visual model, denoted by 𝑉𝜃 (·), which serves as the
enhanced target of PACL. Leveraging its factual-level knowledge,
we encode factual features for all images, {𝑣𝑖 |𝑖 = 1, 2, · · · , 𝑁 }, and
conduct k-means clustering inside its feature space. It yields 𝐾
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Figure 4: Network architecture of PACL.

clusters, where 𝐾 is a hyperparameter describing the cluster gran-
ularity, and each image is assigned a cluster label. We denote the
label of image 𝑣𝑖 as its factual pseudo-label 𝑓𝑖 . Thus, we obtain the
factual relationship between images 𝑣𝑖 , 𝑣 𝑗 : they are factually similar
if 𝑓𝑖 = 𝑓𝑗 , and dissimilar if 𝑓𝑖 ≠ 𝑓𝑗 .

For the textual encoder, we initialize it with parameters from
SKEP[36], denoted by 𝑇𝜉 (·). SKEP is an unsupervised sentiment
knowledge-enhanced pre-trained model focusing more on emo-
tional features. Leveraging this characteristic, we encode emotional
features for all texts, {𝑡𝑖 |𝑖 = 1, 2, · · · , 𝑁 }, and perform k-means clus-
tering that also yields 𝐾 clusters. Similarly, we denote the cluster
label of text 𝑡𝑖 as its emotional pseudo-label 𝑒𝑖 .

3.3 Adaptive Contrastive Learning
With the outcomes of the two preparation stages, we devise an
adaptive contrastive learning that constructs positive and negative
pairs under different strategies for each dataset partition. In this
stage, we treat SKEP as the knowledge source and keep the parame-
ters of the textual encoder frozen. We update the parameters of the
visual encoder through contrastive learning to guide it in learning
the generalizable factual-level and emotional-level knowledge from
textual modality.

3.3.1 Preliminary. We employ contrastive learning between im-
ages and texts multiple times. Denoting the features of (𝑣𝑖 , 𝑡𝑖 ) as 𝑧𝑣𝑖
and 𝑧𝑡

𝑖
, here we provide a general form of contrastive loss:

L = − 1
2
𝑙𝑜𝑔

∑
𝑗∈𝑝+ (𝑣𝑖 ) 𝑒𝑥𝑝 ((𝑧

𝑣
𝑖
⊙ 𝑧𝑡

𝑗
)/𝜏)∑

𝑗∈{𝑝+ (𝑣𝑖 )∪𝑝− (𝑣𝑖 ) } 𝑒𝑥𝑝 ((𝑧𝑣𝑖 ⊙ 𝑧𝑡
𝑗
)/𝜏)

− 1
2
𝑙𝑜𝑔

∑
𝑗∈𝑝+ (𝑡𝑖 ) 𝑒𝑥𝑝 ((𝑧

𝑣
𝑗
⊙ 𝑧𝑡

𝑖
)/𝜏)∑

𝑗∈{𝑝+ (𝑡𝑖 )∪𝑝− (𝑡𝑖 ) } 𝑒𝑥𝑝 ((𝑧𝑣𝑗 ⊙ 𝑧
𝑡
𝑖
)/𝜏)

.

(3)

𝑝+ (·), 𝑝− (·) represent the positive and negative samples of the
anchor. 𝜏 is the temperature hyperparameter. This loss comprises
two components, with either image 𝑣𝑖 or text 𝑡𝑖 serving as the
anchor. Taking the example of image 𝑣𝑖 , the objective of Eq. (3) is
to bring it closer to 𝑝+ (𝑣𝑖 ) while pushing it away from 𝑝− (𝑣𝑖 ).

3.3.2 Strong-coupled Samples. We first conduct contrastive
learning solely on this partition to facilitate the alignment between
the feature spaces of visual encoder𝑉𝜃 (·) and textual encoder𝑇𝜉 (·).
Since samples are both factual-matched and emotional-matched,
we treat the images and texts from the same samples as positive

pairs, and those from different samples as negative pairs. It enables
the model to assign higher cosine similarity scores to image-text
pairs with strong factual and emotional connections. Denoting the
projector of the visual branch as 𝑞𝑣 (·) and it of the textual branch
as 𝑞𝑡 (·), the features of image 𝑣𝑖 and text 𝑡𝑖 are computed as:

𝑧𝑣𝑖 = 𝑞𝑣 (𝑉𝜃 (𝑣𝑖 )), 𝑧𝑡𝑖 = 𝑞𝑡 (𝑇𝜉 (𝑡𝑖 )) . (4)

By substituting Eq. (4) into Eq. (3), we obtain the contrastive loss
of this dataset partition:

L1 = L(𝑝+ (𝑣𝑖 ) = 𝑝+ (𝑡𝑖 ) = {𝑖},
𝑝− (𝑣𝑖 ) = 𝑝− (𝑡𝑖 ) = { 𝑗 | 𝑗 ≠ 𝑖}) .

(5)

3.3.3 Partial-coupled Samples. These samples are from two
dataset partitions. We discuss them together due to their common
properties, that their images and texts have strong connections
only in one of the factual and emotional aspects. To leverage these
connections, we construct positive pairs in the same way as strong-
coupled samples. However, since partial-coupled samples no longer
guarantee the advantages of positive pairs over negative pairs in
both factual and emotional aspects, the former construction of
negative pairs is sub-optimal.

For the partition where samples are emotional-matched but
factual-mismatched, we take (𝑣𝑖 , 𝑡𝑖 ) as an example. Compared to 𝑣𝑖 ,
the image 𝑣 𝑗 from another sample may demonstrate a stronger fac-
tual connection with 𝑡𝑖 , and in this case, treating (𝑣𝑖 , 𝑡𝑖 ) as a positive
pair while (𝑣 𝑗 , 𝑡𝑖 ) as a negative pair compromises the factual-level
learning of the visual model. Therefore, we devise a mapping𝑚𝑓 (·)
that searches for images that might possess strong factual connec-
tions with text 𝑡𝑖 to avoid inappropriate negative pairs:

𝑚𝑓 (𝑡𝑖 ) = {𝑣 𝑗 |𝑙 = argmax
𝑘

𝑧𝑣
𝑘
⊙ 𝑧𝑡𝑖 , 𝑓𝑗 = 𝑓𝑙 }. (6)

It first finds the most matching image, denoted by 𝑣𝑙 , based on
the cosine similarity scores and then selects images with factual
pseudo-label same as 𝑓𝑙 . We also define an inversion of𝑚𝑓 (·) that
searches for texts based on image 𝑣𝑖 :

𝑚−1
𝑓

(𝑣𝑖 ) = {𝑡 𝑗 |𝑣𝑖 ∈𝑚𝑓 (𝑡 𝑗 )}. (7)

Subsequently, the negative samples of 𝑣𝑖 are all other texts with the
exclusion of𝑚−1

𝑓
(𝑣𝑖 ), and the negative samples of 𝑡𝑖 are all other

images with the exclusion of𝑚𝑓 (𝑡𝑖 ). Thereby, the contrastive loss
of this partition is:

L2 = L(𝑝+ (𝑣𝑖 ) = 𝑝+ (𝑡𝑖 ) = {𝑖},
𝑝− (𝑣𝑖 ) = { 𝑗 | 𝑗 ≠ 𝑖, 𝑡 𝑗 ∉𝑚−1

𝑓
(𝑣𝑖 )},

𝑝− (𝑡𝑖 ) = { 𝑗 | 𝑗 ≠ 𝑖, 𝑣 𝑗 ∉𝑚𝑓 (𝑡𝑖 )}).
(8)

For the partitionwhere samples are factual-matched but emotion-
mismatched, we devise a symmetric𝑚𝑒 (·) that searches for texts
that possess strong emotional connections with image 𝑣𝑖 :

𝑚𝑒 (𝑣𝑖 ) = {𝑡 𝑗 |𝑙 = argmax
𝑘

𝑧𝑣𝑖 ⊙ 𝑧𝑡
𝑘
, 𝑒 𝑗 = 𝑒𝑙 }, (9)

and also an inversion of𝑚𝑒 (·) that searches for images based on
text 𝑡𝑖 :

𝑚−1
𝑒 (𝑡𝑖 ) = {𝑣 𝑗 |𝑡𝑖 ∈𝑚𝑒 (𝑣 𝑗 )} (10)
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Similarly, the negative samples of 𝑣𝑖 (𝑡𝑖 ) are all other texts (images)
with the exclusion of𝑚𝑒 (𝑣𝑖 ) (𝑚−1

𝑒 (𝑡𝑖 )). The contrastive loss of this
partition is:

L3 = L(𝑝+ (𝑣𝑖 ) = 𝑝− (𝑡𝑖 ) = {𝑖},
𝑝− (𝑣𝑖 ) = { 𝑗 | 𝑗 ≠ 𝑖, 𝑡 𝑗 ∉𝑚𝑒 (𝑣𝑖 )},
𝑝− (𝑡𝑖 ) = { 𝑗 | 𝑗 ≠ 𝑖, 𝑣 𝑗 ∉𝑚−1

𝑒 (𝑡𝑖 )}).
(11)

3.3.4 Weak-coupled Samples. Since samples of this partition
are factual-mismatched and emotional-mismatched, constructing
positive pairs as before would disrupt the semantic relationships
learned by the model [19] and lead to degenerations in downstream
performance. Therefore, we reconstruct positive pairs by leverag-
ing the learned correlation between images and texts in previous
partitions. Taking sample (𝑣𝑖 , 𝑡𝑖 ) as an example, we select positive
samples according to the cosine similarity scores:

𝑝+ (𝑣𝑖 ) = {argmax
𝑘

𝑧𝑣𝑖 ⊙ 𝑧𝑡
𝑘
}, (12)

𝑝+ (𝑡𝑖 ) = {argmax
𝑘

𝑧𝑣
𝑘
⊙ 𝑧𝑡𝑖 }. (13)

For negative pairs, we follow the strategies adopted for partial-
coupled samples. We simultaneously apply 𝑚𝑓 (·) and 𝑚𝑒 (·) to
filter out potential false negative pairs with either strong factual or
emotional connections. As a result, the contrastive loss is:

L4 = L(𝑝+ (𝑣𝑖 ) = {argmax
𝑘

𝑧𝑣𝑖 ⊙ 𝑧𝑡
𝑘
},

𝑝+ (𝑡𝑖 ) = {argmax
𝑘

𝑧𝑣
𝑘
⊙ 𝑧𝑡𝑖 },

𝑝− (𝑣𝑖 ) = { 𝑗 | 𝑗 ≠ 𝑖, 𝑡 𝑗 ∉𝑚−1
𝑓

(𝑣𝑖 ) ∪𝑚𝑒 (𝑣𝑖 )},

𝑝− (𝑡𝑖 ) = { 𝑗 | 𝑗 ≠ 𝑖, 𝑣 𝑗 ∉𝑚𝑓 (𝑡𝑖 ) ∪𝑚−1
𝑒 (𝑡𝑖 )}).

(14)

3.3.5 Total Loss. We devise a progressive learning schedule to
guide the model to learn from strong-coupled samples to weak-
coupled samples step by step. In the first one-third of epochs, we
only incorporate the strong-coupled samples into training:

L𝑡𝑜𝑡𝑎𝑙 = L1 . (15)

In the second one-third of epochs, we incorporate both the strong-
coupled and partial-coupled samples into training:

L𝑡𝑜𝑡𝑎𝑙 = L1 + L2 + L3 . (16)

In the last one-third of epochs, we incorporate all samples into
training:

L𝑡𝑜𝑡𝑎𝑙 = L1 + L2 + L3 + L4 . (17)

4 EXPERIMENT
4.1 Datasets
We conduct training of PACL on TumEmo [45]. It contains 200k
image-text pairs crawled from social media. Its samples are anno-
tated based on their emotions. Since we emphasize leveraging the
factual and emotional connections between images and texts, we
avoid using knowledge from the annotations.

In the downstream testing, we adopt six publicly available VER
datasets that are annotated according to diverse emotion theories.
FI [53] is labeled according to Mikels’ psychological study [23].
Emotion-6 and UnbiasedEmo [24] contain 6 common emotion

categories. WebEmo [24] is labeled according to Parrot’s hierar-
chical emotion model [27], which contains 2 basic categories at
the first level, 7 categories at the second level and 25 fine-grained
categories at the third level. Emotic [16] comprises 26 fine-grained
emotion categories, with each image assigned multiple emotion
labels, and 10-scale VAD (Valence-Arousal-Dominance) [32] ratings.
IAPS [18] is labeled by 9-scale VAD ratings.

4.2 Implementation Details
All of our implementations are based on Pytorch. We employ three
visual models pre-trained on ImageNet [4], including ResNet-50
[13], ViT-base [8], Swin-base [21], and one visual model pre-trained
by CLIP [28] (ViT-clip) as the target models for enhancement. Most
of our experiments adopt SKEP [36] as the pre-trained textual model.
In Section 5, we also evaluate the enhancement effect of other tex-
tual models [6, 20, 31]. In the first stage of PACL, we set the partition
threshold 𝜎 to 0.7. In the second stage, we set cluster granularity 𝐾
to 2. In the third stage, we set the contrastive temperature 𝜏 to 0.07,
the initial learning rate of ResNet-50 to 1e-3, ViT-base and ViT-clip
to 1e-5, Swin-base to 2e-5, projection layers 𝑝𝑣 (·), 𝑝𝑡 (·) to 1e-3. We
train the model for 30 epochs with a minibatch size of 64. We adopt
AdamW optimizer with a cosine schedule to decay the learning
rate. In the downstream testing, we adopt the original partition
for training, validation, and testing if provided. Otherwise, we ran-
domly divide the dataset in a ratio of 8:1:1. All the experiments are
conducted on four NVIDIA 4090 GPUs.

4.3 Compared Baselines
Two other works also focus on enhancing pre-trained visual models
in perceiving emotions. Feng et al. [10] factorize human perception
into three steps and devise a pre-training method to imitate it.
Their pre-training tasks include colorization, super resolution, scene
recognition, jigsaw puzzles, ANP prediction, and image captioning,
requiring 10.5M images with annotations. We reproduce it under all
of our settings for comparison. EmotionCLIP [58] adopts vision-
language pre-training to extract emotional representations from
verbal and nonverbal communication. It leverages the pre-trained
knowledge from CLIP [28] and DistilBert [31]. It is trained on 1M
video-text pairs with the annotation of sentiment score and human
bounding boxes. Since the training data is not publicly available
yet, we compare PACL with it under pre-trained ViT-clip, which is
the only model released. PACL is our proposed model, it leverages
the pre-trained knowledge from SKEP [36] and is trained on 200K
image-text pairs without any additional annotations. PACL has the
loosest requirements for training data among them.

4.4 Enhancement Comparison
We adopt four kinds of VER downstream tasks. 1. In single-label
learning, models are required to classify each image into a single
emotional category. 2. In hierarchical-label learning, models
are required to predict categories for three emotion levels simul-
taneously. We report accuracy (Acc) and weighted-F1 (F1) for the
first two tasks. 3. In multi-label learning, models are required to
predict multiple emotion categories for each image. We report the
mean of average precision (mAP) and area under roc curve (AUC)
of categories. 4. In VAD learning, models are required to predict
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Table 1: Emotional enhancement of visual models on single-label learning datasets including FI [53], Emotion-6 [24], Unbi-
asedEmo [24], hierarchical-label learning dataset WebEmo [24], multi-label learning dataset Emotic [16], and VAD learning
datasets including Emotic [16] and IAPS [18]. Accuracy (Acc↑), weighted-F1 (F1↑), mean of average precision (mAP↑), area under
roc curve (AUC↑), mean of mean square error (MSE↓), mean of R square (𝑅2 ↑) are reported for these datasets. Acc and F1 are
followed by the number of total categories, and MSE is multiplied by 102. The best results are marked in bold.

Model
Single-label Hierarchical-label Multi-label VAD

FI Emotion-6 UnbiasedEmo WebEmo Emotic Emotic IAPS
Acc-8 F1-8 Acc-6 F1-6 Acc-6 F1-6 Acc-2 F1-2 Acc-6 F1-6 Acc-25 F1-25 mAP AUC MSE 𝑅2 MSE 𝑅2

Linear Evaluation:
ResNet-50 57.72 56.72 46.47 45.18 60.20 60.08 66.25 66.21 41.08 39.03 24.94 22.80 25.85 66.36 2.825 0.1267 2.130 0.2790
ResNet-50 + Feng et al. 58.39 57.88 47.54 46.48 62.17 61.27 65.82 65.71 40.63 38.34 24.57 22.14 27.32 67.49 2.867 0.1279 2.253 0.2685
ResNet-50 + PACL 59.50 59.03 51.14 50.59 66.78 66.39 67.53 67.42 43.60 40.95 25.85 24.32 27.02 67.60 2.646 0.1404 1.982 0.3104
ViT-base 62.08 62.06 54.85 54.24 74.67 74.24 70.72 70.67 45.90 43.67 27.69 26.10 30.16 68.26 2.763 0.1265 2.010 0.2936
ViT-base + Feng et al. 64.12 64.06 57.02 56.73 77.71 77.54 70.55 70.51 45.34 45.09 27.37 27.14 33.01 69.30 2.733 0.1293 1.991 0.3088
ViT-base + PACL 64.77 64.64 58.25 58.03 78.95 78.91 71.98 71.88 48.32 46.01 28.64 27.89 33.40 70.68 2.435 0.1466 1.903 0.3319
Swin-base 63.63 63.50 53.29 51.27 74.30 73.98 70.39 70.23 46.39 44.25 28.82 27.41 31.27 68.09 2.715 0.1308 1.966 0.2872
Swin-base + Feng et al. 65.03 64.74 55.47 52.84 76.30 75.67 70.12 70.03 46.37 44.36 28.56 27.17 32.00 69.08 2.665 0.1335 1.909 0.2948
Swin-base + PACL 65.70 65.58 57.13 56.79 79.93 79.67 72.14 72.13 47.96 45.81 29.89 27.95 32.91 70.19 2.451 0.1449 1.794 0.3285
ViT-clip 71.74 71.61 64.43 64.15 85.53 85.24 78.41 77.85 54.86 53.68 37.36 36.12 38.50 72.67 2.313 0.1681 1.560 0.3473
ViT-clip + Feng et al. 64.12 64.06 57.02 56.73 77.71 77.54 70.55 70.51 45.34 45.09 27.37 27.14 33.01 69.30 2.733 0.1293 1.991 0.3088
ViT-clip + EmotionCLIP 72.63 72.32 64.72 64.57 84.36 84.06 78.77 78.22 55.28 54.35 37.12 35.82 34.63 72.33 2.303 0.1711 1.538 0.3478
ViT-clip + PACL 73.17 72.53 66.08 66.01 86.72 85.97 79.51 79.33 56.13 55.59 37.40 37.03 39.05 72.97 2.249 0.1744 1.506 0.3535
Fine-tuning:
ResNet-50 65.14 64.84 53.46 53.25 73.68 73.15 73.81 73.80 48.88 48.34 30.85 29.89 28.36 68.43 2.757 0.1337 2.114 0.2842
ResNet-50 + Feng et al. 66.69 66.55 58.21 58.05 77.47 76.90 74.43 74.38 49.66 49.39 32.63 31.01 28.44 68.20 2.646 0.1408 2.082 0.2954
ResNet-50 + PACL 67.11 66.79 58.60 58.16 77.30 76.65 74.76 74.75 50.18 49.21 32.72 31.42 30.39 70.12 2.531 0.1460 1.927 0.3130
ViT-base 69.57 69.56 57.45 57.09 77.63 77.51 76.25 76.08 52.49 51.01 33.88 32.52 32.52 71.73 2.633 0.1374 1.975 0.3016
ViT-base + Feng et al. 69.73 69.60 60.15 59.38 81.03 81.00 76.34 76.11 53.39 52.41 33.98 33.62 33.12 71.87 2.603 0.1451 1.964 0.3129
ViT-base + PACL 70.91 70.68 60.92 60.65 82.57 82.26 77.61 77.74 54.87 54.50 34.75 34.61 35.09 72.24 2.378 0.1511 1.860 0.3325
Swin-base 70.24 70.33 55.57 55.27 78.29 78.02 75.83 75.75 51.57 51.05 34.19 33.10 33.11 71.61 2.607 0.1369 1.922 0.2961
Swin-base + Feng et al. 72.04 71.68 58.62 58.41 82.29 82.17 76.71 76.53 53.90 53.62 34.50 34.08 32.97 71.53 2.580 0.1461 1.861 0.3115
Swin-base + PACL 73.21 73.17 60.04 59.72 83.55 83.34 77.19 77.06 54.69 54.32 35.33 35.27 36.11 72.83 2.407 0.1530 1.779 0.3344
ViT-clip 77.33 77.25 64.89 64.60 88.16 88.04 79.32 79.25 55.47 54.99 39.71 38.82 38.78 72.90 2.246 0.1729 1.523 0.3562
ViT-clip + Feng et al. 69.73 69.60 60.15 59.38 81.03 81.00 76.34 76.11 53.39 52.41 33.98 33.62 33.12 71.87 2.603 0.1451 1.964 0.3129
ViT-clip + EmotionCLIP 77.62 77.40 65.09 64.77 89.44 88.81 80.20 80.16 56.14 55.83 39.67 38.70 36.54 72.52 2.264 0.1719 1.476 0.3575
ViT-clip + PACL 80.55 80.28 66.91 66.65 90.14 90.13 81.84 81.57 56.35 56.02 39.99 39.21 39.36 73.03 2.213 0.1784 1.425 0.3664

the continuous values in the ‘Valence’, ‘Arousal’, and ‘Dominance’
dimensions. We report the mean of mean squared error (MSE) and
R squared (𝑅2) of the three dimensions. Besides, we conduct ex-
periments under two evaluation protocols: linear evaluation and
fine-tuning. In both protocols, we set the learning rate of the linear
classification head to 1e-2 and train for 40 epochs. For parame-
ters of the backbone network, we keep them frozen under linear
evaluation and set the initial learning rate of ResNet-50 to 1e-4,
ViT-base, Swin-base, and ViT-clip to 1e-5 under fine-tuning. The
other settings of downstream testing are aligned with Section 4.2.

The experimental results are presented in Table 1. We can ob-
serve that PACL consistently improves all the pre-trained visual
models on all tasks by a large margin. In contrast, the effective-
ness of Feng et al. is limited under linear evaluation, especially in
hierarchical-label learning. It highlights the advantages of harness-
ing textual knowledge in perceiving emotions at multiple levels.
Additionally, since they start the pre-training from scratch, they can
not leverage the generalizable factual knowledge in the pre-trained
visual models. For instance, PACL achieves significant performance
gains by starting from ViT-clip instead of ViT-base, underscoring
the effectiveness and scalability of bridging the “affective gap”. Emo-
tionCLIP, on the other hand, also undergoes poor performance on
some tasks, specifically, multi-label learning. We attribute this to

the misalignment between its pre-training and testing. Although it
explicitly models the dependencies between context and humans, it
may be misled by the massive communications between humans in
training data and learns emotional representations heavily depen-
dent on humans. However, the multi-label learning dataset Emotic
emphasizes the emotion perception from both context and humans,
resulting in the undesirable performance of EmotionCLIP. On the
contrary, PACL leverages diverse image-text pairs and the unified
factual and emotional features embedded in texts, naturally encour-
aging visual models to perceive emotions in different regions and
scales, thereby promoting universal enhancements on all tasks.

4.5 Comparison with SOTA
To further demonstrate the necessity and effectiveness of bridging
the “affective gap”, we present a brief view of the current SOTA
methods in two downstream tasks.

4.5.1 Classification on FI, WebEmo. Following previous meth-
ods [40], we group eight categories of FI into two coarse-grained
parent categories. We report the classification accuracy of SOTA
methods on FI and WebEmo at multiple emotion levels in Table 2. It
should be noted that the models are tested on each level separately,
different from the settings in hierarchical-label learning in 4.4. As
shown in Table 2, ViT-clip enhanced by PACL outperforms other
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Table 2: Accuracy of SOTA methods in classification at dif-
ferent emotion levels on FI [53] and WebEmo [24]. The best
results are marked in bold, and the second-best results are
underlined.

Model FI WebEmo
Acc-2 Acc-8 Acc-2 Acc-6 Acc-25

Sentibank [1] 56.47 44.49 - - -
DeepSentibank [2] 64.39 53.16 - - -
PCNN [52] 75.34 56.16 - - -
Zhu et al. [68] 84.26 73.03 - - -
Rao et al. [43] 87.51 75.46 - - -
WSCNet [42] 86.74 70.07 79.43 52.61 32.75
PDANet [62] 87.25 72.13 80.96 53.46 32.82
Zhang and Xu [56] 90.97 75.91 82.47 53.88 33.01
MDAN [40] 91.08 76.41 82.72 55.65 34.28
SimEmotion [5] 95.42 80.33 - - -
ViT-clip + PACL 95.27 80.55 84.06 57.42 40.31
ViT-clip + PACL + PDANet 96.06 80.83 84.74 58.11 40.50

methods in most cases. Additionally, since our enhanced model
does not incorporate additional parameters besides the backbone
network, it can be combined with other methods for further im-
provements. By adding a polarity-consistent regression loss [62],
our enhanced model achieves the best performances across all sce-
narios. These results validate the efficacy and scalability of PACL.

Table 3: Accuracy of SOTAmethods in zero-shot classification
on FI [53] and Emotion-6 [24]. [C] denotes the names of
emotion categories.

Model Text Prompt FI Emotion-6
Acc-8 Acc-6

Zhang et al. [57] — 21.73 22.74
Kodirov et al. [15] — 19.35 26.53
Sung et al. [35] — 18.49 28.10
Zhan et al. [55] — 24.51 30.49
Ye et al. [49] — 36.03 33.57

CLIP [28] A photo with [C] emotion. 20.71 10.16
ResNet-50 + PACL A photo with [C] emotion. 25.58 29.46
CLIP [28] The photo makes me feel so [C]! 17.45 13.78
ResNet-50 + PACL The photo makes me feel so [C]! 31.72 30.23

4.5.2 Zero-shot on FI, Emotion-6. Since we adopt the network
architecture of PACL the same as CLIP [28], our enhanced models
are naturally capable of conducting zero-shot emotion classification
by leveraging the learned emotional connections between images
and texts. We report the zero-shot classification accuracy of the en-
hanced ResNet-50 and the SOTAmethods in Table 3. Similar to CLIP,
our enhanced model is also sensitive to text prompts. Therefore,
we test its performances under both regular and manually designed
prompts. From the results, we observe that the enhanced ResNet-
50 significantly outperforms CLIP by learning from much fewer
image-text pairs. We attribute this to the difference between the
types of training data. PACL learns from social media posts, which
contain generally strong emotional connections between images
and texts, as well as more frequent occurrences of textual emo-
tional expressions. Compared with other methods, the enhanced

Table 4: Ablation experiments on dataset partition and sam-
ple usage. For factual (emotional) partition, we conduct con-
trastive learning by treating factual-matched (emotional-
matched) samples as strong-coupled and factual-mismatched
(emotional-mismatched) samples as partial-coupled. “Both”
denotes factual + emotional.

Partition Sample Usage
UnbiasedEmo
Acc-6 F1-6

Initial weight 60.20 60.08

None All 60.53 60.01

Factual Factual-matched 63.49 62.91
Factual Factual-matched + Factual-mismatched 65.13 64.71

Emotional Emotional-matched 64.47 63.77
Emotional Emotional-matched + Emotional-mismatched 65.46 64.83

Both Strong-coupled 64.14 64.10
Both Strong-coupled + Partial-coupled 65.79 65.38
Both Strong-coupled + Partial-coupled + Weak-coupled 66.78 66.39

ResNet-50 achieves the second-best performance on both datasets.
Although zero-shot emotion classification is not our primary goal,
the satisfactory performance achieved by the enhanced ResNet-50
provides us with the intuitive advantages of learning from social
media posts.

5 ANALYSIS
In this section, we validate the effectiveness of each component of
PACL. All the experiments are conducted by adopting pre-trained
ResNet-50 as the backbone under linear evaluation.

5.1 Ablation Study
We conduct ablation experiments in Table 4 to explore the influ-
ences of different dataset partitions and sample usages. Firstly, we
do not apply partition strategies and conduct contrastive learning
by treating all the samples as strong-coupled. It results in minor
enhancements for the pre-trained model since TumEmo contains
certain noisy samples with either weak factual or emotional connec-
tions. In these cases, the vanilla contrastive learning is sub-optimal.
Next, we apply partition based only on factual connections, treating
factual-matched samples as strong-coupled and factual-mismatched
samples as partial-coupled. PACL enhances the pre-trained model
by a large margin with solely factual-matched samples and further
improves its performance by utilizing factual-mismatched samples.
We also apply partition based only on emotional connections with
the same settings, which brings a similar trend. By dynamically con-
structing contrastive pairs, we succeed in harnessing these noisy
samples. Notably, although the downstream task is emotion-related,
applying partition based on either emotional or factual connec-
tions can both lead to significant enhancements, demonstrating
the cruciality of proper handling of both factual-mismatched and
emotional-mismatched samples. Finally, by simultaneously apply-
ing factual and emotional partition as PACL, the pre-trained model
progressively learns from factual and emotional connections of
different kinds of data, achieving the best result. The above results
indicate the effectiveness of PACL in fully exploiting the dataset.
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Table 5: Experiments of hyperparameter selection. Each ex-
periment for a specific hyperparameter is carried out in-
dependently, with other non-tested hyperparameters set
to their adopted values. 𝜎, 𝐾, 𝜏 are from Eq. (1), Section 3.2,
Eq. (3), respectively.

Partition Threshold 𝜎 FI Emotion-6 WebEmo
Acc-8 F1-8 Acc-6 F1-6 Acc-2 F1-2

0 57.08 56.74 46.59 45.11 65.51 65.21
0.3 58.50 58.03 49.10 47.74 66.36 66.33
0.5 58.58 57.96 49.46 48.00 67.02 66.94
0.7 (adopted) 59.59 59.03 51.14 50.59 67.53 67.42
0.9 56.64 56.06 45.75 44.31 65.08 64.94
1 39.56 37.77 36.17 33.72 58.54 58.11

Cluster Granularity 𝐾 FI Emotion-6 WebEmo
Acc-8 F1-8 Acc-6 F1-6 Acc-2 F1-2

2 (adopted) 59.59 59.03 51.14 50.59 67.53 67.42
3 59.23 58.51 51.02 50.34 67.30 67.12
6 58.46 57.66 51.98 51.78 67.44 67.35
10 57.98 57.82 49.34 49.08 66.82 66.50
15 57.33 56.67 47.90 47.13 66.60 66.38
25 56.08 55.82 45.63 43.56 65.21 64.79

Contrastive Temperature 𝜏 FI Emotion-6 WebEmo
Acc-8 F1-8 Acc-6 F1-6 Acc-2 F1-2

0.01 59.43 59.12 49.34 48.89 66.53 66.44
0.03 59.74 59.38 50.19 49.83 67.22 67.10
0.05 59.45 58.77 50.96 50.62 67.03 66.79
0.07 (adopted) 59.59 59.03 51.14 50.59 67.53 67.42
0.5 58.81 58.53 50.27 49.80 66.91 66.73
1 58.45 58.13 49.61 49.29 66.80 66.55

5.2 Hyperparameter Selections
To probe the influence of hyperparameters, we conduct the experi-
ments in Table 5.

5.2.1 Partition Threshold 𝜎 . It controls the precision and size of
each partition. By adopting a small threshold, the strong-coupled
samples can not guarantee the generally strong factual and emo-
tional connections between images and texts. It disrupts the align-
ment between the visual and textual feature spaces [19]. On the
other hand, a large threshold limits the number of strong-coupled
samples, which is also not conducive to the alignment. Conse-
quently, we adopt a medium threshold that provides sufficient
high-quality strong-coupled samples. Specifically, 22% samples are
strong-coupled, 51% samples are partial-coupled, and 27% samples
are weak-coupled under 𝜎 = 0.7.

5.2.2 Cluster Granularity 𝐾 . It balances the distances between
intra-cluster and inter-cluster samples, thereby influencing the re-
construction of negative pairs for partial-coupled and weak-coupled
samples. Fine-grained clustering guarantees the correctness of fil-
tered negative pairs, while coarse-grained clustering emphasizes
the correctness of the remaining. According to the experimental
results, we adopt a small 𝐾 . This indicates that the advantages of
filtering out additional true negative pairs outweigh the potential
drawbacks of ignoring false negative pairs. Interestingly, the en-
hanced model achieves the best results at 𝐾 = 6 on Emotion-6. We
attribute this to the alignment in the granularities of clustering and
downstream classification. However, we still adopt 𝐾 = 2 due to its
general advantages across all datasets.
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Figure 5: Classification accuracy of the enhanced visual
model on Emotion-6 [24] and UnbiasedEmo [24] under
text supervisions from different pre-trained textual models.
Specifically, we employ SKEP [36], DistilBert [31], Bert-base
[6], RoBerta-base [20], Bert-large [6] and ReBerta-large [20].

5.2.3 Contrastive Temperature 𝜏 . It controls the strength of
penalties on negative samples [38]. As shown in the results, PACL is
not sensitive to its selection. The enhanced model achieves slightly
superior results under smaller temperatures compared to larger
selections. Therefore, we adopt 𝜏 = 0.07 according to results and
related works [12, 28].

5.3 Different Text Supervisions
We evaluate the generalizability of PACL by employing the knowl-
edge from various pre-trained textual models to enhance the visual
model. As shown in Fig. 5, different pre-trained textual models bring
consistent performance improvements on both Emotion-6 and Un-
biasedEmo. It validates the universal advantages of textual models
in encoding emotional-level features compared to visual models.
Additionally, we can observe a positive correlation between the
representative capability of the textual model and its enhancement
effectiveness through PACL on the visual model. It demonstrates
the scalability of PACL relative to the textual models. With the
evolution of large language models in recent years, the potential of
PACL can be further exploited.

6 CONCLUSION
In this paper, we focus on bridging the visual “affective gap” of
the pre-trained visual models. It arises from the misalignment be-
tween the objectives of pre-training and downstream tasks. Inspired
by the advantages of language, we propose Partitioned Adaptive
Contrastive Learning (PACL) that enhances visual models by lever-
aging the unified factual-level and emotional-level features from the
pre-trained textual model. PACL learns from the factual and emo-
tional connections from noisy image-text pairs collected from social
media by dataset partition, unimodal sample cluster, and adaptive
contrastive learning. Through extensive experiments, we demon-
strate the effectiveness and scalability of PACL in enhancing the
emotional perception of visual models, validating the importance
of bridging the “affective gap”.
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