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Abstract

While deep neural networks can attain good accuracy on in-distribution test points,
many applications require robustness even in the face of unexpected perturbations
in the input, changes in the domain, or other sources of distribution shift. We study
the problem of test time robustification, i.e., using the test input to improve model
robustness. Recent prior works have proposed methods for test time adaptation,
however, they each introduce additional assumptions, such as access to multiple
test points, that prevent widespread adoption. In this work, we aim to study and
devise methods that make no assumptions about the model training process and are
broadly applicable at test time. We propose a simple approach that can be used in
any test setting where the model is probabilistic and adaptable: when presented
with a test example, perform different data augmentations on the data point, and
then adapt (all of) the model parameters by minimizing the entropy of the model’s
average, or marginal, output distribution across the augmentations. Intuitively,
this objective encourages the model to make the same prediction across different
augmentations, thus enforcing the invariances encoded in these augmentations,
while also maintaining confidence in its predictions. In our experiments, we
evaluate two baseline ResNet models, two robust ResNet-50 models, and a robust
vision transformer model, and we demonstrate that this approach achieves accuracy
gains of 1-8% over standard model evaluation and also generally outperforms prior
augmentation and adaptation strategies. For the setting in which only one test point
is available, we achieve state-of-the-art results on the ImageNet-C, ImageNet-R,
and, among ResNet-50 models, ImageNet-A distribution shift benchmarks.

Full paper: https://arxiv.org/abs/2110.09506.

1 Introduction

Robustification of deep models against test distribution shifts is an important and active area of study.
We are interested in studying and devising methods for improving model robustness that are “plug
and play”, i.e., they can be readily used with a wide variety of pretrained models and test settings.
In this work, we focus on methods for test time robustness, in which the specific test input may be
leveraged in order to improve the model’s prediction on that point. Though broad applicability is our
primary goal, we also want methods that synergize with other robustification techniques, in order to
achieve greater performance than using either set of techniques in isolation. To satisfy both of these
desiderata, we devise a novel test time robustness method based on adaptation and augmentation.
When presented with a test point, we propose to adapt the model by augmenting the test point in
different ways and ensuring that the model makes the same predictions across these augmentations,
thus respecting the invariances encoded in the data augmentations. We further encourage the model
to make confident predictions, thus arriving at the proposed method: minimize the marginal entropy
of the model’s predictions across the augmented versions of the test point.
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We refer to the proposed method as marginal entropy minimization with one test point (MEMO), and
this is the primary contribution of our work. MEMO makes direct use of pretrained models without
any assumptions about their particular training procedure or architecture, while requiring only a single
test input for adaptation. In Section 4, we demonstrate empirically that MEMO consistently improves
the performance of ResNet [9] and vision transformer [5] models on several challenging ImageNet
distribution shift benchmarks, achieving several new state-of-the-art results for these models in the
setting in which only one test point is available. In particular, MEMO consistently outperforms non
adaptive marginal distribution predictions (between 1-10% improvement) on corruption and rendition
shifts – tested by the ImageNet-C [10] and ImageNet-R [12] datasets, respectively – indicating that
adaptation plays a crucial role in improving predictive accuracy. Also, MEMO is, to the best of
our knowledge, the first adaptation method to improve performance (by 1-4% over standard model
evaluation) on ImageNet-A [13], demonstrating the broad applicability of the method.

2 Related Work

Briefly, most other methods and frameworks that tackle distribution shift problems either assume
access to (and modify) the training procedure or adapt using multiple inputs at test time. We provide
a more detailed overview of prior work in Appendix A. A few prior works work directly with
pretrained models and make minimal test assumptions, similar to MEMO. Schneider et al. [32]
show that adapting batch normalization (BN) statistics can be effective even with only one test
point, and we refer to this approach as “single point” BN adaptation. As we discuss in Section 3
and show empirically in Section 4, MEMO synergizes well with single point BN adaptation. Data
augmentations are also sometimes used on the test data directly by averaging the model’s outputs
across augmented copies of the test point [19, 34], i.e., predicting according to the model’s marginal
output distribution. This technique, which we refer to as test time augmentation (TTA), has been
shown to be useful both for improving model accuracy and calibration [1] as well as handling
distribution shift [25]. We compare to both single point BN adaptation and TTA in Section 4.

3 Robustness via Adaptation and Augmentation

Data augmentations are typically used to train the model to respect certain invariances – e.g., changes
in lighting or viewpoint do not change the underlying class label – but, especially when faced with
distribution shift, the model is not guaranteed to obey the same invariances at test time. In this section,
we introduce MEMO, a method for test time robustness that adapts the model such that it respects
these invariances on the test input. We use “test time robustness” specifically to refer to techniques
that operate directly on pretrained models and single test inputs – single point BN adaptation and
TTA, as described in Section 2, are examples of prior test time robustness methods.

In the test time robustness setting, we are given a trained model fθ : X → Y with parameters
θ ∈ Θ. We do not require any special training procedure and do not make any assumptions about the
model, except that θ is adaptable and that fθ produces a conditional output distribution pθ(y|x) that is
differentiable with respect to θ.1 All standard deep neural network models satisfy these assumptions.
A single point x ∈ X is presented to fθ, for which it must predict a label ŷ ∈ Y immediately. Note
that this is precisely identical to the standard test time inference procedure for regular supervised
learning models – in effect, we are simply modifying how inference is done, without any additional
assumptions on the training process or on test time data availability. This makes test time robustness
methods a simple “slot-in” replacement for the ubiquitous and standard test time inference process.
We assume sampling access to a set of augmentation functionsA , {a1, . . . , aM} that can be applied
to the test point x. We use these augmentations and the self-supervised objective detailed below to
adapt the model before it predicts on x. When given a set of test inputs, the model adapts and predicts
on each test point independently. We do not assume access to any ground truth labels.

Given a test point x and set of augmentation functions A, we sample B augmentations from A and
apply them to x in order to produce a batch of augmented data x̃1, . . . , x̃B . The model’s average, or

1Single point BN adaptation also assumes that the model has batch normalization layers, and, as shown
empirically in Section 4, this is an assumption that we do not require but can also benefit from.
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Algorithm 1 Test time robustness via MEMO

Require: trained model fθ, test point x, # augmentations B, learning rate η, update rule G
1: Sample a1, . . . , aB

i.i.d.∼ U(A) and produce augmented points x̃i = ai(x) for i ∈ {1, . . . , B}
2: Compute Monte Carlo estimate p̃ = 1

B

∑B
i=1 pθ(y|x̃i) ≈ p̄θ(y|x) and ˜̀= H(p̃) ≈ `(θ;x)

3: Adapt model parameters via update rule θ′ ← G(θ, η, ˜̀)

4: Predict ŷ , arg maxy pθ′(y|x)

marginal, output distribution with respect to the augmented points is given by

p̄θ(y|x) , EU(A) [pθ(y|a(x))] ≈ 1

B

B∑
i=1

pθ(y|x̃i) , (1)

where the expectation is with respect to uniformly sampled augmentations a ∼ U(A).

What properties do we desire from this marginal distribution? To answer this question, consider the
role that data augmentation typically serves during training. For each training point (xtrain, ytrain),
the model fθ is trained using multiple augmented forms of the input x̃train

1 , . . . , x̃train
E . f is trained to

obey the invariances between the augmentations and the label – no matter the augmentation on xtrain,
f should predict the same label ytrain, and it should do so confidently. We seek to devise a similar
learning signal during test time, when no ground truth labels are available. That is, after adapting:

(1) the model fθ predictions should be invariant across augmented versions of the test point, and
(2) the model fθ should be confident in its predictions, even for heavily augmented versions of the

test point, due to the additional knowledge that all versions have the same underlying label.

Optimizing the model for more confident predictions can be justified from the assumption that the
true underlying decision boundaries between classes lie in low density regions of the data space [6].
With these two goals in mind, we propose to adapt the model using the entropy of its marginal output
distribution over augmentations (Equation 1), i.e.,

`(θ;x) , H (p̄θ(·|x)) = −
∑
y∈Y

p̄θ(y|x) log p̄θ(y|x) . (2)

Optimizing this objective encourages both confidence and invariance to augmentations, since the
entropy of p̄θ(·|x) is minimized when the model outputs the same (confident) prediction regardless
of the augmentation. Given that θ is adaptable and pθ(y|x) is differentiable with respect to θ, we
can directly use gradient based optimization to adapt θ according to this objective. We use only
one gradient step per test point, because empirically we found this to be sufficient for improved
performance while being more computationally efficient. After this step, we can use the adapted
model, which we denote fθ′ , to predict on the original test input x.

Algorithm 1 presents the overall method MEMO for test time adaptation. Though prior test time
adaptation methods must carefully choose which parameters to adapt in order to avoid degenerate
solutions [36], our adaptation procedure simply adapts all of the model’s parameters θ (line 3). Note
that, as discussed above, the model fθ adapts using augmented data but makes its final prediction on
the original point (line 4), which may be easier to predict on.

An additional benefit of MEMO is that it synergizes with other approaches for handling distribution
shift, thus maximally leveraging the benefits and performance improvements of each technique. As
we describe in Appendix B, MEMO can be composed with prior methods for training robust models
and adapting model statistics. As we show next, these compositions result in improvements over the
prior state of the art for several benchmarks and model architectures in the single test point setting.

4 Experiments

We conduct experiments on the ImageNet-C [10], ImageNet-R [12], and ImageNet-A [13] test
sets. In all experiments, we compare to single point BN adaptation [32] and the TTA baseline
that simply predicts according to the model’s marginal output distribution over augmentations
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Table 1: Test results for ImageNet-C, ImageNet-R, and ImageNet-A.

ImageNet-C ImageNet-R ImageNet-A
mCE ↓ Error (%) Error (%)

Baseline ResNet-50 [9] 76.7 63.9 100.0
+ TTA 77.91.2 61.3 (+2.6) 98.4 (+1.6)

+ Single point BN 71.4 (+5.3) 61.1 (+2.8) 99.4 (+0.6)

+ MEMO (ours) 69.9 (+6.8) 58.8 (+5.1) 99.1 (+0.9)

+ BN (N = 256, n = 256) 61.6 (+15.1) 59.7 (+4.2) 99.8 (+0.2)

+ Tent (online) [36] 54.4 (+22.3) 57.7 (+6.2) 99.8 (+0.2)

+ Tent (episodic) 64.7 (+12.0) 61.0 (+2.9) 99.7 (+0.3)

+ DeepAugment+AugMix [12] 53.6 53.2 96.1
+ TTA 55.21.6 51.0 (+2.2) 93.5 (+2.6)

+ Single point BN 51.3 (+2.3) 51.2 (+2.0) 95.4 (+0.7)

+ MEMO (ours) 49.8 (+3.8) 49.2 (+4.0) 94.8 (+1.3)

+ BN (N = 256, n = 256) 45.4 (+8.2) 48.8 (+4.4) 96.80.7
+ Tent (online) 43.5 (+10.1) 46.9 (+6.3) 96.70.6
+ Tent (episodic) 47.1 (+6.5) 50.1 (+3.1) 96.60.5

+ MoEx+CutMix [20] 74.8 64.5 91.9
+ TTA 75.70.9 62.7 (+1.8) 89.5 (+2.4)

+ Single point BN 71.0 (+3.8) 62.6 (+1.9) 91.1 (+0.8)

+ MEMO (ours) 69.1 (+5.7) 59.4 (+3.3) 89.0 (+2.9)

+ BN (N = 256, n = 256) 60.9 (+13.9) 61.6 (+2.9) 93.92.0
+ Tent (online) 54.0 (+20.8) 58.7 (+5.8) 94.42.5
+ Tent (episodic) 66.2 (+8.6) 63.9 (+0.6) 94.72.8

RVT∗-small [24] 49.4 52.3 73.9
+ TTA 53.03.6 49.0 (+3.3) 68.9 (+5.0)

+ Single point BN 48.0 (+1.4) 51.1 (+1.2) 74.40.5
+ MEMO (ours) 40.6 (+8.8) 43.8 (+8.5) 69.8 (+4.1)

+ BN (N = 256, n = 256) 44.3 (+5.1) 51.0 (+1.3) 78.34.4
+ Tent (online) 46.8 (+2.6) 50.7 (+1.6) 82.18.2
+ Tent (adapt all) 44.7 (+4.7) 74.121.8 81.17.2

p̄θ(y|x) (Equation 1) [19, 1]. We also compare to Tent [36], which adapts by minimizing conditional
entropy, and BN adaptation – both of these methods can be used with pretrained models but require
multiple test inputs (or even the entire test set) for adaptation. We provide BN adaptation with 256
test inputs at a time and set additional hyperparameters according to Schneider et al. [32]. For Tent,
we use test batch sizes of 64 and, for ResNet-50 models, test both “online” adaptation – where the
model adapts continually through the entire evaluation – and “episodic” adaptation – where the
model is reset after each test batch [36]. Note that the evaluation protocols are different for these
methods: whereas MEMO is tasked with predicting on each test point immediately after adaptation,
BN adaptation predicts on a batch of 256 test points after computing BN statistics on the batch, and
Tent predicts on a batch of 64 inputs after adaptation but also, in the online setting, continually adapts
throughout evaluation.. Full details on our experimental protocol are provided in Appendix C.

We apply MEMO on top of multiple pretrained models with different architectures. We use the
best performing ResNet-50 robust models from prior work, which includes those trained with
DeepAugment and AugMix augmentations [12] as well as those trained with moment exchange
and CutMix [20]. To evaluate the generality of MEMO, we also evaluate the small robust vision
transformer (RVT∗-small), which provides superior performance on all three ImageNet distribution
shift benchmarks compared to the robust ResNet-50 models [24]. Throughout, we use AugMix [11]
for our set of augmentation functions A, and we ablate this choice in Appendix D.

We summarize results for ImageNet-C, ImageNet-R, and ImageNet-A in Table 1. We use indentations
to indicate composition, e.g., the best results on ImageNet-C for our setting are attained through a
combination of starting from a model trained with DeepAugment and AugMix [12] and performing
MEMO adaptation on top. For both ImageNet-C and ImageNet-R, and for both the ResNet-50 and
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RVT∗-small models, combining MEMO with robust training techniques leads to new state-of-the-art
performance among methods that observe only one test point at a time. We highlight in gray the
methods that require multiple test points for adaptation, and we list in bold the best results from
these methods which outperform the test time robustness methods. As Table 1 and prior work both
show [32, 36], accessing multiple test points can be powerful for benchmarks such as ImageNet-C
and ImageNet-R, in which inferred statistics from the test input distribution may aid in prediction.
In the case of Tent, which adapts online, the model has adapted using the entire test set by the
end of evaluation. However, these methods do not help, and oftentimes even hurt, for ImageNet-A.
Furthermore, we find that these methods are less effective with the RVT∗-small model, which may
indicate their sensitivity to model architecture choices. Therefore, for this model, we also test a
modification of Tent which adapts all parameters, and we find that this version of Tent works better
for ImageNet-C but is significantly worse for ImageNet-R.

MEMO results in substantial improvement for ImageNet-A and is competitive with TTA on this
problem. No prior test time adaptation methods have reported improvements on ImageNet-A, and
some have reported explicit negative results [32]. As discussed, it is reasonable for adaptation
methods that rely on multiple test points to achieve greater success on other benchmarks such as
ImageNet-C, in which a batch of inputs provides significant information about the specific corruption
that must be dealt with. In contrast, ImageNet-A does not have such obvious characteristics associated
with the input distribution, as it is simply a collection of images that are difficult to classify. As
MEMO instead extracts a learning signal from single test points, it is, to the best of our knowledge,
the first test time adaptation method to report successful results on this testbed. When used on top of a
model trained with moment exchange and CutMix [20], MEMO achieves state-of-the-art performance
among ResNet-50 models and single test point methods. TTA generally offers larger performance
gains on ImageNet-A and also results in the highest overall accuracy when combined with the
RVT∗-small model; however, TTA performs worse than MEMO on ImageNet-R and consistently
decreases accuracy on ImageNet-C. We view the consistency with which MEMO outperforms the
best prior methods, which change across different test sets, to be a major advantage.

In Appendix D, we conduct additional experiments on CIFAR-10 [18] distribution shift benchmarks,
in which we compare to other baselines and perform ablation studies. We also present additional
ImageNet experiments that test the importance of augmentations, analyze the efficiency to accuracy
tradeoff by varying the number of augmentations B, and evaluate ResNext-101 models [39, 23].

5 Discussion

We presented MEMO, a method for test time robustification again distribution shift via adaptation
and augmentation. MEMO does not require access or changes to the model training procedure and is
thus broadly applicable for a wide range of pretrained models. Furthermore, MEMO adapts at test
time using single test inputs, thus it does not assume access to multiple test points as in several recent
methods for test time adaptation [32, 36, 41]. On a range of distribution shift benchmarks, for both
ResNet and vision transformer models, MEMO consistently improves performance at test time and
achieves several new state-of-the-art results for these models in the single test point setting.

Inference via MEMO is more computationally expensive than standard model inference, primarily
because adaptation is performed per test point and thus inference cannot be batched. When deployed
in the real world, it is natural to expect that test points will arrive one at a time and batched inference
will not be possible. However, MEMO is also more computationally expensive due to its augmentation
and adaptation procedure. One interesting direction for future work is to develop techniques for
selectively determining when to adapt the model in order to achieve more efficient inference. For
example, with well calibrated models [8], we may run simple “feedforward” inference when the
prediction confidence is over a certain threshold, thus achieving better efficiency. Additionally, it
would be interesting to explore MEMO in the test setting where the model is allowed to continually
adapt as more test data is observed. In our preliminary experiments in this setting, MEMO tended to
lead to degenerate solutions, e.g., the model predicting a constant label with maximal confidence, and
this may potentially be rectified by carefully choosing which parameters to adapt [36] or regularizing
the model such that it does not change too drastically from the pretrained model.
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A Detailed Related Work

The general problem of distribution shift has been studied under a number of frameworks [29],
including domain adaptation [33, 4, 37], domain generalization [3, 26, 7], and distributionally robust
optimization [2, 14, 31], to name just a few. These frameworks typically leverage additional training or
test assumptions in order to make the distribution shift problem more tractable. Largely separate from
these frameworks, various empirical methods have also been proposed for dealing with shift, such as
increasing the model and training dataset size or using heavy training augmentations [28, 40, 12].
The focus of this work is complementary to these efforts: the proposed MEMO method is applicable
to a wide range of pretrained models, including those trained via robustness methods, and can achieve
further performance gains via test time adaptation.

Prior test time adaptation methods generally either make significant training or test time assumptions.
Some methods update the model using batches or even entire datasets of test inputs, such as by
computing batch normalization (BN) statistics on the test set [21, 16, 27, 32], or minimizing the
(conditional) entropy of model predictions across a batch of test data [36]. The latter approach is
closely related to MEMO. The differences are that MEMO minimizes marginal entropy using single
test points and data augmentation and adapts all of the model parameters rather than just those associ-
ated with normalization layers, thus not requiring multiple test points or specific model architectures.
Other test time adaptation methods can be applied to single test points but require specific training
procedures or models [35, 15, 32]. Test time training (TTT) [35] requires a specialized model with a
rotation prediction head, as well as a different procedure for training this model. Schneider et al. [32]
show that BN adaptation can be effective even with only one test point, and we refer to this approach
as “single point” BN adaptation. As we discuss in Section 3, MEMO synergizes well with single
point BN adaptation.

A number of works have noted that varying forms of strong data augmentation on the training set can
improve the resulting model’s robustness [40, 11, 20, 12]. Data augmentations are also sometimes
used on the test data directly by averaging the model’s outputs across augmented copies of the test
point [19, 34], i.e., predicting according to the model’s marginal output distribution. This technique,
which we refer to as test time augmentation (TTA), has been shown to be useful both for improving
model accuracy and calibration [1] as well as handling distribution shift [25]. We take this idea one
step further by explicitly adapting the model such that its marginal output distribution has low entropy.
This extracts an additional learning signal for improving the model, and furthermore, the adapted
model can then make its final prediction on the clean test point rather than the augmented copies.
We empirically show in Section 4 that these differences lead to improved performance over this non
adaptive TTA baseline.

B Composing MEMO with Prior Methods

Here, we describe how MEMO can be combined with prior methods for training robust models and
adapting model statistics.

Pretrained robust models. Since MEMO makes no assumptions about, or modifications to, the
model training procedure, performing adaptation on top of pretrained robust models, such as those
trained with heavy data augmentations, is as simple as using any other pretrained model. Crucially,
we find that, in practice, the set of augmentations that we use at test time A does not have to match
the augmentations that were used to train the model. This is important as we require a few properties
from the test time augmentations: that they can be easily sampled and are applied directly to the
model input x. These properties do not hold for, e.g., data augmentation techniques based on image
translation models, such as DeepAugment [12], or feature mixing, such as moment exchange [20].
However, we can still use models trained with these data augmentation techniques as our starting point
for adaptation, thus allowing us to improve upon their state-of-the-art results. As noted above, using
pretrained models is not as easily accomplished for adaptation methods which require complicated
or specialized training procedures and model architectures, such as TTT [35] or ARM [41]. In our
experiments, we use AugMix as our set of augmentations [11], as it satisfies the above properties and
still yields significant diversity when applied, as depicted in Figure 1.
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Figure 1: We visualize augmentations of a randomly chosen data point from the “Gaussian Noise
level 3” ImageNet-C test set. Even for a robust model trained with heavy data augmentations [12],
both its predictive accuracy and confidence drop sharply when encountering test distribution shift. As
shown in the bottom two rows, these drops can be remedied via MEMO.

Adapting BN statistics. Schneider et al. [32] showed that, even when presented with just a single
test point, partially adapting the estimated mean and variance of the activations in each batch
normalization (BN) layer of the model can still be effective in some cases for handling distribution
shift. In this setting, to prevent overfitting to the test point, the channelwise mean and variance
[µtest,σ

2
test] estimated from this point are mixed with the the mean and variance [µtrain,σ

2
train] computed

during training according to a prior strength N , i.e.,

µ ,
N

N + 1
µtrain +

1

N + 1
µtest ,σ

2 ,
N

N + 1
σ2

train +
1

N + 1
σ2

test .

This technique is also straightforward to combine with MEMO: we simply use the adapted BN
statistics whenever computing the model’s output distribution. That is, we adapt the BN statistics
alongside all of the model parameters for MEMO. Following the suggestion in Schneider et al. [32],
we set N = 16 for all of our experiments.

C Experimental Protocol

We select hyperparameters using the four disjoint validation corruptions provided with ImageNet-
C [10]. As the other benchmarks are only test sets and do not provide validation sets, we use the
same hyperparameters found using the corruption validation sets and do not perform any additional
tuning. For the ResNet-50 models that we evaluate, we use stochastic gradients as the update rule G,
and we set B = 64 and η = 0.00025. For the robust vision transformer, we use AdamW [22] as the
update rule G, with learning rate η = 0.00001 and weight decay 0.01, and B = 64.

The TTA results are obtained using the same AugMix augmentations as for MEMO. The single point
BN adaptation results useN = 16, as suggested by Schneider et al. [32]. As noted, the BN adaptation
results (using multiple test points) are obtained using N = 256 as the prior strength and batches of
256 test inputs for adaptation. For Tent, we use the hyperparameters suggested in Wang et al. [36]:
we use stochastic gradients with learning rate 0.00025 and momentum 0.9, and the adaptation is
performed with test batches of 64 inputs. Since Wang et al. [36] did not experiment with transformer
models, we also attempted to run Tent with Adam [17] and AdamW [22] and various hyperparameters
for the RVT∗-small model; however, we found that this generally resulted in worse performance than
using stochastic gradient updates with the aforementioned hyperparameters.
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Table 2: Results for the original CIFAR-10 test set, CIFAR-10.1, and CIFAR-10-C. MEMO outper-
forms TTT despite not making any training assumptions. ?Results from Sun et al. [35].

CIFAR-10 CIFAR-10.1 CIFAR-10-C
Error (%) Error (%) Average Error (%)

ResNet-26 [9] 9.2 18.4 22.5
+ TTA 7.3 (+1.9) 14.8 (+3.6) 19.9 (+2.6)

+ MEMO (ours) 7.3 (+1.9) 14.7 (+3.7) 19.6 (+2.9)

+ Joint training? [35] 8.1 16.7 22.8
+ TTT? [35] 7.9 (+0.2) 15.9 (+0.8) 21.5 (+1.3)

We obtain the baseline ResNet-50 parameters directly from the torchvision library. The
parameters for the ResNet-50 trained with DeepAugment and AugMix are obtained from
https://drive.google.com/file/d/1QKmc_p6-qDkh51WvsaS9HKFv8bX5jLnP. The param-
eters for the ResNet-50 trained with moment exchange and CutMix are obtained from
https://drive.google.com/file/d/1cCvhQKV93pY-jj8f5jITywkB9EabiQDA. The param-
eters for the small robust vision transformer (RVT∗-small) model are obtained from
https://drive.google.com/file/d/1g40huqDVthjS2H5sQV3ppcfcWEzn9ekv.

D Additional Experiments

We conduct additional experiments on two distribution shift benchmarks for CIFAR-10 [18], specif-
ically, the CIFAR-10-C [10] and CIFAR-10.1 [30] test sets. In these experiments, we compare to
test time training (TTT) [35], for which we train ResNet-26 models following their protocol. As
mentioned in Appendix A, TTT requires a specialized model and training procedure. As such, we did
not compare to TTT for the ImageNet experiments due to the computational demands of training
state-of-the-art models and because Sun et al. [35] do not report competitive ImageNet results.

We again select hyperparameters using only the four disjoint validation corruptions provided with
CIFAR-10-C [10]. We set the number of augmentations B = 32 and the learning rate η = 0.005,
and we again use stochastic gradients as the update rule G. The ResNet-26 model we use for our
method closely follows the modifications that Sun et al. [35] propose, in order to provide a fair point
of comparison. In particular, Sun et al. [35] elect to use group normalization [38] rather than BN,
thus single point BN adaptation is not applicable for this model architecture. As noted before, TTT
also requires the joint training of a separate rotation prediction head, thus further changing the model
architecture, while MEMO directly adapts the standard pretrained model.

D.1 CIFAR-10 results

We summarize results for CIFAR-10, CIFAR-10.1, and CIFAR-10-C in Table 2. We again use
indentations to indicate composition, e.g., TTT is performed at test time on top of the joint training
procedure. Across all corruption types in CIFAR-10-C, MEMO consistently improves test error
compared to the baselines, non adaptive TTA, and TTT. MEMO also provides a larger performance
gain on CIFAR-10.1 compared to TTT. We find that the non adaptive TTA baseline is competitive
for these relatively simple test sets, though it is worse than MEMO for CIFAR-10-C. Of these three
test sets, CIFAR-10-C is the only benchmark that explicitly introduces distribution shift, which
suggests that adaptation is useful when the test shifts are more prominent. Both TTA and MEMO
are also effective at improving performance for the original CIFAR-10 test set where there is no
distribution shift, providing further support for the widespread use of augmentations in standard
evaluation protocols [19, 1].

D.2 Ablative study

MEMO increases model robustness at test time via adaptation and augmentation, and in this section,
we ablate both of these axes to understand which design choices are the most important.
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Table 3: Ablating the adaptation objective to test pairwise cross entropy and conditional entropy (CE)
based adaptation. MEMO generally performs the best, indicating that both encouraging invariance
across augmentations and confidence are helpful in adapting the model.

CIFAR-10 CIFAR-10.1 CIFAR-10-C
Error (%) Error (%) Average Error (%)

ResNet-26 [9] 9.2 18.4 22.5
+ MEMO (ours) 7.3 (+1.9) 14.7 (+3.7) 19.6 (+2.9)

− ` (Equation 2) + `PCE 7.6 (+1.6) 15.3 (+3.1) 20.0 (+2.5)

− ` (Equation 2) + `CE 7.6 (+1.6) 14.7 (+3.7) 20.0 (+2.5)

ImageNet-C ImageNet-R ImageNet-A
mCE ↓ Error (%) Error (%)

RVT∗-small [24] 49.4 52.3 73.9
+ MEMO (ours) 40.6 (+8.8) 43.8 (+8.5) 69.8 (+4.1)

− ` (Equation 2) + `CE 41.2 (+8.2) 44.2 (+8.1) 69.7 (+4.2)

Adaptation. From the results above, we conclude that, particularly for more difficult problems
such as ImageNet classification, adaptation generally provides additional benefits beyond simply
using TTA to predict via the marginal output distribution p̄θ(y|x). However, we can disentangle two
distinct self-supervised learning signals that may be effective for adaptation: encouraging invariant
predictions across different augmentations of the test point, and encouraging confidence via entropy
minimization. The marginal entropy objective in Equation 2 encapsulates both of these learning
signals, but it cannot easily be decomposed into these pieces. Thus, we instead use two ablative
adaptation methods that each only make use of one of these learning signals.

First, we consider optimizing the pairwise cross entropy between each pair of augmented points, i.e.,

`PCE(θ;x) ,
1

B × (B − 1)

B∑
i=1

∑
j 6=i

∑
y∈Y

pθ(y|x̃i) log pθ(y|x̃j) ,

Where x̃i again refers to the i-th sampled augmentation applied to x. Intuitively, this loss function
encourages the model to adapt such that it produces the same predictive distribution for all aug-
mentations of the test point, but it does not encourage the model to produce confident predictions.
Conversely, as an objective that encourages confidence but not invariance, we also consider optimizing
conditional entropy on the batch of augmented points, i.e.,

`CE(θ;x) ,
1

B

B∑
i=1

H(pθ(·|x̃i)) .

This ablation is effectively a version of the episodic variant of Tent [36] that produces augmented
copies of a single test point rather than assuming access to a test batch. We first evaluate these
ablations on the CIFAR-10 test sets. We use the same adaptation procedure outlined in Algorithm 1,
with ` replaced with the above objectives, and we keep the same hyperparameter values B = 32 and
η = 0.005.

The results are presented in Table 3. We see that MEMO, i.e., marginal entropy minimization,
generally performs better than adaptation with either of the alternative objectives. This supports
the hypothesis that both invariance across augmentations and confidence are important learning
signals for self-supervised adaptation. When faced with CIFAR-10.1, we see poor performance
from the pairwise cross entropy based adaptation method. On the original CIFAR-10 test set and
CIFAR-10-C, the ablations perform nearly identically and uniformly worse than MEMO. To further
test the `CE ablation, we also evaluate it on the ImageNet test sets for the RVT∗-small model. We
find that, similarly, minimizing conditional entropy generally improves performance compared to the
baseline evaluation. MEMO is more performant for ImageNet-C and ImageNet-R, again indicating
the benefits of encouraging invariance to augmentations. Adaptation via `CE performs slightly better
for ImageNet-A, though for this problem, TTA is still the best method.

Augmentation. One may first wonder: are augmentations needed in the first place? In the test time
robustness setting when only one test point is available, how would simple entropy minimization fare?

12



Table 4: Evaluating the episodic version of Tent with a batch size of 1, which corresponds to a simple
entropy minimization approach for the test time robustness setting. This approach also uses single
point BN adaptation, and entropy minimization does not provide much additional gain.

ImageNet-C ImageNet-R ImageNet-A
mCE ↓ Error (%) Error (%)

Baseline ResNet-50 [9] 76.7 63.9 100.0
+ Single point BN 71.4 (+5.3) 61.1 (+2.8) 99.4 (+0.6)

+ MEMO (ours) 69.9 (+6.8) 58.8 (+5.1) 99.1 (+0.9)

+ Tent (episodic, batch size 1) [36] 70.4 (+6.3) 60.0 (+3.9) 99.3 (+0.7)

+ DeepAugment+AugMix [12] 53.6 53.2 96.1
+ Single point BN 51.3 (+2.3) 51.2 (+2.0) 95.4 (+0.7)

+ MEMO (ours) 49.8 (+3.8) 49.2 (+4.0) 94.8 (+1.3)

+ Tent (episodic, batch size 1) 50.7 (+2.9) 50.7 (+2.5) 95.2 (+0.9)

+ MoEx+CutMix [20] 74.8 64.5 91.9
+ Single point BN 71.0 (+3.8) 62.6 (+1.9) 91.1 (+0.8)

+ MEMO (ours) 69.1 (+5.7) 59.4 (+3.3) 89.0 (+2.9)

+ Tent (episodic, batch size 1) 69.9 (+4.9) 61.7 (+2.8) 90.6 (+1.3)

RVT∗-small [24] 49.4 52.3 73.9
+ Single point BN 48.0 (+1.4) 51.1 (+1.2) 74.40.5
+ MEMO (ours) 40.6 (+8.8) 43.8 (+8.5) 69.8 (+4.1)

+ Tent (episodic, batch size 1) 47.9 (+1.5) 50.9 (+1.4) 74.40.5

Table 5: Ablating the augmentation functions to test standard augmentations (random resized cropping
and horizontal flips). When changing the augmentations used, the post-adaptation performance
generally does not change much, though it suffers the most on CIFAR-10-C.

CIFAR-10 CIFAR-10.1 CIFAR-10-C
Error (%) Error (%) Average Error (%)

ResNet-26 [9] 9.2 18.4 22.5
+ MEMO (ours) 7.3 (+1.9) 14.7 (+3.7) 19.6 (+2.9)

− AugMix [11] + standard augs 7.2 (+2.0) 14.6 (+3.8) 20.2 (+2.3)

We answer this question in Table 4 by evaluating the episodic variant of Tent (i.e., with model resetting
after each batch) with a test batch size of 1. This approach is also analogous to a variant of MEMO
that does not use augmentations, since for one test point and no augmented copies, conditional and
marginal entropy are the same. Similar to MEMO, we also incorporate single point BN adaptation
with N = 16, in place of the standard BN adaptation that Tent typically employs using batches of
test inputs. The results in Table 4 indicate that entropy minimization on a single test point generally
provides marginal performance gains beyond just single point BN adaptation. This empirically shows
that using augmentations is important for achieving the reported results.

We also wish to understand the importance of the choice of augmentation functionsA. As mentioned,
we used AugMix [11] in the previous experiments as it best fit our criteria: AugMix requires
only the input x, and randomly sampled augmentations lead to diverse augmented data points. A
simple alternative is to instead use the “standard” set of augmentations commonly used in ImageNet
training, i.e., random resized cropping and random horizontal flipping. We evaluate this ablation
of using MEMO with standard augmentations also on the CIFAR-10 test sets, again with the same
hyperparameter values. From the results in Table 5, we can see that MEMO is still effective with
simpler augmentation functions. This is true particularly for the cases where there is no test shift,
as in the original CIFAR-10 test set, or subtle shifts as in CIFAR-10.1; however, for the more
severe and systematic CIFAR-10-C shifts, using heavier AugMix data augmentations leads to greater
performance gains over the standard augmentations. Furthermore, this ablation was conducted using
the ResNet-26 model, which was trained with standard augmentations – for robust models such as
those in Table 1, AugMix may offer greater advantages at test time since these models were exposed
to heavy augmentations during training.
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Figure 2: Plotting MEMO efficiency as seconds per evaluation (x axis) and % test error on
ImageNet-R (y axis) for the ResNet-50 models (left) and RVT∗-small (right) while varying
B = {1, 2, 4, 8, 16, 32, 64, 128}. Note the log scale on the x axis.

Table 6: ImageNet-A results for the ResNext-101 models.

ImageNet-A Error (%)

Baseline ResNext-101 (32x8d) [39] 90.0
+ TTA 83.2 (+6.8)

+ Single point BN 88.8 (+1.2)

+ MEMO (ours) 84.3 (+5.7)

+ WSL on billions of images [23] 54.9
+ TTA 49.1 (+5.8)

+ MEMO (ours) 43.2 (+11.7)

D.3 Analyzing the tradeoff between efficiency and accuracy

In Figure 2, we analyze the % test error of MEMO adaptation on ImageNet-R as a function of
the efficiency of adaptation, measured in seconds per evaluation. We achieve various tradeoffs by
varying the number of augmented copies B = {1, 2, 4, 8, 16, 32, 64, 128}. We note that small values
of B such as 4 and 8 can already provide significant performance gains, indicating that a practical
tradeoff between efficiency and accuracy is possible. For large B, the wall clock time is dominated
by computing the augmentations – in our implementation, we do not compute augmentations in
parallel, though in principle this is possible for AugMix and should improve efficiency overall. These
experiments used four Intel Xeon Skylake 6130 CPUs and one NVIDIA TITAN RTX GPU.

D.4 Evaluating ResNext101 models on ImageNet-A

ResNext-101 models [39] have been found to achieve higher accuracies on ImageNet-A [13],
particularly when trained with massive scale weakly supervised pretraining [23, 12]. In this
section, we evaluate whether MEMO can successfully adapt these models and further improve
performance on this challenging test set. We use the same hyperparameters as for the ro-
bust vision transformer with no additional tuning: AdamW [22] as the update rule G, learn-
ing rate η = 0.00001, weight decay 0.01, and B = 32 due to memory limits. We ob-
tain the baseline ResNext-101 (32x8d) parameters, pretrained on ImageNet, directly from the
torchvision library. We also evaluate a ResNext-101 (32x8d) pretrained with weakly super-
vised learning (WSL) on billions of Instagram images [23], and we obtained the parameters
from https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth. For
the WSL model, we did not use single point BN adaptation for MEMO as we found this technique to
be actually harmful to performance, and this corroborates previous findings [32].

Table 6 summarizes the results. We can see that, similar to Table 1, Both TTA and MEMO significantly
improve upon the baseline model evaluation. TTA performs best for the baseline ResNext-101 model.
However, MEMO ultimately achieves the best accuracy by a significant margin, as it is more
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successful at adapting the WSL model, which has a much higher accuracy. This suggests that
combining MEMO with other large pretrained models may be an interesting direction for future
work.
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