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Abstract

Risk-aware Reinforcement Learning (RL) algorithms like SAC and TD3 were
shown empirically to outperform their risk-neutral counterparts in a variety of
continuous-action tasks. However, the theoretical basis for the pessimistic ob-
jectives these algorithms employ remains unestablished, raising questions about
the specific class of policies they are implementing. In this work, we apply the
expected utility hypothesis, a fundamental concept in economics, to illustrate that
both risk-neutral and risk-aware RL goals can be interpreted through expected
utility maximization using an exponential utility function. This approach reveals
that risk-aware policies effectively maximize value certainty equivalent, aligning
them with conventional decision theory principles. Furthermore, we propose Dual
Actor-Critic (DAC). DAC is a risk-aware, model-free algorithm that features two
distinct actor networks: a pessimistic actor for temporal-difference learning and an
optimistic actor for exploration. Our evaluations of DAC across various locomo-
tion and manipulation tasks demonstrate improvements in sample efficiency and
final performance. Remarkably, DAC, while requiring significantly less computa-
tional resources, matches the performance of leading model-based methods in the
complex dog and humanoid domains.

1 Introduction

Deep Reinforcement Learning (RL) is still in its infancy, with a variety of tasks unsolved (Sutton
& Barto, 2018; Hafner et al., 2023) or solved within an unsatisfactory amount of environment
interactions (Zawalski et al., 2022; Schwarzer et al., 2023). Whereas increasing the Replay Ratio
(RR) (ie. the number of parameter updates per environment interactions step) is a promising general
approach for increasing sample efficiency and final performance of RL agents (Janner et al., 2019;
Chen et al., 2020; Nikishin et al., 2022), it is characterized by quickly diminishing gains (D’Oro
et al., 2022) combined with linearly increasing computational cost (Rumelhart et al., 1986; Kingma &
Ba, 2014). Moreover, the limitations of robot hardware and data acquisition frequency constrain the
maximum achievable replay ratio (Smith et al., 2022). As such, it is worthwhile to pursue orthogonal
techniques such as enhancing the properties of the underlying model-free agents. One continuously
researched theme deals with finding risk attitudes that efficiently handle the exploration-exploitation
dilemma (Ciosek et al., 2019; Moskovitz et al., 2021).

The attitudes towards risk of algorithmic agents have been researched in multiple contexts. For
instance, a risk-seeking approach of optimism in the face of uncertainty has been identified as an
effective exploration strategy, minimizing regret during the learning process (Wang et al., 2020b;
Neu & Pike-Burke, 2020). Conversely, risk-averse, pessimistic Q-learning strategies have proven
beneficial in counteracting value overestimation caused by temporal difference errors Hasselt (2010);
Fujimoto et al. (2018). However, there is a disconnect between these risk-aware strategies and the
foundational theories of RL, particularly in how they relate to the goal of value maximization. As a
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Figure 1: We test the proposed approach (DAC) against various risk-aware and risk-neutral actor-critic
baselines in 30 tasks listed in Table 2. Due to a controlled experimental setup described in Section 5,
the performance differences between algorithms stem solely from their risk-management. Y -axis
reports IQM with 95% CI calculated using 10 seeds, with 1.0 representing the maximal score.

result, despite the empirical success of risk-aware agents like TD3 (Fujimoto et al., 2018) or SAC
(Haarnoja et al., 2018a), the specific class of policies they implement remains ambiguous.

In this paper, we study the reinforcement learning objective aligned with the principles of decision
theory. We show that, in contrast to pure value maximization, the decision theoretic perspective
allows for derivation of both risk-neutral (e.g., DDPG (Silver et al., 2014)) and risk-aware approaches
(e.g., TD3 (Fujimoto et al., 2018)). As such, we demonstrate that the pessimistic updates in state-
of-the-art algorithms such as SAC (Haarnoja et al., 2018a), REDQ (Chen et al., 2020), or TOP
Moskovitz et al. (2021) can be derived from expected utility maximization under an exponential
utility function. Furthermore, we introduce Dual Actor-Critic (DAC), a risk-aware algorithm with
two actors: optimistic and pessimistic. In DAC, each actor is trained independently using gradient
backpropagation of a distinct objective: the optimistic actor aims to maximize an upper value bound
for exploration, while the pessimistic actor focuses on a lower bound for temporal-difference (TD)
targets (Fujimoto et al., 2018; Haarnoja et al., 2018a). DAC also features an automatic adjustment
mechanism to balance the divergence between these actors, allowing for adaptability to various tasks
without hyperparameter tuning. We evaluate DAC on a diverse set of locomotion and manipulation
tasks and find that, despite its simplicity, DAC achieves significant improvements in sample efficiency
and performance. Below, we outline our contributions:

1. We consider a generalized utility-based actor-critic objective, capable of formalizing both risk-
neutral and risk-aware actor-critic algorithms. We demonstrate that the policies enacted by Clipped
Double Q-Learning and generalizations thereof approximately align with the certainty equivalent of
value under an exponential utility, and as such are optimal in the decision theoretic context.

2. We introduce Dual Actor-Critic (DAC), a risk-aware actor-critic framework featuring a dual actor
network configuration. In DAC, each actor is trained through gradient backpropagation stemming
from a specific objective that reflects different degrees of risk appetite. We establish the optimistic
policy loss function and implement a system for online gradient-based adjustment of optimism
hyperparameters. This feature enables DAC to effectively adapt to varying degrees of uncertainties,
as well as different reward scales, without the need for manual hyperparameter tuning.

3. We show that DAC outperforms benchmark algorithms in terms of both sample efficiency and
final performance. Notably, DAC solves the dog domain, reaching the performance of significantly
more complex model-based methods. To facilitate further research, we perform ablations on various
design and hyperparameter choices (over 5000 training runs). We release the implementation of DAC
under the following URL: https://anonymous.4open.science/r/NeurIPS_DAC-D8B0/README.md.

2 Background

Reinforcement Learning We consider an infinite-horizon Markov Decision Process (MDP) (Put-
erman, 2014) which is described with a tuple (S,A, r, p, γ), where states S and actions A are
continuous, rs,a is the transition reward, p is a deterministic transition mapping, with p0 being the
starting state distribution, and γ ∈ (0, 1] is a discount factor. A policy π(a|s) is a state-conditioned
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action distribution with entropy denoted as H(π(s)). Soft Value (Haarnoja et al., 2018a) is the
sum of expected discounted return and state entropies from following the policy at a given state
V π(s) = Ea∼π [rs,a + αH(π(s)) + γV π(s′)], with α denoting the entropy temperature parameter.
Q-value is the expected discounted return from performing an action and following the policy there-
after Qπ(s, a) = [rs,a + γV π(s′)]. A policy is said to be optimal if it maximizes the expected value
of the possible starting states s0, such that π∗ = argmaxπ∈Π Es0∼p0

V π(s0), with π∗ denoting the
optimal policy and Π denoting the considered set of policies (eg. Gaussian). Off-policy actor-critic
algorithms perform gradient-based learning of both Q-values (ie. critic or value model) and the policy
(ie. actor). The critic parameters θ are updated by minimizing SARSA temporal-difference loss
Lθ on transitions T = (s, a, r, s′) which are sampled from past experiences (Fujimoto et al., 2018;
Haarnoja et al., 2018a) according to Lθ = ET∼D (Qθ(s, a)− rs,a − γV πϕ(s′))2. Here, Qθ(s, a) is
the critic output, V π(s′) is the bootstrap value derived from a target network, and D is the experience
buffer (Mnih et al., 2015). The policy parameters ϕ are updated to maximize values approximated by
the critic (Ciosek & Whiteson, 2020): Lϕ = Es∼D V πϕ(s). In this equation, πϕ represents the actor,
and V πϕ(s) is the state value under πϕ.

Risk-Awareness in Actor-Critic In standard actor-critic the critic represents the expected future
discounted return and the actor is optimized with respect to such critic (Lillicrap et al., 2015). In
contrast, popular algorithms like SAC or TD3 learn a critic that represents the lower bound of
Q-values (Fujimoto et al., 2018; Haarnoja et al., 2018b). Employing the lower-bound has proven
effective in mitigating value overestimation in Temporal Difference (TD) learning (Van Hasselt et al.,
2016; Fujimoto et al., 2018). A popular approach is Clipped Double Q-Learning (CDQL), where the
lower-bound is calculated by taking the minimum value of an ensemble of critics, most often two
(Fujimoto et al., 2018; Haarnoja et al., 2018b; Ciosek et al., 2019; Hansen et al., 2022): V πϕ(s) ≈
min(Q1

θ(s, a), Q
2
θ(s, a)) − log πϕ(a|s), with a ∼ πϕ(s). Here, Q1

θ(s, a) and Q2
θ(s, a) denote the

first and the second critic in the ensemble, and log πϕ is the state-action entropy. Furthermore, it was
shown that using the minimum is equivalent to ensemble statistics (Ciosek et al., 2019):

min
(
Q1

θ(s, a), Q
2
θ(s, a)

)
=

1

2

(
Q1

θ(s, a) +Q2
θ(s, a)

)
︸ ︷︷ ︸

Mean

− 1

2
|Q1

θ(s, a)−Q2
θ(s, a)|︸ ︷︷ ︸

Standard Deviation

.
(1)

This led to generalizations of the lower-bound as to include varying levels of pessimism (Ciosek
et al., 2019; Moskovitz et al., 2021):

Qβ(s, a) = Qµ(s, a) + βQσ(s, a), and V β(s) = V µ(s) + βV σ(s) (2)

Above, Qβ(s, a) and V β(s) are the pessimistic Q-value and values respectively, β represents the
degree of pessimism, and (µ, σ) denote the mean and standard deviation of the critic model ensem-
ble. Furthermore, the pessimistic values and Q-values are related by V β(s) = Ea∼π(Q

β(s, a) −
log πθ(a|s)). In this setup, the risk level of the lower bound is modulated by β. As shown in Equation
1, in case of β = −1 it is true that Qβ = min(Q1

θ(s, a), Q
2
θ(s, a)). In setup of pessimistic learning

the value targets are affected by the uncertainty measured via the value model ensemble disagreement.
A non-zero β indicates a departure from risk-neutrality: positive β yields a pessimistic lower bound,
while negative β results in an optimistic upper bound. Thus, for given ϕ the difference between the
risk-aware value (resulting from bootstrapping with Qβ), and risk-neutral values (resulting from
bootstrapping with Qµ) is proportional to the expected values of the discounted sum of critic disagree-
ments (Fujimoto et al., 2018). As such, it is clear that iterating the pessimistic objective does not result
in the optimal policy as long as the critic disagreement is not equal to zero for all state-actions (Kumar
et al., 2020). Despite this, numerous effective off-policy algorithms adopt a risk-aware objective,
leaning towards either pessimism or optimism (Fujimoto et al., 2018; Ciosek et al., 2019; Cetin &
Celiktutan, 2023). This understanding of risk-awareness is slightly different to the risk-awareness
considered in the distributional RL (Bellemare et al., 2017; Dabney et al., 2018b,a) or the CVaR
series (La & Ghavamzadeh, 2013; Hiraoka et al., 2019; Lim & Malik, 2022). There, the distribution
of returns is explicitly modelled via a distribution and the risk-awareness is calculated with respect
to the aleatoric uncertainty (Dabney et al., 2018a; Lim & Malik, 2022). In contrast, CDQL and
associated techniques use regular critics and consider the total estimation uncertainty associated with
using point-estimate to model Q-values (Fujimoto et al., 2018; Hiraoka et al., 2021).
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Expected Utility Theorem The Von Neumann–Morgenstern Theorem (Von Neumann & Morgen-
stern, 1947) posits that an agent whose preferences adhere to four axioms (completeness, transitivity,
continuity, and independence), has a utility function U(x) that enables the comparison of the prefer-
ences. The expected utility hypothesis (Von Neumann & Morgenstern, 1947; Kahneman & Tversky,
1979) states that agents choose between risky options by comparing their expected utility. For
example, given random variables Xi representing different propositions the agent ought to choose
from, it follows that X1 ⪰ X2 ⇐⇒ E U(X1) ≥ E U(X2). In such setting, the goal of the agent
is optimize the utility rather than its input (Stiglitz, 1997): x∗ = argmaxx Exi∼X U(xi). Here,
risk stems from the potential decrease in utility due to uncertainty in its input space, making risk
preference an attribute of the utility function under consideration. In particular, due to potential
non-linearities in the utility there can be a discrepancy between argmaxE U(xi) and argmaxE xi.
Certainty equivalent of X , denoted as Xc, measures the impact of uncertainty on utility-optimal
choices: U(Xc) = E U(X). Certainty equivalent presents a deterministic amount offering the same
utility as a random event and varies based on risk preferences. Risk-averse utilities yield a certainty
equivalent lower than the expected value, while risk-seeking leads to a higher certainty equivalent.
The exponential utility, U(x, β) = eβx, is a simple model for risk-awareness, with β determining the
risk preference. We show the basic risk-averse and risk-loving utilities in Figure 6.

3 Theory of Risk-Aware Actor-Critic

In RL, risks can be associated with any uncertainty present in the optimization of the learning objec-
tives. In this manuscript we focus on risks associated with the uncertainty of value approximation. In
particular, we focus on off-policy agents that perform updates according to the risk-aware pessimistic
Q-values Qβ presented in Equation 2, such as SAC (Haarnoja et al., 2018a), TD3 (Fujimoto et al.,
2018), OAC (Ciosek et al., 2019), TOP (Moskovitz et al., 2021) or GPL (Cetin & Celiktutan, 2023).
Consequently, the policy derived from this approach deviates from the optimal policy stemming from
pure value maximization, as indicated by the regret defined in the Background section. Notably,
many state-of-the-art algorithms adopt non-risk-neutral strategies (Moskovitz et al., 2021; Hiraoka
et al., 2021; D’Oro et al., 2022). However, the risk-aware correction, as outlined in Section 2,
is not fully explicated by existing RL theory and does not emerge from pure value maximization
problems. To this end, the efficacy of risk-aware agents is often attributed to two factors: risk-averse
pessimism is justified by well-documented value overestimation in temporal learning (Hasselt, 2010;
Fujimoto et al., 2018; Kumar et al., 2020), while risk-loving optimism is supported by lower regret
guarantees for exploration Chen et al. (2017); Ciosek et al. (2019); Schrittwieser et al. (2020). In this
section, we posit that both risk-aware and risk-neutral algorithms can be formalized as optimizing
an expected utility objective. We consider a cycle of policy evaluation and improvement steps and
analyze a single step thereof. In every step of iteration, the values are assumed to be samples from
the distribution V(s), which is assumed to have finite moments and expected value denoted by V µ,
such that V µ(s) = Ei∼V Vi(s). Assuming that the expected value of Vi(s) is an unbiased estima-
tor of the on-policy value, the standard approach requires the policy to optimize for V µ(s), such
that π∗ = argmaxπ∈Π Es∼DV

µ(s). However, this is not the approach applied by the risk-aware
algorithms, such as SAC or TD3. Given an invertible, increasing utility function U , we define the
certainty equivalent value, denoted as V c(s):

V c(s) = I E
i∼V
U Vi(s) = V µ(s) + Υ(s). (3)

Above, the inverted utility function is denoted by I = U−1 and Υ(s) denotes the risk premium. In
this context, the certainty equivalent value represents the deterministic amount that amortizes the
uncertainties associated with the value approximation stochasticity. As such, if the utility function
implies risk-averse behaviour, then Υ(s) < 0 resulting in certainty equivalent value that is smaller
than V µ(s). Building on the expected utility objective, we define the certainty equivalence policy
that seeks to amortize the uncertainty associated with approximation of values:

πc = argmax
π∈Π

E
s∼p

E
i∼V
U Vi(s) = argmax

π∈Π
E

s∼p
V c(s). (4)

Above, πc represents the policy that optimizes for the expected utility of values, which we term the
certainty equivalent policy. As follows, the certainty equivalent policy is greedy with respect to the
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certainty equivalent value and aligns with the expected utility hypothesis, wherein the agent seeks
to maximize the expected utility of returns. This outcome contrasts with achieving the maximal
value possible, as is typically sought in standard RL objectives. The certainty equivalent policy πc

optimizes for values that are not generally equal to the risk-neutral values. Specifically, the πc and
π∗ are equivalent only iff Υ(s) = 0, thus making V c(s) = V µ(s). This highlights the fact that
the utility-based objective is a generalization of the traditional RL objective, with traditional RL
objective being understood as utility maximization under a linear utility function. Hence, risk-neutral
algorithms like DDPG can be interpreted as linear utility agents optimizing the certainty equivalent.
Te explore scenarios where the utility is non-linear and diverges from the traditional objective, one
has to evaluate the risk premium. Given that U is invertible, infinitely differentiable and its Taylor
expansion is convergent, then the risk premium can be evaluated via Taylor series:

Υ(s) ≈ I E
i∼V

∞∑
n=1

Un
(
V µ(s)

)
n!

(
Vi(s)− V µ(s)

)n
. (5)

Above, we denote Un(V µ(s)) as the nth derivative of U calculated at V µ(s). As such, the
discrepancy between the certainty equivalent value and the risk-neutral value depends on moments of
V(s). Now, we show that the risk-aware value V β(s) stems from an exponential utility.

Theorem 3.1. Denote exponential utility U(Vi, β) = e2βVi(s), then the certainty equivalent value
V c(s) is approximately equal to the pessimistic value V β(s):

V c(s) ≈ E
i∼V

Vi(s)︸ ︷︷ ︸
Ensemble Mean

+β E
i∼V

(
Vi(s)− V µ(s)

)2︸ ︷︷ ︸
Ensemble Variance

.
(6)

As detailed in Appendix A, we achieve this result by using convergent Taylor approximation, with the
key step of approximating ex with second-order series, which since x = Vi(s)− V µ(s) is centered
at 0. In consequence of the above Theorem, risk-aware agents like TD3 or SAC can be understood as
optimizing for the utility objective, pursuing certainty equivalent rather than the expected values.

4 Dual Actor-Critic

In this section, we propose the Dual Actor-Critic (DAC). DAC is a risk-aware, off-policy algorithm
that addresses the exploration and temporal-difference (TD) learning dichotomy in actor-critic
algorithms. Usually, actor-critic algorithms use a single actor for both exploration (sampling actions
for new transitions) and TD learning (calculating TD targets), which requires balancing between
optimism for exploration (Wang et al., 2020b) and pessimism for avoiding value overestimation
(Hasselt, 2010). DAC resolves this by employing optimistic and pessimistic actors, with each actor
being updated to optimize the certainty equivalent value stemming from utilities with unique risk
preferences. Following Soft Actor-Critic, DAC pursues the maximum entropy objective in a policy
iteration performed on dataset of previous experiences Haarnoja et al. (2018a). Whereas Theorem
3.1 validates the use of risk-aware policies in terms of the optimality of the pursued solutions, we
further develop DAC basing on the principles of SARSA, off-policy learning and Optimism in the
Face of Uncertainty. Firstly, following SAC, we update the critic network according to a pessimistic
value target sampled from the pessimistic actor. This design choice guarantees that the critic learns
the pessimistic values under the pessimistic policy Van Seijen et al. (2009), while tackling critic
value overestimation Fujimoto et al. (2018). Secondly, by performing off-policy value updates we
allow for exploration via a different policy than the one used for value updates. In particular, we
consider a policy that is optimistic and learns to perform actions that yield critic disagreement, thus
tackling the issue of pessimistic underexploration Ciosek et al. (2019). In DAC, the optimistic
actor is trained to maximize the upper Q-value bound and is solely used for exploration, while the
pessimistic actor, guided by the lower Q-value bound, is used for TD learning and evaluation. This
separation allows DAC to explore efficiently without the risk of value overestimation. DAC also
addresses the shortcomings of Optimistic Actor-Critic (OAC) (Ciosek et al., 2019). By relaxing the
first-order approximation and explicitly modeling the optimistic policy via a neural network DAC can
approximate the maximum of arbitrary upper bound (Hornik et al., 1989). DAC adjusts the optimism
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(a) Qσ/Qµ (b) Optimism (βo) (c) KL Weight (τ ) (d) Empirical KL

Figure 2: We report relative size of critic disagreement to critic means (2a), optimism (2b), KL
penalty weight (2c), and the empirical KL between two actors (2d) during 1mln environment steps
training on tasks listed in Table 2. DAC adjustment mechanism accommodates different scales of
Q-values and allows for maintaining a predefined KL divergence between the two policies, despite
significant differences between each task. 30 tasks, 10 seeds per task.

levels associated with the upper bound such that the two policies reach a predefined divergence
target, thus alleviating the tandem problem induced by off-policy learning using two actors. DAC is
structured around two components: a critic ensemble of k models (following the standard SAC/TD3
implementation we use k = 2 models) and the dual actor comprising pessimistic and optimistic
actors denoted πp

ϕ and πo
η respectively. As shown in Theorem 3.1, each actor can be interpreted as

optimizing exponential utility function with different levels of risk appetite, denoted as βp and βo for
the pessimistic and optimistic actors.

Optimistic Actor The optimistic actor πo
η, pursues an objective function that maximizes a utility

expression that accounts for the divergence between the two actors:

Lη = − E
s∼D

E
i∼V

e 2βo(Vi(s)−τKL(πp
ϕ(s)|π̄

o
η(s)))

≈ − E
s∼D

(
Qµ

θ (s, a) + βoQσ
θ (s, a)− τKL

(
πp
ϕ(s)|π̄

o
η(s)

))
with a ∼ πo

η(s).
(7)

Above, KL represents the empirical Kullback-Leibler divergence between the actors, βo is the
optimism parameter, τ is the penalty weight associated with KL divergence, and π̄o

η(s) is the
transformed pessimistic policy. Incorporating two actors that are used for TD and exploration
respectively, it is natural to assign distinct entropy levels to each policy. Our approach involves
computing the KL divergence between the pessimistic policy πp

ϕ and a modified optimistic policy,
denoted as π̄o

η . This modified policy is characterized by a standard deviation that is m-times smaller
than that of the optimistic policy πo

η, with m ∈ (0,∞). We refer to m as exploration variance
multiplier. We present ablations on different values of m in Figure 5, as well as tests regarding the
importance of KL divergence in Table 1. We detail methodology for KL divergence calculation as
well as technical details on implementing the optimistic actor via a neural network in Appendix C.

Pessimistic Actor and Critic The pessimistic actor is updated to maximize the utility:

Lϕ = − E
s∼D

E
i∼V

e 2βpVi(s) ≈ E
s∼D

(
α log πp

ϕ(a|s)−Qµ
θ (s, a)− βpQσ

θ (s, a)
)

with a ∼ πp
ϕ(s). (8)

Above, Lϕ is the pessimistic actor loss, D is the experience buffer, α is the entropy temperature, βp is
the pessimism parameter, Qµ

θ and Qσ
θ denote the critic ensemble mean and standard deviation respec-

tively. As such, the pessimistic actor convergences to the optimal policy under CDQL assumptions
(Fujimoto et al., 2018). The critic parameters are updated via SARSA under the pessimistic policy:

Lθ = E
T∼D

(
Qθ(s, a)− (r + γQβp

θ̄
(s′, a′)− α log πp

ϕ(a
′|s′)

)2
with a′ ∼ πp

ϕ(s
′). (9)

Here, Lθ is the critic loss function which is optimized off-policy on the dataset of previous experiences
D with T = (s, a, r, s′), and θ̄ denotes the target network parameters which are updated via standard
Polyak averaging (Fujimoto et al., 2018; Haarnoja et al., 2018a). This setup aligns the objectives of
the critic and the pessimistic actor in DAC with the traditional pessimistic approaches like SAC.
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Optimism and KL penalty adjustment The goal of KL regularization used by the optimistic
actor is to achieve divergence small enough to ensure good coverage of the pessimistic policy in
exploration data, yet large enough to maintain the optimistic policy’s exploration effectiveness. In
practice, the level of KL is influenced by three factors: the KL penalty weight τ , the difference in risk
appetites between the actors (βo − βp), and the critic ensemble disagreement Qσ

θ (s, a), which varies
based on reward scale and environment uncertainty. To achieve a balanced divergence between the
two actors, we allow gradient-based adjustments in τ and (βo − βp), while assuming a fixed βp:

Lβo = E
s∼D

(βo − βp)D(s) for βo ∈ (βp,∞), and Lτ = E
s∼D
− τD(s) for τ ∈ (0,∞). (10)

Above, Lβo and Lτ represent the loss functions of the optimism and the KL penalty weight respec-
tively. Where D(s) represents the discrepancy between the recorded and target KL divergence:

D(s) =
1

|A|
KL

(
πp
ϕ(s)|π

o
η(s)

)
−KL∗. (11)

The mechanism adjusts βo and τ based on the distance between the empirical and target KL di-
vergences. When the empirical divergence exceeds the target, βo decreases to a limit of βp, and τ
increases. Conversely, a smaller empirical divergence than the target leads to an increase in βo and a
decrease in τ . This dual adjustment allows DAC to regulate the divergence between two policy actors
even when βo reaches its lower bound. The optimization objectives for τ and βo are thus formulated
to adapt to varying conditions, ensuring efficient exploration and exploitation balance in different
environments. We test the effectiveness of these adjustment mechanisms in Table 1, and depict the
different levels of optimism achieved in various tasks in Figure 2. We expand our discussion of DAC
in Appendix C, as well as present pseudocode in Figure 9.

5 Experiments

Our experimental framework is based on JaxRL (Kostrikov, 2021). We assess the performance of
DAC across a diverse set of over 30 locomotion and manipulation tasks listed in Table 2, sourced
from the DeepMind Control (DMC) (Tassa et al., 2018), MetaWorld (MW) (Yu et al., 2020) and
MyoSuite (MYO) benchmarks. In DMC we report the returns, whereas in MW and MYO we report
the success rates. We calculate robust evaluation statistics using RLiable (Agarwal et al., 2021).

Figure 3: We report final IQM in 30 tasks (Table 2) in low (RR = 2) and high replay settings
(RR = 16). 1.0 denotes the maximal possible score, 95% CI calculated with 10 random seeds.

Model-free benchmark We test DAC against an array of both risk-neutral and risk-aware baselines,
including TD3 (Fujimoto et al., 2018), SAC (Haarnoja et al., 2018a), OAC (Ciosek et al., 2019),
TOP (Moskovitz et al., 2021), and GPL (Cetin & Celiktutan, 2023). We align our experiments
with the state-of-the-art SAC implementation, standardizing the common hyperparameters across
all algorithms (D’Oro et al., 2022). We employ uniform network architectures and ensemble of two
critics, as advocated in previous work (Fujimoto et al., 2018; Haarnoja et al., 2018a; Ciosek et al.,
2019; Moskovitz et al., 2021; Cetin & Celiktutan, 2023). Importantly, by using uniform network
architectures and hyperparameters, we ensure that the performance differences between algorithms
stem solely from the different risk-preferences in tackling the exploration-exploitation dilemma. Each
of 30 tasks is run for 1mln environment steps. We investigate two replay regimes: a compute-efficient
regime, involving 2 gradient updates per environment step, and a sample-efficient regime, using 16
gradient updates per step with full-parameter resets every 160k environment steps D’Oro et al. (2022).
As evidenced by Figure 1, DAC particularly excels in the earlier phases of the training, achieving
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Figure 4: We compare model-free DAC, model-free SR-SAC to model-based TD-MPC. Y -axis
reports IQM, and X-axis denotes environment steps. 3mln environment steps, 5 seeds.

final performance of the best baseline in only 60% of environment steps. Furthermore, as shown in
Figure 3, DAC approach to balancing risk-averse exploitation with risk-loving exploration yields
significant performance benefits, particularly visible in the low replay ratio setting.

Dog and Humanoid tasks Furthermore, we assess the performance of DAC when training for
longer than 1mln environment steps. To this end, we choose 4 challenging locomotion tasks, two
from the Dog domain (run, trot) and two from the Humanoid domain (run, walk), where we train
for 3mln environment steps. The dog domain is particularly notable for its complexity, with only
few methods showing non-random performance (Hansen et al., 2022; Xu et al., 2023). Here, we
compare DAC against compute-heavy, sample-efficient baselines: SR-SAC with 32 gradient steps
per environment step (D’Oro et al., 2022); and TD-MPC, a model-based approach that leverages a
learned world model to perform trajectory optimization (Hansen et al., 2022). In particular, TD-MPC
has been documented to achieve effective policies in both dog and humanoid domains (Hansen et al.,
2022), however this performance comes at a significant compute cost, with TD-MPC using around 3
times more learnable parameters than DAC. To partially offset this disparity, we modified DAC critic
to mimic the critic network used in TD-MPC, by adding a single hidden layer and layer normalization
(Ball et al., 2023). As presented in Figure 4, despite being a model-free approach, DAC achieves
competitive performance in the dog domain, marginally surpassing the model-based TD-MPC.

Table 1: We evaluate the performance impact of
DAC components. 15 tasks, 500k steps, 10 seeds.

RR = 2 RR = 16

ONLY πo
η 0.08 0.17

NO KL REG 0.42 0.77
DETERMINISTIC πo

η 0.82 0.77
DETERMINISTIC πp

ϕ 0.92 0.79
NO ADJUSTMENTS 0.91 0.87
NO τ ADJUSTMENT 0.95 0.93
NO βo ADJUSTMENT 0.84 0.99

BASE DAC 1.00 1.00

Design decisions We explore how DAC per-
formance is influenced by variations in its de-
sign. We conduct evaluations of various DAC
modifications in 15 tasks listed in Table 2, where
we train for 500k environment steps and con-
sider both replay ratios. We assess the perfor-
mance of the following variations: ONLY πo

η
where we use the optimistic actor for both ex-
ploration and exploitation; NO KL REG where
we do not use KL regularization for the opti-
mistic actor; DETERMINISTIC πo

η where we set
the optimistic actor to be deterministic; DETER-
MINISTIC πp

ϕ where we set the pessimistic actor
to be deterministic; NO ADJUSTMENTS where
we disable the DAC adjustment mechanisms;
NO τ ADJUSTMENT where we disable τ adjustment; and NO βo ADJUSTMENT where we disable
βo adjustment. As shown in Table 1, we find that all of these design choices bring significant gains
to DAC performance. In particular, we observe that the dual policy setup allows for effective use
of optimism, as evidenced by poor performance of the ONLY πo

η agent. Similarly, we find that KL
regularization yields significant improvements, most likely due to limiting the tandem problem.

Hyperparameter Sensitivity As discussed in Section 4, DAC introduces three new hyperparame-
ters: KL divergence target, exploration multiplier, as well as the learning rates for the adjustment
mechanism for βo and τ . Here, we assess DAC sensitivity when changing the values of these
hyperparameters. To this end, we train 12 DAC agents (each with a different hyperparameter setting)
on 500k environment steps, in both replay ratio regimes, and on tasks listed in Table 2. We report
these results In Figure 5, where we compare the final performance of these agents against SAC with
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Figure 5: We evaluate DAC performance when changing the values of its hyperparameters (X-axis)
for two replay ratio regimes. The bold value denotes the value used in the main experiment. Y -axis
reports the percentage improvement over tuned SAC. 15 tasks, 500k steps, 10 seeds per task.

analogical replay ratio. As follows, we find that DAC performance is stable when changing the values
of its hyperparameters, with all tested variations outperforming the tuned SAC baseline.

Additional Experiments In Appendix D, we detail supplementary experiments conducted to
further evaluate DAC. Firstly, we assess the effectiveness of layer normalization when used with DAC.
This regularization technique was shown to improve the performance of RL agents on a variety tasks
(Hiraoka et al., 2021; Li et al., 2022; Lyle et al., 2023). We find that using layer normalization further
improves DAC performance on locomotion tasks, and detail the results in Figure 11. Furthermore,
we evaluate the compute costs associated with running a Dual Actor setup proposed by DAC. We find
that DAC requires around 15% additional wallclock time to complete 1mln environment steps training
as compared to SAC. However, as shown in Figure 10, DAC performance improvements offset the
additional compute costs, leading to a beneficial trade-off between compute and performance. In
Figure 12, we find that the dual architecture indeed mitigates the overestimation associated with an
optimistic TD update. Finally, in Figures 13 & 14, we investigate the performance of distributional
DAC that calculates upper-bound with respect to different types of uncertainties.

6 Limitations

Main limitation of DAC is its dual-actor framework, which incurs slightly higher memory and
computation costs relative to the standard SAC. In our implementation, DAC wallclock is around 15%
longer than SAC/TD3. Furthermore, using the extra actor network requires additional memory. In our
implementation, the usage of optimistic actor translates to a 20% increased GPU memory dedicated
to models as compared to SAC. Finally, DAC implementation requires setting three additional
hyperparameters. Although tests showed DAC robust performance across a variety of hyperparameter
values, it is uncertain whether this robustness translates to more complex environments.

7 Conclusions

In this work, we apply the expected utility theorem to reason about the empirical effectiveness of risk-
aware actor-critic algorithms. In particular, we demonstrate that policies derived from the commonly
used pessimistic objective are approximately utility-optimal when aligned with an exponential
utility function. We think that the proposed framework is interesting as it revisits the foundational
decision-theoretic perspective of RL — namely, optimization within the utility space rather than the
space of utility inputs. Furthermore, we present DAC, a risk-aware actor-critic framework. DAC
employs two actors with distinct risk appetites to optimize their respective expected utility functions.
The pessimistic actor focuses on TD learning and evaluation, while the optimistic actor facilitates
exploration. We evaluate DAC on various locomotion and manipulation tasks and compare it with
over ten baseline algorithms. We find that DAC demonstrates significant performance improvements
relative to other model-free methods and is competitive with leading model-based approaches. Finally,
we investigate DAC performance robustness across diverse hyperparameter configurations and find
that the experiments affirm its practical applicability.
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Broader Impact

In this paper, we analyze the pessimistic RL algorithms through the expected utility theorem and
introduce a sample-efficient RL algorithm inspired by microeconomic principles. This approach to
integrating behavioral theories into RL presents significant opportunities to improve agents. However,
it also introduces a reverse application: using RL insights to inform microeconomic understanding
and human behavior. This latter brings important ethical considerations. Applying economic theories
to RL can enhance machine decision-making to more closely resemble human judgment. However,
the consequences of machines operating in roles traditionally occupied by humans must be carefully
analyzed. Similarly, applying RL principles to microeconomics offers perspectives on human
decision-making and economic models, but should be done cautiously to avoid oversimplifying the
human behavior and societal interactions.

A Derivations

We consider a single step of policy evaluation and improvement. We assume the value approximations
V i(s) to be derived from a distribution V(s). This distribution is characterized by finite moments
and an expected value V µ(s):

V µ(s) = E
i∼V

Vi(s), and ϵi(s) = V i(s)− V µ(s). (12)

Above, ϵi(s) is the deviation of value approximation from the mean, which per definition has expected
value of zero (ie. Ei∼V ϵi(s) = 0). The certainty value is defined by:

V c(s) = I E
i∼V
U Vi(s) = V µ(s) + Υ(s). (13)

Where Υ(s) is the risk premium. The pessimistic value is defined as:

V β(s) = E
i∼V

Vi(s) + β E
i∼V

(
Vi(s)− V µ(s)

)2
(14)

Thus, the pessimistic value is equal to the certainty equivalent value if, for a given utility function, it
is true that Υ(s) = β V σ(s). The exponential utility function is defined as:

U(Vi(s)) = e2βVi(s) (15)

We start the derivation by applying the exponential utility to the certainty equivalent value definition:

e2βV
c(s) = E

i∼V
e2βVi(s) = E

i∼V
e2β(V

µ(s)+ϵi(s)) = E
i∼V

e2βV
µ(s)e2βϵi(s))

= e2βV
µ(s) E

i∼V
e2βϵi(s))

(16)

Inverting the utility function on the left-hand side (LHS) leads to:

V c(s) = V µ(s) +
1

2β
ln E

i∼V
e2βϵi(s) =⇒ Υ(s) =

1

2β
ln E

s∼p
E

i∼V
e2βϵi(s) (17)

Given that ϵi(s), by definition, centers around zero, we use the Maclaurin series which is convergent
when applied to an exponential function. We use a second order approximation:

Υ(s) ≈ 1

2β
ln E

i∼V

(
1 + 2βϵi(s) + 2β2ϵi(s)

2
)
=

1

2β
ln E

i∼V

(
1 + 2β2ϵi(s)

2
)

(18)

Here, ϵi(s)2 represents the variance of the model distribution at state s. Thus, for optimization
purposes, the approximate equality∇V c(s) ≈ ∇V β(s) is practically established. To calculate the
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values, not just their gradients, we expand the logarithm function using first-order Maclaurin series.
Again, the series are convergent since 1 + 2β2ϵi(s)

2 ≥ 1:

Υ(s) ≈ 1

2β
E

i∼V
2β2ϵi(s)

2 = β E
i∼V

(Vi(s)− V µ(s))2 (19)

Which concludes the derivation. Thus, the pessimistic correction arises from the second-order
Maclaurin approximation of the model risk’s value risk premium. For completeness, we calculate the
approximation error for the approximation of the exponential function, which we denote as E :

E =

∞∑
n=3

E
i∼V

(2βϵi(s))
n

n!
(20)

Additional comment We note that the approach outlined in this Section can be adapted to address
uncertainties inherent to a range of RL problems. An interesting example is the estimation of values
through single evaluations of the critic. In such scenarios, adopting a risk-loving utility function
can lead to objectives resembling Maximum Entropy (MaxEnt) principles. This suggests a potential
avenue for integrating other risk preferences into actor-critic like setting. Moreover, the proof for the
result, as detailed, can be considerably streamlined when focusing on gradients with respect to value
functions in the context of policy optimization. Specifically, the approximation of the logarithm can
be abandoned when the interest lies in optimizing policies rather than the values themselves.

B Related Work

B.1 Risk-Awareness Exploration

The exploration-exploitation dilemma has been the subject of extensive research. One prominent
principle that has emerged in addressing this dilemma is Optimism in the Face of Uncertainty (OFU)
(Auer et al., 2002; Filippi et al., 2010; Ciosek et al., 2019), which prioritizes actions with a balance
of high expected rewards and uncertainty. Whereas OFU has been extensively studied in the tabular
and bandit RL setting (Auer et al., 2002; Garivier & Moulines, 2011; Kaufmann et al., 2012), it has
not yet become as standard in deep RL. However, it has been shown that DQN ensembles used for
uncertainty-driven updates can provide performance improvements (Osband et al., 2016; Chen et al.,
2017; Osband et al., 2018; Lee et al., 2021). Similarly, OAC (Ciosek et al., 2019) and TOP (Moskovitz
et al., 2021) leverage uncertainty estimates over the state-action value function for exploration, albeit
still using only pessimistic actor. On that note, Schäfer et al. (2022) propose to use two actors, with
one actor using some form of novelty exploration objective.

The optimism-driven exploration was also considered for model-based agents. Sekar et al. (2020) and
Seyde et al. (2022) consider exploration driven by reward model ensemble. Similarly to DAC, Seyde
et al. (2022) considers using an optimistic upper bound exploration policy and a distinct exploitation
policy. Furthermore, agents like RP1 (Ball et al., 2020) leverage reward uncertainty despite access to
the nominal rewards. Finally, a variety of agents that leverage MCTS have been proposed (Silver
et al., 2017; Schrittwieser et al., 2020; Zawalski et al., 2022).

B.2 Risk-Awareness for Overestimation

Overestimation of values is a long standing problem associated with Q-learning (Hasselt, 2010),
which is particularly pronounced in the continuous-action deep RL setting (Fujimoto et al., 2018;
Hiraoka et al., 2021; Cetin & Celiktutan, 2023). Undoubtedly, the most popular approach in dealing
with overestimation is CDQL (Fujimoto et al., 2018; Haarnoja et al., 2018b; Ciosek et al., 2019;
Bhatt et al., 2019; Hafner et al., 2019; Ciosek & Whiteson, 2020; Hiraoka et al., 2021; Hansen et al.,
2022). However, it was noticed that overly pessimistic target can also negatively affect the agent
performance (Moskovitz et al., 2021). We believe that this observation is particularly sensible in light
of our proposed theory - since the agents are evaluated in expected return regime, training them with
a distorted, risk-aware objective might not be optimal. To this end, a variety of works considered
tuning the pessimism online (Moskovitz et al., 2021; Kuznetsov et al., 2020; Cetin & Celiktutan,
2023).
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B.3 Risk-Awareness for Safety

On a different note, multiple works considered utility objectives for control that optimizes for worst-
case (Jaquette, 1976; Chung & Sobel, 1987; Chow et al., 2018). In deep RL, there is a substantial
body of work on utilizing distributional RL (Bellemare et al., 2017; Dabney et al., 2018b,a) for
uncertainty estimation, which in turn is used for building risk-aware policies. For example, Dabney
et al. (2018a) uses a quantile Q-network for estimation of the aleatoric uncertainty, and considers
a variety of risk measures calculated over this distribution. Similarly, Stachowicz & Levine (2024)
uses an ensemble of quantile networks to approximate the epistemic uncertainty and builds a CVaR
policy that is sensitive with respect to that uncertainty. Usually, these works focus on optimizing
some sort of "worst-case" objective (Tang et al., 2019). In contrast to these works, we focus on the
generalizations of CDQL objective (Fujimoto et al., 2018), which is usually used by agents that
are evaluated via risk-neutral maximum returns. In fact, our work focuses on showing that these
objectives are in fact risk-aware.

Figure 6: The risk appetite follows from the Jensen inequality: a convex utility indicates risk-seeking
behavior, as evidenced by a CE exceeding EX; conversely, a concave utility signifies risk-aversion,
reflected in a CE that is smaller than EX .

B.4 Comparison to OAC

DAC leverages two policies: a pessimistic one used for sampling the temporal-difference target
and evaluation; and an optimistic one used for sampling transitions added to the experience buffer.
Similarly to DAC, OAC performs evaluation and Bellman backups according to a pessimistic lower
bound policy. However, DAC differs from OAC on three main design choices: how to model the
optimistic policy; how to constraint the optimistic policy; and how to set the level of optimism βo.

Firstly, OAC models the optimistic policy by combining pessimistic policy with the linear approxima-
tion of Q-value upper bound, and as such uses one actor network. The linear approximation combined
with constrained optimization results in simplistic solutions along the constraint boundary (Protter
et al., 2012). As such, OAC’s applicability is limited to small δ values due to the Taylor theorem. In
contrast to that, DAC uses two actors. Modeling the second policy via an actor network allows for
exploration policies that are far more complex than a linear approximator. Whereas this introduces a
computational cost, employing techniques like delayed policy updates can result in costs smaller than
that of OAC.

Furthermore, OAC enforces a hard KL constraint by directly solving a Lagrangian. Since the Q-value
upper bound is approximated via a linear function, the solution is placed on the constraint boundary
unless the slope is zero (Protter et al., 2012). In contrast, DAC imposes KL as a soft constraint. Paired
with the neural network approximator, this allows DAC to balance the KL with potential gains to the
upper bound and generate complex exploration policies.

Finally, OAC treats βo as a hyperparameter which is fixed during the training. Since values of Qµ

and Qσ depend on reward scales, as well as aleatoric and epistemic uncertainty of the environment,
the value of βo has to be searched per task. Furthermore, due to decreasing critic disagreement as the
training progresses, fixed levels of βo yield decreasing the impact of uncertainty on the optimistic
policy. DAC leverages that the desired level of optimism can be defined through divergence between
the pessimistic baseline policy and the optimistic policy optimizing objective related to βo. Such
definition allows for dynamics adjustment of both βo and the KL penalty weight τ .
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C Further Description of DAC

C.1 Pessimistic Actor

The pessimistic actor, denoted as πp
ϕ, employs a soft policy target for optimization, as outlined in

Equation 8. This actor operates entirely off-policy, utilizing data exclusively from the optimistic actor.
The soft policy approach not only promotes state-dependent exploration (Haarnoja et al., 2018a) but
also helps in maintaining the hyperbolic tangent (Tanh) output in a non-saturated state (Wang et al.,
2020a). Moreover, the pessimistic actor’s inherent non-zero variance contributes to stabilizing the
TD learning for the critic. While separating exploration and exploitation theoretically allows for zero
variance in TD target sampling, our empirical evidence suggests that introducing noise regularizes
the critic (see Table 1).

(a) Normal (b) Tanh-Normal (c) Pre-Tanh µ (d) Post-Tanh Actions

Figure 7: Soft policy learning prevents policy saturation. Figures 7a and 7b show three Gaussians and
the Tanh transformed counterparts. Before Tanh transformation, all policies have equal variance (7a).
However, since Tanh is nonlinear, applying the transformation changes the policy variance depending
on the location of the mean (7b). Because of this effect, when using soft policy learning, the agent
incurs loss when moving along the saturated portions of the Tanh activation function. Figures 7c
and 7d show policy means and executed actions for SAC with and without soft policy learning on a
Humanoid-Stand task. As follows, SAC without the entropy objectives follows a bang-bang policy,
whereas regular SAC anchors the policy within the non-saturated portion of Tanh. To this end, soft
policy learning reduces the risk of a bang-bang policy.

In the context of representing a policy with a Tanh-Normal distribution, soft policy learning serves
two critical functions: promoting entropy and preventing saturation. Firstly, soft policy learning
guarantees a certain degree of policy entropy, essential for exploration during the learning process
(Haarnoja et al., 2018a). This approach contrasts with methods like TD3 or TOP, where constant
entropy is maintained across various states. By optimizing an objective function that balances
entropy maximization with Q-values, our policy exhibits variable entropy depending on the state,
encouraging exploration particularly in states with lower Q-values. Furthermore, the Tanh function’s
inherent saturation characteristic impacts the exploration. The further the unsquashed distribution’s
mean is from zero, the more the variance reduces post-squashing, as depicted in Figures 7a and 7b.
Implementing soft policy learning thus incurs a loss when the policy deviates from zero. Figures 7c
and 7d illustrate how this approach results in policies predominantly residing within the non-saturated
Tanh region (Wang et al., 2020a), effectively avoiding extreme bang-bang policies (Seyde et al.,
2021).

C.2 Optimistic Actor

The optimistic actor πo
η , follows the optimistic certainty equivalence objective, detailed in Equation 7.

This objective prioritizes the upper bound of Q-values, fostering a policy that embraces uncertainty
and encourages actions leading to critic disagreement. Such a policy approach is known to generate
more diverse samples and consequently, ensures better coverage of the state-action space (Pathak
et al., 2019; Lee et al., 2021). This is significant as ensemble disagreement is often a surrogate for
sample novelty (Yahaya et al., 2019; Han et al., 2021). Although traditional RL does not explicitly
focus on coverage, recent research highlights the critical role of data diversity in RL (Xie et al., 2022;
Foster et al., 2022; Zhan et al., 2022).

In the development of DAC, our aim was to enforce entropy and non-saturation within both the
pessimistic and optimistic actors. DAC accomplishes this through distinct yet complementary
methods for each actor. For the pessimistic actor, soft policy learning is employed to enforce entropy
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(a) Critic Variance (b) Pessimistic Actor (c) Optimistic Actor

Figure 8: Pessimistic underexploration and state-action space coverage on the Pendulum task with
state representation embedded into 1 dimension. The dots represent 500 state-action samples gathered
using the latest policy (pessimistic (black) or optimistic (red)). Figure 8a displays the standard
deviation (σ) of the two critics, with smaller values observed in well-explored state-action regions. In
Figure 8b, we depict pessimistic policy probabilities. Due to lower bound optimization, the actor
prioritizes state-action subspaces that have already been explored and do not yield critic disagreement.
Figure 8c illustrates optimistic policy probabilities. Despite having similar entropy levels, following
the upper bound policy results in better coverage within critic disagreement regions.

and prevent policy saturation. In contrast, the optimistic actor uses KL divergence as a means of
maintaining similarity with the pessimistic actor and adhering to certain policy constraints. The
incorporation of KL divergence in the optimistic actor’s objective serves multiple purposes:

1. Reducing the degree of off-policy learning - Given that exploration is conducted solely
by the optimistic actor, the pessimistic actor updates entirely off-policy, using transitions
sampled from the optimistic policy. This can potentially lead to unstable learning, a
phenomenon known as the "deadly triad" (Sutton & Barto, 2018). Integrating KL divergence
into the optimistic objective aligns the transitions sampled from the optimistic policy with
the expectations under the pessimistic policy, thereby mitigating the extent of off-policy
learning.

2. Anchoring the adjustment mechanisms - As discussed in Section 4, the automatic adjustment
of parameters βo (optimism) and τ (KL penalty weight) depends on a target divergence
value. Without the divergence penalty, these adjustment mechanisms would have to be
designed in a different way.

3. Preventing saturation of the optimistic policy - By minimizing the KL divergence between
the optimistic and pessimistic actors, the optimistic actor is encouraged to emulate a policy
trained via soft policy learning. This discourages the optimistic actor from policy saturation,
maintaining the integrity of its actions.

In DAC, both the pessimistic and optimistic actors are represented as simple diagonal normal
distributions, further transformed by the hyperbolic tangent (Tanh) activation. The KL divergence
between these actors is computed in a closed form, utilizing the change of variables technique. Though
this is a well-established result, we include it here for completeness. Denote x as samples from the
policy distributions before the Tanh activation, pp and po as the distributions of the pessimistic and
optimistic actors on x, respectively. The application of Tanh is expressed as y = h(x), resulting in
the transformed distributions πp, πo. Using the change of variables formula, the KL divergence is
derived as follows:

KL
(
pc|po

)
=

∫ ∞

−∞
pp(x) log

pp(x)

po(x)
dx

=

∫ ∞

−∞
πp(h(x)) |dy

dx
(x)| log

πp(h(x)) | dydx (x)|
πo(h(x)) | dydx (x)|

dx

=

∫ ∞

−∞
πp(y) log

πp(y)

πo(y
dy = KL

(
pp|po

)
(21)
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This relationship holds for any distributions pc and po. With the assumption of diagonal Gaussian
distributions with dimensionality |A|, the KL divergence simplifies to:

KL
(
pp|po

)
= KL

(
πc|πo

)
=

|A|∑
i=1

(
log

σp
i

σo
i

+
(σo

i )
2 + (µo

i − µp
i )

2

2 (σp
i )

2
− 1

2

)
(22)

Using KL guarantees that the optimistic policy optimizes for a specified level of variance, which can
be distinct from πp

ϕ. To this end, we define the exploration variance multiplier m, which is a simple
standard deviation multiplier. This leads to the following formulation of KL applied to DAC:

KL
(
πc|πo

)
=

|A|∑
i=1

(
log

σp
i

σ̄o
i

+
(σ̄o

i )
2 + (µo

i − µp
i )

2

2 (σp
i )

2
− 1

2

)
, σ̄o

i =
σo
i

m
(23)

This approach ensures distinct entropy levels for TD learning and exploration while maintaining the
standard convergence properties of Actor-Critic (AC) algorithms. In fact, if limD→∞ Qσ

θ (s, a) = 0 it
follows that in the limit both actors recover a policy that differs only by m. While other differentiable
divergence or distance functions could be used, the appeal of KL divergence lies in its closed-form
solution for any invertible and differentiable transformation of the given distributions.

C.3 PseudoCode

1: Input: πp
ϕ - pessimistic actor; πo

η - optimistic actor; Qθ - double critic; Qθ̄ - target critic; α -
temperature; βo - optimism; τ - KL weight;

2: Hyperparameters: βp - pessimism; KL∗ - target KL;

3: Sample action from the optimistic actor
s′, r = ENV.STEP(a) a ∼ πo

η
4: Add transition to the replay buffer

BUFFER.ADD(s, a, r, s′)
5: for i = 1 to ReplayRatio do
6: Sample batch of transitions

s, a, r, s′ ∼ BUFFER.SAMPLE
7: Update critic using pessimistic actor (Eq. 9)

θ ← θ −∇θ

(
Qθ(s, a)− (r + γ(Qµ

θ̄
(s′, a′) + βpQσ

θ̄
(s′, a′)−α log πp

ϕ(a
′|s′)

)2
, a′ ∼ πp

ϕ(s
′)

8: Update pessimistic actor (Eq. 8)
ϕ← ϕ+∇ϕ

(
Qµ

θ (s, a) + βpQσ
θ (s, a)−α log πp

ϕ(a|s)
)

with a ∼ πp
ϕ(s)

9: Update optimistic actor (Eq. 7)
η ← η +∇η

(
Qµ

θ (s, a) + βoQσ
θ (s, a)− τKL

(
πp
ϕ(s)|π̄o

η(s)
))

with a ∼ πo
η(s)

10: Update entropy temperature
α← α−∇αα

(
H∗ −H(s)

)
11: Update optimism (Eq. 10)

βo ← βo −∇βo(βo − βp)( 1
|A|KL(πp

ϕ|πo
η)−KL

∗)

12: Update KL weight (Eq. 10)
τ ← τ +∇ττ(

1
|A|KL(πp

ϕ|πo
η)−KL

∗)

13: Update target network
θ̄ ← POLYAK(θ, θ̄)

14: end for

Figure 9: Pseudo-code shows DAC training step, where changes with respect to SAC are colored.

C.4 Optimistic Actor Implementation

Both optimistic and pessimistic policies are modelled using the Tanh-transformed Gaussian dis-
tribution denoted as T (µ, σ), where µ and σ denote the parameters of the underlying Gaussian
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(Haarnoja et al., 2018a; Wang et al., 2020a). We implement the optimistic actor as a perturbation to
the pessimistic policy parameters:

πo
η(s) = T ((µ

p
ϕ(s) + µo

η(s)), (σ
p
ϕ(s) ∗ σ

o
η(s))). (24)

Above, µp
ϕ(s) and σp

ϕ(s) denote mean and standard deviation given by the pessimistic actor network,
µo
η(s) and σo

η(s) denote the optimistic perturbation to the pessimistic policy. Such design allows
the optimistic actor network to trivially reduce the KL divergence - to minimize divergence, the
optimistic actor network needs to adjust its output towards 0, independently of the values of the
pessimistic policy parameters. This design allows the model to keep the KL low, which as we show
in Table 1 is crucial for good performance.

C.5 Adjustment of βo and τ

Since values of Qµ
θ and Qσ

θ depend on reward scales, as well as aleatoric and epistemic uncertainty
of the environment, the value of βo cannot be easily set. DAC leverages an observation that for
βo = −βp the optimistic actor recovers the objective of the pessimistic actor. Then, βo can be
defined such that the divergence between the pessimistic baseline policy and the optimistic policy
reaches a desired level, as shown in Equation 10. This adaptive approach, as illustrated in Figure
2, accommodates different scales of Q-values and contrasts with setups like OAC, where optimism
is predefined by fixing βo at a specific value. We find that the optimism and KL weight used by
DAC are highly variable between tasks and even phase of the training, showing the advantage of
the automatic adjustment mechanism as opposed to using predefined levels. Furthermore, we find
that DAC uses higher levels of optimism than values that were found optimal for OAC (Ciosek et al.,
2019).

D Additional Experiments

D.1 Wallclock performance

Firstly, we assess the wallclock efficiency of DAC as compared to SAC. Figure below investigates
the performance of DAC and SAC in both low and high replay regimes.

Figure 10: DAC wall-clock runtime for 1mln steps is around 15% longer than SAC. Despite additional
computational requirements associated with the dual actor, the improvements stemming from DAC
lead to a beneficial compute/performance tradeoff. The Y -axis denotes IQM with 95% CI. The
X-axis denotes the environment steps (left) and wallclock (right) for 10 seeds. 30 tasks, 1mln steps
and 10 seeds. Experiments were conducted on an NVIDIA A100 GPU with 40GB of RAM.

D.2 Layer Normalization

Recently, there has been a surge of works exploring the importance of critic regularization in high
replay regimes (Liu et al., 2020; Laskin et al., 2020; Hiraoka et al., 2021; Gogianu et al., 2021; Li
et al., 2022; D’Oro et al., 2022). Whereas there is still a lot to understand about the interplay of TD
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learning and network regularization, it is clear that a regularized critic allows a higher replay ratio to
be used (Hiraoka et al., 2021; Li et al., 2022; D’Oro et al., 2022). In this paper, we explore only one
method that could be considered regularization, that is full-parameter resets (Nikishin et al., 2022;
D’Oro et al., 2022). Given the effectiveness of the only regularization we tested, we hypothesize that
experimenting with methods like layer normalization (Ba et al., 2016), weight decay (Krogh & Hertz,
1991), spectral normalization (Gogianu et al., 2021) or dropout (Srivastava et al., 2014) could further
improve DAC performance.

Figure 11: We compare high-replay DAC performance with and without layer normalization, as well
as the ensemble based, high-replay RedQ (Hiraoka et al., 2021). We use 10 DMC tasks listed in
Table 2 and run 10 seeds for 1mln environment steps.

As shown in Figure 11, we find that using layer normalization on critic within the DAC design
significantly improves its performance on locomotion tasks. This results is in line with previous work
that augmented other RL algorithms with layer normalization (Li et al., 2022; Hiraoka et al., 2021;
Lyle et al., 2023; Ball et al., 2023; Cetin & Celiktutan, 2023)

D.3 Critic Overestimation

Here, we investigate whether the decoupled architecture (using a conservative policy for TD updates
and optimistic policy for exploration) indeed mitigates Q-value overestimation characteristic for
non-conservative updates (Fujimoto et al., 2018; Kuznetsov et al., 2020; Moskovitz et al., 2021; Cetin
& Celiktutan, 2023). As such, we compare the environment returns to the returns implied by the
critic, according to the following:

Oθ =
|Qθ(s, a)|
|Gπ(s, a)|

(25)

Where Oθ denotes the overestimation metric, Qθ(s, a) is the critic output and Gπ(s, a) stands for the
observed empirical returns. Whereas the metric does not perfectly measure the overestimation, it
allows to investigate the relative overestimation in the group of considered algorithms. As shown in
Figure 12, we find that the dual architecture prevents the overestimation associated with optimistic
TD updates and yields measurements similar to other risk-aware algorithms.

Figure 12: We investigate overestimation in DAC, SAC and TOP. We use 15 tasks listed in Table 2
and run 10 seeds for 500k environment steps.
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D.4 Distributional DAC

As discussed in Section 4, our algorithmic implementation follows SAC/TD3 in that it uses a
non-distributional double critic, where each critic is taught to output the expected value of returns
(Haarnoja et al., 2018a; Fujimoto et al., 2018; Chen et al., 2020; Kostrikov et al., 2020). As such, the
critic ensemble disagreement measures the entire uncertainty associated with Q-value approximation.
Alternatively, the critic can be implemented to learn the full distribution of returns in an approach
referred to as distributional RL Bellemare et al. (2017); Dabney et al. (2018b,a); Moskovitz et al.
(2021). In this section, we investigate DAC implementation where the exploration policy is optimistic
with respect to aleatoric, epistemic or total uncertainty. Following TOP (Moskovitz et al., 2021) we
implement DAC with double quantile distributional critics, where each critic outputs K quantiles of
the return distribution (Dabney et al., 2018a). In such setup, the kth quantile of the distribution at
state-action (s, a), denoted as Qπ

k (s, a), is learned via optimization of Huber loss of the distributional
Bellman error Dabney et al. (2018a) defined as δπk = Zπ(s, a)−Qπ

k (s, a) with Zπ(s, a) representing
a sample from the return distribution. We note, that following the Maximum Entropy formulation
(Haarnoja et al., 2018a), we define the returns Zπ(s, a) as a sum of discounted rewards and policy
entropy. Furthermore, the point estimate of Q-value is calculated by Qπ(s, a) = 1

K

∑K
k=1 Q

π
k (s, a).

Then, an ensemble of quantile critics can be used to explicitly model both aleatoric and epistemic
uncertainties (Moskovitz et al., 2021; Lockwood & Si, 2022). To model aleatoric and epistemic
uncertainties, we use the procedure outlined in TOP (Moskovitz et al., 2021). As such, we model
aleatoric uncertainty by learning the quantiles of the state-action return distribution, which we denote
as Zπ(s, a). Thus, we define Q-value as Qπ = E Zπ(s, a) with Zπ(s, a) ∼ Zπ(s, a). The spread
of the learned distribution Zπ(s, a) models the aleatoric uncertainty associated with the policy and
the environment. Similarly, we model epistemic uncertainty by the ensemble disagreement when
approximating a particular quantile of the return distribution. We consider three implementations
of the optimistic policy in a distributional quantile DAC. All approaches apply the optimistic policy
optimization as defined in Equation 7, but differ in how the point estimate of Q-value upper-bound is
calculated:

Optimistic policy wrt. epistemic uncertainty - In this setup, for a fixed policy π, we define the Q-value
upper bound as Qβo

(s, a) = 1
K

∑K
k=1 Q

o
k(s, a) and Qo

k(s, a) = Qµ
k(s, a) + βoQσ

k(s, a), where Qµ
k

and Qσ represent the ensemble mean and standard deviation in kth quantile. As such, the optimistic
policy promotes actions with high epistemic uncertainty measured as critic ensemble disagreement in
approximation of the kth quantile.

Optimistic policy wrt. aleatoric uncertainty - Here, for a given policy, we calculate the Q-value upper
bound as Qβo

(s, a) = 1
K

∑K
k=1 Q

µ
k(s, a) + βoσZ(s, a) where σZ(s, a) is the standard deviation

of K quantile outputs, averaged over the critic ensemble. As such, the optimistic policy promotes
actions with high aleatoric uncertainty measured as the spread of the return distribution.

Optimistic policy wrt. both uncertainties - Finally, we consider an optimistic policy that promotes both
aleatoric and epistemic uncertainties, albeit still explicitly modeled via an ensemble of quantile critics.
Here, for a given policy we calculate the upper-bound Q-value by Qβo

(s, a) = 1
K

∑K
k=1 Q

o
k(s, a) +

βoσZ(s, a), with Qo
k(s, a) = Qµ

k(s, a)+βoQσ
k(s, a). As such, the optimistic policy promotes actions

that are associated with both epistemic and aleatoric uncertainty.

Figure 13: We run three variations of distributional DAC (RR = 2) on 10 tasks from DMC and MW
benchmarks. Y -axis reports IQM and X-axis reports environment steps. 10 seeds per task.
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Figure 14: We run three variations of distributional DAC (RR = 16) on 10 tasks from DMC and
MW benchmarks. Y -axis reports IQM and X-axis reports environment steps. 10 seeds per task.

We run the three variations of Distributional Quantile DAC for 1mln environment steps and both
replay regimes. The results are presented in the Figures below. We find that all variations achieve
similar performance, with the standard implementation promoting the epistemic uncertainty slightly
outperforming other variations.

E Experimental Details

E.1 Environments

The table below lists task used in the main experiment.

Table 2: 30 tasks used for the evaluation of model-free algorithms in low and high replay ration
regimes. The 15 bold tasks are used for the hyperparameter sensitivity and design choices ablation.

DEEPMIND CONTROL METAWORLD MYOSUITE

ACROBOT SWINGUP ASSEMBLY REACH EASY
CHEETAH RUN BOX CLOSE REACH HARD
HOPPER HOP COFFEE PULL POSE EASY

HUMANOID RUN DRAWER OPEN POSE HARD
HUMANOID STAND HAMMER PEN TWIRL EASY
HUMANOID WALK LEVER PULL PEN TWIRL HARD

SWIMMER SWIMMER6 PUSH OBJECT HOLD EASY
PENDULUM SWINGUP STICK PULL OBJECT HOLD HARD

QUADRUPED RUN STICK PUSH KEY TURN EASY
WALKER RUN SWEEP KEY TURN HARD

E.2 Baseline Algorithms

We standardize the common hyperparameters between all algorithms to minimize the differences
between all implementations. We align the basic values with the state-of-the-art SAC implementation
(D’Oro et al., 2022), thus limiting the requirement for extensive hyperparameter search across
algorithms. We employ uniform network architectures and a standard ensemble of two critics
(Fujimoto et al., 2018; Haarnoja et al., 2018a; Ciosek et al., 2019; Moskovitz et al., 2021; Cetin &
Celiktutan, 2023). The set of tested algorithms includes:

• DAC - Dual Actor-Critic. The approach proposed in this paper, described in detail in Section
4 and Appendix C.

• SAC - Soft Actor-Critic (Haarnoja et al., 2018a) builds on DDPG (Silver et al., 2014).
SAC extends the DDPG algorithm with features such as a stochastic policy using the
reparametrization trick, automatic entropy temperature adjustment, Clipped Double Q-
learning, and maximum entropy updates for actor and critic networks.
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• TD3 - Twin Deep Deterministic Policy Gradient (Fujimoto et al., 2018) is an extension of
the DDPG algorithm, including a target actor network and Clipped Double Q-learning.

• OAC - Optimistic Actor-Critic (Ciosek et al., 2019) extends SAC with an optimistic explo-
ration policy approximating the Q-value upper bound.

• TOP - Tactical Optimism and Pessimism (Moskovitz et al., 2021) addresses the optimism-
pessimism dilemma with an external discrete bandit learning βp from predefined values.
Based on TD3.

• GPL - Generalized Pessimism Learning (Cetin & Celiktutan, 2023) proposes updating
pessimism in the pessimistic value approximation V π

β through a dual optimization objective.
Based on SAC.

• TD-MPC - Temporal Difference Learning for Model Predictive Control (Hansen et al.,
2022) a state-of-the-art model-based algorithm leveraging model of the environment for
critic-bootstrapped model-predictive control.

In high replay ratio, all algorithms undergo full-parameter resets according to the schedule proposed
by D’Oro et al. (2022). As such, given replay ratio of 16 gradient steps per environment step, the
agents are resetted in (160k, 320k, 480k, 640k, 800k) steps. ma

Table 3: For non-shared hyperparameters we take values which were found to perform best by the
authors of the respective method.

METHOD HYPERPARAMETER VALUE

SAC / SHARED

NETWORK SIZE (256, 256)
ACTIVATIONS RELU

CRITIC ENSEMBLE SIZE 2
ACTION REPEAT 1

OPTIMIZER ADAM
LEARNING RATE 3e− 4

BATCH SIZE 256
DISCOUNT 0.99

INITIAL TEMPERATURE 1.0
INITIAL STEPS 10000

TARGET ENTROPY |A|/2
POLYAK WEIGHT 0.005

TD3

POLICY UPDATE DELAY 2
EXPLORATION σ 0.5

TARGET POLICY σ 0.2
POLICY DELAY 2

EXPLORATION NOISE CLIP ± 0.5

OAC
OPTIMISM 4.36
PESSIMISM −0.75

KL DIVERGENCE CONSTRAINT 3.69

TOP

OPTIMISTIC ARM 0.0
PESSIMISTIC ARM −1.0

BANDIT LEARNING RATE 0.1
BANDIT DECAY 0.9

GPL INITIAL PESSIMISM −0.5
PESSIMISTIC LEARNING RATE 1e− 4

DAC

PESSIMISM −0.2
INITIAL OPTIMISM 1.0

INITIAL KL WEIGHT 0.25
TARGET KL DIVERGENCE 0.25

STANDARD DEVIATION MULTIPLIER 1.25
ADJUSTMENT LEARNING RATE 3e− 5
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E.3 Training Curves

Figure 15: Training curves for DMC (RR = 2 rows 1 & 2, RR = 16 row 3 & 4). Y -axis denotes
IQM and X-axis denotes environment steps. 10 seeds per task.

Figure 16: Training curves for MW (RR = 2 rows 1 & 2, RR = 16 rows 3 & 4). Y -axis denotes
IQM success rates and X-axis denotes environment steps. 10 seeds per task.
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Figure 17: Training curves for MYO (RR = 2 rows 1 & 2, RR = 16 rows 3 & 4). Y -axis denotes
IQM success rates and X-axis denotes environment steps. 10 seeds per task.
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