
Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Xiaohui Chen 1 Jiaxing He 1 Xu Han 1 Li-Ping Liu 1

Abstract

Diffusion-based graph generative models are effective
in generating high-quality small graphs. However, it
is hard to scale them to large graphs that contain thou-
sands of nodes. In this work, we propose EDGE, a
new diffusion-based graph generative model that ad-
dresses generative tasks for large graphs. The model
is developed by reversing a discrete diffusion process
that randomly removes edges until obtaining an empty
graph. It leverages graph sparsity in the diffusion pro-
cess to improve computational efficiency. In particular,
EDGE only focuses on a small portion of graph nodes
and only adds edges between these nodes. Without
compromising modeling ability, it makes much fewer
edge predictions than previous diffusion-based genera-
tive models. Furthermore, EDGE can explicitly model
the node degrees of training graphs and then gain per-
formance improvement in capturing graph statistics.
The empirical study shows that EDGE is much more ef-
ficient than competing methods and can generate large
graphs with thousands of nodes. It also outperforms
baseline models in generation quality: graphs gener-
ated by the proposed model have graph statistics more
similar to those of training graphs.

1. Introduction
There is a long history of using random graph models (New-
man et al., 2002) to model large graphs. Traditional mod-
els such as Erdős-Rényi (ER) model (Erdos et al., 1960),
Stochastic-Block Model (SBM) (Holland et al., 1983), and
Exponential-family Random Graph Models (Lusher et al.,
2013) are often used to model existing graph data and focus
on prescribed graph structures. Besides modeling existing
data, one interesting problem is to generate new graphs
to simulate existing ones (Ying & Wu, 2009), which has
applications such as network data sharing. In generative
tasks (Chakrabarti & Faloutsos, 2006), traditional models
often fall short in describing complex structures. A promis-
ing direction is to use deep neural models to generate large
graphs.

1Department of Computer Science, Tufts University, Med-
ford, MA, USA. Correspondence to: Xiaohui Chen <xiao-
hui.chen@tufts.edu>, Li-Ping Liu <liping.liu@tufts.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

There are only a few deep generative models designed for
generating large graphs: NetGAN (Bojchevski et al., 2018)
and CELL (Rendsburg et al., 2020) are two examples. How-
ever, recent research (Chanpuriya et al., 2021) shows that
these two models are edge-independent models and have
a theoretical limitation: they cannot reproduce several im-
portant statistics (e.g. triangle counts and clustering coeffi-
cient) in their generated graphs unless they memorize the
training graph. A list of other models (Chanpuriya et al.,
2021) including Variational Graph Autoencoders (VGAE)
(Kipf & Welling, 2016b) and GraphVAE (Simonovsky &
Komodakis, 2018) are also edge-independent models and
share the same limitation.

Diffusion-based generative models (Liu et al., 2019; Niu
et al., 2020; Jo et al., 2022; Chen et al., 2022b) have gained
success in modeling small graphs. These models generate
a graph in multiple steps and are NOT edge-independent
because edges generated in later steps depend on previously
generated edges. They are more flexible than one-shot mod-
els (Kipf & Welling, 2016b; Madhawa et al., 2019; Lippe
& Gavves, 2020), which directly predict an adjacency ma-
trix in one step. They also have an advantage over auto-
regressive graph models (You et al., 2018; Liao et al., 2019),
as diffusion-based models are invariant to node permuta-
tions and do not have long-term memory issues. However,
diffusion-based models are only designed for tasks with
small graphs (usually with less than one hundred nodes).

This work aims to scale diffusion-based generative models
to large graphs. The major issue of a diffusion-based model
is that it must compute a latent vector or a probability for
each node pair in a graph at each diffusion step (Niu et al.,
2020; Jo et al., 2022) – the computation cost is O(TN2) if
the model generates a graph with N nodes using T steps.
The learning task becomes challenging when N is large. At
the same time, large graphs increase the difficulties for a
model to capture global graph statistics such as clustering
coefficients. As a result, the model performance degrades
when the training graphs’ sizes scale up.

We propose Efficient and Degree-guided graph GEnerative
model (EDGE) based on a discrete diffusion process. The
development of EDGE has three innovations. First, we en-
courage the sparsity of graphs in the diffusion process by
setting the empty graph as the convergent “distribution”.

1

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Then the diffusion process only removes edges and can be
viewed as an edge-removal process. The increased sparsity
in graphs in the process dramatically reduces the computa-
tion – this is because the message-passing neural network
(MPNN) (Kipf & Welling, 2016a) used in the generative
model needs to run on these graphs, and their runtime is
linear in the number of edges. Second, the generative model,
which is the reverse of the edge-removal process, only pre-
dicts edges for a small portion of “active nodes” that have
edge changes in the original edge-removal process. This
strategy decreases the number of predictions of MPNN and
also its computation time. More importantly, this new design
is naturally derived from the aforementioned edge-removal
process without modifying its forward transition probabili-
ties. Third, we model the node degrees of training graphs
explicitly. By characterizing the node degrees, the statistics
of the generated graphs are much closer to training graphs.
While other diffusion-based graph models struggle to even
train or sample on large graphs, our approach can efficiently
generate large graphs with desired statistical properties. We
summarize our contributions as follows:

• we use empty graphs as the convergent distribution in
a discrete diffusion process to reduce computation;

• we propose a new generative process that only predicts
edges between a fraction of nodes in graphs;

• we explicitly model node degrees in the probabilistic
framework to improve graph statistics of generated
graphs; and

• we conduct an extensive empirical study and show that
our method can efficiently generate large graphs with
desired statistics.

2. Background
This work considers graph generative models that sample
adjacency matrices to generate graphs. Let AN denote the
space of adjacency matrices of size N . We consider simple
graphs without self-loops or multi-edges, so an adjacency
matrix A ∈ AN is a binary symmetric matrix with a zero
diagonal. A generative model defines a distribution over
AN .

In this work, we construct a generative model based on
a discrete diffusion process (Austin et al., 2021; Hooge-
boom et al., 2021; Vignac et al., 2022). Let A0 denote
a graph from the data, then the diffusion process defined
by q(At|At−1) corrupts A0 in T steps and forms a trajec-
tory (A0,A1, . . . ,AT). We treat (A1, . . . ,AT) as latent
variables, then q(A1, . . . ,AT |A0) =

∏T
t=1 q(A

t|At−1).
As T → ∞, q(AT) approaches a convergent distribution,
which is often a simple one with easy samples. We often
choose a large enough T so that q(AT) is a good approxi-
mation of the convergent distribution.

We model these trajectories with a denoising model

pθ(A
t−1|At) parameterized by θ, then the model has a joint

pθ(A
0:T) = p(AT)

∏T
t=1 pθ(A

t−1|At) and a marginal
pθ(A

0) that describes the data distribution. Here p(AT)
is the convergent distribution in q.

Usually q(At|At−1) needs easy probability calculations.
One choice is to treat each edge independently, and

q(At|At−1) =
∏

i,j:i<j

B(At
i,j ; (1− βt)A

t−1
i,j + βtp) (1)

:= B(At; (1− βt)A
t−1 + βtp).

Here B(x;µ) represents the Bernoulli distribution over x
with probability µ. We also use B(A;µ) to represent the
probability of independent Bernoulli variables arranged in
a matrix. The diffusion rate βt determines the probability
of resampling the entry At

i,j from a Bernoulli distribution
with probability p, instead of keeping the entry At−1

i,j .

This diffusion process requires two special properties for
model fitting. First, we can sample At at any time step t
directly from A0. Let αt = 1− βt and ᾱt =

∏t
τ=1 ατ ,

q(At|A0) = B(At; ᾱtA
0 + (1− ᾱt)p). (2)

The diffusion rates βt-s are defined in a way such that ᾱT

is almost 0, then AT is almost independent from A0, i.e.,
q(AT |A0) ≈ p(AT) ≡ B(AT ; p). The configuration of
βt-s is called noise scheduling. In the context of graph gener-
ation, p(AT) is the Erdős-Rényi graph model G(N, p) (Er-
dos et al., 1960), with p being the probability of forming an
edge between two nodes.

Second, we can compute the posterior of the forward transi-
tion when conditioning on A0:

q(At−1|At,A0) =
q(At|At−1)q(At−1|A0)

q(At|A0)
. (3)

Since all the terms on the right-hand side are known, the
posterior can be computed analytically.

The generative model pθ(A0:T) is trained by maximizing
a variational lower bound of log pθ(A0) (Ho et al., 2020;
Hoogeboom et al., 2021; Austin et al., 2021). In an intu-
itive understanding, pθ(At−1|At) is learned to match the
posterior of the forward transitionq(At−1|At,A0).

During generation, we sample AT ∼ p(AT) and then “de-
noise” it iteratively with pθ(A

t−1|At) to get an A0 sample.

3. Method
3.1. Diffuse graphs to empty graphs – a motivation

With the main purpose of computation efficiency, we ad-
vocate setting p = 0 and using G(N, 0) as the convergent
distribution. This configuration improves the sparsity of the
adjacency matrices in diffusion trajectories, thus reducing

2

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

t = 0 t = 32 t = 64 t = 256 (T)t = 96

…

(a) An edge-removal process defined by p = 0 (b) Active nodes in the edge-removal process

active node count is less
than 1/10 of all nodes

Figure 1. Dynamics of a discrete diffusion process with p = 0 and “active” nodes in the process on the Cora dataset: (a) the diffusion
process with p = 0 is an edge-removal process. The reverse of it is a generative procedure that constructs a graph by gradually adding
edges to an empty graph. (b) under linear noise scheduling, the number of “active” nodes (that have their edges removed at a time step) is
less than one-tenth of the total number of nodes.

computation. We consider the amount of computation in
the denoising model pθ(At−1|At) from two aspects: the
computation on the input At and the number of entries to
be predicted in the output At−1.

We first consider the computation on the input side. We as-
sume that the denoising model pθ(At−1|At) is constructed
with an MPNN. Suppose the input graph At has M t edges,
then a typical MPNN needs to perform O(M t) message-
passing operations to compute node vectors – here we treat
hidden sizes and the number of network layers as constants.
The total number of message-passing operations over the
trajectory is O(

∑T
t=1 M

t). After some calculations, we
show that

T∑
t=1

M t = M0
T∑

t=1

ᾱt +
N(N − 1)p

2

T∑
t=1

1− ᾱt. (4)

By setting p = 0, we eliminate the second term and reduce
the number of edges in graphs in the diffusion trajectory by
a significant factor, then the MPNN will have much fewer
message-passing operations.

We then analyze the number of entries we need to predict
in the output At−1. When p = 0, the forward process is
an edge-removal process, and the degree of a node is non-
increasing for any forward transition. A node with a degree
change from t− 1 to t is considered “active”. When a node
is inactive at t−1, all edges incident to this node is kept at t.
Figure 1 shows the average number of active nodes for each
forward transition. We observe that active nodes only take a
small fraction of the total when the convergent distribution
is G(N, 0).

While a previous diffusion-based model makes predictions
for all node pairs, the observation above indicates that we
can save computation by making predictions only for pairs
of active nodes. In particular, the denoising model can first
infer which nodes are active in each step and then only
predict edges between active nodes. Below we will develop

such a model and only consider the diffusion process with
p = 0.

3.2. A diffusion-based model that explicitly models
active nodes

We treat the “active nodes” as latent variables s1:T and in-
corporate them into both the forward and reverse processes.
Let dt = deg(At) be the node degree vector of At, then
st := 1[dt−1 ̸= dt] is a binary vector indicating whether
nodes are active (having degree change from t− 1 to t) or
not from t−1 to t. In the following, we redefine the forward
and reverse processes.

Forward process. With latent variables s1:T , we show
that the forward process can be rewritten into the following
decomposition:

q(A1:T , s1:T |A0)=

T∏
t=1

q(At|At−1)q(st|At−1,At). (5)

The forward process does not change by including s1:T

since the value of st is determined by At−1 and At. This
allows us to use still the forward transition q(At|At−1) to
draw the entire sequence.

Reverse process. We decompose the denoising model as
follows:

pθ(A
0:T, s1:T)=p(AT)

T∏
t=1

pθ(A
t−1|At, st)pθ(s

t|At). (6)

Here both pθ(A
t−1|At, st) and pθ(s

t|At) are learnable dis-
tributions. Intuitively, the denoising model first predicts
which nodes are active (st) and then generates edges be-
tween them to obtain At−1. Since we only predict edges
between active nodes indicated by st, all edges that incident
inactive nodes are carried from At to At−1 directly.

Our EDGE model is specified by (6). The generative frame-
work is demonstrated in Figure 2.

3

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Remove edges by q(At |At−1)

: data

Decides active nodes in q(st |At−1, At)

Add edges between active nodes by pθ(At−1 |At, st)

At−1 At

Reverse process

Forward process
1

5

2

3 4

1

5

2

3 4
1 0 1 1 0

1

5

2

3 4

1

5

2

3 4 AtAt−1

1

5

2

3 4 AT ∼ G(N,0)

1

5

2

3 4 A0

Sample active nodes from pθ(st |At)
1 0 1 1 0

Figure 2. Forward and reverse processes. For the forward process, At is sampled from q(At|At−1), then st is deterministically generated
given At−1 and At. For the reverse process, st is first sampled from a node selection distribution pθ(s

t|At), then At−1 is sampled from
the parameterized distribution pθ(A

t−1|At, st).

3.3. Learning the reverse process

We optimize the model parameters θ by maximizing the vari-
ational lower bound (VLB) of log p(A0). Following Sohl-
Dickstein et al. (2015); Ho et al. (2020), the VLB is:

L(A0; θ) = Eq

[
log

pθ(A
0:T , s1:T)

q(A1:T , s1:T |A0)

]
(7)

= Eq

[
log

p(AT)

q(AT |A0)
+ log pθ(A

0|A1, s1)︸ ︷︷ ︸
reconstruction term Lrec

+

T∑
t=2

log
pθ(A

t−1|At, st)

q(At−1|At, st,A0)︸ ︷︷ ︸
edge prediction term Ledge(t)

+

T∑
t=1

log
pθ(s

t|At)

q(st|At,A0)︸ ︷︷ ︸
node selection term Lnode(t)

]
.

Appendix B.1 shows detailed derivation. The first term
contains no learnable parameters. The second term mea-
sures the reconstruction likelihood. For the edge prediction
term Ledge(t), unlike Sohl-Dickstein et al. (2015); Ho et al.
(2020), the posterior q(At−1|At, st,A0) is hard to com-
pute, and there is not a closed-form for this term. Since
the entropy H[q(At−1|At, st,A0)] is a constant, we only
optimize the cross entropy term in Ledge(t) via Monte Carlo
estimates. We leave the work of variance reduction to the
future.

For the node selection term Lnode(t), we show that
q(st|At,A0) has closed-form expression. In particular, we
first derive the posterior of the node degree distribution
q(dt|At,A0) as follows:

q(dt−1|At,A0) = q(dt−1|dt,d0) =

N∏
i=1

q(dt−1
i |dt

i,d
0
i),

where q(dt−1
i |dt

i,d
0
i) = Bin(k = ∆t

i, n = ∆0
i , p = γt),

with ∆t
i = dt−1

i −dt
i, ∆

0
i = d0

i −dt
i, γt =

βtᾱt−1

1− ᾱt
. (8)

Here Bin(k;n, p) is a binomial distribution parameterized
by n and p. Intuitively, a node degree dt−1

i is only relevant

to the node’s degrees d0
i and dt

i at steps 0 and t. The actual
edges do not affect the degree probability since each edge
is added or removed independently. We provide formal
proof and discuss the forward node degree distribution in
Appendix A.2.

Since sti = 1[dt−1
i ̸= dt

i], we can compute the probabil-
ity q(sti = 1|dt

i,d
0
i), which is 1 − q(dt−1

i = dt
i|dt

i,d
0
i).

Finally, we obtain the closed-form posterior:

q(st|dt,d0) =

N∏
i=1

q(sti|dt
i,d

0
i), where (9)

q(sti|dt
i,d

0
i) = B

(
sti; 1− (1− γt)

∆0
i
)
.

The KL divergence Lnode(t) turns out to be comparisons
between Bernoulli distributions.

3.4. Degree-guided graph generation

A graph’s node degrees are often strongly correlated to its
other statistics, so it is important for a generative model
to capture the node degrees of training graphs. Here we
directly incorporate degree information in the proposed gen-
erative model.

We explicitly model node degrees d0 of a graph A0 as a
random variable, then the forward process becomes

q(A1:T |A0) = q(A1:T |A0)q(d0|A0). (10)

Here q(d0|A0) = 1 because d0 is determined by A0. We
also include d0 into the generative model p(A0,d0). If
the model guarantees that d0 is the node degrees of A0,
then pθ(A

0) = pθ(A
0,d0) still models graph data A0.

Even if pθ(A0,d0) allows d0 to differ a little from the true
node degrees, it is still valid to maximize the likelihood
pθ(A

0,d0 = A01) because model training will encourage
the model to generate A0 and d0 to match each other. We
decompose the model by:

pθ(A
0,d0) = pθ(d

0)pθ(A
0|d0). (11)

4

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

With this decomposition, we first sample arbitrary node
degrees d0 from pθ(d

0), then generate a graph with the de-
gree constraint (See Alg. 1). Correspondingly, the denoising
model becomes

pθ(A
0:T , s1:T ,d0) = pθ(d

0)pθ(A
0:T , s1:T |d0). (12)

We separate the optimizations for the node degree model
pθ(d

0) and the graph denoising model pθ(A0:T , s1:T |d0).
The entire training objective is

L(A0,d0;θ)=Eq

[
log pθ(d

0)︸ ︷︷ ︸
L(d0;θ)

+ log
pθ(A

0:T, s1:T |d0)

q(A1:T, s1:T |A0)︸ ︷︷ ︸
L(A0|d0;θ)

]
.

(See Appendix B.2 for detailed derivation.) For L(d0; θ),
we treat the learning of node degree distribution as a se-
quence modeling task. The decomposition of L(A0|d0; θ)
remains the same as Eqn. (7), except that all terms re-
lated to the graph denoising model are now condition-
ing on d0. In particular, for the node selection distribu-
tion, we consider a special parameterization by setting
pθ(s

t|At,d0) := q(st|dt,d0) in Eqn. (9). Note that now
the node selection distribution contains no learnable param-
eters. Moreover, since the KL divergence Lnode(t) is now
zero, we can further simplify the L(A0|d0; θ) into

L(A0|d0;θ)=Eq

[
log

p(AT)

q(AT |A0)
+log pθ(A

0|A1, s1,d0)

+

T∑
t=2

log
pθ(A

t−1|At, st,d0)

q(At−1|At, st,A0)

]
. (13)

In our framework, the node degree constraint d0 is mainly
imposed on pθ(s

t|At,d0) – only nodes with a degree below
the specified degree d0 may be selected to participate in
the edge prediction. On the other hand, though the exact
probability pθ(A

t−1|At, st,d0) includes information about
the maximum number of edges (d0 − dt) that can be added
to nodes, this can be not easy to track during the edge
formation. Here we consider simply augmenting the inputs
to the neural network with d0. In practice, we found that the
specified node degrees d0 can accurately control the actual
node degrees of the generated graphs.

Degree-guided generation turns out to be very useful in
modeling large graphs. We reason that the d0 significantly
reduces the possible trajectories a graph can evolve along,
thus reducing the modeling complexity.

3.5. Implementation

We briefly describe the implementation of pθ(s
t|At),

pθ(A
t−1|At, st), and pθ(d

0). Note we use the
same network architecture for pθ(A

t−1|At, st) and
pθ(A

t−1|At, st,d0), except the inputs to the latter includes

Algorithm 1 Degree-guided graph generation
Input: Empty graph AT , graph model pθ(At−1|At, st),
degree sequence model pθ(d0), and diffusion steps T .
Output: Generated graph A0

Draw d0 ∼ pθ(d
0)

for t = T, . . . , 1 do
Draw st ∼ q(st|deg(At),d0).
Draw At−1 ∼ pθ(A

t−1|At, st).
end for

d0. We treat pθ(st|At) as a node classification problem
and pθ(A

t−1|At, st) as an link prediction problem. Both
components share the same MPNN that takes At as the
input and computes node representations Zt ∈ RN×dh for
all nodes. The hidden dimension dh is a hyper-parameter
here. Then a network head uses Zt to predict st, and an-
other one uses Zt[st] to predict links between active nodes
indicated by st. For the node degree model pθ(d0), if there
are multiple graphs in the dataset, we use a recurrent neu-
ral network (RNN) to fit the histogram of node degrees.
If there is only one graph with node degrees d0, then we
set pθ(d0) = 1 directly. Implementation details are in Ap-
pendix C.

3.6. Model analysis

Complexity analysis. Let integer M represent the num-
ber of edges in a graph, and K be the maximum number of
active nodes during the reverse process. In each generation
step t, the MPNN needs O(M) operations to compute node
representations, O(N) operations to predict st, and O(K2)
operations to predict links between K active nodes. The
factor K is relevant to noise scheduling: we find that K is
smaller than N by at least one order of magnitude when
the noise scheduling is linear. In a total of T generation
steps, the overall running time O

(
T max(K2,M)

)
. As a

comparison, previous diffusion-based models need running
time O(TN2) because they need to make O(N2) link pre-
dictions at each time step.

Expressivity analysis. EDGE modifies a graph for mul-
tiple iterations to generate a sample. In each iteration, it
adds new edges to the graph based on the graph structure
in the prior iteration. Therefore, EDGE is NOT an edge-
independent model and does not have the limitation ana-
lyzed by Chanpuriya et al. (2021), thus it has a theoretical
advantage over previous one-shot generative models.

The ability of EDGE might be affected by the underly-
ing MPNN, which may not be able to distinguish different
graph structures due to expressivity issues (Xu et al., 2018).
However, this issue can be overcome by choosing more ex-
pressive GNNs (Sato, 2020). We defer such discussion to
future work.

5

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

4. Related Work
Edge-independent models, which assume edges are formed
independently with some probabilities, are prevalent in prob-
abilistic models for large networks. These models include
classical models such as ER graph models (Erdos et al.,
1960), SBMs (Holland et al., 1983), and recent neural mod-
els such as variational graph auto-encoders (Kipf & Welling,
2016b; Mehta et al., 2019; Li et al., 2020; Chen et al., 2022a),
NetGAN and its variant (Bojchevski et al., 2018; Rendsburg
et al., 2020). Recent works show that these models can not
reproduce desiring statistics of the target network, such as
triangle counts, clustering coefficient, and square counts (Se-
shadhri et al., 2020; Chanpuriya et al., 2021).

Deep auto-regressive (AR) graph models (Li et al., 2018;
You et al., 2018; Liao et al., 2019; Zang & Wang, 2020; Han
et al., 2023) generate graph edges by sequentially filling up
an adjacency matrix to generate a graph. These algorithms
are slow because they need to make N2 predictions. Dai
et al. (2020) proposes a method to leverage graph sparsity
and predict only non-zero entries in the adjacency matrix.
Long-term memory is a typical issue of these sequential
models, so it is hard for them to model global graph proper-
ties. Moreover, these models are not invariant with respect
to node orders of training graphs, and special techniques
(Chen et al., 2021; Han et al., 2023) are often needed to train
these models.

Diffusion-based generative models are shown to be powerful
in generating high-quality graphs (Niu et al., 2020; Liu et al.,
2019; Jo et al., 2022; Haefeli et al., 2022; Chen et al., 2022b;
Vignac et al., 2022; Kong et al.). By “tailoring” a graph with
multiple steps, these models can model edge correlations.
They overcome the limitations of auto-regressive modes as
well. However, all previous diffusion-based models focus
on generation tasks with small graphs. This work aims to
scale diffusion-based models to large graphs.

5. Experiments
We empirically evaluate our proposed approach from two
perspectives: whether it can capture statistics of training
graphs and whether it can generate graphs efficiently.

5.1. Experimental setup

Datasets. We conduct experiments on both generic graph
datasets and large networks. The generic graph datasets
consist of multiple graphs of varying sizes. Here we con-
sider Community and Ego datasets (You et al., 2018), all of
which contain graphs with hundreds of nodes. We also con-
sider four real-world networks, Polblogs (Adamic & Glance,
2005), Cora (Sen et al., 2008), Road-Minnesota (Rossi &
Ahmed, 2015), and PPI (Stark et al., 2010). Each of these
networks contains thousands of nodes. We also use the

#nodes #edges #graphs feature

Community [60, 160] [231, 1,965] 510
Ego [50, 399] [57, 1,071] 757
QM9 [1,9] [0, 28] 133,885 ✓
Polblogs 1,222 16,714 1
Cora 2,485 5,069 1
Road-MN 2,640 6,604 1
PPI 3,852 37,841 1

Table 1. Dataset statistics

QM9 dataset (Ramakrishnan et al., 2014) to demonstrate
that EDGE can be easily extended to generate graphs with
attributes. The statistics of the datasets are shown in Table 1.

Baselines. For generic graphs, We compare EDGE to six
recent deep generative graph models, which include two
auto-regressive graph models, GraphRNN (You et al., 2018)
and GRAN (Liao et al., 2019), three diffusion-based mod-
els, GDSS (Jo et al., 2022), DiscDDPM (Haefeli et al.,
2022) and DiGress (Vignac et al., 2022), and one flow-
based model, GraphCNF (Lippe & Gavves, 2020). For large
networks, we follow Chanpuriya et al. (2021) and use six
edge-independent models, which include VGAE (Kipf &
Welling, 2016b), CELL (Rendsburg et al., 2020), TSVD (Se-
shadhri et al., 2020), and three methods proposed by Chan-
puriya et al. (2021) (CCOP, HDOP, Linear). We also include
GraphRNN as a baseline because it is still affordable to train
it on large networks. For the QM9 dataset, We compare
EDGE against GDSS (Jo et al., 2022) and DiGress (Vignac
et al., 2022). The implementation of our model is available
at github.com/tufts-ml/graph-generation-EDGE.

Evaluation. We examine the generated generic graphs
with both structure-based and neural-based metrics. For
structured-based metrics, we evaluate the Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012) between test
graphs and generated graphs in terms of degrees, cluster-
ing coefficients, and orbit counts (You et al., 2018). For
neural-based metrics, we evaluate the FID and the MMD
RBF metrics proposed by Thompson et al. (2022). All im-
plementations of the evaluation are provided by Thompson
et al. (2022). For all these metrics, the smaller, the better.

For each large network, we follow Chanpuriya et al. (2021)
and evaluate how well the graph statistics of the generated
network can match ground truths, which are statistics com-
puted from training data. We consider the following statis-
tics: power-law exponent of the degree sequence (PLE);
normalized triangle counts (NTC); global clustering coef-
ficient (CC) (Chanpuriya et al., 2021); characteristic path
length (CPL); and assortativity coefficient (AC) (Newman,
2002). We also report the edge overlap ratio (EO) between
the generated network and the original one to check to which
degree a model memorizes the graph. A graph generated by
a good model should have statistics similar to true values

6

https://github.com/tufts-ml/graph-generation-EDGE

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Community Ego
Structure-based (MMD) Neural-based Structure-based (MMD) Neural-based
Deg. Clus. Orb. FID RBF MMD Deg. Clus. Orb. FID RBF MMD

GRNN 0.1440 0.0535 0.0198 8.3869 0.1591 0.0768 1.1456 0.1087 90.5655 0.6827
GRAN 0.1022 0.0894 0.0198 64.1145 0.0749 0.5778 0.3360 0.0406 489.9598 0.2633

GraphCNF 0.1129 1.2882 0.0197 29.1526 0.1341 0.1010 0.7654 0.0820 18.7929 0.0896
GDSS 0.0535 0.2072 0.0196 6.5531 0.0443 0.8189 0.6032 0.3315 60.6100 0.4331
DiscDDPM 0.1238 0.6549 0.0246 8.6321 0.0840 0.4613 0.1681 0.0633 42.7994 0.1561
DiGress 0.0409 0.0167 0.0298 3.4261 0.0460 0.0708 0.0092 0.1205 18.6794 0.0489

EDGE 0.0175 0.0689 0.0198 2.2378 0.0227 0.0579 0.1773 0.0519 15.7614 0.0658

Table 2. Generation performance on generic graphs. We used unpaired t-tests to compare the results; the numbers in bold indicate the
method is better at the 5% significance level, and the second-best method is underlined. We provide standard deviation in Appendix F.

computed from the training graph. At the same time, it
should have a small EO with the training network, which
means that the model should not simply memorize the input
data.

For the QM9 dataset, we evaluate the Validity, Uniqueness,
Fréchet ChemNet Distance (Preuer et al., 2018) and Scaf-
fold similarity (Bemis & Murcko, 1996) on the samples
generated from baselines and our proposed method. We use
molsets library (Polykovskiy et al., 2020) to implement the
evaluation.

5.2. Evaluation of sample quality

Generic graph generation. Table 2 summarizes the eval-
uation of generated graphs on the Community and Ego
datasets. Best performances are in bold, and second-best
performances are underscored. EDGE outperforms all base-
lines on 8 out of 10 metrics. For the other two metrics,
EDGE only performs slightly worse than the best. We hy-
pothesize that EDGE gains advantages by modeling node
degrees because they are informative to the graph structure.

Large network generation. Unlike edge-independent
models, the edge overlap ratios in the GraphRNN and our
approach are not tunable. To make a fair comparison, we
report the performance of the edge-independent models that
have a similar or higher EO than GraphRNN and EDGE.
Table 3 shows the statistics of the network itself (labeled
as “True”) and statistics computed from generated graphs.
The statistics nearest to true values are considered as best
performances, which are in bold. Second-best performances
are underscored.

The proposed approach shows superior performances on
all four networks. The improvements on Polblogs and PPI
networks are clear. On the Road-Minnesota dataset, EDGE
has a much smaller EO than edge-independent models, but
its performances in terms of capturing graph statistics are
similar to those models. On the Cora dataset, EDGE also
has an EO much smaller than edge-independent models, but

102 103

Average #nodes of the sampled graphs

100

101

102

103

Sa
m

pl
in

g
tim

e(
s)

GRNN
GRAN
GraphCNF
GDSS

DiscDDPM
DiGress
EDGE

Figure 3. Sampling speed comparison over different models.

it slightly improves over these models. Road-Minnesota
and Cora networks are both sparse networks – the message-
passing neural model may not work at its full strength. We
notice that GraphRNN can not even compete with edge-
independent models. We also visualize the generated graphs
of Polblogs in Figure 4.

5.3. Efficiency

We compare the sampling efficiency of EDGE against other
deep generative graph models. We record the average time
for a model to sample one graph to make a consistent com-
parison over all datasets. The average sampling time for
each dataset is averaged over 128 runs. Figure 3 shows the
relationship between sampling time and graph sizes. Except
for GraphRNN, all baseline neural models can only generate
graphs for Community and Ego datasets, which contain 110
and 144 nodes on average. Our approach runs only slower
than GraphCNF on the Community dataset by 0.5s. On
large graphs, our model has a clear advantage in terms of
running time. Note that our model spends less time on an
Ego graph than a Community graph, though an Ego graph,
on average, contains more nodes than a Community graph.
This is because the computation of our model scales with
the number of edges, and Ego graphs are often sparser than
Community graphs.

7

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Polblogs Cora
EO PLE NTC CC CPL AC EO PLE NTC CC CPL AC

True 100 1.414 1 0.226 2.738 -0.221 100 1.885 1 0.090 6.311 -0.071

OPB 24.5 1.395 0.667 0.150 2.524 -0.143 10.9 1.852 0.097 0.008 4.476 -0.037
HDOP 16.4 1.393 0.687 0.153 2.522 -0.131 0.9 1.849 0.113 0.009 4.770 -0.030
CELL 26.8 1.385 0.810 0.211 2.534 -0.230 10.3 1.774 0.009 0.002 5.799 -0.018
CO 20.1 1.975 0.045 0.028 2.502 0.068 9.7 1.776 0.009 0.002 5.653 0.010
TSVD 32.0 1.373 0.872 0.205 2.532 -0.216 6.7 1.858 0.349 0.028 4.908 -0.006
VGAE 3.6 1.723 0.05 0.001 2.531 -0.086 1.5 1.717 0.120 0.220 4.934 0.002

GRNN 9.6 1.333 0.354 0.095 2.566 0.096 0.4 1.822 0.043 0.011 6.146 0.043

EDGE 16.5 1.398 0.977 0.217 2.647 -0.214 1.1 1.755 0.446 0.034 4.995 -0.046

Road-Minnesota PPI
EO PLE NTC CC CPL AC EO PLE NTC CC CPL AC

True 100 2.147 1 0.028 35.349 -0.187 100 1.462 1 0.092 3.095 -0.099

OPB 29.7 2.188 0.083 0.002 8.036 0.009 16.3 1.443 0.640 0.058 2.914 -0.089
HDOP 13.2 2.192 0.208 0.004 8.274 -0.024 6.9 1.444 0.638 0.058 2.917 -0.086
CELL 30.7 2.267 0.053 0.001 10.219 -0.082 6.7 1.400 0.248 0.040 3.108 0.176
CO 19.8 2.044 2.845 0.040 11.478 -0.012 9.9 1.754 0.015 0.006 3.046 0.043
TSVD 19.4 2.172 0.060 0.001 8.431 0.006 13.2 1.426 0.848 0.077 2.867 -0.089
VGAE 1.3 1.678 0.096 0.009 11.120 -0.027 0.5 1.362 0.091 0.012 2.991 0.054

GRNN 0.6 1.570 0.099 0.007 11.695 0.006 OOM OOM OOM OOM OOM OOM

EDGE 0.8 1.910 0.962 0.011 9.125 -0.063 7.5 1.449 0.981 0.091 3.028 -0.107

Table 3. Graph statistics of generated large networks. EDGE generates graphs with statistics that are much closer to the ground truths.

Validity↑ Uniqueness↑ FCD↓ Scaf. Sim.↑
GDSS 95.7 98.5 2.9 -
DiGress 99.0 100 0.151 0.908
EDGE 99.1 100 0.458 0.763

Table 4. Generative performance on the QM9 dataset

5.4. Generative performance on QM9 dataset

We further investigate EDGE’s ability of generated graphs
with node and edge attributes. To include node attributes,
we first extend the basic EDGE model with a hierarchical
generation process that can also sample node attributes. We
put the details of this extension in Appendix E. We evaluate
the extended EDGE model on the QM9 dataset and compare
it with other neural baselines. The results in Table 4 show
that the extended EDGE model has a performance compa-
rable with that of DiGress. Note that DiGress is specially
designed for molecule generation, and our model runs much
faster than DiGress.

5.5. Ablation studies

Diffusion variants. The random variables s1:T and d0

play important roles in EDGE’s good performances, and
we verify that through an ablation study on the Polblogs
dataset. We use four diffusion configurations: 1) setting
G(N, 0.5) as the convergent distribution and directly using

s1:T d0 PLE NTC CC CPL AC Speed

True 1.414 1 0.226 2.738 -0.221

G(N,0.5) OOM OOM OOM OOM OOM OOM
G(N,0) 1.341 3.234 0.237 2.747 -0.304 15.3s
G(N,0) ✓ 1.383 2.364 0.251 2.638 -0.331 2.1s
G(N,0) ✓ ✓ 1.398 0.977 0.217 2.647 -0.214 1.7s

Table 5. Performance of EDGE’s variants on the Polblogs dataset.

an MPNN as the denoising model pθ(At−1|At); 2) setting
G(N, 0) as the convergent distribution and directly using
an MPNN as the denoising model (without modeling active
nodes and degree guidance); 3) the EDGE model without
degree guidance, and 4) the EDGE model. Table 5 shows
the performances of the four models. If we set the conver-
gent distribution to G(N, 0.5), we can not even train such as
model since it requires an excessively large amount of GPU
memory. This justifies our use of G(N, 0) as the convergent
distribution. The introduction of s1:T (Section 3.2) signif-
icantly improves the sampling speed. Finally, the EDGE
approach, which explicitly models node degrees d0 and
generates graphs with degree guidance, further improves the
generative performance.

Diffusion steps vs. model performance. In EDGE, the
number of diffusion steps T decides how many nodes would
actively participate in the edge prediction. Here we inves-
tigate how it affects the model performance under linear

8

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Training graph

OPB HDOP CELL CO

TSVD VGAE GRNN EDGE (ours)

Figure 4. Visualization of samples for the Polblogs dataset. We observe that only CELL, TSVD, and EDGE can learn the basic structure
of the ground-truth network, while other baselines fail. The network sampled from EDGE appears to be more similar to the training graph.

noise scheduling.

EO PLE NTC CC CPL AC

Pl
ob

lo
gs

True 100 1.414 1 0.226 2.738 -0.221
64 1.8 1.380 1.148 0.235 2.800 -0.202
128∗ 14.9 1.386 1.030 0.238 2.747 -0.238
256∗ 16.5 1.398 0.977 0.217 2.647 -0.214
512∗ 15.0 1.398 0.923 0.218 2.635 -0.268
1024∗ 16.5 1.400 0.991 0.219 2.665 -0.246

C
or

a

True 100 1.885 1 0.090 6.311 -0.071
64∗ 0.9 1.755 0.446 0.034 4.995 -0.046
128 1.1 1.747 0.555 0.042 5.017 -0.050
256 0.8 1.753 0.360 0.027 4.818 -0.041
512 0.8 1.753 0.360 0.027 4.818 -0.042
1024 0.9 1.762 0.348 0.027 4.778 -0.034

R
oa

d-
M

N

True 100 2.147 1 0.028 35.349 -0.187
64∗ 0.8 1.910 0.962 0.011 9.125 -0.063
128 1.2 1.803 1.232 0.041 6.501 -0.030
256 0.8 1.953 1.057 0.014 7.471 -0.005
512 1.3 1.965 1.472 0.020 7.710 -0.006
1024 1.2 1.983 2.491 0.035 7.906 -0.034

PP
I

True 100 1.462 1 0.092 3.095 -0.099
64 7.4 1.421 2.455 -0.116 3.498 -0.116
128 6.2 1.419 1.503 0.126 3.384 -0.147
256∗ 7.5 1.449 0.981 0.091 3.028 -0.107
512∗ 7.0 1.438 1.101 0.099 3.244 -0.107
1024∗ 7.1 1.441 0.925 0.074 3.150 -0.101

Table 6. Large diffusion steps T does not necessarily improve
model performance. Good diffusion steps are labeled with “*”.

Specifically, we train our model on three large networks
with T ∈ {64, 128, 256, 512, 1024} and report the model
performance in Table 6. Unlike traditional diffusion models
in which more diffusion steps usually yield better perfor-

mance, a large T for our model does not always improve
the performance. For instance, T = 64 gives the best per-
formance in the Cora and Road-Minnesota datasets. Our
explanation for this observation is the high level of sparsity
in training graphs. If we have a large T , the total number
of generation steps, the model can only identify a few ac-
tive nodes and predict edges between them in each time
step. The model faces a highly imbalanced classification
problem, which may lead to poor model convergence. Such
an issue is not observed for relatively denser graphs, e.g.
Polblogs and PPI datasets, which require a relatively large
T to guarantee good model performances. When T is large
enough (T = 128 for Polbogs and T = 256 for PPI), further
increasing T does not improve the model performance.

6. Conclusion
In this work, we propose EDGE, a generative graph model
based on a discrete diffusion process. By leveraging the
sparsity in the diffusion process, EDGE significantly im-
proves the computation efficiency and scales to graphs with
thousands of nodes. By explicitly modeling node degrees,
EDGE improves its ability in capturing important statistics
of training graphs. Our extensive empirical study shows
that EDGE has superior performance in benchmark graph
generation in terms of both computational efficiency and
generation quality.

Acknowledgment
We thank anonymous reviewers for their valuable feedback.
Xiaohui Chen and Li-Ping Liu are partially supported by the
National Science Foundation under Grant No. 2239869.

9

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

References
Adamic, L. A. and Glance, N. The political blogosphere and

the 2004 us election: divided they blog. In Proceedings
of the 3rd international workshop on Link discovery, pp.
36–43, 2005.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den
Berg, R. Structured denoising diffusion models in discrete
state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Bemis, G. W. and Murcko, M. A. The properties of known
drugs. 1. molecular frameworks. Journal of medicinal
chemistry, 39(15):2887–2893, 1996.

Bojchevski, A., Shchur, O., Zügner, D., and Günnemann,
S. Netgan: Generating graphs via random walks. In
International conference on machine learning, pp. 610–
619. PMLR, 2018.

Chakrabarti, D. and Faloutsos, C. Graph mining: Laws,
generators, and algorithms. ACM computing surveys
(CSUR), 38(1):2–es, 2006.

Chanpuriya, S., Musco, C., Sotiropoulos, K., and
Tsourakakis, C. On the power of edge independent graph
models. Advances in Neural Information Processing Sys-
tems, 34:24418–24429, 2021.

Chen, X., Han, X., Hu, J., Ruiz, F. J., and Liu, L. Order mat-
ters: Probabilistic modeling of node sequence for graph
generation. arXiv preprint arXiv:2106.06189, 2021.

Chen, X., Chen, X., and Liu, L. Interpretable node
representation with attribute decoding. arXiv preprint
arXiv:2212.01682, 2022a.

Chen, X., Li, Y., Zhang, A., and Liu, L.-p. Nvdiff: Graph
generation through the diffusion of node vectors. arXiv
preprint arXiv:2211.10794, 2022b.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y.
On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259,
2014.

Dai, H., Nazi, A., Li, Y., Dai, B., and Schuurmans, D.
Scalable deep generative modeling for sparse graphs. In
International conference on machine learning, pp. 2302–
2312. PMLR, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021.

Du, Y., Wang, S., Guo, X., Cao, H., Hu, S., Jiang, J., Var-
ala, A., Angirekula, A., and Zhao, L. Graphgt: Machine
learning datasets for graph generation and transformation.
In Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2),
2021.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural Networks, 107:3–11,
2018.

Erdos, P., Rényi, A., et al. On the evolution of random
graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60,
1960.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
and Smola, A. A kernel two-sample test. The Journal of
Machine Learning Research, 13(1):723–773, 2012.

Haefeli, K. K., Martinkus, K., Perraudin, N., and Wat-
tenhofer, R. Diffusion models for graphs benefit from
discrete state spaces. arXiv preprint arXiv:2210.01549,
2022.

Han, X., Chen, X., Ruiz, F. J., and Liu, L.-P. Fitting au-
toregressive graph generative models through maximum
likelihood estimation. Journal of Machine Learning Re-
search, 24(97):1–30, 2023.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137,
1983.

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling,
M. Argmax flows and multinomial diffusion: Learning
categorical distributions. Advances in Neural Information
Processing Systems, 34:12454–12465, 2021.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative mod-
eling of graphs via the system of stochastic differential
equations. arXiv preprint arXiv:2202.02514, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016a.

10

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016b.

Kong, L., Cui, J., Sun, H., Zhuang, Y., Prakash, B. A.,
and Zhang, C. Autoregressive diffusion model for graph
generation.

Li, J., Yu, J., Li, J., Zhang, H., Zhao, K., Rong, Y., Cheng,
H., and Huang, J. Dirichlet graph variational autoencoder.
Advances in Neural Information Processing Systems, 33:
5274–5283, 2020.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324, 2018.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duve-
naud, D. K., Urtasun, R., and Zemel, R. Efficient graph
generation with graph recurrent attention networks. In
Advances in Neural Information Processing Systems, pp.
4255–4265, 2019.

Lippe, P. and Gavves, E. Categorical normalizing
flows via continuous transformations. arXiv preprint
arXiv:2006.09790, 2020.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Lusher, D., Koskinen, J., and Robins, G. Exponential ran-
dom graph models for social networks: Theory, methods,
and applications. Cambridge University Press, 2013.

Madhawa, K., Ishiguro, K., Nakago, K., and Abe, M. Graph-
nvp: An invertible flow model for generating molecular
graphs. arXiv preprint arXiv:1905.11600, 2019.

Mehta, N., Duke, L. C., and Rai, P. Stochastic blockmodels
meet graph neural networks. In International Conference
on Machine Learning, pp. 4466–4474. PMLR, 2019.

Newman, M. E. Assortative mixing in networks. Physical
review letters, 89(20):208701, 2002.

Newman, M. E., Watts, D. J., and Strogatz, S. H. Random
graph models of social networks. Proceedings of the
national academy of sciences, 99(suppl 1):2566–2572,
2002.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4474–4484. PMLR,
2020.

O’Bray, L., Horn, M., Rieck, B., and Borgwardt, K.
Evaluation metrics for graph generative models: Prob-
lems, pitfalls, and practical solutions. arXiv preprint
arXiv:2106.01098, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golo-
vanov, S., Tatanov, O., Belyaev, S., Kurbanov, R., Arta-
monov, A., Aladinskiy, V., Veselov, M., et al. Molecular
sets (moses): a benchmarking platform for molecular gen-
eration models. Frontiers in pharmacology, 11:565644,
2020.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and
Klambauer, G. Fréchet chemnet distance: a metric for
generative models for molecules in drug discovery. Jour-
nal of chemical information and modeling, 58(9):1736–
1741, 2018.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld,
O. A. Quantum chemistry structures and properties of
134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Rendsburg, L., Heidrich, H., and Von Luxburg, U. Netgan
without gan: From random walks to low-rank approxima-
tions. In International Conference on Machine Learning,
pp. 8073–8082. PMLR, 2020.

Rossi, R. and Ahmed, N. The network data repository with
interactive graph analytics and visualization. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 29, 2015.

Sato, R. A survey on the expressive power of graph neural
networks. arXiv preprint arXiv:2003.04078, 2020.

Schuster, M. and Paliwal, K. K. Bidirectional recurrent
neural networks. IEEE transactions on Signal Processing,
45(11):2673–2681, 1997.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Seshadhri, C., Sharma, A., Stolman, A., and Goel, A. The
impossibility of low-rank representations for triangle-rich
complex networks. Proceedings of the National Academy
of Sciences, 117(11):5631–5637, 2020.

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and Sun,
Y. Masked label prediction: Unified message passing
model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In International Conference on Artificial Neural Net-
works, pp. 412–422. Springer, 2018.

11

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Stark, C., Breitkreutz, B.-J., Chatr-Aryamontri, A., Boucher,
L., Oughtred, R., Livstone, M. S., Nixon, J., Van Auken,
K., Wang, X., Shi, X., et al. The biogrid interaction
database: 2011 update. Nucleic acids research, 39
(suppl 1):D698–D704, 2010.

Thompson, R., Knyazev, B., Ghalebi, E., Kim, J., and Taylor,
G. W. On evaluation metrics for graph generative models.
arXiv preprint arXiv:2201.09871, 2022.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2018.

Ying, X. and Wu, X. Graph generation with prescribed
feature constraints. In Proceedings of the 2009 SIAM
International Conference on Data Mining, pp. 966–977.
SIAM, 2009.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec,
J. GraphRNN: Generating realistic graphs with deep
auto-regressive models. arXiv preprint arXiv:1802.08773,
2018.

Zang, C. and Wang, F. Moflow: an invertible flow model for
generating molecular graphs. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 617–626, 2020.

12

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Appendix

A. Derivation of the G(N, 0) Diffusion Process and the Degree Change Distribution
We first derive the forward and reverse transition distribution of the G(N, 0) diffusion process, then we examine the
distribution of node degree changes for both directions.

A.1. The G(N, 0) diffusion process

We consider modeling the upper triangle of the adjacency matrix A0. Since we have p = 0 in our framework, for the
forward transition kernel, we have

q(At|At−1) =
∏

i,j:i<j

q(At
i,j |At−1

i,j), with q(At
i,j |At−1

i,j) = B(At
i,j ; (1− βt)A

t−1
i,j). (14)

q(At|A0) =
∏

i,j:i<j

q(At
i,j |A0

i,j), with q(At
i,j |A0

i,j) = B(At
i,j ; ᾱtA

0
i,j). (15)

The posterior q(At−1|At,A0), whose form is discussed in Eqn. (3), is decomposed into

q(At−1|At,A0) =
q(At|At−1)q(At−1|A0)

q(At|A0)
(16)

=
∏

i,j:i<j

q(At
i,j |A

t−1
i,j)q(At−1

i,j |A0
i,j)

q(At
i,j |A0

i,j)

=
∏

i,j:i<j

q(At−1
i,j |At

i,j ,A
0
i,j)

The entry-wise posterior distribution q(At−1
i,j |At

i,j ,A
0
i,j) is the key to deriving the distribution of active nodes. Here, we

describe the detailed form of this distribution. For any value p ∈ [0, 1], we have the form

q(At−1
i,j |At

i,j ,A
0
i,j) = B(At−1

i,j ;
p1

p0 + p1
),where (17)

p1 = [(1− βt + βtp)A
t
i,j + (βt − βtp)(1−At

i,j)][ᾱt−1A
0
i,j + (1− ᾱt−1)p] (18)

p0 = [(βtp)A
t
i,j + (1− βtp)(1−At

i,j)][1 + ᾱt−1p− ᾱt−1A
0
i,j − p] (19)

Note that the posterior derived in Sohl-Dickstein et al. (2015); Hoogeboom et al. (2021) is only applicable to the case where
p = 0.5, the above posterior is more general. In particular, for p = 0 in our case, the posterior can be simplified into the
following three cases

q(At−1
i,j |At

i,j ,A
0
i,j) =


B(At−1

i,j ; 0), A0
i,j = 0

B(At−1
i,j ; 1), A0

i,j = 1,At
i,j = 1

B(At−1
i,j ; βtᾱt−1

1−ᾱt
), A0

i,j = 1,At
i,j = 0

(20)

We provide an intuitive interpretation of the three cases. Since we are considering an edge-removing process, for the case
where A0

i,j = 0, the probability an edge (i, j) is formed at timestep t− 1 is 0 (note that the event (A0
i,j = 0,At

i,j = 1) is
unlikely to happen). The case where A0

i,j = At
i,j = 1 indicates the edge (i, j) is not removed for all timesteps from 0 to t,

therefore, At−1
i,j always equals to 1. The last case is the only case with uncertainty since an edge (i, j) can be removed at

any timestep before t.

A.2. The distribution of active nodes

We now have the entry-wise forward distribution and posterior distribution. We can compute the probability that a node has
a degree change at each time step. Here we first discuss the form of the forward and posterior degree distributions, which
can be directly applied to calculate the degree change distributions:

13

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Property 1. The forward degree distributions have the form

q(dt|d0) =

N∏
i=1

q(dt
i|d0

i), where q(dt
i|d0

i) = Binomial(k = dt
i, n = d0

i , p = ᾱt). (21)

q(dt|dt−1) =

N∏
i=1

q(dt
i|dt−1

i), where q(dt
i|dt−1

i) = Binomial(k = dt
i, n = dt−1

i , p = 1− βt). (22)

Intuitively, for q(dt|d0), there are d0
i edges connected to node i, each with probability ᾱt to be kept at time step t. The

probability the number of remaining edges equals dt
i at time step t is a binomial distribution. A similar statement also holds

for the one-step transition q(dt|dt−1), where an edge will have probability 1− βt be kept when transiting from t− 1 to t.

We also need to compute q(dt−1|dt,d0), and we show that q(dt−1|dt,d0) = q(dt−1|At,A0). It holds because edges are
removed independently. Since

dt−1
i =

N∑
j=1

At−1
i,j , (23)

and At−1
i,j -s are independent variables. According to (20), dt−1

i is the summation of three types of independent random
variables: the first type is always 0, and the second type is always 1. We only need to consider the second and third types of
variables, whose counts are respectively dt

i and (d0
i − dt

i). Then dt−1 in q(dt−1|At,A0) is the sum of dt
i and a random

variable from Binomial
(
n = d0

i − dt
i, p = βtᾱt−1

1−ᾱt

)
. It also indicates that q(dt−1|dt,d0) = q(dt−1|At,A0).

Property 2. The posterior degree distribution q(dt−1|dt,d0) has the form:

q(dt−1|dt,d0) =

N∏
i=1

q(dt−1
i |dt

i,d
0
i), with (24)

q(dt−1
i |dt

i,d
0
i) = Binomial

(
k = (dt−1

i − dt
i);n = d0

i − dt
i, p =

βtᾱt−1

1− ᾱt

)
. (25)

Now we have derived the forward and reverse degree distributions. It’s obvious that when a node has no degree change from
time step t− 1 to t or the other way around, we always have dt−1

i = dt
i. The probabilities of such events can be computed

by querying the degree distributions q(dt|dt−1) or q(dt−1|dt,d0). Let sti be the random variable that node i has degree
change at time step t. Below we show the forward and reverse degree change distributions:

Property 3. At timestep t, the forward degree change distribution for node i given dt−1
i is

q(sti|dt−1
i) = B

(
sti; 1− (1− βt)

dt−1
i

)
. (26)

Property 4. At timestep t, the reverse degree change distribution for node i given dt
i,d

0
i is

q(sti|dt
i,d

0
i) = B

(
sti; 1−

(
1− βtᾱt−1

1− ᾱt

)d0
i−dt

i

)
. (27)

The distribution of active nodes from q(sti|d
t−1
i) provides insightful supporting evidence that only a part of nodes may

have degree change at each transition, motivating us the develop such a scalable generative framework. Controlling the
number of nodes with degree change in the forward process can function as a principle to improve the noise scheduling
algorithm. In practice, we only use the reverse degree change distribution when learning the reverse process. The reverse
degree distribution is essential in improving the model expressivity since it enables graph generation with degree guidance.

14

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

B. Derivations of the Training Objectives
B.1. Derivation of the objective L(A0; θ)

To obtain the objective L(A0; θ), we first need to derive the posterior of At−1 that conditions on the introduced latent
variables st

q(At−1|At, st,A0) =
q(At−1,At, st|A0)

q(At, st|A0)
(28)

=
q(At|At−1,A0)q(st|At,At−1,A0)q(At−1|A0)

q(At, st|A0)

=
q(At|At−1)q(st|At,At−1)q(At−1|A0)

q(At|A0)q(st|At,A0)
.

By rearranging terms, we have

q(At|At−1)q(st|At,At−1) =
q(At−1|At, st,A0)q(At|A0)q(st|At,A0)

q(At−1|A0)
. (29)

The VLB L(A0; θ) of log p(A0) is derived as follow

L(A0; θ) (30)

= Eq

[
log

pθ(A
0:T , s1:T)

q(A1:T , s1:T |A0)

]
= Eq

[
log

p(AT)
∏T

t=1 pθ(A
t−1, st|At)∏T

t=1 q(A
t, st|At−1)

]
= Eq

[
log p(AT) +

T∑
t=1

log
pθ(A

t−1|At, st)pθ(s
t|At)

q(At|At−1)q(st|At,At−1)

]
= Eq

[
log p(AT) + log

pθ(A
0|A1, s1)pθ(s

1|A1)

q(A1|A0)q(s1|A1,A0)
+

T∑
t=2

log
pθ(A

t−1|At, st)pθ(s
t|At)

q(At−1|At,st,A0)q(At|A0)q(st|At,A0)
q(At−1|A0)

]
= Eq

[
log p(AT) + log

pθ(A
0|A1, s1)pθ(s

1|A1)

q(A1|A0)q(s1|A1,A0)
+

T∑
t=2

log
pθ(A

t−1|At, st)pθ(s
t|At)q(At−1|A0)

q(At−1|At, st,A0)q(st|At,A0)q(At|A0)

]
= Eq

[
log

p(AT)�����q(AT |A0)

q(AT |A0)
+log

pθ(A
0|A1, s1)pθ(s

1|A1)

�����q(A1|A0)q(s1|A1,A0)
+

T∑
t=2

log
pθ(A

t−1|At, st)pθ(s
t|At)������

q(At−1|A0)

q(At−1|At, st,A0)q(st|At,A0)�����q(At|A0)

]
= Eq

[
log

p(AT)

q(AT |A0)
+ log pθ(A

0|A1, s1)︸ ︷︷ ︸
reconstruction term Lrec

+

T∑
t=2

log
pθ(A

t−1|At, st)

q(At−1|At, st,A0)︸ ︷︷ ︸
edge prediction term Ledge(t)

+

T∑
t=1

log
pθ(s

t|At)

q(st|At,A0)︸ ︷︷ ︸
node selection term Lnode(t)

]
.

The objective requires modeling two latent variables: A1:T and s1:T . Learning to predict st from At can be difficult since it
involves capturing the dynamic interaction between nodes and the global structure of the current graph At. In Section B.2,
we demonstrate a new objective which can avoid learning pθ(s

t|At) by instead learning the node degree distribution pθ(d
0).

15

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

B.2. Derivation of the objective L(A0,d0; θ)

Since pθ(A
0) = pθ(A

0,d0), we have

log pθ(A
0) = log pθ(A

0,d0) ≥ L(A0,d0; θ) (31)

= Eq

[
log

pθ(d
0)pθ(A

0|d0)

q(d0|A0)q(A1:T |A0)

]
= Eq

[
log

pθ(d
0)pθ(A

0:T , s1:T |d0)

q(d0|A0)q(A1:T , s1:T |A0)

]
= Eq

[
log

pθ(d
0)

q(d0|A0)

]
︸ ︷︷ ︸

L(d0;θ)

+Eq

[
log

pθ(A
0:T , s1:T |d0)

q(A1:T , s1:T |A0)

]
︸ ︷︷ ︸

L(A0|d0;θ)

.

Optimizing L(d0; θ) is equivalent to fitting pθ(d
0) to the node degree data distribution pdata(d

0) as d0 is obtained from
A0. The full decomposition of L(A0|d0; θ) has the following form:

L(A0|d0;θ)= Eq

[
log

p(AT)

q(AT |A0)
+ log pθ(A

0|A1, s1,d0)︸ ︷︷ ︸
reconstruction term Lrec

+

T∑
t=2

log
pθ(A

t−1|At, st,d0)

q(At−1|At, st,A0)︸ ︷︷ ︸
edge prediction term Ledge(t)

+

T∑
t=1

log
pθ(s

t|At,d0)

q(st|At,A0)︸ ︷︷ ︸
node selection term Lnode(t)

]
.

(32)

Here AT is independent from d0 so p(AT |d0) = p(AT). And as mentioned before, we choose to parameterize
pθ(s

t|At,d0) := q(st|At,A0), resulting in the KL divergence Lnode(t) = 0 for all t. The objective is further simplified to

L(A0|d0; θ) = Eq

[
log

p(AT)

q(AT |A0)
+ log pθ(A

0|A1, s1,d0) +

T∑
t=2

log
pθ(A

t−1|At, st,d0)

q(At−1|At, st,A0)

]
. (33)

C. Detailed Implementations of the Denoising Networks and Training
C.1. Parameterization of the edge prediction distribution

As we consider modeling the upper triangle of the adjacency matrix, the edge prediction distribution pθ(A
t−1|At, st,d0) is

parameterized as:

pθ(A
t−1|At, st,d0) =

∏
i,j:i<j

pθ(A
t−1
i,j |At

i,j , s
t
i,j ,d

0), with (34)

pθ(A
t−1
i,j |At

i,j , s
t
i,j ,d

0) = B(At
i,j ; s

t
i,jℓ

t−1
i,j + (1− sti,j)A

t
i,j),

where sti,j = stis
t
j , ℓ

t−1 = gnnθ(A
t, st,d0, t).

Note that only when nodes i, j are both selected, i.e., sti,j = 1, the corresponding Bernoulli parameter ℓt−1
i,j effectively

decides the edge distribution. Below we elaborate on the architecture of the used network and analyze the runtime complexity.

Architecture design and complexity analysis. Figure 5 shows the parameterization and the inference procedure of the
edge prediction model. The main component of the parameterized network consists of L message-passing blocks (MPB).
After constructing the inputs, we iteratively update the node features using MPBs, and then compute the Bernoulli parameter
ℓt−1
i,j for node pairs (i, j) using a Multilayer perceptron(MLP). The computation flow is shown below

Z0 = concat(emb(dt)∥emb(d0)), temb = emb(t), c0 = mean(Z0);

Zl, cl,Hl = blockl(Z
l−1, temb, c

l−1,Hl−1), for l = 1, . . . , L;

ℓt−1
i,j = mlp(ZL

i + ZL
j), where (i, j) ∈ {(i, j)|sti,j = 1, 1 ≤ i < j ≤ N}.

Here Z0 is the node features initialized using degree sequence d0 and dt; c is the global context features; H is the node
hidden state features. We follow Dhariwal & Nichol (2021) and use the sinusoidal position embedding for the diffusion

16

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

concat(Zl∥temb1T)

message-pass layer

gru

concat(Zl∥cl1T)

Zl, temb

cl+1 Zl+1

Hl Hl+1

At

mlp+meancl

+

message-passing block

message-passing block

message-passing block

1

5

2

3 4

At

1

5

2

3 4

Z1

1
0
1
1
0

st

1

5

2

3 4

ℓ1,3

ℓ3,4

ℓ1,4

Sample

1

5

2

3 4

message-passing block

Reverse process

At−1

Z3 Z4

Z5

Z2

(a) Message-passing blocks (b) Edge prediction of one step

Figure 5. Parameterization and inference of the edge prediction network. (a) shows the architecture of an MPB, which updates the node
features Z and context feature c via message-passing. The state vectors H are used for keeping geometric information at different levels
of layers. (b) shows how the model infers edges during the reverse process. The node features are computed using a stacked MPB. The
model only predicts edges between active nodes indicated by st.

timestep t. Z, c, and H are iteratively updated by MPBs. Finally, the edge prediction parameter ℓt−1
i,j is computed from the

two node embeddings.

Each MPB contains a message-passing layer (MPL) and a Gated Recurrent Unit (GRU) (Cho et al., 2014). We experimented
on various MPLs and found Unified Message Passaging Model (Shi et al., 2020) demonstrates better expressivity for our
tasks. The details for the l-th MBP can be represented as follow

Zl = concat(Zl∥temb1
T)

Zl = mpl(Zl,At)

Zl,Hl+1 = gru(Zl,Hl)

cl+1 = mlp(mean(concat(Zl∥cl1T)))

Zl+1 = Zl + cl+11T

Note that in MPB, the message-passing operation has runtime complexity O(M), and all other operations have runtime
complexity O(N) as they operate on node features. The total runtime complexity of an MPB module is O(M). Another
major computation comes from the edge probability predictions, which are decided by the size of the node-pair set
|{(i, j)|sti,j = 1, i < j}| = (

∑
i s

t
i)

2 ≤ K2.

C.2. Modeling the degree sequence distribution

We want the generative model pθ(d0) is invariant on node permutation π, i.e., for all π, we have pθ(d
0) = pθ(π(d

0)). Let
u ∈ {0, . . . , Nmax}dmax be a histogram such that uk =

∑N
i=1 1[d

0
i = k] for k = 1, . . . , dmax, and dmax is the maximum

17

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

node degree in the graph training set. We consider modeling q(u|A0) instead of q(d0|A0) as u is invariant to node
permutation. The training objective is then to fit pθ(u) to the empirical data distribution pdata(u). We consider it a sequence
modeling task. The model pθ(u) has the following decomposition

pθ(u) = pθ(u1)

dmax∏
k=2

pθ(uk|u<k). (35)

We parameterize pθ(uk|u<k) with a RNN (Schuster & Paliwal, 1997), where the RNN produces Nmax-dimensional softmax
logits at each step. Once a sequence u is sampled, the graph’s corresponding size is known. Note that we only model the
degree distribution for the generic graph generation task. We only have one graph for large network generation for each
dataset. We use the node degrees of the training graph when sampling new graphs. We describe the sampling algorithm in
Alg. 2.

Algorithm 2 Sampling the degree sequence d0

Input: Maximum degree dmax, degree sequence model pθ(u).
Draw u1 ∼ pθ(u1), initialize d0 = 1u1

.
for k = 2 . . . , dmax do

Initialize uk-dimensional all-ones vector 1uk
, set d0 = concat(d0∥k1uk

).
Draw uk ∼ pθ(uk|u<k)

end for
Output: Degree sequence d0

C.3. Training

We demonstrate the training of the edge prediction model pθ(At−1|At, st,d0). Since we do not have a closed-form
computation of the expectation, the gradient ∇θL(A0; θ,d0) is estimated via Monte Carlo samples:

∇θL(A0; θ,d0) = Et∼U [1,T]

[
Eq(At−1|A0)Eq(At|At−1)Eq(st|At−1,At)

[
log pθ(A

t−1|At, st,d0)
]]
. (36)

We describe the procedure of training the edge prediction model in Alg. 3

Algorithm 3 Training procedure for edge prediction model
Input: Data distribution pdata(A

0), diffusion steps T , forward transition distributions q(At|At−1) and q(At|A0).
while training do

Draw A0 ∼ pdata(A
0), compute node degree d0 = deg(A0).

Sample t ∼ U [1, T], and have t− 1 immediately.
Draw At−1 ∼ q(At−1|A0), then draw At ∼ q(At|At−1).
Obtain active node variable st from At−1,At.
Perform gradient descent over θ with gradient ∇θ log pθ(A

t−1|At, st,d0)
end while

D. Further Discussion of Current Diffusion Graph Models
D.1. Technical differences of existing diffusion-based graph models

Diffusion-based generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Hoogeboom et al., 2021; Austin et al., 2021)
have gained prominent attention in the graph generation community. Current diffusion graph models adopt continuous or
discrete-variable diffusion. For example, GDSS (Jo et al., 2022) and EDP-GNN (Niu et al., 2020) use Gaussian transition
kernels for continuous-variable diffusion (Ho et al., 2020), but GDSS additionally considers node and edge features and uses
a score-matching diffusion approach. On the other hand, DiscDDPM (Haefeli et al., 2022) and DiGress (Vignac et al., 2022)
employ discrete-time, discrete-variable diffusion models (Hoogeboom et al., 2021; Austin et al., 2021), with the former
being featureless and the latter including a denoising process for node and edge attributes.

18

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

One limitation shared by all current diffusion graph models is suffering from the scalability issue: they all need O(TN2)
running time because they need to make predictions for each node pair in each diffusion step. This limitation prevents
diffusion graph models from generating large networks. The main advantage of EDGE is to reduce this complexity to
O(min(K2,M)), with K being the number of active nodes and M being the number of edges. It greatly reduces the
computation in the generation process and has shown promising results in large network generation tasks. We further
highlight the limitation and technical differences of different models in Table 7.

Diffusion type Convergent
distribution

Conditional
generation

Featured graph
generation Runtime Scalability

EDP-GNN Disc. time,
Cont. var. N (0, 1) O(TN2)

GDSS Cont. time,
Cont. var. N (0, 1) ✓ O(TN2)

DiscDDPM Disc. time,
Disc. var. G(N, 0.5) O(TN2)

DiGress Disc. time,
Disc. var.

Empirical
distribution

Gradient from
a classifier ✓ O(TN2)

EDGE (ours) Disc. time,
Disc. var. G(N, 0) degree sequence O(T max(M,K2)) ✓

Table 7. Technical differences of different diffusion graph models. Here T is the number of diffusion steps, N is the number of nodes in a
graph, M is the number of edges in a graph, and K is the maximum number of active nodes during the diffusion process.

E. Generalizing to Tasks of Generating Attributed Graphs
E.1. Hierarchical generation

Generation of attributed graphs has a broad class of applications, such as molecule generation (Du et al., 2021). While
EDGE is developed to generate graph structure only, here we briefly discuss how it can be incorporated into a hierarchical
procedure to generate graphs with node and edge attributes. Here we consider the case where node and edge attributes are
both categorical.

The attributes of nodes and edges are represented as one-hot vectors. For node attributes, we have a matrix X ∈ {0, 1}N×Cnode ,
while edge attributes are described by the matrix Aattr ∈ {0, 1}N×(Cedge+1). In this context, Cnode and Cedge denote the number
of classes for node types and edge types, respectively. For a node pair (i, j), the extra dimension indicates whether the edge
exists or not. The graph structure is still denoted by A. Inspired by Lippe & Gavves (2020), we consider the following joint
model:

p(X,Aattr,A) = p(X)p(A|X)p(Aattr|X,A), (37)

which can be considered a hierarchical generation scheme that first samples node attributes, then samples the graph structure
via EDGE conditioned on node attributes, and finally samples edge attributes conditioned on the graph and node attributes.

E.2. Model Details

We consider modeling each component in Eqn. (37) separately. For p(X), we employ a similar approach as with the
node degree sequence modeling, but we use the sequence length Cnode instead of dmax. For p(A|X), we apply the EDGE
framework, incorporating node features from X during both the training and generation phases. For p(Aattr|X,A), we
utilize a diffusion model that starts by randomly assigning edge types to edges in A and iteratively refines edge labels,
relying on the information given by X and A. It is important to note that we only refine labels for edges already specified
by A, allowing us to use an MPNN to calculate edge features. We adopt the framework outlined in Appendix C, and only
perform prediction for edges existing in A.

F. Additional Details for Experimental Setups
We described the details of the experiments of generic graph generation and large network generation tasks. We provide the
hyperparameters used in the experiments in Table 8. We do not augment the data input with extra features for all generation

19

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

tasks except for the current node degrees dt and the node degrees d0, which are both computation-free. Moreover, we set
p = 10−12 in our implementation to maintain numerical stability.

Community Ego Polblogs Cora Road-Minnesota PPI

Diffusion
Diffusion steps T 128 128 256 64 64 512
Noise scheduling Linear
β0 7.8125× 10−4 3.9063× 10−4 1.5625× 10−3 1.9531× 10−4

βT 1.5625× 10−1 7.8125× 10−2 3.1250× 10−1 3.9063× 10−2

Sample time method Importance sampling

Optimization
Learning rate 10−4

Optimizer Adam (Kingma & Ba, 2014)
weight decay 10−4

Batch size 64 64 4 4 4 1
Number of epochs/iteration 30000 10000 50000 50000 50000 50000

Architecture
Number of MPBs 5
Hidden dimension of MPL 64
Hidden dimension of GRU 64
Activation function SiLU (Elfwing et al., 2018)
Time embedding Sinusoidal positional embedding (Devlin et al., 2018)
Dropout rate 0.1

Evaluation
Number of generated graphs 128 128 5 5 5 5
dmax 40 100 351 168 5 593
Number of attention heads 8 8 8 8 8 8

Table 8. Hyperparameters

F.1. Generic graph generation

We follow You et al. (2018) to generate the Community and Ego datasets and use the same data splitting strategy. Recent
works (O’Bray et al., 2021; Thompson et al., 2022) have suggested better metrics for evaluating the quality of the generated
graphs. To make a fair comparison, we reproduce all baselines and follow Thompson et al. (2022) to re-evaluate their
generative performance. All the baselines are reproduced using their default hyperparameter setting except for GraphCNF
and DiGress. For GraphCNF, we use the same model configuration of its molecule generation task for the Community
dataset and a smaller model for the Ego dataset due to the limited capacity of the GPU memory. For DiGress, we do not
augment the graphs with the structural features to ensure a fair comparison is made.

F.2. Large network generation

We consider the single network for each large network dataset as the training dataset. Since the evaluation metrics do not
require referring to the test graphs, we do not include validation/test sets in this task. All models are trained until the network
statistics converge, and the models of the final epoch are used to generate samples. For GraphRNN, we use the default BFS
ordering to generate adjacency matrices for the model training. We train the model for 30000 iterations for all datasets and
report the model performance using the checkpoint from the last epoch.

Computing the Edge Overlap. Since GraphRNN and our model are edge non-independent models, Chanpuriya et al.
(2021) suggests reporting the maximum edge overlap between the generated graphs and the training graph to ensure the
models do not simply memorize the data. However, finding the maximum edge overlap requires searching over the node
permutation space, which is impractical as there are N ! permutations. Instead, we obtain the node degree ascending
permutation and use it to permute both the generated and training graphs. We observe that such a permutation scheme yields

20

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

a much higher EO value than a random permutation. For instance, when a model can generate graphs with desiring statistics,
degree-based permutation yields 15% EO on average for the Poblogs dataset, while a random permutation yields an EO
value that is almost 0.

F.3. Computational Resources

We use PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019) to implement our framework. We train
our models on Tesla A100, Tesla V100, or NVIDIA QUADRO RTX 6000 GPU and 32 CPU cores for all experiments. For
generic graph generation tasks, all models are trained within 72 hours. For large network generation tasks, model training is
finished within 24 hours. The sampling speed reported in Figure 3 of all baselines and our approach is tested on Tesla A100
GPU.

G. Extended Results
G.1. Comparison between the node degrees from generated graphs and the node degrees d0

We show that the generated graphs’ node degrees accurately approximate the given node degrees d0. The node degrees in
the generated graphs are compared to the node degrees d0 by counting the number of nodes whose degree deviates from the
given one. The degree difference is computed by subtracting the given degree from the actual degree. The histograms in
Figure 6 display the degree difference for each dataset, indicating the accuracy of the generated graph’s node degrees in
approximating the given node degrees.

5 0 5
Degree difference

1 × 105

5 × 104

C
ou

nt
s

5 0 5
Degree difference

1 × 105

2 × 105

C
ou

nt
s

Polblogs Cora

5 0 5
Degree difference

5 × 104

1 × 105

C
ou

nt
s

5 0 5
Degree difference

2 × 105

4 × 105

C
ou

nt
s

Road-Minnesota PPI

Figure 6. Degree difference. Given specific node degrees d0, the actual node degrees of the generated graphs are fairly accurate.

G.2. Further justification the use of G(N, 0) as the convergent distribution

In addition to the desirable properties we described in Section 3.1, we demonstrate the potential benefit of using G(N, 0)
as the convergent distribution in terms of generative performance. When using G(N, 0) as the convergent distribution,
our proposed framework can be considered as a type of absorbing diffusion process (Austin et al., 2021). Similar to
(Austin et al., 2021), we observe that the generative performance of G(N, 0) is superior to G(N, 0.5). Table 9 report the

21

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

generative performance of G(N, 0.5) and G(N, 0) on the Community-small dataset (You et al., 2018). This demonstrates
the superiority of using an absorbing state as the convergent distribution, which further justifies why one should consider
G(N, 0) as the convergent distribution.

Community-small
Structure-based metrics (MMD) Neural-based metrics
Deg. Clus. Orb. FID RBF MMD

G(N, 0.5) 0.0274 0.0249 0.0234 3.4121 0.0243
G(N, 0) 0.0081 0.0112 0.0262 1.5642 0.0204

Table 9. Vanilla discrete diffusion with G(N, 0.5) and G(N, 0) as the convergent distributions. G(N, 0) exhibits better generative
performance than G(N, 0.5).

G.3. Full results on graph generation tasks

We provide the mean and the standard derivation of metrics reported in the generic graph generation and large network
generation tasks in Table 10 and Table 11, respectively.

Community
Structure-based metrics (MMD) Neural-based metrics

Deg. Clus. Orb. FID RBF MMD

GRNN 0.1440 ± 0.0025 0.0535 ± 0.0264 0.0198 ± 0.0003 8.3869 ± 1.5429 0.1591 ± 0.0104
GRAN 0.1022 ± 0.0185 0.0894 ± 0.0082 0.0198 ± 0.0005 64.1145 ± 12.0927 0.0749 ± 0.0097

GraphCNF 0.1129 ± 0.0295 1.2882 ± 0.1918 0.0197 ± 0.0005 29.1526 ± 3.1900 0.1341 ± 0.0241
GDSS 0.0535 ± 0.0095 0.2072 ± 0.0520 0.0196 ± 0.0003 6.5531 ± 0.9418 0.0443 ± 0.0058
DiscDDPM 0.1238 ± 0.0068 0.6549 ± 0.0463 0.0246 ± 0.0004 8.6321 ± 1.1961 0.0840 ± 0.0099
DiGress 0.0409 ± 0.0041 0.0167 ± 0.0169 0.0298 ± 0.0002 3.4261 ± 0.4549 0.0460 ± 0.0069

EDGE 0.0175 ± 0.0056 0.0689 ± 0.0197 0.0198 ± 0.0002 2.2378 ± 0.5111 0.0227 ± 0.0097

Ego
Structure-based metrics (MMD) Neural-based metrics

Deg. Clus. Orb. FID RBF MMD

GRNN 0.0768 ± 0.0142 1.1456 ± 0.0910 0.1087 ± 0.0442 90.5655 ± 19.2041 0.6827 ± 0.1181
GRAN 0.5778 ± 0.1415 0.3360 ± 0.0948 0.0406 ± 0.0112 489.9598 ± 42.1109 0.2633 ± 0.0911

GraphCNF 0.1010 ± 0.0421 0.7654 ± 0.0510 0.0820 ± 0.0334 18.7929 ± 3.5102 0.0896 ± 0.0125
GDSS 0.8189 ± 0.0691 0.6032 ± 0.2114 0.3315 ± 0.0591 60.6100 ± 8.1208 0.4331 ± 0.0982
DiscDDPM 0.4613 ± 0.1042 0.1681 ± 0.0735 0.0633 ± 0.0156 42.7994 ± 5.6312 0.1561 ± 0.0224
DiGress 0.0708 ± 0.0127 0.0092 ± 0.0062 0.1205 ± 0.0669 18.6794 ± 4.6395 0.0489 ± 0.0232

EDGE 0.0579 ± 0.0101 0.1773 ± 0.0521 0.0519 ± 0.0216 15.7614 ± 2.5021 0.0658 ± 0.0199

Table 10. Generation performance on generic graphs with standard derivation.

G.4. Visualizations

Visualization of generated generic graphs. We visualize six generic graphs from the test data and the generated graphs
for each dataset in Figure 7 and 8. The visualized graphs are randomly selected from the test data and the generated samples.

Visualization of generated molecules. We visualize 16 molecules generated from GDSS, DiGress, and our approach in
Figure 9.

22

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

Polblogs
EO PLE NTC CC CPL AC

TRUE 100 1.414 1 0.226 2.736 -0.221

OPB 24.5 ± 0.4 1.395 ± 0.002 0.667 ± 0.013 0.150 ± 0.001 2.524 ± 0.005 -0.143 ± 0.003
HDOP 16.4 ± 0.3 1.393 ± 0.003 0.687 ± 0.021 0.153 ± 0.002 2.522 ± 0.009 -0.131 ± 0.006
CELL 26.8 ± 0.2 1.385 ± 0.001 0.810 ± 0.011 0.211 ± 0.002 2.536 ± 0.006 -0.230 ± 0.002
CO 20.1 ± 0.2 1.975 ± 0.107 0.045 ± 0.002 0.028 ± 0.001 2.502 ± 0.008 0.068 ± 0.009
TSVD 32.0 ± 0.2 1.373 ± 0.001 0.872 ± 0.023 0.205 ± 0.004 2.533 ± 0.005 -0.216 ± 0.005
VGAE 3.6 ± 0.2 1.723 ± 0.010 0.05 ± 0.006 0.001 ± 0.001 2.531 ± 0.063 -0.086 ± 0.009

GRNN 9.6 ± 0.5 1.334 ± 0.013 0.355 ± 0.048 0.095 ± 0.008 2.566 ± 0.056 0.096 ± 0.065

EDGE 16.5 ± 0.3 1.398 ± 0.002 0.977 ±0.079 0.217 ± 0.005 2.647 ± 0.028 -0.214 ± 0.015

Cora
EO PLE NTC CC CPL AC

TRUE 100 1.885 1 0.090 6.311 -0.071

OPB 10.9 ± 0.2 1.852 ± 0.008 0.097 ± 0.019 0.008 ± 0.001 4.476 ± 0.046 -0.037 ± 0.009
HDOP 0.9 ± 0.1 1.849 ± 0.011 0.113 ± 0.003 0.009 ± 0.001 4.477 ± 0.030 -0.030 ± 0.004
CELL 10.3 ± 0.2 1.774 ± 0.001 0.009 ± 0.003 0.002 ± 0.001 5.799 ± 0.012 -0.018 ± 0.013
CO 9.7 ± 0.5 1.776 ± 0.007 0.009 ± 0.002 0.002 ± 0.000 5.653 ± 0.044 0.010 ± 0.012
TSVD 6.7 ± 0.2 1.858 ± 0.012 0.349 ± 0.029 0.028 ± 0.001 4.908 ± 0.052 -0.006 ± 0.005
VGAE 1.5 ± 0.5 1.717 ± 0.005 0.120 ± 0.012 0.220 ± 0.012 4.934 ± 0.069 0.002 ± 0.010

GRNN 0.4 ± 0.1 1.822 ± 0.008 0.043 ± 0.007 0.011 ± 0.002 6.146 ± 0.065 0.043 ± 0.025

EDGE 0.9 ± 0.0 1.755 ± 0.005 0.446 ± 0.029 0.034 ± 0.002 4.995 ± 0.048 -0.046 ± 0.008

Road-Minnesota
EO PLE NTC CC CPL AC

TRUE 100 2.147 1 0.028 35.349 -0.187

OPB 29.7 ± 0.3 2.188 ± 0.016 0.083 ± 0.036 0.002 ± 0.001 8.036 ± 0.051 0.009 ± 0.011
HDOP 13.2 ± 1.1 2.192 ± 0.065 0.208 ± 0.111 0.004 ± 0.001 8.274 ± 0.032 -0.024 ± 0.006
CELL 30.7 ± 1.3 2.267 ± 0.011 0.053 ± 0.069 0.001 ± 0.001 10.219 ± 0.096 -0.082 ± 0.004
CO 19.8 ± 0.9 2.044 ± 0.049 2.845 ± 0.916 0.040 ± 0.003 11.478 ± 0.075 -0.012 ± 0.008
TSVD 19.4 ± 0.6 2.172 ± 0.041 0.060 ± 0.046 0.001 ± 0.000 8.431 ± 0.130 0.006 ± 0.009
VGAE 1.3 ± 0.3 1.678 ± 0.091 0.096 ± 0.031 0.009 ± 0.001 11.120 ± 0.075 -0.027 ± 0.001

GRNN 0.6 ± 0.1 1.570 ± 0.017 0.099 ± 0.023 0.007 ± 0.002 11.695 ± 0.059 0.006 ± 0.009

EDGE 0.8 ± 0.1 1.910 ± 0.023 0.962 ± 0.101 0.011 ± 0.001 9.125 ± 0.088 -0.063 ± 0.006

PPI
EO PLE NTC CC CPL AC

TRUE 100 1.462 1 0.092 3.095 -0.099

OPB 16.3 ± 0.2 1.443 ± 0.001 0.640 ± 0.007 0.058 ± 0.000 2.914 ± 0.005 -0.089 ± 0.003
HDOP 6.9 ± 0.1 1.444 ± 0.001 0.638 ± 0.007 0.058 ± 0.001 2.917 ± 0.008 -0.086 ± 0.003
CELL 6.7 ± 0.2 1.400 ± 0.000 0.248 ± 0.005 0.040 ± 0.001 3.108 ± 0.003 0.176 ± 0.004
CO 9.9 ± 0.1 1.754 ± 0.071 0.016 ± 0.001 0.006 ± 0.000 3.046 ± 0.002 0.043 ± 0.004
TSVD 13.2 ± 0.1 1.426 ± 0.001 0.848 ± 0.015 0.077 ± 0.001 2.867 ± 0.004 -0.089 ± 0.004
VGAE 0.5 ± 0.0 1.362 ± 0.006 0.091 ± 0.009 0.012 ± 0.005 2.991 ± 0.063 0.054 ± 0.007

GRNN OOM OOM OOM OOM OOM OOM

EDGE 7.5 ± 0.4 1.449 ± 0.003 0.981 ± 0.003 0.091 ± 0.031 3.028 ± 0.044 -0.107 ± 0.023

Table 11. Generation performance on large networks with standard derivation.

23

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

GRNN

GRAN

GraphCNF

GDSS

DiscDDPM

DiGress

EDGE

Test graphs

Figure 7. Visualization of the Ego dataset

24

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

GRNN

GRAN

GraphCNF

GDSS

DiscDDPM

DiGress

EDGE

Test graphs

Figure 8. Visualization of the Community dataset

25

Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling

GDSS

DiGress

EDGE

Test molecules

Figure 9. Visualization of the QM9 dataset

26

