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Abstract

Contact-rich manipulation remains a major challenge in robotics. Optical tactile
sensors like GelSight Mini offer a low-cost solution for contact sensing by capturing
soft-body deformations of the silicone gel. However, accurately inferring shear and
normal force distributions from these deformations has yet to be fully addressed.
In this work, we propose a machine learning approach using a U-net architecture
to predict force distributions directly from raw images. Our model, trained on
force distributions inferred from Finite Element Analysis (FEA), demonstrates
promising accuracy in predicting these distributions. It also shows potential for
generalizing to a different GelSight sensor than the one used for data collection
and enables real-time application. This approach holds the promise of improving
tactile perception in contact-rich robotic manipulation tasks.

1 Introduction

The integration of tactile sensing into robotics is crucial for enhancing functionality across various
applications, from object manipulation to medical tasks and tele-operation [1, 4]. Optical tactile
sensors like the GelSight Mini [9] capture detailed contact information through image processing.
These sensors offer high spatial resolution and cost-effectiveness, making them attractive for bringing
tactile sensing to robotics.

However, most research has focused on low-dimensional force measurements rather than compre-
hensive contact force distributions, which include both total force and contact area [10]. Estimating
accurate force distributions is challenging due to the non-linear behavior of contact mediums. While
traditional methods like FEA offer detailed solutions, they are computationally demanding. Although
inverse FEA has been applied in real-time scenarios [6], it remains resource-intensive and is generally
not well-suited for most real-time applications.

Recent advancements leverage deep learning to address the challenge of real-time force estimation.
For example, Yuan et al. [9] used Convolutional Neural Network (CNN)’s to predict contact forces
from sensor images, while Funk et al. [3] introduced CANFnet for estimating normal force distribu-
tions at the pixel level. Sferrazza and D’Andrea [8] employed FEA-derived data to train deep learning
models for predicting force distributions, demonstrating the effectiveness of combining simulations
with data-driven methods.

This study builds on these advancements, particularly on the approach in [8], by employing a U-net
architecture [7] to predict force distributions from raw images, using labels generated through FEA.
By incorporating a diverse set of indenters and applied forces, we aim to enhance the model’s
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generalization across various contact scenarios. This approach not only provides an interpretable
metric for the GelSight Mini but also delivers a real-time solution applicable to downstream tasks.

2 Method

(a) (b)

(c) (d)

Figure 1: Overview of dataset generation
for ground truth force distributions: (a)
Computer Numerical Control (CNC) milling
machine pressing the GelSight Mini against
a 3D-printed sphere indenter; (b) Raw image
from the GelSight Mini; (c) Various inden-
ters used in training; (d) Simulation model
from FEA.

Recovering the force distributions acting onto the Gel-
Sight Mini sensor provides an interpretable representation
of the RGB tactile images. While FEA provides physi-
cally grounded force distributions, it is computationally
expensive and requires precise contact information which
is often unavailable in real-world scenarios. To overcome
these drawbacks, we propose using a supervised machine
learning approach. By training a U-net architecture on
a dataset of raw images and corresponding FEA-derived
force distributions obtained in a calibrated setup, the model
learns to predict force distributions directly from images.
The following subsections detail the dataset generation
and the neural network-based method.

2.1 Data Collection

The data collection process involves a series of indentation
experiments conducted with the GelSight Mini, equipped
with a dotted gel to better track the indentation motion
(see Fig. 1b). Inspired by Sferrazza and D’Andrea [8],
we use 12 indenters of varying shapes and sizes (see Fig.
1c). A CNC milling machine, with a positional tolerance
of ±0.25µm, is utilized to automate the data collection process and to ensure precise indentation
movements. Furthermore, a six-axis RESENSE-HEX-21 Force/Torque (F/T) sensor is positioned
above the Gelsight Mini to record contact forces during indentation (see Fig. 1a). A total of 5173
samples were collected, combining GelSight Mini images, F/T readings, and CNC motion data. The
force in the z direction reach up to 40N, and in the x and y directions up to ±5N.

2.2 Finite Element Analysis

For simulating indentation experiments, we employed FEA using the open-source solver CalculiX
[2], which is capable of nonlinear analysis. Tetrahedral volume meshes for both the gel and indenters
were generated, with denser meshing at the contact surface to ensure higher accuracy of the simulated
contact forces (see Fig. 1d). The simulation is set up as a static analysis, assuming hard contact
and no friction, as slippage is avoided in the experiments. Indenters were modeled as steel, with a
Young’s modulus of 210GPa and a Poisson coefficient of 0.3. A hyperelastic Neo-Hookean model,
as detailed in [9], is applied for the gel material. The shear modulus µ is set to 0.145, corresponding
to a material constant C10 of 0.0725. Incompressibility is neglected by assigning a default value
to D1 due to solver limitations. This model is validated by optimizing the material parameters
through load-depth indentation data, comparing the normal forces from the FEA with F/T sensor
measurements (see Sec. 3.1). The results closely matched the literature values reported in [9].

2.3 Creating Labels

Figure 2: Label creation process shown as an example for the shear force
distribution in x direction with a sphere indenter.

To generate the ground truth
force distributions, each
indentation performed by
the CNC milling machine
is simulated using FEA,
which calculates the contact
forces across the surface of

the GelSight Mini’s gel. For each element on the surface of the gel, three force components are
computed: shear forces in the x and y directions, and normal forces in the z direction. To align these
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FEA results with the sensor’s raw images, the 3D coordinates of the gel mesh nodes are initially
projected onto the 2D image plane of the GelSight Mini using a precomputed projection matrix (see
Fig. 2). Finally, the force distributions are discretized into grid cells within the image boundaries,
summing the force contributions of all elements intersecting one cell.

2.4 U-Net for Force Distribution Estimation
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Figure 3: U-net model mapping raw GelSight images to shear and
normal force distributions. The architecture comprises 4 down-
and 4 up-sampling blocks, connected by skip connections. Image
generated using PlotNeuralNet [5].

To predict shear and normal force dis-
tributions from the raw GelSight im-
ages, we employ a U-net architecture
[7], which is well-suited for spatially-
detailed tasks. The network’s encoder-
decoder structure allows for efficiently
mapping raw sensor images to force
distributions, as demonstrated by Sfer-
razza and D’Andrea [8]. The model
takes 240× 320 RGB images as input
and outputs force maps for both shear
and normal forces at a reduced resolution of 24× 32 (see Fig. 3).

The model is trained by minimizing the Mean Squared Error (MSE) loss between predicted and
ground truth FEA forces. The dataset is split into three parts: 85% for training, 5% for validation,
and 10% for testing, with normalization applied to both input images and labels. Shear forces are
normalized to a range of −1 to +1, while normal forces range from 0 to +1. Data augmentation
techniques like Gaussian noise and brightness, contrast, saturation, and hue adjustments are used to
enhance generalization. Training is carried out using the Adam optimizer, with an initial learning
rate of 0.001 and a batch size of 8. The learning rate is adjusted adaptively based on validation
performance. We train for 600 epochs and select the model with the lowest validation loss.

3 Experimental Results

This section evaluates the U-net’s performance in predicting force distributions. First, the material
constants for the hyperelastic model used in label generation are validated. Then, the U-net’s accuracy
in predicting shear and normal force distributions, along with its ability to reconstruct total forces,
is analyzed. Particular attention is given to how different force distribution resolutions impact total
force reconstruction accuracy. Finally, the inference speed of the U-net is assessed.

3.1 Material Characterization

To validate the Neo-Hookean material model parameter C10, a load-depth curve must be defined
through indentation. The load-depth curve is obtained, using a sphere indenter with a 15mm diameter,
by sampling data points at different indentation depths ranging from 0.5 mm to 2.0 mm, increasing in
0.5 mm intervals. The measured normal forces from the F/T sensor are compared with those from the
FEA. Bayesian optimization revealed that C10 = 0.0792 provided the best fit, with a mean absolute
error (MAE) of 0.5121N between FEA and F/T sensor measurements. Although this is close to the
literature value of 0.0725 from [9], the literature value was chosen for ongoing simulations due to
potential measurement uncertainties.

3.2 Force Distribution Estimation

To evaluate the U-net’s ability to predict force distributions, we tested it on 492 samples recorded
using the same sensor as in training dataset. The test data captures a wide range of normal forces and
smaller shear forces, due to the nature of the indentation experiments.

Baseline U-net Model Performance. The baseline U-net model predicts force distribu-
tions of size 24 × 32 × 3, outputting two shear and one normal force distributions si-
multaneously. Figure 4 illustrates an example prediction, which closely aligns with the
ground truth, highlighting the model’s effectiveness (also see Fig. A.I). Quantitative eval-
uation using MAE shows accurate predictions, with MAE values under 1N (see Table 1).

3



gr
ou

nd
tr

ut
h

0 10 20 30

0

5

10

15

20 0.02

0.01

0.00

0.01

0.02

0 10 20 30

0

5

10

15

20 0.02

0.01

0.00

0.01

0.02

0 10 20 30

0

5

10

15

20 0.150

0.125

0.100

0.075

0.050

0.025

0.000

pr
ed

ic
tio

n

0 10 20 30

0

5

10

15

20 0.02

0.01

0.00

0.01

0.02

0 10 20 30

0

5

10

15

20 0.02

0.01

0.00

0.01

0.02

0 10 20 30

0

5

10

15

20 0.150

0.125

0.100

0.075

0.050

0.025

0.000

Figure 4: Prediction of baseline U-net and ground truth labels of the force distributions for Fig. 1b. The first row
is showing the ground truth force distributions in x-, y- and z-direction. In the second row the corresponding
predictions of the U-net are presented. The entities within the force distributions are in N.

Table 1: Comparison of U-net Variants on Total Force Estimation

Method
MAETF [N]

fx fy fz
ResNet1×3

0.085 ± 0.115 0.069 ± 0.085 1.593 ± 1.131

U-net12×16×3
0.102 ± 0.216 0.089 ± 0.123 0.447 ± 0.539

3×U-net24×32×1
0.438 ± 0.585 0.189 ± 0.225 0.448 ± 0.523

U-net24×32×3
0.224 ± 0.401 0.093 ± 0.136 0.372 ± 0.473

U-net48×64×3
0.318 ± 0.436 0.119 ± 0.184 0.459 ± 0.516

The U-net performs better with
shear forces than with normal
forces, likely due to the smaller
force range for shear and the richer
feature set provided by marker dis-
placement in shear force estima-
tion. In contrast, normal force esti-
mation relies more on depth infor-
mation, which is harder to extract.

Impact of Label Resolution. To assess the impact of label resolution on prediction accuracy, the
baseline U-net is compared with other models, including different U-net configurations and a ResNet
(see Table 1). The ResNet, which predicts total forces exclusively, excels in shear force prediction but
is less accurate with normal forces. A U-net trained on lower-resolution distributions (12× 16× 3)
improves shear prediction but slightly reduces normal force accuracy. Training three separate U-nets
for each force direction (24 × 32 × 1) led to worse results, indicating that predicting all forces
simultaneously captures inter-force correlations better. A higher-resolution U-net (48 × 64 × 3),
despite its higher dimensional output only yields slightly bigger errors.

Generalization to Unseen Indenters and Sensors. To evaluate the U-net’s generalization capability,
it is tested on unseen indenters and images from a different GelSight Mini sensor. When tested on
images from another sensor, predictions remain relatively accurate, though with a noticeable shift in
contact localization, likely due to differences in camera positioning and variations in the illumination
(see Fig. A.II). When considering predictions for unknown indenters, the quality of the predictions
decreases (see Fig. A.III). However, since other works (e.g. [3]) successfully showed this kind of
generalization, we conclude that a more extensive and versatile dataset is required to improve these
results. This is subject to future work.

Inference Speed. On average, the U-net achieves an inference time of 4.2± 1.3ms on a NVIDIA
Quadro RTX 5000 GPU with Max-Q Design and a Intel Core i7-10875H 8-Core 2.3GHz CPU,
which is sufficient for real-time applications, as the GelSight Mini runs at 25Hz.

4 Conclusion

This study introduces a machine learning approach for estimating force distributions using the
GelSight Mini tactile sensor. By training a U-net model on FEA-derived data, we achieved accurate
predictions of both shear and normal forces from raw sensor images, particularly excelling in shear
force estimation. The model shows potential for real-time applications and generalization to different
sensors, despite shifts in contact localization. This method offers an efficient alternative to traditional
approaches like inverse FEA, with potential for improving tactile perception in robotic manipulation
tasks. Future work will focus on enhancing the model’s robustness to different tactile scenarios and
refining its generalization capabilities across a broader range of objects and sensors.
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Figure A.I: Example predictions of the baseline U-net on test data using indenters that are included in the training
dataset. The first row displays the raw images captured by the GelSight Mini sensor, using the same sensor
employed to generate the training dataset. These images are taken as input for the U-net. In the following rows,
the corresponding predictions of the U-net for both the shear forces in x and y direction and the normal force in
z direction are presented. The entities within the force distributions are in N.
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Figure A.II: Example predictions of the baseline U-net on test data using indenters that are included in the
training dataset. The first row displays the raw images captured by the GelSight Mini sensor, using a different
sensor that is not employed to generate the training dataset. These images are taken as input for the U-net. In the
following rows, the corresponding predictions of the U-net for both the shear forces in x and y direction and the
normal force in z direction are presented. The entities within the force distributions are in N.
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Figure A.III: Example predictions of the baseline U-net on test data using indenters that are not included in the
training dataset. The first row displays the raw images captured by the GelSight Mini sensor, using the same
sensor employed to generate the training dataset. These images are taken as input for the U-net. In the following
rows, the corresponding predictions of the U-net for both the shear forces in x and y direction and the normal
force in z direction are presented. The entities within the force distributions are in N.
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