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Abstract

For text-based AI systems to interact in the real world, causal reasoning is an es-
sential skill. Since interventional data is costly to generate, we study to what extent
an agent can learn causal reasoning from passive data. Specifically, we consider an
axiomatic training setup where an agent learns from multiple demonstrations of
a causal axiom (or rule), rather than incorporating the axiom as an inductive bias
or inferring it from data values. A key question is whether the agent would learn
to generalize from the axiom demonstrations to new scenarios. For example, if a
transformer model is trained on demonstrations of the causal transitivity axiom
over small graphs, would it generalize to applying the transitivity axiom over large
graphs? Our results, based on a novel axiomatic training scheme, indicate that
such generalization is possible. For the transitivity axiom, we find that a 67 million
parameter transformer model, when trained on linear causal chains (along with
some noisy variations) can generalize well to new kinds of graphs, including longer
causal chains, causal chains with reversed order, and graphs with branching; even
when it is not explicitly trained for such settings. We extend axiomatic training to
a harder task of inferring causation from correlation statements and find similar
generalization. On both tasks, our model performs at par (or even better) than
many larger language models such as GPT-4, Gemini Pro, and Phi-3. Overall,
our axiomatic training framework provides a new paradigm of learning causal
reasoning from passive data that can be used to learn arbitrary axioms, as long as
sufficient demonstrations can be generated.

1 Introduction

Causal reasoning can be defined as a set of reasoning procedures consistent with pre-defined axioms
or rules that are specific to causality [9]. For instance, d-separation and rules of do-calculus can
be considered as axioms and specifications of a collider or a backdoor set can be considered as
rules that can be derived from axioms. Axioms or rules are incorporated as inductive biases in a
machine learning (ML) model, through regularization, model architecture, or the choice of variables
for a particular analysis. Depending on the kind of available data—observational, interventional, or
counterfactual—Pearl’s ladder of causation [5] defines the kinds of causal reasoning that is possible.

As axioms are the building blocks of causality, we study whether it is possible to directly learn the
axioms using ML models. That is, rather than learning from data that is the result of axioms obeyed
by a data-generating process, what if a model can learn an axiom (and thus causal reasoning) directly
from symbolic demonstrations of the axiom? Such a model has the advantage that it can be applied
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for causal reasoning in diverse downstream scenarios, compared to task-specific causal models built
using specific data distributions. This question gains relevance as language models make it possible
to learn over symbolic data expressed in natural language. In fact, recent studies have evaluated
whether large language models (LLMs) can do causal reasoning by creating benchmarks that encode
causal reasoning problems in natural language [14, 11, 12].

Specifically, we propose a new way of learning causal reasoning through axiomatic training. We posit
that causal axioms can be expressed as the following symbolic tuple, ⟨premise, hypothesis, result⟩
where hypothesis refers to a causal claim and premise refers to any relevant information to decide
whether the claim is true or not (conclusion). The conclusion could simply be “Yes” or “No”. For
example, one of the conclusions from the collider axiom from [12] can be expressed as: premise:
“A ⊥⊥ B,B ̸⊥⊥ C,A ̸⊥⊥ C”; hypothesis: “Does A cause C?”; and the conclusion as “Yes”. Based
on this template, a large number of synthetic tuples can be generated, e.g., by changing the variable
names, changing the number of variables, changing the order, and so on. The key question is: if a
model is trained on such data, would it learn to apply the axiom to new scenarios?

To answer this question, we train a transformer model from scratch on symbolic demonstrations
of the causal irrelevance axiom [9]. To evaluate generalizability, we train on simple chains of the
causal irrelevance axiom of size 3-5 nodes and test on multiple different aspects of generalization,
including length generalization (chains of size 7-15), name generalization (longer variable names),
order generalization (chains with reversed edges or shuffled nodes), and structure generalization
(graphs with branching). We find that a model trained on simple chains generalizes to applying the
axiom multiple times over larger chains, but it is unable to generalize to the more complex scenarios
like order or structure generalization. However, when we train a model on a combined dataset of
simple chains and chains with some edges randomly reversed, we find that the model generalizes
well across all kinds of evaluation scenarios. Extending the findings on length generalization for NLP
tasks [13, 7, 10, 8], we find a critical role of positional embedding in ensuring causal generalization
across length and other aspects. Our best model has no positional encoding, although we find that
sinusoidal encoding also works well for some scenarions.

The axiomatic training approach also generalizes to a harder problem proposed in [12]. The task is to
distinguish correlation from causation given a premise containing statistical independence statements.
Solving this task requires knowledge of multiple axioms, including d-separation and Markov property.
Using the same method to generate synthetic training data and train the model as above, we find that
a transformer trained on task demonstrations over 3-4 variables learns to solve this task for graphs
with 5 variables. On this, our model outperforms larger LLMs such as GPT-4, Gemini Pro and Phi-3.

Our work provides a new paradigm of teaching models causal reasoning through symbolic demon-
strations of axioms, which we call axiomatic training. The data generation and training procedure is
general and can be applied to learn any new axiom (including logical axioms), as long as it can be
expressed in the symbolic tuple format. More generally, our results contribute to the literature on
causal learning from passive data [15] that does not include any active interventions.

2 Learning Causal Axioms In Transformers

Instead of performing causal reasoning using observational or interventional data, we study whether
it is possible to learn some of the general rules of causality directly from symbolic axioms. More
specifically, we incorporate rules for causal reasoning in transformers as inductive biases. We begin
by asking the question “are there any minimal sufficient characterization of causal principles that
hold true in general?”. There has been a fundamental work from Galles and Pearl [9] where they
axiomatize the causal relevance (or equivalently irrelevance). They show that for a given stable
probabilistic causal model (defined below), there exists a finite set of axioms that are completely
characterized by axioms of path interception in corresponding directed graphs. We now study how
such causal relevance statements can be incorporated into transformer models.

LetM = (X,U ,F) be a causal model defined over a set of endogenous variables X , exogenous
variables U and the causal relationship between then defined by set of structural equations F [9]. Let
G be the causal graph associated with the causal modelM where the nodes V in G correspond to the
variables inM and an edge Vi → Vj between any two nodes Vi, Vj denote the causal relationship
between them.
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Figure 1: Evaluating structural generalization of transformers through Axiomatic training: Our pretraining
setup is made of linear sequential chains of small length, no branching, and randomly revrsed edge directions.
After training the transformer with our pre-training data D with introduced variability, structural generalization
across different dimensions is observed. Specifically across more branched networks with higher average in-
degree and out-degree, complete reversals, longer sequences, shuffled natural language statements of sequences
and longer node names.

Definition 2.1 (Causal Irrelevance, Defn. 7 in [9]). X is probabilistically causally irrelevant to Y
given Z, written (X ↛ Y |Z) iff: P(y|z, do(X) = x) = P(y|z, do(X) = x′) ,∀x, x′, y, z i.e., once
we hold Z fixed at z, intervening on X will not change the probability of Y.

Under the stability assumption (see Assumption G.1), Galles and Pearl [9] characterizes six axioms
that completely characterize causal irrelevance (Definition 2.1) or equivalent causal relevance state-
ments after using the corresponding contra-positive statements. An axiom of causal irrelevance is of
the form (given in conjunctive normal form):∧
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where ∧ is “logical and", ∨ is “logical or" and for a given (s, t) or (l, n) pair, Xi,Xj ,Xk are disjoint
subsets of observed variables X . In the above causal irrelevance statement, if the antecedent is true,
the consequent is also true.

Transitivity Axiom: For the scope of our study, we focus on the transitivity axiom (Axiom
3.6, Fig. 7 in [9]) because it is a generic axiom, which can be used to represent complex struc-
tures like forks, colliders and chains which are used as building blocks of any causal struc-
ture. Below, we restate the transitivity axiom where A,X, Y, Z are endogenous variables of
the system. (X ↛ Y |Z) =⇒ (X ↛ A|Z) ∨ (A ↛ Y |Z)∀A /∈ {X,Y ,Z} Which
could be equivalency converted into a causal relevance statement by taking the contrapositive:
∃A /∈X ∪ Y ∪Z s.t. (X → A|Z) ∧ (A→ Y |Z)︸ ︷︷ ︸

P :premise

=⇒ (X → Y |Z)︸ ︷︷ ︸
H:hypothesis

.

2.1 Training data setup for Axiomatic Training

Based on a specific axiom, we can map a hypothesis given the premise to its correct label (‘Yes’
or ‘No’). To create a training dataset, we enumerate all possible tuples of {(P,H,L)}N where
P is the premise, H is the hypothesis and L is the label (Yes/No) for a particular setting of the
variables X,Y, Z,A. Given a premise P based on a given causal graph, if the hypothesis can be
derived by applying the specified axiom (once or multiple times), then label L is Yes; otherwise,
No. For example, suppose the underlying true causal graph of a system has the topology of a chain,
X1 → X2 → X3 → · · · → Xn. Then, a possible premise could be X1 → X2 ∧X2 → X3, and
the corresponding hypothesis X1 → X3 will have label Yes whereas another hypothesis X3 → X1
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will have label No. The above axiom could be inductively applied multiple times to generate more
complex training tuples.

For our training setup, a synthetic dataset D is constructed with N axiomatic instances generated
using the transitivity axiom. Each instance in D is structured in the form of a premise P , which is
the natural language expression of a causal structure (e.g., “X causes Y . Y causes Z”), followed
by the hypothesis in the form of a question Hq (e.g., “Does X cause Y ?”), which is then followed
by the final label L (e.g., “Yes” or “No”). Each instance in D is structured as (Pi, Hij , Lij);
j ∈ {1, . . . ,

(
n
2

)
}where n is the number of nodes in each ith premise, thus effectively covering all

pairs of nodes in each unique chain of a given causal graph.
2.2 Data Perturbation: A Key to Model Generalization
Variability or diversity in training data in the form of perturbation helps aid model generalization [16].
For axiomatic training, we provide structured perturbation to extend our transformer model across
complex structures for which it was not explicitly trained on. We introduce perturbations at multiple
levels in the training data to maximize diversity in the training set distribution, as explained below.
1. Node names: Each node in the transitivity chain is represented by an alphanumeric name

comprising 1-3 characters. The length of a name and the specific characters are randomly selected
during data generation.

2. Causal Graph Topology: We consider two main types of causal graphs for the training set.
(a) Sequential: All causal edges are directed forward, thus forming a typical transitivity chain,

e.g. X→ Y→ Z.
(b) Random Flipping: Given a chain of sequential nodes, we randomly reverse some edges

creating complexity by disrupting direct paths between subsequent nodes (eg. X→ Y← Z).
This can be expressed simply through natural language like: “X causes Y. Z causes Y."

3. Length level: To facilitate transformers understanding of the axiom, we incorporate chains of
varying lengths, ranging from 3 to 6 nodes in our training set.

Random flipping introduces forks and colliders, which form the building blocks of any causal DAG.
2.3 Assessing Axiomatic Learning in Transformers
While we restrict training to simple chain-like sequences, we consider a much more complex
evaluation set, to avoid any conclusions based on model overfitting (e.g., learning shortcuts or
correlation-based features). To tackle this, we evaluate our model across multiple types of complex
structures that are not seen during training. We divide the structural complexities as follows:

1. Length: Evaluating whether our model accurately infers causal relationships for sequences or
chains (both sequential and ones with random flipping) longer than those in the train set.

2. Node Name Shift: Testing the model’s performance with longer node names, increasing from
1-3 characters used in the training set to 8-10 characters. [12] found that shifts in node names
during language model fine-tuning lead to generalization failures in distinguishing causal from
correlational relationships, despite strong in-distribution performance.

3. Order of Chains: a) Completely reversed chains: This evaluation is inspired by the reversal
curse [6] that revealed generalization failure of LLMs in answering questions in reversed sequences
despite knowing the answers in the original order. We evaluate the capacity of axiomatic training
to enable reasoning over reversed chains even when not explicitly trained on any completely
reversed chains. A completely reversed chain will be of the form X← Y← Z with its natural
language representation as: “Y causes X. Z causes Y.", where X,Y, Z are replaced by random
alphanumeric names. b) Shuffling of Sequences: Causal sequences with random edge flips, as
defined in 2.2 represented by natural language statements sequentially (A causes B. B causes C
...), are shuffled to add complexity and break sequential order. This tests transformers’ ability to
infer accurate relationships regardless of sequence order of premise.

4. Branching: Causal graphs with dense branching pose a challenging evaluation task. While the
training set comprises simplistic linear sequences, this evaluation setup involves multiple branches,
colliders, forks, and chains in one network, with significantly high complexity. We measure
complexity of a graph using its branching factor: Number of edges/Number of nodes.

Unlike length and node name generalization, the reversal and branching evaluation setups change the
causal structure and hence better evaluate whether the model has learnt accurate representations for
causal structure. Branching is perhaps the most challenging since it contains new structures (due to a
higher branching factor) that were unseen during training.
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Figure 2: Evaluating generalization on causal se-
quences (without random flipping) with longer
node names (than the ones used in sequences in
train set). TS-2 training set with no positional en-
coding leads to the best performance.

Figure 3: Generalizing to longer unseen causal se-
quences (>6 nodes) with random flipping on TS2
and OCC (with NoPE) train sets. OCC-trained
models struggle due to limited edge-level variabil-
ity, while TS2 NoPE consistently performs well.

3 Application 1: Learning the Causal Transitivity Axiom

Training Data: Our training set comprises approximately 175K instances of sequential chains,
ranging from 3 to 6 nodes in size. We employ three training data versions. 1) Only causal chains
(OCC). Sequential chains (175K) without any random flip of edges; 2) Training Setup 1 (TS1).
Combines causal chains (101K) and sequences with randomly flipped edges (73K), while ensuring
that (reversals removed and model re-trained for evaluating on reversal chains); 3) Training Setup
2 (TS2). Combines causal chains (132K) and sequences with flipped edges (42K) with a higher
fraction of causal chains. We exclude complete reversals in TS1 to check generalization of the model.

Architectural and Model Training Details: We train a GPT2 [17] decoder based 67 million
parameter model from scratch on our transitivity based dataset. Our model is trained for 100 epochs
(due to optimal loss convergence), with 1e-4 learning rate. Our GPT2 based model using AdamW
optimizer has 12 attention layers, 8 attention heads and 512 embedding dimensions. We evaluate
the impact of different Positional Encodings on the generalization capabilities of the transformer
model. We evaluate how well models perform without positional encodings (or NoPE) [13], with
Sinusoidal PEs (SPE) [20] and Learnable PEs (LPE) [17]. Past work has shown how removing PEs
lead to better generalization performance for decoder models, which pick up an implicit positional
understanding due to the nature of next token prediction based training of language models [13]. We
further evaluate how well NoPE aids the model’s generalization for our setting. Details of our custom
tokenizer and LLM baselines are in Appx. § D and § E, respectively.

Loss Function: We optimize loss based on the ground truth label for all settings, represented as
E

P,Hq,L∼Ptrain
− log(P (L|P,Hq)). Our earlier analysis indicated promising results with this approach

compared to using next token prediction loss.

Results - Data diversity matters: Models with No PEs generalize well to longer lengths, even
though they are only trained on chain length of 3-6. Model trained on only sequential chain (OCC),
however, only generalize to longer Sequential chains (Table 5) but not to other DAG structures (Figure
3 for edge flip, Figure 5 for reversal, Table 4 for branching). Models trained on TS1 or TS2 generalize
across all scenarios, including edge flip, order, and branching. As sequence length increases without
random flipping, TS2 performs best, likely due to less noise in train set from fewer flipped sequences.
This suggests that while variability aids structural generalization, excessive variability can hinder it.
Reversal and shuffling evaluations are challenging as the model hasn’t been trained to learn causal
structures independent of order. Despite this, our model achieves 95% accuracy on reversal tasks,
outperforming much larger models like Gemini Pro and Phi-3. A similar pattern is observed for
shuffling, where TS2 (NoPE) significantly surpasses larger baseline models with ease. Branching is
challenging due to increased inter-node connections, since training set only contains linear chains,
but despite that our models achieve good performance with a margin of 20% over random baselines.
Our findings underscore the significance of diverse data for generalization.

Axiom-trained transformer generalizes to complex causal scenarios: The model trained with
TS2 performs well across all setups. Even though our model is not explicitly trained on completely
reversed chains, it still performs at par with GPT-4 (Fig. 5). Models trained on TS1 and TS2, trained
explicitly without shuffling, show similar trends when evaluated on shuffled sequences with random
flipping (Tab. 3). However, transformer trained on OCC setup fails for such settings. Our best models
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(NoPE trained on TS1 and TS2) outperforms random baselines (50%) and other billion scale models
like Gemini Pro and Phi-3 (and GPT-4 in multiple cases) on both zero shot and multi shot settings.

Role of positional encodings: We also study the effect of positional encoding. Sinusoidal (SPE) and
Learnable PEs (LPE) perform well on longer chains but poorly when node names’ length increases,
even with small chain lengths (Figure 2). Similarly, SPE does not perform well across different
structural dimensions like branching, and order based settings. NoPE performs consistently well
across all settings, indicating its generalization power even beyond length. See App. H for details.

4 Application 2: Infer causation from correlation statements (Corr2Cause)

The study extends the evaluation of transformers’ generalization from simple transitivity in small
causal chains to more complex causal tasks. Specifically, it applies axiomatic training to inferring
causation from correlational statements in observational data involving graphs with 3 to 6 nodes. The
goal is to determine the truth value of hypotheses (e.g., Parent, Ancestor, Collider) regarding direct
or indirect relationships between nodes. This task is more challenging as it requires understanding
d-separation, the Markov property, and mapping correlational statements to multiple causal graphs
within the Markov Equivalence Class. We train the same architecture from our transitivity experiments
for 100 epochs using NoPE on a dataset with 3-4 node graphs, testing it on 5-node correlational
statements due to its strong OOD performance.

Model Precision Recall F1 Score Accuracy

Ours 0.72 0.50 0.59 0.64

Zero-Shot

Phi-3 0.52 0.60 0.56 0.52
Gemini pro 0.52 0.59 0.55 0.52
GPT-4 0.59 0.50 0.54 0.58

Multi-Shot
Phi-3 0.57 0.67 0.61 0.58
Gemini pro 0.51 0.74 0.60 0.52
GPT-4 0.66 0.56 0.61 0.64

Table 1: Correlation to Causation Experiments
adapted from [12]

To aid generalization, we take inspiration from
our transitivity-based experiments and create
different combinations of randomly created al-
phanumeric node names. We then derive a train-
ing set from the original dataset by instantiating
the correlational statements with different com-
binations of alphanumeric node names. We bal-
ance the dataset by sampling equally from both
classes to avoid bias in our transformer model
to get a train set with 113099 instances. Then,
we create a test set with 1000 randomly sampled
instances of correlational statements for 5-node
graph networks.Given the complexity of each
input description, we tokenize the input text at
the word level instead of character level and use
the same node names for evaluation as in the training set to avoid potential out-of-vocabulary issues.

Comparison with Baselines: As reported in [12], due to the complexity of the task, we find that
pre-trained LMs such as Gemini Pro and Phi-3 perform similar to a random guess (52% accuracy).
While GPT-4 does perform slightly better, it’s performance is still low (58% accuracy). Remarkably,
our small transformer model performs better than all baselines with 64% accuracy; 6% points higher
than GPT-4. With further exploration of different training setups, axiomatically-trained transformer
models may be optimised further for such causal reasoning tasks.

5 Discussion and Conclusion
We propose an axiomatic training method to teach causal reasoning to transformers. Our results
show that a transformer can learn to apply a causal axiom and generalize to multiple, complex graph
structures that were not seen during training. Future work includes extending axiomatic training to
learn multiple axioms, use naturally-occuring text data, and explore other training losses.

Applicability to Causal Tasks: While our current work focuses on the transitivity axiom for causal
relevance, extending the work to other causal axioms from [9] is an interesting research direction.
In addition, we may consider other axioms that are relevant for downstream tasks such as effect
inference. For example, if a transformer model can be trained to validate the d-separation rule—given
two variables X and Y, are they independent given a variable set Z?—then repeated applications of
the rule can be used to derive a backdoor set.

Generalization to Logical Reasoning: While we focused on causal reasoning, axiomatic training
can be applied to any formal system based on axioms. For instance, the same axiomatic training
procedure can be used for teaching LMs logical reasoning tasks such as deductive reasoning [18].
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Appendix

A Performance Results for Different Evaluation Setups

Tables 2 and 3 shows the results of generalization to reversal and shuffling; Table 5 shows the results
on length generalization; and Table 4 shows the results on branching generalization. Figures 5 and ??
highlight generalization performance on reversal and longer chains.

Model 3 4 5 6

Baselines

Zero Shot

GPT-4 0.97 0.99 0.98 0.92
Gemini Pro 0.61 0.59 0.66 0.62
Phi-3 0.80 0.69 0.73 0.69

Multi Shot

GPT-4 1.00 1.00 1.00 0.99
Gemini Pro 0.95 0.87 0.77 0.71
Phi-3 0.93 0.89 0.75 0.75

Axiomatic Training

TS1 w NoPE 0.98 0.99 0.92 0.91
TS1 w SPE 1.00 0.99 0.99 0.97
TS2 w NoPE 0.99 0.99 0.95 0.94
TS2 w SPE 0.98 0.97 0.93 0.94
TS2 w LPE 0.99 0.98 0.95 0.97

OCC w NoPE 0.33 0.18 0.10 0.09

Table 2: Evaluated on completely reversed chains, even when not explicitly trained on reversed chains.
Model trained only on sequential chains (OCC), performs the worst, while transformer trained on
both Sequential chains, and sequences with random flipping perform the best (training sets: TS1 and
TS2). Accuracy Metric reported. This setup is inspired by the [6] setup.

Model Config 3 4 5 6 7 8 9

Baselines
Zero Shot
GPT-4 0.99 0.97 0.89 0.85 0.95 0.90 0.90
Gemini Pro 0.75 0.73 0.72 0.76 0.71 0.68 0.74
Phi-3 0.88 0.86 0.82 0.79 0.76 0.73 0.79

Multi Shot
GPT-4 1.00 0.99 0.97 0.95 0.94 0.90 0.92
Gemini Pro 0.95 0.85 0.83 0.79 0.79 0.73 0.75
Phi-3 0.88 0.83 0.82 0.80 0.83 0.76 0.78

Axiomatic Training
TS1 NoPE 1.00 0.94 0.87 0.84 0.80 0.76 0.73
TS1 LPE 1.00 0.95 0.87 0.83 0.78 0.78 0.71
TS1 SPE 1.00 0.94 0.86 0.83 0.76 0.73 0.68

TS2 NoPE 1.00 0.95 0.87 0.84 0.79 0.76 0.73
TS2 w LPE 1.00 0.94 0.87 0.84 0.80 0.76 0.73
TS2 w SPE 0.99 0.94 0.89 0.84 0.75 0.74 0.49

OCC w NoPE 0.69 0.62 0.57 0.54 0.57 0.53 0.52

Table 3: Evaluated on shuffled natural language sequence of randomly flipped sequence. Random
flipping, length (7-9) and random flipping add complexity to the evaluation setup, since our model is
not trained on shuffled set. Accuracy metric is reported
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Model 5 8 10 12

BF=2 BF=1.4 BF=2 BF=1.4 BF=2 BF=1.4 BF=2 BF=1.4

Baselines

Zero shot

GPT-4 0.98 0.95 0.91 0.90 0.84 0.88 0.82 0.86
Gemini Pro 0.77 0.74 0.72 0.76 0.71 0.73 0.73 0.71
Phi-3 0.87 0.83 0.82 0.79 0.77 0.77 0.75 0.80

Multi shot

GPT-4 0.99 0.97 0.94 0.93 0.90 0.94 0.89 0.93
Gemini Pro 0.81 0.76 0.77 0.79 0.75 0.77 0.78 0.79
Phi-3 0.77 0.78 0.79 0.82 0.78 0.794 0.80 0.79

Axiomatic Training

OCC w NoPE 0.52 0.51 0.53 0.52 0.52 0.55 0.49 0.47

TS1 w LPE 0.79 0.84 0.71 0.76 0.68 0.69 0.65 0.65
TS1 w SPE 0.72 0.79 0.63 0.64 0.56 0.61 0.52 0.59
TS1 w NoPE 0.77 0.84 0.73 0.76 0.68 0.70 0.62 0.66

TS2 w LPE 0.72 0.80 0.61 0.71 0.62 0.63 0.56 0.63
TS2 w SPE 0.52 0.70 0.49 0.49 0.49 0.49 0.51 0.52
TS2 w NoPE 0.83 0.86 0.74 0.77 0.69 0.74 0.64 0.70

Table 4: Evaluated on branched graphs created using Erdos Renyl, with varying branching factors (calculated
by number of edges/number of nodes). TS1 and TS2 denote Pretraining data setup 1 and 2 from Section 3. OCC
setup denotes Only sequential Causal Chains with no random flipping. SPE: Sinusoidal PE, LPE: Learnable PE,
w/o PE: No PE. Decoder model remains the same across all setups (67 Million parameter), Accuracy metric is
used

Figure 4: Correlation to Causation Experiments adapted from [12]. Axiomatic training setup aids
generalization even for complex causal tasks, while bigger LLMs struggle on the same in zero-shot
setting. Refer section 4 for details regarding experimental setup and result trends.

Figure 5: Performance comparison of our best performing transformer model trained on TS2 with
NoPE (trained without any completely reversed chains), against larger models like GPT-4, Gemini
Pro and Phi-3.
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Model 7 8 9 10 11 12 13 14 15

FS RF FS RF FS RF FS RF FS RF FS RF FS RF FS RF FS RF

Baselines

Single Shot

GPT-4 0.95 0.98 0.97 0.93 0.87 0.94 0.91 0.87 0.90 0.95 0.92 0.92 0.85 0.93 0.93 0.93 0.89 0.86
Gem-Pro 0.63 0.73 0.69 0.74 0.64 0.75 0.65 0.81 0.72 0.78 0.60 0.80 0.59 0.68 0.67 0.64 0.61 0.66
Phi-3 0.81 0.85 0.96 0.85 0.85 0.85 0.87 0.89 0.90 0.86 0.84 0.85 0.91 0.84 0.90 0.80 0.78 0.85

Multi Shot

GPT-4 0.97 0.99 0.93 0.99 0.92 0.96 0.88 0.94 0.89 0.97 0.89 0.93 0.88 0.95 0.93 0.94 0.86 0.94
Gem-Pro 0.80 0.82 0.81 0.79 0.78 0.81 0.67 0.79 0.73 0.82 0.74 0.83 0.67 0.78 0.72 0.78 0.68 0.78
Phi-3 0.83 0.92 0.89 0.88 0.75 0.86 0.66 0.87 0.80 0.90 0.80 0.85 0.79 0.82 0.71 0.81 0.72 0.82

Axiomatic Training

TS1 w NoPE 1.00 0.99 0.95 0.96 0.88 0.89 0.76 0.88 0.73 0.90 0.77 0.92 0.61 0.82 0.67 0.78 0.68 0.81
TS1 w LPE 0.98 0.96 0.92 0.97 0.77 0.90 0.59 0.87 0.57 0.86 0.57 0.84 0.55 0.73 0.51 0.76 0.50 0.68
TS1 w SPE 0.99 0.95 0.95 0.94 0.86 0.76 0.80 0.75 0.76 0.79 0.84 0.68 0.79 0.63 0.85 0.65 0.77 0.69

TS2 w NoPE 1.00 0.98 0.99 0.97 0.92 0.91 0.88 0.90 0.86 0.92 0.95 0.90 0.96 0.83 0.81 0.84 0.85 0.78
TS2 w LPE 1.00 0.98 0.88 0.97 0.80 0.88 0.62 0.92 0.66 0.91 0.64 0.81 0.65 0.75 0.62 0.75 0.62 0.77
TS2 w SPE 0.95 0.93 0.81 0.84 0.56 0.34 0.50 0.38 0.50 0.44 0.51 0.57 0.46 0.74 0.52 0.75 0.50 0.77

OCC w NoPE 0.98 0.58 0.79 0.49 0.86 0.51 0.92 0.49 0.72 0.57 0.90 0.50 0.81 0.52 0.84 0.52 0.83 0.46

Table 5: Results on longer chains of linear sequential chains with all edges in forward direction (Only causal
chains or forward sequence denoted using FS) and sequences with randomly flipped edges (Random flipping so
denoted with RF). TS1 and TS2 denote Pretraining data setup 1 and 2 from Section 4. SPE: Sinusoidal PE, LPE:
Learnable PE, w/o PE: No PE. Model remains the same across all setups (67 Million parameter based). For
longer chains, NoPE performs best on sequential linear setup. Accuracy metric is used
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B Example of Instances from Corr2Causation Benchmark

Following is one of the example instances from the benchmark of Corr2Cause [12], where the model
has to infer causal relationships from correlational statements.
Premise: Suppose there is a closed system of 4 variables, A, B, C and D. All the statistical relations
among these 4 variables are as follows: A correlates with B. A correlates with C. A correlates with D.
B correlates with C. B correlates with D. C correlates with D. However, B and D are independent
given A. B and D are independent given A and C. C and D are independent given A. C and D are
independent given A and B. Hypothesis: There exists at least one collider (i.e., common effect) of A
and B.

C Example of Instances from Our Evaluation Sets

Following is one of the instances from the evaluation set for sequences with random flipping, where
the model has to infer causal relationships from natural language statements.
Premise:V causes f. f causes jbj. ag causes jbj. ag causes rBz. rBz causes Tm2. EaT causes Tm2.
Hypothesis: Does V cause f?
Following is one of the instances from the evaluation set for sequences with reversals, where the
model has to infer causal relationships from natural language statements.
Premise:LQw causes e2. p causes LQw. u causes p. a causes u. Hypothesis: Does e2 cause LQw?

D Custom Tokenizer details

For tokenization, we develop a custom tokenizer. Alphanumeric node names are tokenized at a
character level, while terms like ‘causes’, ‘Does’, ‘cause’, ‘Yes’, and ‘No’ are tokenized at the word
level. The intuition behind this approach is to avoid out of vocabulary (OOV) tokens in the test
time, since the alphanumeric node names of test set are different then the training set and are created
randomly, therefore creating a high chance of coming across unseen node names. Following this
approach, the vocab size of our transformer model is extremely constrained (69) since it only contains
4-5 word tokens and rest alphanumeric characters along with punctuation marks.

E Baselines: How well do LLMs do on these evaluations?

Given recent work on how LLMs can be leveraged for causal reasoning [14, 19, 4], we include
language models such as GPT-4 (gpt-4-32k) [3], Gemini (gemini-pro) [2] and Phi-3 (Phi-3-mini-128k-
instruct) [1] as baselines. Note that each of these models is significantly larger than our model and
known to perform well on reasoning tasks, with the smallest baseline model Phi-3 having 3.8 billion
parameters. We incorporate both commercial (GPT-4 and Gemini Pro) and open-source (Phi-3)
models covering a range of size and capabilities. To evaluate the baseline models, we follow a simple
zero-shot prompting strategy. For each tuple, we provide the natural language expression of the
causal graph (Premise) followed by the question (Hypothesis) and prompt the LM to answer it in
either ‘Yes’ or ‘No’ (Label). Here is an example prompt: “EX causes T. T causes 9. 9 causes W. W
causes 7. 7 causes M. M causes a. Does EX cause T? Answer in ‘Yes’ or ‘No’ only.”

E.1 Multi-Shot Prompt

To evaluate the performance of baseline LLMs when given in-context examples of similar problems,
we present few-shot instances from our training data that include sequential causal chains, along with
a few examples with random flipping of edges. We ensured that all multi-shot instances were sourced
exclusively from the training set, with no examples from the evaluation set provided to the LLM

E.1.1 Cause-Effect Inference Task

Chain lengths of the in context examples ranged from 3 to 6 to maintains consistency with the training
and testing paradigm used for our 67-million-parameter model.
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The following multi-shot prompt was used to evaluate the baselines and models across different test
sets, assessing their generalization based on length, order, and branching.

Following the given examples answer the question regarding causal relationship between two vari-
ables: ‘5e0 causes vAf. vAf causes VO. Does vAf cause VO?: Yes’

‘5e0 causes vAf. vAf causes VO. Does vAf cause 5e0?: No’
‘e0F causes Z. Z causes 0U. 0U causes mR. mR causes 1L. Does mR cause 1L?: Yes’
‘e0F causes Z. Z causes 0U. 0U causes mR. mR causes 1L. Does Z cause e0F?: No’
‘b causes K. K causes qPv. 5 causes qPv. Does b cause qPv?: Yes’
‘b causes K. K causes qPv. 5 causes qPv. Does b cause 5?: No’
‘Mhb causes t0a. 6Eh causes Mhb. NS causes 6Eh. n causes NS. n causes xu. Does xu cause 6Eh?:
No’
‘Mhb causes t0a. 6Eh causes Mhb. NS causes 6Eh. n causes NS. n causes xu. Does n cause NS?: Yes’

E.2 Corr2Cause

Below is the MultiShot Prompt for the Corr2Cause Experiment.
Premise: Suppose there is a closed system of 4 variables, R, sG, vE and Y. All the statistical relations
among these 4 variables are as follows: R correlates with vE. R correlates with Y. sG correlates with
vE. sG correlates with Y. vE correlates with Y. However, R is independent of sG. Hypothesis: There
exists at least one confounder (i.e., common cause) of vE and Y. : YES.
Premise: Suppose there is a closed system of 4 variables, uV, S, v and pPf. All the statistical relations
among these 4 variables are as follows: uV correlates with v. uV correlates with pPf. S correlates
with v. S correlates with pPf. v correlates with pPf. However, uV is independent of S. Hypothesis:
There exists at least one confounder (i.e., common cause) of uV and v. : NO.
Premise: Suppose there is a closed system of 3 variables, 39, 52 and fM. All the statistical relations
among these 3 variables are as follows: 39 correlates with C. 52 correlates with fM. However, 39 is
independent of 52. Hypothesis: There exists at least one collider (i.e., common effect) of 39 and 52. :
YES
Premise: Suppose there is a closed system of 3 variables, mFv, lth and HVD. All the statistical
relations among these 3 variables are as follows: mFv correlates with HVD. lth correlates with HVD.
However, mFv is independent of lth. Hypothesis: There exists at least one collider (i.e., common
effect) of lth and HVD. : NO
Premise: Suppose there is a closed system of 4 variables, g1L, wlA, oO and D. All the statistical
relations among these 4 variables are as follows: g1L correlates with oO. g1L correlates with Z9.
wlA correlates with oO. wlA correlates with Z9. oO correlates with Z9. However, g1L is independent
of wlA. wlA and Z9 are independent given g1L and oO. Hypothesis: wlA is a cause for Z9, but not a
direct one. : YES.
Premise: Suppose there is a closed system of 4 variables, 6na, lWS, rw and IG. All the statistical
relations among these 4 variables are as follows: 6na correlates with rw. 6na correlates with IG.
lWS correlates with rw. lWS correlates with IG. rw correlates with IG. However, 6na is independent
of lWS. 6na and IG are independent given lWS and rw. 6na and IG are independent given rw. lWS
and IG are independent given 6na and rw. lWS and IG are independent given rw. Hypothesis: rw is a
cause for lWS, but not a direct one. : NO.
Premise: Suppose there is a closed system of 3 variables, VR4, zf and D. All the statistical relations
among these 3 variables are as follows: VR4 correlates with D. zf correlates with D. However, VR4
is independent of zf. Hypothesis: zf directly causes D. : YES.
Premise: Suppose there is a closed system of 3 variables, uj, x and rW. All the statistical relations
among these 3 variables are as follows: uj correlates with rW. x correlates with rW. However, uj is
independent of x. Hypothesis: uj directly causes x. : NO.

F Compute Resources

We run our experiments on 1 A-100 GPU system, for training our models from scratch and evaluating
them. We use 1 GPT-4 API for baseline experiments, while Phi-3 and Gemini Pro provide free
resources for model inference.
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G Formal Definitions of Axioms of Causal Irrelevance

Here we restate the stability assumption for a causal model from [9] that gives a richer set of finite
axiomatization for probabilistic causal irrelevance.

Assumption G.1 (Stability, Definition 9 in [9]). LetM be a causal model. Then an irrelevance
(X ↛ Y |Z) inM is stable it is shared by all possible probability distribution overM. The causal
modelM is stable if all of the irrelevances inM are stable.

H Trend Breakdown of Results

H.1 Generalization to Complex Causal Scenarios

We present results on how well an axiomatically trained transformer can generalize to larger and more
complex causal graphs, and how it compares to pre-trained LLMs in both zero-shot and multi-shot
settings.

Length Generalization: Table 5 shows accuracy of different models when evaluated on longer
causal sequences that were not seen during training. Among the baseline pre-trained LMs, GPT-4
obtains the highest accuracy on both standard and randomly flipped chains for the few shot setting,
where some examples instances were shown in the model prompt for sequences with length ranging
from 3 to 6. It is remarkable that our TS2 (NoPE) model obtains competitive performance to the
trillion-scale GPT-4 model, even though it had never seen larger sequences (length 6) during training.
Specifically, for chains of size 7-12, TS2 (NoPE) achieves higher or comparable accuracy to GPT-4 in
the multi-shot setting. Similar trends are observed for chains of size 7-13 when compared to GPT-4
in the zero-shot setting, both for standard and randomly flipped chains. Its accuracy decreases for
chains of length 14-15 (0.85 for standard chains and 0.78 for randomly flipped chains) but is still
significantly higher than that of LMs like Gemini-Pro and Phi-3. Although in-context examples
improve the performance of baseline LLMs, TS2 (NoPE) still easily outperforms both Gemini Pro and
Phi-3 in the multi-shot setting. Note that a random prediction would yield a 50% accuracy, indicating
that the axiomatically-trained TS2 (NoPE) model can generalize its reasoning to causal chains much
longer than 6 even though it was trained only on chains upto length 6.

Node Name Shift: For models trained on TS2 dataset, we also evaluate generalization to changes
in variable names (Figure 2). We find that TS2 (NoPE) is robust to node name changes and retains
its high accuracy as new, longer names are introduced. It also retains its generalizability to longer
sequences with new node names, performing similarly to GPT-4.

Order of Causal Sequences: We now consider how variations in the causal structure impact
generalization of axiomatically-trained models. In Table 3, we consider the complex evaluation setup
MultiEvalSLR that includes shuffled order of causal sequences with random flipping for increasing
length (even beyond the ones in train set). On this task, TS2 (NoPE) obtains higher accuracy than
Gemini Pro and Phi-3 on chains of length up to 8. At length 9, TS2 (NoPE) obtains 0.73 accuracy
which is comparable to Gemini Pro (0.74) and significantly better than random baseline. Typically
there is a huge performance improvement for baseline LLMs like Gemini pro (upto 20%), but still
TS2 (NoPE) and TS1 (NoPE) easily perform better across majority of the sequence lengths. While the
multi-shot setting generally improves performance compared to the zero-shot setting, in some cases,
the performance remains unchanged. TS2 (NoPE) performs better than both Gemini-Pro and Phi-3
across both zero and multi shot settings.

We observe a similar pattern for evaluation on completely reversed sequences in Table 2.

This is an extreme case of out-of-distribution data since most causal edges are left-to-right in the
training data whereas the test data contains all right-to-left edges. On this task, our axiomatically
trained model TS2 (NoPE) outperforms GPT-4 (zero shot) when restricted to chain lengths of 3-6. In
particular, its accuracy (0.94 for chains of length 6) is substantially higher than Gemini Pro and Phi-3
(0.62 and 0.69 respectively for zero shot setting). While multi-shot prompting leads to improved
performance of baseline LLMs over zero shot prompting by a margin of 20% (for 5-6 chain lengths),
TS2 (NoPE) is still impressively able to outperform bigger models (Gemini Pro and Phi-3) across both
settings.
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Branching: Finally, we consider the hardest evaluation task involving non-linear chains where we
introduce general Erdos-Renyi graphs as the causal sequences while the training data contains only
linear chains. Here the length of sequence corresponds to the number of nodes in the graph and we
study the performance differences as the branching factor is varied. While GPT-4 obtains the best
accuracy (multi shot) across increasing graph sizes, our TS2 (NoPE) model obtains higher accuracy
than Gemini Pro (zero-shot) for all graph sizes except one (for 1.4 branching factor). Even when
evaluated on graphs with 12 nodes and 1.4 branching factor, the TS2 (NoPE) model obtains 70%
accuracy, significantly better than random baseline (50%). Note that the training data only included
graphs with a branching factor of 1.

Summary: Across all evaluation setups, our axiomatically trained model TS2 (NoPE) performs
significantly better than random baselines even as chain lengths are increased beyond its training
data. In particular, even though our model was not trained on fully reversed chains, it performs at par
with the significantly larger GPT-4 model (Fig. 5). For other tasks, it often outperforms or matches
the accuracy of billion-scale models like Gemini Pro and Phi-3. These results indicate that a model
trained axiomatically can learn to reason about more complex causal structures from demonstrations
of simple causal sequences. This suggests the potential of axiomatic training for reasoning over
causal graphs.

H.2 Additional Results: Role of Data Diversity and Positional Encoding

Role of Positional Encodings. Comparing the performance of models wrt. choice of positional
encoding, we find that models with no positional encoding generalize well to both longer lengths
(upto chain length of 15) and complex, unseen graph structures, even though they are only trained
on chains over 3-6 nodes. Models with SPE and LPE also perform well on longer chains but poorly
when node names’ length increases, even for chains with smaller number of nodes (Figure 2).
This generalization failure using SPE and LPE highlights the models’ inability to handle minor
perturbations in the sequences present in their training set. Moreover, SPE does not perform well
across different structural dimensions like branching, and order-based settings such as shuffling
and reversal. Learnable PE performs well up to 9-length linear chains but drops sharply afterward.
Overall, our results extend earlier work on the utility of NoPE [13, 10] to the task of understanding
causal sequences and generalizing to both longer length and complex structure at test time.

Note that for the evaluation setup with randomly flipped edges, all types of PEs perform well. This
may be due to the fact that the maximum effective length of a directed path between any two nodes
is very small in randomly flipped sequences (much smaller than that of sequential causal chains)
because the probability of an edge being forward directed is 0.5, and as we move across all sequential
edges, the probability keeps on decreasing as 0.5l where l is length of path.

Importance of Data Perturbations: In addition to the positional encoding, diversity of the sequences
in train data plays an important role. Model trained on only causal chains (OCC) generalize to longer
chains (Table 5) but not to other DAG structures (see Figure 3 for edge flip, Figure ?? for reversal,
Table 4 for branching). Models trained on TS1 or TS2 generalize across all scenarios, including
random flip, order permutations, and branching; thus highlighting the impact of incorporating
variability at the edge level through random flipping. However, across tasks, we find that TS2 yields
higher accuracy than TS1, even as TS1 has more variations due to random flipping. This suggests that
while perturbations aid structural generalization, excessive perturbations can hinder it (in particular,
random flipping may decrease the length of available causal paths during training).
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