
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

LoopGaussian: Creating 3D Cinemagraph with Multi-view
Images via Eulerian Motion Field

Anonymous Authors

(a) Multi-view Images (b) Eulerian Motion Field (c) Loopable Video

Figure 1: We propose LoopGaussian, a novel method designed to convert multi-view images of a stationary scene (a) into authentic 3D
cinemagraph by an Eulerian motion field (b). The 3D cinemagraph can be rendered from a novel viewpoint to obtain a natural seamless
loopable video (c).

ABSTRACT
Cinemagraph is a unique form of visual media that combines ele-
ments of still photography and subtle motion to create a captivating
experience. However, the majority of videos generated by recent
works lack depth information and are confined to the constraints of
2D image space. In this paper, inspired by significant progress in the
field of novel view synthesis (NVS) achieved by 3D Gaussian Splat-
ting (3D-GS), we propose LoopGaussian to elevate cinemagraph
from 2D image space to 3D space using 3D Gaussian modeling.
To achieve this, we first employ the 3D-GS method to reconstruct
3D Gaussian point clouds from multi-view images of static scenes,
incorporating shape regularization terms to prevent blurring or
artifacts caused by object deformation. We then adopt an autoen-
coder tailored for 3D Gaussian to project it into feature space. To
maintain the local continuity of the scene, we devise SuperGaussian
for clustering based on the acquired features. By calculating the
similarity between clusters and employing a two-stage estimation
method, we derive an Eulerian motion field to describe velocities
across the entire scene. The 3D Gaussian points then move within
the estimated Eulerian motion field. Through bidirectional anima-
tion techniques, we ultimately generate a 3D Cinemagraph that
exhibits natural and seamlessly loopable dynamics. Experiment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2024, Woodstock, NY
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

results validate the effectiveness of our approach, demonstrating
high-quality and visually appealing scene generation.

CCS CONCEPTS
• Computing methodologies → Computer graphics; Image-
based rendering; Image and video acquisition;

KEYWORDS
Cinemagraph, Dynamic scene generation, 3D scene reconstruction

ACM Reference Format:
Anonymous Authors. 2024. LoopGaussian: Creating 3D Cinemagraph with
Multi-view Images via Eulerian Motion Field. In Proceedings of Make sure
to enter the correct conference title from your rights confirmation emai (Con-
ference acronym ’XX). ACM, New York, NY, USA, 10 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION
Cinemagraphs are static images in which a minor and repeated
movement appears, forming a seamlessly looping video clip [10]. It
offers a unique blend of static imagery and subtle motion by com-
bining elements of both photography and videography, captivating
audiences with its mesmerizing allure. In light of recent advance-
ments in concepts such as augmented reality, mixed reality, and
metaverse, there has been a growing demand for creating natural
and realistic cinemagraphs [2, 19]. However, generating dynamic
3D scenes within cinemagraphs typically entails extensive manual
labor from professional artists, leading to considerable costs.

Existing works [12, 14, 30] mainly focus on automatically creat-
ing cinemagraphs from static images in 2D image space. Mahapatra
and Kulkarni [30] propose to interactively animate fluid elements

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

in still images based on flow directions and regions of interest pro-
vided by users. However, these manipulations are all done in 2D
image space where the view direction is inevitably fixed, which
lacks a sense of visual fidelity.

A few methods [19, 29] that explore the generation of 3D cin-
emagraphs have recently emerged. For example, Li et al. Li et al.
[19] take the first step to create realistic animations of scenes with
compelling parallax effects by jointly learning image animation and
novel view synthesis. Ma et al. Ma et al. [29] introduce a pipeline to
create cinemagraphs from asynchronousmulti-view videos, thereby
facilitating the exploration of diverse viewpoints. Nevertheless, we
argue that these approaches cannot be considered as authentic 3D
cinemagraphs, as theymerely employ representations ofmulti-layer
two-dimensional images with depth information such as MPI [55]
or LDI [44], failing to reconstruct the underlying three-dimensional
geometric structure of scenes. Consequently, these methods strug-
gle to produce the effect of camera movement or need to restrict
the camera movement within a confined viewing angle and range.
In addition, the lack of geometric information may lead to artifacts
or produce geometric inconsistency.

In consideration of these constraints in existing methodologies,
we present LoopGaussian, an innovative framework for curating
authentic 3D cinemagraphs from multi-view images of static scenes.
LoopGaussian is grounded in the reconstruction of the 3D struc-
ture of the scene from multi-view images, taking advantage of the
state-of-the-art 3D Gaussian Splatting [17]. Consequently, we can
efficiently perform operations that are previously unattainable in
2D space, such as novel view synthesis and dynamic scene render-
ing. Moreover, our method can effectively leverage the inherent
self-similarity within the scene representations, eliminating the
necessity for pre-training on extensive datasets.

We streamline our framework into three steps, as illustrated in
Fig. 1: (a). Firstly, we train a 3D Gaussian scene using multi-view
static images, followed by an autoencoder that maps 3D Gauss-
ian points into an appropriate feature space. (b) Next, we devise
a clustering method on these 3D Gaussian points and exploit self-
similarity among clusters to construct a velocity field. The velocity
field is further refined with a multi-layer perceptron to obtain an
Eulerian motion field. (c) Finally, we generate a seamlessly loopable
video based on the derived Eulerian motion field with bidirectional
animation techniques. The generated video clip is more plausible
and visually captivating owing to its generation process in the
three-dimensional space. In our experiments, we consider simulat-
ing motions of soft and non-rigid objects, such as tree branches,
flags, and hanging clothes. Our experimental results demonstrate
the effectiveness of our proposed method. In summary, our main
contributions are as follows:

• We propose a novel framework capable of generating au-
thentic 3D Cinemagraphs from multi-view images of static
scenes, which achieves seamless loopable dynamics of the
scene and can be rendered from a novel viewpoint.

• We innovatively describe the dynamics of the scene in terms
of Eulerianmotion fields in 3D space. Leveraging the scene’s
self-similarity, we employ a two-stage optimization strategy
to estimate the Eulerian motion field.

• Our framework is heuristic, obviating the necessity for
pre-training on large datasets, and it offers flexibility by
enabling users to control the magnitude of the scene dy-
namics.

2 RELATEDWORK
2.1 Cinemagraph
A cinemagraph [10, 43] is a combination of a static image and a
dynamic video, where most of the scene is still while a fraction of it
changes in a continuous loop. This concept has gained popularity
in diverse domains, ranging from artistic expression and digital
storytelling to advertising and brand marketing. While advanced
digital tools have empowered artists and photographers to craft
photo-realistic cinemagraphs, the manual creation process is still
labor-intensive and time-consuming.

There exists a rich body of works [1, 21, 22, 34, 45, 52] that
explore an automatic creation of cinemagraphs. Earlier methods
commonly take a video as input to generate a seamlessly looping
video clip. For instance, by identifying segments with cyclic motion
properties [21, 45, 52]. Agarwala et al. [1] create panoramic video
textures from the output of a single panning video camera. Oh
et al. [34] introduce an end-to-end approach that extracts high-level
semantics from the input video to facilitate cinemagraph generation.
In addition, there are several works [6, 7, 23] that aim at creating
a cinemagraph from a single image. Chuang et al. [7] propose a
semi-automated method that lets users manually segment the scene
into multiple layers. Subsequently, stochastic motion textures are
automatically synthesized for each layer, which are then integrated
to create the final video. Lin et al. [23] demonstrate the capability of
generating waterfall animations from static waterfall images. Choi
et al. [6] automatically generate cinemagraphs from a still landscape
image using a pre-trained StyleGAN [16]. Text2Cinemagraph [31]
presents a fully automatic method that synthesizes cinemagraphs
from text descriptions. However, these works are all constricted to
2D image space, which may fail to deliver an immersive experience
for audiences.

Apart from 2D cinemagraph generation, Li et al. [19] pioneered
a framework for generating 3D cinemagraphs from a single still
image. This approach utilizes a dense depth map to separate the
scene into several layers and expand 2D motion into 3D scene flow.
In contrast, we directly handle 3D points derived from the scene in
3D space without endeavor of predicting any depth maps, yet still
achieving visually appealing looping effect. Moreover, our method
is capable of exploring representation similarity in 3D space to
construct cinemagraphs, thus alleviating the need for pre-training
on large-scale datasets.

2.2 Neural Scene Representation
Neural scene representation aims at modeling the scene via neural
networks, in which way the entire rendering pipeline is differ-
entiable, and the whole scene is learnable. Neural Radiance Field
(NeRF) [32] is one of the most popular methods for implicit neural
scene representation. It models the view-dependent color and opac-
ity at each spatial position throughMulti-Layer Perceptrons (MLPs),
and enables novel view synthesis through volume rendering. The

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

LoopGaussian: Creating 3D Cinemagraph with Multi-view Images via Eulerian Motion Field Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

success of NeRF has inspired a significant body of subsequent re-
search. Some studies are devoted to improving the training and
rendering speed [13, 27, 33, 41, 53], while others aim at elevating
the rendering quality [3, 18, 42, 47, 48]. Additionally, several efforts
are made towards adapting NeRF for dynamic scenes [4, 11, 37, 39].

3D Gaussian Splatting (3D-GS) [17] is an emerging neural scene
representation approach that explicitly models 3D information of
a scene. It employs a collection of semi-transparent anisotropic
Gaussian ellipsoids to represent the input scene, and designs a
differentiable rasterization rendering pipeline to enable real-time
high-fidelity rendering. While 3D-GS is initially designed for static
scenes, some subsequent works have extended it to handle dynamic
scenes. One line of work is centered around the idea of predicting
the temporal evolution of individual 3D Gaussians using neural
networks [8, 15, 24, 49, 51], while another entails representing a
dynamic scene within a 4D space where each moment is repre-
sented as a slice of this space [9, 20, 28]. Although 3D-GS achieves
notable success in modeling dynamic scenes, existing approaches
are generally based on the Lagrangian perspective. In this paper,
we make an early attempt to describe the progressive dynamics of
a scene from an Eulerian perspective.

3 PRELIMINARIES
3.1 3D Gaussian Splatting
3D Gaussian Splatting (3D-GS) [17] has recently emerged as an
explicit scene representation and rendering approach, which al-
lows high-quality and real-time rendering for scenes captured with
images from multiple viewing directions.

3D-GS explicitly represents the scene as a set of 3D Gaussian
points. Each 3D Gaussian point𝐺𝑖 is characterized with attributes
{𝑝𝑖 , 𝑞𝑖 , 𝑠𝑖 , 𝜎𝑖 , 𝑐𝑖 , 𝑆𝐻 𝑖 }, where 𝑝𝑖 ∈ R3 is the space position, 𝑞𝑖 ∈ R4

is the quaternion representing rotation, 𝑠𝑖 ∈ R3 is the scaling on
each axis, 𝜎𝑖 ∈ R is the opacity, 𝑐𝑖 ∈ R3 is the diffuse color, and 𝑆𝐻 𝑖
is the spherical harmonic function to express anisotropic colors.
The dimensions of 𝑆𝐻 are depended on the order used. The shape
of each 3D Gaussian point is controlled by a covariance matrix
Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 , where 𝑅 is the rotation matrix transformed from
quaternion 𝑞, and 𝑆 is the scaling matrix transformed from 𝑠 . Hence,
each 3D Gaussian point can be expressed as:

𝐺 (𝑥) = 𝑒−
1
2 (𝑥−𝑝)

𝑇 Σ−1 (𝑥−𝑝) . (1)

During the rendering procedure, each 3D Gaussian is projected
onto an image plane in camera space to shape a 2D Gaussian. To
determine the color of each pixel, the Gaussians that are contained
in one pixel are sorted by depth, and the pixel color 𝑐 is estimated
according to 𝛼-blending:

𝑐 =
∑︁

𝑖∈𝐺pixel

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗), (2)

where𝐺pixel is a set of Gaussians that are contained in this specific
pixel, 𝑐𝑖 is the learned color of the Gaussian, and 𝛼𝑖 is the learned
opacity multiplied with the Gaussian.

3.2 Eulerian Motion Field
Existing approaches that capture Gaussian point cloud dynamics
are generally based on the Lagrangian perspective. The Lagrangian
methods track individual particles over time, focusing on their
trajectories as they move through space, which is fairly intuitive.
In contrast, the Eulerian perspective focuses on specific locations
in space, observing how particles move through these locations
over time. To approximate such an Eulerian motion field, Holynski
et al. [14] propose a static motion field in 2D image space, where
the value of each pixel defines its immediate velocity that remains
constant over time. We follow this method and adapt it to describe
the deformation of soft non-rigid objects (such as branches, flags,
ropes, etc.) in 3D space. Formally, the motion of a particle from one
frame to the next through Euler integration is described as follows:

𝑋 (𝑡 + 1) = 𝑋 (𝑡) + ®𝐸 (𝑋 (𝑡)), (3)

where ®𝐸 is the static Eulerian motion field and 𝑋 (𝑡) is the position
of a particle at time 𝑡 .

4 METHOD
4.1 Overview
Given a set of multi-view images of a static scene, our goal is to cre-
ate a seamlessly loopable and natural-looking 3D cinemagraph. The
overview of our method is illustrated in Fig. 2. We start by creating
a 3D Gaussian point cloud using 3D-GS [17] with an additional
eccentricity regularization (Sec. 4.2). As not all objects in the scene
are suitable for deformation, we segment the parts that are likely to
exhibit loopable motion with SAGA [5]. The dynamic 3D Gaussians
are then projected into a feature space via an autoencoder and clus-
tered according to both position and feature information through
our designed SuperGaussian approach (Sec. 4.3). Next, we derive a
global feature for each cluster and calculate the similarity among
clusters based on these global features. The similarity information
is used to estimate a velocity field, which is further refined with an
MLP as the final Eulerian motion field (Sec. 4.4). Finally, we achieve
a loopable video based on our estimated Eulerian motion field using
bidirectional animation technology [14, 19, 30] (Sec. 4.5). We will
elaborate on the details in the following subsections.

4.2 Artifact-free Scene Representation
3D Gaussians Generation. We obtain the flexible representation
of the initial static scene, which is composed of 3D Gaussian points,
using 3D-GS [17] as described in Sec. 3.1. We choose 3D-GS because
a 3D Gaussian point is essentially an ellipsoid, the shape of which
can efficiently and accurately characterize intricate geometries
when the scene is static. However, the dynamics of a scene’s defor-
mation can inevitably modify the positional relationships among
these Gaussian points, and the excessively sharp ellipsoids may
introduce glitch artifacts, thereby compromising the visual coher-
ence of the scene. To address this, inspired by prior works [26, 50],
we improve the representation robustness and visual fidelity of the
scene by introducing a constraint on shape during training. Specifi-
cally, we incorporate a regularization term targeting at ellipsoidal

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3D Gaussians
Generation

Ellipsoidal eccentricity

SuperGaussian
Clustering

Eulerian Motion Field
Estimation

seed

Max
pooling

Cluster

seed

Cluster

3D Gaussian points

Autoencoder

Point features

Interpolation

Mask

Multi-view
images

Max
pooling

Center

Center D
ense

velocity field

Eulerian motion field

Similarity
Separation

Forward

Backward

Sparse
velocity field

(MLP)

Bidirection

Loopable video

Figure 2: Overview of our framework. Given multi-view images of a static scene, we initially create a 3D Gaussian point cloud using
3D-GS with an eccentricity regularization term. Next, we identify the point cloud region that the user wishes to deform using a 2D Mask.
The 3D Gaussians are then projected into the feature space via an autoencoder and undergo clustering using SuperGaussian. Subsequently,
we derive a sparse velocity field based on self-similarity, interpolate to acquire a dense velocity field and refine the final Eulerian motion
field through an MLP. Finally, we can generate a seamlessly loopable video by leveraging bidirectional animation techniques in 3D space and
incorporating specified camera parameters.

eccentricity when training the 3D Gaussian scene:

Lshape =
1
|G|

∑︁
𝐺𝑖 ∈G

1 − min2 (𝑠𝑖)
max2 (𝑠𝑖)

, (4)

where 𝑠𝑖 is the scaling on each axis and G ≔ {𝐺𝑖 } is the set of 3D
Gaussian points of the scene as described in Eq. (1).

3D Gaussians Optimization. During the training process, the
3D Gaussian point cloud is rendered to a novel view image through
the rasterization pipeline explained in Sec. 3.1. The error is then
calculated as the difference between the rendered image and its
corresponding ground-truth image. Following [17], we adopt the
absolute errorL1 and the structural similarity indexLD-SSIM as the
difference measure. Mathematically, the total loss for 3D Gaussians
optimization is defined as:

L3D-GS = 𝜂 ((1 − 𝛽) L1 + 𝛽LD-SSIM) + (1 − 𝜂) Lshape, (5)

where Lshape is our introduced regularization loss on ellipsoidal
eccentricity, 𝛽 is a weighting factor that balances L1 and LD-SSIM,
and 𝜂 is another weighting factor that balances the error loss and
the regularization loss.

Compared with the latest works on cinemagraph generation, the
benefits of representing the scenewith 3DGaussians and optimizing
it using Eq. (5) are three-fold. First, we can take as input multiple
images from different viewing directions instead of just one single
image, which is advantageous for reconstructing the intricate 3D
geometries of the observed scene. Second, we present an auxiliary
regularization term on the shape of 3D Gaussians to mitigate the
artifact issue, which will be empirically validated in Sec. 5.4. Third,

we can efficiently construct the subsequent Eulerian motion field
by exploiting the distance relationships among 3D Gaussians.

3D Gaussians Separation. After learning the reconstruction of
the 3D Gaussian point cloud, we manually annotate the objects
that are anticipated to have motion effects within images in the
training set. Next, we utilize SAGA [5], an interactive segmentation
approach for 3D Gaussians, to create a mask for the point cloud.
This mask is introduced to segregate the 3D Gaussian point cloud
into static and dynamic components. Concretely, let 𝐼 represent the
multi-view images of the training set and𝐴 the manual annotations
on these images, the binary maskM is obtained by:

M ≔ {𝑚𝑖 } = SAGA(G, 𝐼 , 𝐴) (6)

For each Gaussian point 𝐺𝑖 , if its corresponding mask value 𝑚𝑖
is 1, it will participate in the subsequent construction of Eulerian
motion field; otherwise, it remains stationary. This separation pro-
cess offers a flexible way to concentrate exclusively on modeling
the dynamic 3D Gaussians. For brevity, we reuse the notation G to
denote dynamic 3D Gaussians in the next subsections.

4.3 SuperGaussian for 3D Gaussians Clustering
The point cloud of 3D Gaussians offers an unstructured represen-
tation of a scene; however, the scene it depicts usually exhibits a
structured geometry. An illustrative example is observing a flag
waving in the wind: if a corner of the flag moves in a specific direc-
tion, the entire flag is likely to exhibit similar motion patterns. This
local coherence of motion originates from the physical intercon-
nection within the flag. Generally, if one point of an object moves,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LoopGaussian: Creating 3D Cinemagraph with Multi-view Images via Eulerian Motion Field Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

the surrounding points may also show a similar trend of movement
due to the local consistency of geometry.

In consideration of the analysis above, we borrow the concept
from supervoxel to preserve the local consistency of geometry. The
basic idea of supervoxels involves clustering 3D points according
to spatial proximity and feature similarity. Inspired by previous
works on supervoxel segmentation [25, 36], we introduce a cluster-
ing method for 3D Gaussians, termed SuperGaussian. Concretely,
let G ≔ {𝐺𝑖 |𝑖 = 1, · · · , 𝑁 } be the set of 3D Gaussians in a point
cloud and C ≔ {𝐶𝑘 |𝑘 = 1, · · · , 𝐾} the set of clusters, where 𝑁 is
the total number of points and 𝐾 is total number of clusters. We
first partition the scene into voxels based on a voxel resolution 𝑅,
and then randomly select a seed Gaussian point within each of the
non-empty voxels (i.e., voxels that contain at least one Gaussian
point). Let SG(·) represent the SuperGaussian model that assigns a
clustering label to a Gaussian point, and SG∗ the optimized Super-
Gaussian. Clustering is achieved through the optimization of the
following objective function:

SG∗ = arg min
SG

𝐾∑︁
𝑘=1

∑︁
SG(𝐺𝑖)=𝑘

𝐷 (𝐺𝑖 ,𝐺𝑘 ′), (7)

where 𝑘′ is the corresponding index of the seed Gaussian point for
cluster 𝑘 . The metric function 𝐷 (·, ·) is defined as:

𝐷 (𝐺𝑖 ,𝐺 𝑗) = 1 −
|𝑓𝑖 · 𝑓𝑗 |

∥ 𝑓𝑖 ∥· ∥ 𝑓𝑗 ∥
+ 𝜇

∥𝑝𝑖 − 𝑝 𝑗 ∥
𝑅

, (8)

where 𝑓𝑖 and 𝑓𝑗 are the features of the Gaussian points 𝐺𝑖 and 𝐺 𝑗
from an autoencoder [10, 40], 𝑝𝑖 and 𝑝 𝑗 are the positions of the
Gaussian points, 𝜇 is a weighting factor that balances the impor-
tance of features and positions, and 𝑅 stands for the resolution of
supervoxels. With the seed points selected as centers, we gradually
search outwards, applying the metric function 𝐷 (·, ·) to identify the
appropriate cluster for each point. This iterative process continues
until all 3D Gaussian points are successfully assigned to a cluster.

SuperGaussian can be seen as a variant of k-means, but enjoys
the following advantages. On one hand, the seeding procedure is
implemented by selecting seed Gaussian points in each non-empty
supervoxels, so that the seeds are almost uniformly distributed
across the scene. On the other hand, we incorporate the attributes of
the learned 3D Gaussians into the distance measure, which ensures
that the clustering algorithm will converge in just a few iterations.
We experimentally find that only one iteration is enough to achieve
a satisfactory clustering result, which makes SuperGaussian even
more efficient.

4.4 Progressive Eulerian Motion Field
Estimation

Motion field estimation in natural scenes is a challenging task due
to the scarcity of comprehensive datasets, particularly for point
clouds. A significant limitation arises from the difficulty in predict-
ing subsequent scene flow based solely on static point cloud data. In
response to this challenge, we propose a hypothesis: Similar objects
generally have similar movement trends. The rationale behind this
hypothesis stems from the observation that objects within natural
scenes often exhibit collective behavior or tend to interact with
one another in predictable ways. For instance, when a breeze blows

through a forest, leaves on nearby trees tend to move in unison,
following a similar direction. Building upon this hypothesis, we
devise an efficient estimation method for the Eulerian motion field
according to the similarity relationships among clusters.

Sparse Velocity Field Estimation. We derive an initial velocity
field by moving each cluster to its nearest neighbor. To achieve this,
we first need to identify a global feature for each cluster, on which
a similarity metric can be performed. Considering the disorder
of Gaussian points in each cluster, we adopt maximum pooling,
a permutation-invariant and symmetric function, to extract the
global feature 𝑓𝐶𝑖

for each cluster 𝐶𝑖 . Next, we obtain a similarity
matrix S ≔ {𝑠𝑖 𝑗 } by computing the cosine similarity between two
global features:

𝑠𝑖 𝑗 =
𝑓𝑖 · 𝑓𝑗

∥ 𝑓𝑖 ∥ · ∥ 𝑓𝑗 ∥
∀𝑖 ∈ [1, 𝐾], 𝑗 ∈ [1, 𝐾] . (9)

The most similar cluster 𝐶𝑖 for each cluster 𝐶𝑖 is then identified
with the highest cosine similarity:

𝑗∗ = arg max
𝑗≠𝑖

(𝑠𝑖 𝑗) ∀𝑖 ∈ [1, 𝐾] . (10)

To create the velocity field, we define a center point with position
𝑝𝑖 for each cluster, which is calculated by taking the average of
positions of all Gaussian points within the cluster. The velocity
field vsparse ≔ {𝑣𝑠𝑖 }𝐾𝑖=1 is then achieved by moving one cluster to
another with the highest similarity:

𝑣𝑠𝑖 = 𝑝 𝑗∗ − 𝑝𝑖 ∀𝑖 ∈ [1, 𝐾] . (11)

Note that the initial velocity field is fairly sparse due to the limited
number of clusters. This sparse velocity field is prone to overfitting
as they lack the granularity necessary for smooth representation
across the entire spatial domain. This limitation may become more
prominent when the motion field extends into unfamiliar areas,
which can greatly increase the risk of divergence and discontinuity.
Next, we will introduce our solution to this issue.

Dense Velocity Field Estimation. We opt for Kriging interpola-
tion [35] to estimate a dense velocity field from the sparse one cal-
culated in Eq. (11). Kriging is a geostatistical interpolation method
that is widely used for estimating the value of a variable at an un-
measured location based on the values of neighboring positions
with known values.

Concretely, we compute the velocity at each position of a 3D
Gaussian point via Kriging interpolation, which results in a dense
velocity field vdense ≔ {𝑣𝑑𝑖 }𝑁𝑖=1. The dense velocity 𝑣𝑑𝑖 at position
𝑝𝑖 is a weighted sum of the observed sparse velocities vsparse, where
the weights are derived from a variogram. In practice, we employ
a standard spherical model to solve the variogram. The Kriging
interpolation procedure excels in preserving the smoothness of the
velocity field, and we will empirically demonstrate the effectiveness
of it in Sec. 5.4.

Eulerian Motion Field Estimation. As the Eulerian motion field
captures velocities at all spatial positions, it is crucial to ensure
smoothness to prevent scene tearing during deformation.

To this end, we adopt an MLP to estimate the Eulerian motion
field ®𝐸𝐺 for enhanced smoothness. The inputs to the MLP are the
spatial positions {𝑝𝑖 }𝐾𝑖=1 and {𝑝𝑖 }𝑁𝑖=1, and it predicts the velocities

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

at the corresponding positions. The training process of MLP is
fully supervised by the sparse and dense velocities vsparse and
vdense. During inference, we can estimate the velocity 𝑣 = ®𝐸𝐺 (𝑝) ≔
MLP(𝑝) at any given position 𝑝 in 3D space via the Eulerian motion
filed.

4.5 Loopable Dynamics Generation
Given the estimated Eulerian motion field ®𝐸𝐺 , we can efficiently
ascertain the motion of each 3D Gaussian point. However, the
convergence of each point’s movement within the Eulerian field
may not be guaranteed over time. This is because an Eulerian
field is not necessarily an irrotational field, which may lead to
unexpected scene tearing. To address this challenge, inspired by the
bidirectional animation technology [14, 19, 30] in image space, we
make an effort to escalate it from 2D space to 3D space, ensuring
that each point stays within a reasonable range of motion and will
ultimately revert to its initial position.

For each 3D Gaussian point 𝐺𝑖 , we introduce a vector 𝜓 ∈ R3

to regulate the magnitude of motion on each axis. The vector is
simultaneously controlled by the lengths of sides of the scene’s
axis-aligned bounding box ℎ ∈ R3, the number of video frames 𝑇 ,
and a hyperparameter 𝜔 that controls the amplitude of motion, i.e.,
𝜓 = 𝜔

𝑇
·𝑒−ℎ . The position 𝑝𝑖 (𝑡) of the point𝐺𝑖 at time 𝑡 is calculated

through Euler integration from 0 to 𝑡 :

𝑝𝑖 (𝑡) = 𝑝𝑖 (0) +
𝑡−1∑︁
𝜏=0

𝜓 ⊙ ®𝐸𝐺 (𝑝𝑖 (𝜏)) ,

where 𝑝𝑖 (𝜏) = 𝑝𝑖 (𝜏 − 1) +𝜓 ⊙ ®𝐸𝐺 (𝑝𝑖 (𝜏 − 1)) .

(12)

Here ⊙ signifies the Hadamard product. To achieve forward and
backward animation in 3D space, we calculate the spatial positions
𝑝𝑖 (𝑡) and 𝑝𝑖 (𝑡 −𝑇) of each 3D Gaussian point 𝐺𝑖 at frames 𝑡 and
𝑡 −𝑇 using Eq. (12). Then we derive its final position 𝑝𝑖 (𝑡) at time
𝑡 through linear interpolation:

𝑝𝑖 (𝑡) = 𝛼𝑝𝑖 (𝑡) + (1 − 𝛼)𝑝𝑖 (𝑡 −𝑇), (13)

where 𝛼 = (1 − 𝑡
𝑇
). In this way, we obtain a temporal sequence

of positions for the 3D Gaussian point cloud. Given the camera
parameters, including its position and viewing angle, we employ
the rendering pipeline outlined in Sec. 3.1 to render each frame,
which ultimately forms a seamlessly looping video.

5 EXPERIMENTS
5.1 Datasets
We utilize a combined synthetic dataset to comprehensively eval-
uate our proposed method. Part of the dataset is from the static
NeRF synthetic dataset [32]. Due to the scarcity of dynamic datasets
depicting natural scenes, we also produce a brand new dataset that
showcase dynamic nature scenes using Unity. This dataset follows
the structure of the NeRF synthetic dataset and is accompanied
by a corresponding synchronized ground truth video, which has a
resolution of 900 × 900 pixels and consists of 48 frames. Noted that
the video is non-loopable.

Table 1: Quantitative comparison of average optical flow
maps.

Methods PSNR↑ SSIM↑ LPIPS ↓
Li [19] 22.959 0.915 0.233
Ours 24.868 0.928 0.208

Table 2: Quantitative comparison of generated videos.

Methods FVD ↓
Li [19] 1174.948
Ours 933.824

5.2 Implementation Details
Our experiments are completed on a single NVIDIA GeForce RTX
4090 with the PyTorch framework [38]. We empirically set 𝛽 = 0.2
and 𝜂 = 0.9 in Eq. (5), and the total number of training iterations
is 50, 000. The autoencoder that projects 3D Gaussian points into
feature space is designed based on PointNet [40], where the archi-
tecture of the decoder is symmetric to that of the encoder. During
the clustering of 3D Gaussian points, we adjust the scene resolution
𝑅 according to 𝜆max(ℎ) to balance granularity and detail preser-
vation, where 𝜆 = 0.04 and 𝜇 = 0.5 in Eq. (8). The MLP utilized to
depict the Eulerian motion field has two hidden layers of size 128
and 64 respectively, with positional encoding applied to the input.
For the amplitude control of motion, we set𝜔 = 1.2. Regarding final
video rendering, we set the video duration 𝑇 to 48 frames, with a
resolution specified as 900 × 900.

5.3 Results
To the best of our knowledge, we present the first work that creates
cinemagraphs in the authentic 3D space. For fair comparison with
state-of-the-art work on synthesizing cinemagraphs in 2D image
space, here we render our cinemagraphs in 2D image space as well.
However, we remark that our proposed method is more advanced,
in the sense that our method is performed in 3D space and is capable
of rendering from any viewpoint, which is impossible for any of
previous related works.

Quantitative Evaluation. We perform a quantitative evaluation
on the self-produced synthetic dataset mentioned in Sec. 5.1. To
rigorously evaluate the effectiveness of our approach, we conduct
a quantitative comparison between optical flow maps generated
by our method and that of a reference video. Optical flow maps
serve as a fundamental tool in video analysis, offering insights
into the dynamic changes occurring both temporally and spatially
within a video sequence. We commence the evaluation process by
analyzing the optical flow starting from the second frame onwards.
The optical flow between each frame and its preceding frame is
computed and averaged to obtain a comprehensive optical flow
map. We assess the quality of results using three popular image
quality assessment metrics, i.e., PSNR, SSIM, and LPIPS [54]. The
quantitative comparison results of the average optical flowmaps are
presented in Table 1. It is evident from the table that our method’s

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

LoopGaussian: Creating 3D Cinemagraph with Multi-view Images via Eulerian Motion Field Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(a) (b) (a) (b) (a) (b) (a) (b)

Figure 3: Comparison of visual results. From top to bottom, each column contains multiple key frames extracted from videos, and each
screenshot accompanied by zoomed-in details. At the bottom, there is a visualization of the average optical flow map for the corresponding
video, employing various colors to denote different motion directions. (a) is our method, and (b) is the method proposed by Li et al. [19].

optical flow maps closely resemble the reference optical flow maps,
suggesting that our approach generates more realistic motion. We
also use Fréchet Video Distance (FVD) [46] to evaluate the quality of
the generated video. The comparison results can be seen in Table 2,
which further demonstrates the advantage of our method.

Qualitative Evaluation. Visual comparisons between our pro-
posedmethod and 3DCinemagraph [19] are shown in Fig. 3. Despite
being labeled as 3D Cinemagraph, their method primarily caters to
fluid scenes and lacks precise geometric information in 3D space.
Consequently, when handling geometrically continuous objects,
their results can manifest severe artifacts, ultimately disrupting
the scene’s structure. In contrast, our method excels in preserving
the object’s geometric continuity, evident in the natural distortion
of objects like a flag without tearing. Notably, as seen from the
optical flow maps shown in the last row, their method typically
features objects moving uniformly in one direction, whereas our
approach demonstrates objects engaging in a periodic reciprocal
motion, which is more aligned with real-world scenarios.

User Study. We conducted a user study involving 110 participants
in answering which method produces videos that are more visually

Table 3: User study on visual effects of generated videos.

Methods User preference (%)

Li [19] 5.77
Ours 94.23

realistic, and collected 104 valid questionnaires (excluding identical
IPs). The comparison results are detailed in Table 3, showing that
most participants preferred the results derived from our method.

5.4 Ablation Study
In this section, we conduct ablation studies to systematically ana-
lyze the impact of various components of our proposed method.

Eccentricity Regularization. As illustrated in Fig. 4, eccentricity
regularization significantly reduces the occurrence of artifacts such
as burrs and glitches in the scene during deformation. Sharp 3D
Gaussians at the edges of the flag are prone to protrude during
deformation, making it difficult for the originally connected points
to remain in close proximity, consequently leading to the formation

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

w/ eccentricity regularizationw/o eccentricity regularization

Figure 4: Comparison of whether to use eccentricity regular-
ization. The use of the regularization term can significantly reduce
the occurrence of burrs in the scene.

(a) w/o Interpoaltion (b) RBF (c) Kriging

Figure 5: Comparison of different interpolation methods.We
compare the dense velocity fields obtained without interpolation (a),
with RBF interpolation (b), and with Kriging interpolation methods,
respectively.

of burrs. By incorporating eccentricity regularization, the shape
of the 3D Gaussians is constrained to closely resemble a sphere,
thereby alleviating this phenomenon.

Interpolation Methods for Dense Velocity Vectors. The choice
of interpolation function for dense motion vectors directly affects
the smoothness and accuracy of the motion field, which in turn
influences the quality of the rendering result. The ablation results
of interpolation is shown in Fig. 5. As can be seen, the objects are
more complete and the motion of objects is more continuous when
using Kriging interpolation, compared to no interpolation or RBF
interpolation.

Impact of Voxel Resolution on Clustering. Voxel resolution
directly impacts the granularity of spatial representation, thereby
affecting the accuracy and granularity of cluster formation. As
illustrated in Fig. 6, excessive resolution results in overly coarse
scene division (Fig. 6a), leading to unrelated objects being grouped
together, whereas overly small resolution causes excessive parti-
tioning (Fig. 6c), potentially leading to loss of some higher-level
information. We empirically adopt an appropriate voxel resolu-
tion that strikes a balance between scene segmentation and the
preservation of scene information (Fig. 6b).

Motion Amplitude Control. The magnitude of motion for each
3D Gaussian point is controlled by𝜓 in Eq. (12), with 𝜔 serving as

(a) 0.1λ = (b) 0.04λ = (c) 0.02λ =

Figure 6: Clustering results at various voxel resolutions. Dis-
tinct colors indicate different clusters. We aim to ensure that each
individual object (e.g., a leaf) is encompassed within a single clus-
ter (middle), rather than having multiple objects grouped into one
cluster (left) or a single object fragmented across multiple clusters
(right).

1.2ω =

3.0ω =

2.0ω =

4.0ω =

Figure 7: Effect of the motion amplitude. The deformation
amplitude of the scene can be controlled by 𝜔 . The larger 𝜔 is,
the more intense the movement of the scene becomes. Note that
excessively large values of 𝜔 may result in structural damage to
the scene (lower right corner).

a hyperparameter to regulate 𝜓 , and the impact of 𝜔 is shown in
Fig. 7. A higher value of 𝜔 corresponds to a larger motion range for
each 3D Gaussian point, resulting in more pronounced dynamics
across the entire scene. However, it should be noted that excessively
large values of 𝜔 may disrupt the continuity of the scene.

6 CONCLUSION
In this paper, we introduce LoopGaussian, a novel framework for
generating authentic 3D cinemagraphs from multi-view images of
static scenes. By leveraging 3D Gaussian Splatting and inherent
scene self-similarity with an Eulerian velocity field, our method
enables natural, loopable motion trajectories without extensive
pre-training. LoopGaussian surpasses previous methods that are
restricted to 2D image space, as we reconstruct the 3D geometry of
the observed scene. Besides, our method enables rendering from
any viewpoint and ensures consistency across multiple perspec-
tives. Experiments demonstrate the effectiveness of our method in
simulating motion for soft, non-rigid objects.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

LoopGaussian: Creating 3D Cinemagraph with Multi-view Images via Eulerian Motion Field Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Aseem Agarwala, Ke Colin Zheng, Chris Pal, Maneesh Agrawala, Michael Cohen,

Brian Curless, David Salesin, and Richard Szeliski. 2005. Panoramic video textures.
In ACM SIGGRAPH 2005 Papers. 821–827.

[2] Jiamin Bai, Aseem Agarwala, Maneesh Agrawala, and Ravi Ramamoorthi. 2013.
Automatic cinemagraph portraits. In Computer Graphics Forum, Vol. 32. Wiley
Online Library, 17–25.

[3] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale represen-
tation for anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 5855–5864.

[4] Ang Cao and Justin Johnson. 2023. Hexplane: A fast representation for dynamic
scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 130–141.

[5] Jiazhong Cen, Jiemin Fang, Chen Yang, Lingxi Xie, Xiaopeng Zhang, Wei Shen,
and Qi Tian. 2023. Segment any 3d gaussians. arXiv preprint arXiv:2312.00860
(2023).

[6] Jongwoo Choi, Kwanggyoon Seo, Amirsaman Ashtari, and Junyong Noh. 2024.
StyleCineGAN: Landscape Cinemagraph Generation using a Pre-trained Style-
GAN. arXiv preprint arXiv:2403.14186 (2024).

[7] Yung-Yu Chuang, Dan B Goldman, Ke Colin Zheng, Brian Curless, David H
Salesin, and Richard Szeliski. 2005. Animating pictures with stochastic motion
textures. In ACM SIGGRAPH 2005 Papers. 853–860.

[8] Devikalyan Das, Christopher Wewer, Raza Yunus, Eddy Ilg, and Jan Eric Lenssen.
2023. Neural parametric gaussians for monocular non-rigid object reconstruction.
arXiv preprint arXiv:2312.01196 (2023).

[9] Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and
Baoquan Chen. 2024. 4D Gaussian Splatting: Towards Efficient Novel View
Synthesis for Dynamic Scenes. arXiv preprint arXiv:2402.03307 (2024).

[10] Elisabeth Flock. 2011. Cinemagraphs: What it looks like when a photo moves.
The Washington Post (2011).

[11] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin
Recht, and Angjoo Kanazawa. 2023. K-planes: Explicit radiance fields in space,
time, and appearance. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 12479–12488.

[12] Tavi Halperin, Hanit Hakim, Orestis Vantzos, Gershon Hochman, Netai Benaim,
Lior Sassy, Michael Kupchik, Ofir Bibi, and Ohad Fried. 2021. Endless loops:
detecting and animating periodic patterns in still images. ACM Transactions on
graphics (TOG) 40, 4 (2021), 1–12.

[13] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul
Debevec. 2021. Baking neural radiance fields for real-time view synthesis. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 5875–
5884.

[14] Aleksander Holynski, Brian L Curless, Steven M Seitz, and Richard Szeliski. 2021.
Animating pictures with eulerian motion fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 5810–5819.

[15] Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and
Xiaojuan Qi. 2023. SC-GS: Sparse-Controlled Gaussian Splatting for Editable
Dynamic Scenes. arXiv preprint arXiv:2312.14937 (2023).

[16] Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator ar-
chitecture for generative adversarial networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 4401–4410.

[17] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
2023. 3d gaussian splatting for real-time radiance field rendering. ACM Transac-
tions on Graphics 42, 4 (2023), 1–14.

[18] Hao Li, Dingwen Zhang, Yalun Dai, Nian Liu, Lechao Cheng, Jingfeng Li, Jing-
dong Wang, and Junwei Han. 2023. GP-NeRF: Generalized Perception NeRF for
Context-Aware 3D Scene Understanding. arXiv preprint arXiv:2311.11863 (2023).

[19] Xingyi Li, Zhiguo Cao, Huiqiang Sun, Jianming Zhang, Ke Xian, and Guosheng
Lin. 2023. 3d cinemagraphy from a single image. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4595–4605.

[20] Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. 2023. Spacetime gaussian feature
splatting for real-time dynamic view synthesis. arXiv preprint arXiv:2312.16812
(2023).

[21] Jing Liao, Mark Finch, and Hugues Hoppe. 2015. Fast computation of seamless
video loops. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1–10.

[22] Zicheng Liao, Neel Joshi, and Hugues Hoppe. 2013. Automated video looping
with progressive dynamism. ACM Transactions on Graphics (TOG) 32, 4 (2013),
1–10.

[23] Chih-Yang Lin, Yun-Wen Huang, and Timothy K Shih. 2019. Creating waterfall
animation on a single image. Multimedia Tools and Applications 78 (2019), 6637–
6653.

[24] Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. 2023. Gaussian-Flow: 4D
Reconstruction with Dynamic 3D Gaussian Particle. arXiv:2312.03431 (2023).

[25] Yangbin Lin, Cheng Wang, Dawei Zhai, Wei Li, and Jonathan Li. 2018. Toward
better boundary preserved supervoxel segmentation for 3D point clouds. ISPRS
journal of photogrammetry and remote sensing 143 (2018), 39–47.

[26] Huan Ling, Seung Wook Kim, Antonio Torralba, Sanja Fidler, and Karsten Kreis.
2023. Align your gaussians: Text-to-4d with dynamic 3d gaussians and composed
diffusion models. arXiv preprint arXiv:2312.13763 (2023).

[27] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.
2020. Neural sparse voxel fields. Advances in Neural Information Processing
Systems 33 (2020), 15651–15663.

[28] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. 2024.
Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis. In
3DV.

[29] Li Ma, Xiaoyu Li, Jing Liao, and Pedro V Sander. 2023. 3D Video Loops from
Asynchronous Input. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 310–320.

[30] Aniruddha Mahapatra and Kuldeep Kulkarni. 2022. Controllable animation
of fluid elements in still images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 3667–3676.

[31] Aniruddha Mahapatra, Aliaksandr Siarohin, Hsin-Ying Lee, Sergey Tulyakov,
and Jun-Yan Zhu. 2023. Text-guided synthesis of eulerian cinemagraphs. ACM
Transactions on Graphics (TOG) 42, 6 (2023), 1–13.

[32] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

[33] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. In-
stant neural graphics primitives with a multiresolution hash encoding. ACM
transactions on graphics (TOG) 41, 4 (2022), 1–15.

[34] Tae-Hyun Oh, Kyungdon Joo, Neel Joshi, Baoyuan Wang, In So Kweon, and Sing
Bing Kang. 2017. Personalized cinemagraphs using semantic understanding and
collaborative learning. In Proceedings of the IEEE International Conference on
Computer Vision. 5160–5169.

[35] Margaret A Oliver and Richard Webster. 1990. Kriging: a method of interpolation
for geographical information systems. International Journal of Geographical
Information System 4, 3 (1990), 313–332.

[36] Jeremie Papon, Alexey Abramov, Markus Schoeler, and Florentin Worgotter.
2013. Voxel cloud connectivity segmentation-supervoxels for point clouds. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2027–2034.

[37] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Gold-
man, Steven M Seitz, and Ricardo Martin-Brualla. 2021. Nerfies: Deformable
neural radiance fields. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 5865–5874.

[38] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[39] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer.
2021. D-nerf: Neural radiance fields for dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10318–10327.

[40] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 652–660.

[41] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. KiloN-
eRF: Speeding Up Neural Radiance Fields With Thousands of Tiny MLPs. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
14335–14345.

[42] Sara Sabour, Suhani Vora, Daniel Duckworth, Ivan Krasin, David J Fleet, and
Andrea Tagliasacchi. 2023. Robustnerf: Ignoring distractors with robust losses.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 20626–20636.

[43] Arno Schodl, Richard Szeliski, David H Salesin, and Irfan Essa. 2023. Video
textures. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2. 557–570.

[44] Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Layered
depth images. In Proceedings of the 25th annual conference on Computer graphics
and interactive techniques. 231–242.

[45] James Tompkin, Fabrizio Pece, Kartic Subr, and Jan Kautz. 2011. Towards moment
imagery: Automatic cinemagraphs. In 2011 Conference for Visual Media Production.
IEEE, 87–93.

[46] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier,
Marcin Michalski, and Sylvain Gelly. 2019. FVD: A new metric for video genera-
tion. (2019).

[47] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron,
and Pratul P Srinivasan. 2022. Ref-nerf: Structured view-dependent appearance
for neural radiance fields. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 5481–5490.

[48] Frederik Warburg, Ethan Weber, Matthew Tancik, Aleksander Holynski, and
Angjoo Kanazawa. 2023. Nerfbusters: Removing ghostly artifacts from casu-
ally captured nerfs. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 18120–18130.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2024, Woodstock, NY

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[49] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei,
Wenyu Liu, Qi Tian, and Xinggang Wang. 2023. 4d gaussian splatting for real-
time dynamic scene rendering. arXiv preprint arXiv:2310.08528 (2023).

[50] Tianyi Xie, Zeshun Zong, Yuxin Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chen-
fanfu Jiang. 2023. Physgaussian: Physics-integrated 3d gaussians for generative
dynamics. arXiv preprint arXiv:2311.12198 (2023).

[51] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang
Jin. 2023. Deformable 3d gaussians for high-fidelity monocular dynamic scene
reconstruction. arXiv preprint arXiv:2309.13101 (2023).

[52] Mei-Chen Yeh and Po-Yi Li. 2012. An approach to automatic creation of cinema-
graphs. In Proceedings of the 20th ACM international conference on Multimedia.
1153–1156.

[53] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.
2021. Plenoctrees for real-time rendering of neural radiance fields. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 5752–5761.

[54] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
2018. The unreasonable effectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
586–595.

[55] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely.
2018. Stereo magnification: Learning view synthesis using multiplane images.
arXiv preprint arXiv:1805.09817 (2018).

Received 20 February 2024; revised 12 March 2009; accepted 5 June 2009

10

	Abstract
	1 Introduction
	2 Related Work
	2.1 Cinemagraph
	2.2 Neural Scene Representation

	3 Preliminaries
	3.1 3D Gaussian Splatting
	3.2 Eulerian Motion Field

	4 Method
	4.1 Overview
	4.2 Artifact-free Scene Representation
	4.3 SuperGaussian for 3D Gaussians Clustering
	4.4 Progressive Eulerian Motion Field Estimation
	4.5 Loopable Dynamics Generation

	5 Experiments
	5.1 Datasets
	5.2 Implementation Details
	5.3 Results
	5.4 Ablation Study

	6 Conclusion
	References

