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Visual prototypes in the ventral stream are attuned
to complexity and gaze behavior
Olivia Rose1,2,3, James Johnson 1,3, Binxu Wang1,2 & Carlos R. Ponce 1,2✉

Early theories of efficient coding suggested the visual system could compress the world by

learning to represent features where information was concentrated, such as contours. This

view was validated by the discovery that neurons in posterior visual cortex respond to edges

and curvature. Still, it remains unclear what other information-rich features are encoded by

neurons in more anterior cortical regions (e.g., inferotemporal cortex). Here, we use a

generative deep neural network to synthesize images guided by neuronal responses from

across the visuocortical hierarchy, using floating microelectrode arrays in areas V1, V4 and

inferotemporal cortex of two macaque monkeys. We hypothesize these images (“proto-

types”) represent such predicted information-rich features. Prototypes vary across areas,

show moderate complexity, and resemble salient visual attributes and semantic content of

natural images, as indicated by the animals’ gaze behavior. This suggests the code for object

recognition represents compressed features of behavioral relevance, an underexplored aspect

of efficient coding.

https://doi.org/10.1038/s41467-021-27027-8 OPEN

1 Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA. 2Department of Neurobiology, Harvard Medical School,
Boston, MA, USA. 3These authors contributed equally: Olivia Rose, James Johnson. ✉email: carlos_ponce@hms.harvard.edu

NATURE COMMUNICATIONS |         (2021) 12:6723 | https://doi.org/10.1038/s41467-021-27027-8 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27027-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27027-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27027-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27027-8&domain=pdf
http://orcid.org/0000-0003-4014-3244
http://orcid.org/0000-0003-4014-3244
http://orcid.org/0000-0003-4014-3244
http://orcid.org/0000-0003-4014-3244
http://orcid.org/0000-0003-4014-3244
http://orcid.org/0000-0002-9887-3234
http://orcid.org/0000-0002-9887-3234
http://orcid.org/0000-0002-9887-3234
http://orcid.org/0000-0002-9887-3234
http://orcid.org/0000-0002-9887-3234
mailto:carlos_ponce@hms.harvard.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The brain faces multiple constraints when representing the
visual world, from metabolic costs1, wiring constraints2,
and the need to separate signal from noise in retinal inputs.

There are different hypotheses for optimizing visual coding under
these constraints. For example, early frameworks noted that since
pixel-by-pixel representations of visual scenes are redundant,
neurons should learn to represent features that are information-
rich, such as contours3. Subsequently, it was found that neurons
in early visual cortex encode information about contours and
corners4, with neurons representing Gabor-like filters of different
orientations and spatial frequencies5 (a finding with strong the-
oretical support in computational simulations of efficient
coding6,7). Beyond simple contours, there remains an incomplete
understanding of other visual motifs used by neurons for object
recognition. One hypothesis is that the visual system must
organize sensory information to build up an “internal model of
the environment,” centered around diagnostic motifs of visual
objects of “particular key significance for the animal,” as postu-
lated by Horace Barlow8. Further, these motifs should not only be
related to external features of the visual environment, but also to
the animal’s actions within it9— for example, related to behaviors
such as saccadic eye movements that bring the fovea to salient
regions of a scene10. If these internal model motifs exist, they
must be simpler than visual scenes themselves—the critical
question being, how much simpler?

Here, we set out to extract direct samples of the neural code for
object representation, and measured properties related to their
information content. Electrophysiological responses from cortical
sites at the border of V1 and V2, in V4, and in inferotemporal
cortex (IT) were used for neuron-guided image synthesis. Speci-
fically, using neuronal responses, an evolutionary algorithm11

optimized inputs to an image-generating deep neural network, a
network that employed up-convolution operations to synthesize
images from a latent variable vector12 (the “input space”). These
synthetic images contain visual features that evoked the highest
observed neuronal activity at that site. We use independently
trained neural networks to interpret images semantically, finding
that V1/V2 sites encode more monochrome contours than V4
and IT, while IT sites encode more visual attributes related to
animals than V1/V2 and V4 (but less reliably for other semantic
categories such as food). We measure the compressibility of these
activating images, as well as the relative number of parts needed
to characterize them, finding they are intermediate in complexity
compared to standard artificial stimulus sets and AlexNet
representations. Finally, we look for a link between these syn-
thetic images and the animals’ spontaneous behavior, discovering
that these highly activating images are related to regions that also
draw the animals’ gaze. We conclude that ventral stream neurons
encode information-concentrating features present in the natural
visual world, features marked by their relevance to the organism.

Results
Characterization of response selectivity. We recorded from 128
unique cortical sites in two male monkeys (Macaca mulatta) in
regions conventionally described as the border of V1/V213,
V414,15, and posterior/central IT16 (Fig. 1a, Methods). Most sites
responded best to images presented peri-foveally (Supplementary
Fig. 1, Table 1). To characterize the visual tuning of each site, we
used a set of 754 unique stimuli consisting of natural and artificial
images (ranging from photographs sampled from ImageNet17,
Google image search, and other sources, to artificial images such
as straight and curved Gabor patches, Fig. 1b). We found that
most visually responsive sites were modulated by image identity
(89.2 ± 5.1% and 93.5 ± 4.4% of V1/V2 sites in monkeys A and B
showed image identity selectivity, under a criterion of P < 0.05

with one-way ANOVA, after false discovery correction; this was
also true for 73.7 ± 3.5% and 100.0 ± 0.0 of V4 sites in A and B,
and 49.3 ± 3.1% and 64.0 ± 6.7 of IT sites in A and B).

Sites in every area responded more strongly to photographs
than to traditional artificial stimuli such as Gabor patches, curved
contour objects, and spirals. We computed each site’s maximum
response to all photographs and to all artificial line objects
(responses were z-scores of spike rates, to allow comparisons
across experiments), and then measured the difference between
both maximum values. These differences were then parsed per
visual area, and tested for statistical significance using a Kruskal-
Wallis test (with areas as grouping variables) or Wilcoxon rank-
sum tests (for comparing V1/V2 and IT differences, with the
simple difference formula [i.e. fraction of all cross-sample
pairwise differences that are positive minus the fraction that are
negative] as the central effect size, see Kerby et al.18 for details).
We found that in monkey A, the median difference in maximum
z-score values (to photographs minus artificial) were as follows: in
V1-V2, 0.70 ± 0.06, V4, 0.93 ± 0.09 and PIT, 1.25 ± 0.08 (prob-
ability of seeing a difference in medians this large or larger
assuming the null hypothesis of equal medians is true was
P= 1.6 × 10−8, Kruskal-Wallis test, χ2= 35.9, deg. freedom =
307); for monkey B, the values were V1-V2: 0.80 ± 0.13, V4:
0.59 ± 0.16, PIT: 1.07 ± 0.10 (P= 1.7 × 10−2, χ2= 8.2, df = 79).
We also asked if there was a statistical difference between V1/V2
vs. IT sites using a two-sample test and found that the probability
of a difference as large or larger under the null hypothesis of equal
medians was P= 4.8 × 10−9 (monkey A, Wilcoxon rank-sum test,
simple-difference=−0.45) and P= 0.04 (monkey B, simple-
difference=−0.29, Fig. 1c, Methods).

Although Gabor patches were less effective than natural images
in general, we confirmed that V1/V2 sites were better modulated
by Gabor patches than other areas (the percentages of sites that
were strongly modulated by Gabor patches, per one-way
ANOVA, P < 0.05, after false discovery adjustment, were 75%
and 81% for V1/V2 [monkeys A and B, N= 16 sites each,
F-statistics ranging from 0.9–40.9], 31% and 69% for V4
(N= 16 sites each, F-statistics ranging from 0.6–9.5) and 6%
and 22% for IT (N= 32 sites each, F-statistics ranging from
0.1–17.5).

The object-recognition system from Google Cloud Vision16

provided a set of labels for images independent of the image
origin. The inferred labels were more descriptive and pulled from
a wider repertoire than the ImageNet database used to train the
generator19. We found IT sites showed strong responses to
pictures with labels related to monkeys, humans, and other
mammals; in contrast, V4 and V1/V2 sites were less specific,
responding best to natural images across a broad set of categories
including “water,” “plants,” and “national parks” (Table 2). Thus,
IT selectivity was focused on animal features, while V4 and V1/
V2 selectivity covered more generic features. To clarify the
relationship of these generic features with V1/V2 orientation
tuning, we used the histogram-of-gradients (HOG) algorithm to
define an orientation dominance index for every image; we found
that V1/V2 sites preferred natural images with strong and
straighter edges more so than IT sites (Fig. 1b; comparing the
median V1/V2 and IT site responses, values were 0.63 ± 0.02 vs.
0.61 ± 0.02 [monkey A] and 0.66 ± 0.02 vs. 0.62 ± 0.02 [monkey
B], P= 0.017 and 0.0014, per an untailed Wilcoxon rank-sum
test, with simple-difference = 0.08 and 0.10; num. of images
across tests, 268–736).

In summary, while we confirmed that neurons in early cortical
regions were more modulated by Gabor patches and simple
contours relative to more anterior cortical regions, these simple
images were still not as effective in modulating responses as
natural images. We also found that IT neurons showed strong
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preferences for images of primates, particularly macaques,
including faces and bodies. Next, we sought to isolate the specific
features that made neurons respond across these natural images.

Neural response-guided generative algorithm. To identify the
specific features encoded at each site, we used a generative neural
network (“generator”) that creates images from lower-
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Fig. 1 Characteristics of the neuronal populations. a Sketch illustrating the location of floating microelectrode arrays relative to different occipito-temporal
sulci (Lu: lunate, IO: inferior occipital, PMTS: posterior middle temporal, and STS: superior temporal), and their functional designation (V1/V2: red; V4:
green; IT: blue). b Examples of images that elicited high responses from V1/V2, V4, and IT sites (some photographs are comparable replacements to the
original stimuli, changed due to copyright issues, see our GitHub repository for originals72). c Response difference between natural photographs and
artificial images for sites in different cortical areas per monkey (A, white; B, black, red line shows median). Neuronal spike rate responses were z-scored
across images but within each site, then differences (Δ) measured from the z-scored responses shown as violin plots (red line = median values, n = array
sites tested across days; monkey A, V1/V2, 150; V4, 67; PIT, 93; monkey B, V1/V2, 34; V4, 15; IT, 33). Each Δ value was obtained by subtracting the
maximum z-score to artificial images from the maximum z-score to natural images. d Experimental workflow for image synthesis, showing one full cycle of
image generation. e Difference in mean neuronal response from the beginning to the end of the experimental session (events per second; mean ± SE); the
y-axis shows the difference in mean response to the synthetic images over generations, and the x-axis shows the difference in mean response to the
reference images over generations (because the reference images were not changing, the neurons showed adaptation during the experimental session).
The left scatterplot shows results per monkey, and the right, for the cortical area (same colors as in panel a). n = experiments per animal, 127 in monkey A;
125 experiments in B. f One example image synthesis experiment using responses from a posterior IT site in Monkey B; each image corresponds to the
average genotype of a given generation (black number on top). Mask shows the approximate location of the receptive field center. Source data are
provided as a Source Data file. Depicted individuals have consented for publication, and have seen these photos in the context of the publication.

Table 1 Estimates of receptive field centers for both animals, per visual area.

V1 V4 IT

Monkey A
Distribution of RF centers in visual degrees (°), reported as (horizontal, vertical) at 25th, 50th,
and 75th %iles

(−0.1, −0.2) (−0.9, −2.3) (−1.2, −3.0)
(−0.0, −0.1) (−0.7, −1.7) (−1.0, −2.7)
(0.0, −0.1) (−0.3, −1.3) (−0.3, −1.9)

Eccentricity (mean ± SEM) 0.27 ± 0.09 1.83 ± 0.10 2.93 ± 0.21
Gaussian width (pooled across horizontal and vertical values) 1.39, 1.47, 2.56 2.00, 2.34, 5.24 2.84, 3.62, 3.99
Monkey B
Distribution of RF centers in visual degrees (−0.1, −0.4) (−2.0, −2.6) (−1.3, 0.3)

(−0.0, −0.3) (−0.8, −1.7) (−1.0, 0.6)
(0.1, −0.2) (−0.2, −0.5) (−0.8, 0.8)

Eccentricity (mean ± SEM) 0.63 ± 0.09 2.03 ± 0.09 1.56 ± 0.17
Gaussian width (pooled across horizontal and vertical values) 1.54, 2.18, 2.50 1.56, 2.54, 3.38 2.47, 2.80, 3.16
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dimensional input vectors. The images contain many features that
can combine to strongly evoke responses at each site. Thus, the
images can serve as visualizations of the informational content
encoded within the given site. This particular generator was
trained to invert the activation patterns of CaffeNet layer fc6 units
back to specific images12. It is distinct from conventional GANs
(generative adversarial networks) which only train their gen-
erators to “fool” a discriminator network by randomly sampling
throughout latent (input) space. While this generator was trained
to do this as well, it was additionally trained on the input vectors
corresponding to CaffeNet fc6-layer activations evoked by Ima-
geNet images. Consequently, it is more expressive than conven-
tional GANs because un-trained points in its input space may
produce arbitrary visualizations that do not resemble any given
object, in addition to an astronomical number of combinations of
straight and curved contours, spots, colors and textures, many of
which are reminiscent of objects and object parts in
photographs12,20. We previously validated the use of this gen-
erator in a closed-loop approach for maximizing neuronal
activity21.

In each experiment, first we selected one specific cortical site in
the array, then identified the most likely location of its receptive
field (RF) center (Supplementary Fig. 1, Methods). This served as
the location on which to center the textures during the synthesis
experiments. Synthetic images were 2°–3° in width across most
experiments, larger than the conventionally accepted size of V1,
V2, and V4 receptive fields near the fovea13,14,22; this allowed for
contextual influences from outside the classical receptive field
(e.g., surround suppression/facilitation) and avoided stimulus-
edge artifactual responses. At the start of these experiments, we
initialized the image generator with 30 randomly selected input
vectors and displayed each of the 30 resultant images to the
monkey, while recording spike rates from the site. Spike rates and
input vectors were fed into an adaptive search algorithm
(“covariance matrix adaptation evolutionary strategy” or CMA-
ES)11,23 which found new candidate vectors likely to increase
firing rates. The new vectors were given as inputs to the generator
to start the next cycle of image generation (Fig. 1d).

We conducted over 250 experiments across both animals involving
visually responsive channels (127 in monkey A; 125 experiments in
B). The optimizing objective of each image-synthesis experiment was
to increase the firing rate of the neuron(s) in the site—in virtually all
visual neuroscience experiments, finding images that elicit strong
activity is a foundational approach to functional interpretation. Most
image-synthesis experiments resulted from a set of final-generation
images that strongly activated the targeted site over controls. An
evolution experiment was deemed successful if the site’s mean firing-
rate response to the final cohort of images significantly exceeded two
control image sets: (i) the reference images, which had been pre-
selected to evoke strong responses from the site under study
(P < 0.01, Wilcoxon rank-sum test) and to (ii) the first cohort/
generation of synthetic images (see Methods). We found that the
percentage of experiments that were successful per the bootstrap
approach were 96.6% [monkey A] and 91.4% [monkey B] in V1/V2,
85.7% and 93.3% in V4, and 71.4% and 83.3% in IT, N= 28–70
experiments per area/monkey: Fig. 1e, f, Table 3). The final synthetic
images often elicited more activity than the reference images, but less
frequently so, suggesting that the reference images were well-chosen
(% experiments resulting in images evoking stronger activity than
references were 96.6% [monkey A] and 88.6% [monkey B] in V1/V2,
78.6% and 66.7% in V4, and 61.4% and 55.0% in IT, Table 3).
Overall, we conclude that this method was effective throughout the
ventral stream.

For brevity, we will refer to these synthesized images as
“prototypes” — an allusion to prototype theory, which developed
the idea that complicated concepts may be summarized byT
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abstract templates24. Because neuronal selectivity becomes
increasingly complex over the occipito-temporal pathway25,
prototypes serve as pictorial descriptions of the specific types of
colors, shapes, and textures encoded at each given site.

Prototype differences across areas. V1/V2 sites required fewer
cycles to create their prototypes compared to IT sites, as defined by
the number of generations needed to reach one half of the maximum
response (median no. of generations were 10.5 ± 1.0 [monkey A] and
12.0 ± 2.6 [monkey B] for V1/V2 sites, in contrast, it was 17.5 ± 2.2
and 16.4 ± 1.7 for IT sites, these values were different between areas;
P= 1.6 × 10−33 and 4.8 × 10−33, untailed Wilcoxon rank-sum test,
simple-difference = 0.97, 0.99, N= 99, 95 experiments, Table 3,
Fig. 2a, Methods). We interpreted these differences in convergence
rates as the result of an increase in feature specificity26 as predicted by
the hierarchical depth and as measured using an image-correlation-
based technique (Supplementary Fig. 2). To substantiate this inter-
pretation further, we conducted in silico generation experiments
using units across AlexNet and found that units in each subsequent
layer took more iterations to converge than those in the previous
layer (Supplementary Fig. 2).

By visual inspection, the clearest difference in prototypes across
areas was that V1/V2 sites often gave rise to achromatic contours,
whereas IT sites gave rise to features reminiscent of faces, bodies, and
fruits (e.g., rounded pink contours surrounding eye-like dark spots;
long and smoothly curved black contours as in body parts; red and
yellow contours as in apples and bananas; Fig. 2b). V4 sites often
synthesized features intermediate to both V1 and IT, with some
gratings and comma-shaped objects less reminiscent of specific object
classes. In order to quantify differences across areas, we tested if
prototypes can be reconciled with established views of neuronal
selectivity in V1, V2, V4, and IT — for example, differences in
selectivity for straight contours, curvature, and more complex object
attributes. Our method leveraged AlexNet to test multiple hypotheses
of interest, using “semantic ensembles” of artificial neurons. We
defined a semantic ensemble as a collection of CNN units that are
selective for a given visual attribute. For example, to test if V1/V2

prototypes contained more achromatic stripes than IT prototypes
did, we first identified a set of AlexNet convolutional filters (units)
trained to detect achromatic gratings (found in convolutional layer 1,
48 out of 96 units, Methods, Fig. 2c), independently of the prototype
data. These specific units form the “achromatic-gratings ensemble”.
We propagated all biological prototypes into AlexNet and examined
the activation of the achromatic-gratings ensemble to each prototype.
This is akin to an fMRI-analysis localizer technique27 where one
selects voxels using one set of trials and tests the same voxels with
new experiments (Supplementary Fig. 3). We found that the
achromatic-gratings ensemble responded more strongly to V1/V2
prototypes than to V4 or IT prototypes (Fig. 2d, e). This is consistent
with the hypothesis (derived from conventional stimulus paradigms)
that these early prototypes contained more Gabor-like features.

Next, we used this flexible approach to test which area’s
prototypes contained more curved contours, creating an ensem-
ble of AlexNet layer fc6 units that preferred curved over straight
Gabor patches; we subsequently found that this ensemble
responded more strongly to V4- than to V1/V2- or IT prototypes
(Fig. 2e; Supplementary Fig. 3, Methods); in contrast, face-
preferring ensembles responded more strongly to IT prototypes
than to V1/V2- or V4 prototypes— similar results were seen with
body-preferring ensembles, and semantic ensembles sensitive to
shape differences between monkeys and humans (Fig. 2e, Table 4).
Thus, we show that many prototypes along the monkey visual
recognition pathway begin with white/black contours, acquire
curvature through V4, and later represent features reliably
present in primates and animate objects.

These ad hoc tests were not meant to be comprehensive. Instead,
their purpose was to address potential concerns that neuron-guided
image synthesis is not comparable to the decades of previous findings
in visual neuroscience, because the resulting images are too complex.
Although we believe this image information density does reflect an
intrinsic feature of neuronal selectivity (see next section), our
semantic ensemble analysis provides two ameliorating conclusions.
First, neuron-guided image synthesis could produce any of an
astronomical number of images, yet analysis of prototypes
incorporated previous notions of visual neuron selectivity across

Table 3 Prototype synthesis experiments.

V1 V4 IT

Monkey A
Median change in firing rate to adaptive synthetic images (no.
experiments)

36.5 ± 9.0 (29) 24.8 ± 7.5 (28) 16.2 ± 4.1 (70)

Median change in firing rate to fixed reference images −2.0 ± 2.1 −3.1 ± 1.6 −2.3 ± 0.6
Percent of successful experiments, defined as those where the final
synthesized images evoked higher responses than the first-generation
images (95% CI of difference not including zero)

96.6 85.7 71.4

Percent of successful experiments, defined as those where the final
synthesized images evoked higher responses than the reference images
(Wilcoxon rank-sum test, one-sided, P < 0.02)

96.6 78.6 61.4

No. generations needed to reach half-maximum mean response (Wilcoxon
rank-sum test, two-sided, contrasting V1/V2 and IT)

10.5 ± 1.0 13.7 ± 1.1 17.5 ± 2.2 P = 1.6 × 10−33, Z-value
12.1, N= 99 experiments

Monkey B
Median change in firing rate to adaptive synthetic images (N experiments) 54.9 ± 15.7 (35) 46.4 ± 6.3 (30) 50.5 ± 11.6 (60)
Median change in firing rate to fixed reference images −5.9 ± 1.6 −4.8 ± 4.1 −6.7 ± 1.3
Percent of successful experiments, defined as those where the final
synthesized images evoked higher responses than the first-generation
images (95% CI of difference not including zero)

91.4 93.3 83.3

Percent of successful experiments, defined as those where the final
synthesized images evoked higher responses than the reference images
(Wilcoxon rank-sum test, one-sided, P < 0.02)

88.6 66.7 55.0

No. generations needed to reach half-maximum mean response (Wilcoxon
rank-sum test, two-sided, contrasting V1/V2 and IT)

12.0 ± 2.6 14.6 ± 2.7 16.4 ± 1.7
P = 4.8 × 10−33, Z-value 12.0, N = 95
experiments
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the ventral stream — with V1 neurons showing high activity to
straight contours, and V4 neurons encoding curvature information.
This consistency bolsters the credibility of the technique. Second, not
only can we make useful comparisons, but we could also extract
surprising insights, for example, showing that conspecific features are
more reliably represented in IT than other features key to survival,
such as the appearance of foodstuffs. Thus, here we demonstrate that
neural prototypes are rich in information, and can be used towards
multiple decoding purposes, as expected from a flexible neural code.

Prototype complexity is comparable to segmented object parts.
We observed that neurons generally produced patterns of specific
shapes, colors, and textures that looked like background-
segmented objects; prototypes appeared less chaotic, less
spread-out, and less texture-like than random samples

synthesized by the generator or than samples resulting from
unsuccessful evolution experiments. To quantify this observation,
we measured image complexity using an image decomposition
operation called the discrete cosine transform28. This operation
transforms a given image into a set of coefficients, corresponding
to cosine component functions with different frequencies. By
keeping the fewest components (i.e., fewest non-zero coefficients)
necessary to reconstruct the image, the image is “compressed”.
The reconstruction complexity of an image can be measured as the
ratio of the minimum number of components needed to recon-
struct the image divided by the total original number of com-
ponents. This is the inverse of the commonly reported
compression ratio and provides a measure of image complexity,
and so we call it a complexity ratio. More complex images are
harder to compress and vice versa, a notion of complexity based
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on minimum description length29 used in physics, math, and
computer science. First, we measured the complexity ratio for
various natural images and confirmed that its value was lower for
photographs containing simple, background-segmented objects;
for example, images depicting hands over white backgrounds
were less complex than cluttered images such as aerial views of a
city (Fig. 3a). Next, we set out to measure the complexity of
prototypes. We found that neurons appeared to titrate prototype
complexity: all experiments began with a first generation of
images containing monochrome irregular textures with a median
complexity ratio of 0.033 ± 0.004, yet prototypes converged to
higher complexity values — the median complexity ratio values
for prototypes were 0.161 ± 0.005 (monkey A) and 0.162 ± 0.006
(monkey B, ± SE). To measure the generator’s bias for complexity,
we created surrogate “shuffled” prototypes by sampling the gen-
erator’s input space in two ways: a) by shuffling the order of
elements in the input vectors obtained in the final generation of
each evolution, and b) by simulating “random-evolution”
experiments where the scores guiding the evolution were replaced
by the inverse of a distance to a target random vector (having the
same norm as each prototype vector; see Methods). We then
compared the complexity ratio of the neuronally guided proto-
types against the surrogate prototypes (Fig. 3b). We found that
true prototypes were less complex than surrogate, shuffled pro-
totypes, which showed a median complexity ratio of 0.224 ± 0.001
[monkey A] and 0.226 ± 0.001 [B] (an untailed Wilcoxon signed
rank test contrasting true vs. shuffled (per monkey) yielded P-
values not exceeding 2.5 × 10−22, with simple difference=−0.3,
−0.2). Random evolution surrogates had a median of
(0.196 ± 0.003 [monkey A], 0.204 ± 0.005 [monkey B]; P-values
not exceeding 4.3 × 10−14, simple-difference = 0.22 and 0.23,
N= 127, 137, Fig. 3c). Overall, neuronally guided images were
25-28% less complex (i.e., more compressible) than the surrogate
samples from the generator’s input space (Fig. 3c, rightmost
panel). Thus, neurons were not simply driving up complexity to

the limits of the generator, nor were they suppressing it to the
generator’s minimum capability.

There were no systematic differences in median complexity
ratios across visual areas (0.159 [monkey A], 0.174 [monkey B],
P= 0.07 and 0.90, Kruskal-Wallis test with site area as main
factor), which was not surprising because the synthetic images
were not resized precisely to each site’s receptive field, only
aligned to their estimated centers (Supplementary Fig. 2). Further,
since most experiments involved multi-unit signals, the complex-
ity of prototypes often reflected the information of multiple
receptive field centers and surrounds.

We established a context for these results with comparisons to
classic stimulus sets, real-world photographs and to AlexNet
hidden unit visualizations (which under our hypothesis can also
be referred to as “prototypes”). First, we measured the complexity
ratio of images from iconic stimulus sets frequently used to
characterize tuning in V1, V2, V4 and posterior IT, such as Gabor
patches, gratings, line shapes and bounded curved objects30–32,
and found that their median complexity ratios were 0.001 ± 0.001
(Gabor patches), 0.010 ± 0.001 (Cartesian, hyperbolic gratings,
line shapes) and 0.033 ± 0.001 (curved contour objects). Thus,
traditional stimulus sets may be too simplistic to access the upper
limits of a neuron(s) range of firing.

Next, we analyzed the complexity of real-world photographs
from a sample of randomly selected images from ImageNet.
These photographs yielded a median complexity ratio of
0.4885 ± 0.0012 (we sampled 40 images from each ImageNet
category, N= 40,000 total). Neuronal prototypes were much less
complex: the complexity ratios for monkey A prototypes yielded a
median rank of the 5.6th percentile of photographs, while for
monkey B it was 5.7th percentile (Wilcoxon signed rank test
comparison to ImageNet complexity ratios: P= 1.33 × 10−66 and
Z=−17.24 for monkey A, with P= 2.95 × 10−71 and Z=−17.85
for monkey B). These results suggest that neurons have limits to
the complexity they can encode; neuronal prototypes contain less

Table 4 Prototype interpretation via semantic ensembles.

AlexNet ReLU6 units Response to prototypes (z-scored,
mean ± SE)

P-value (one-way ANOVA, cortical area as factor,
F-statistic)

V1/V2 V4 IT

Monkey A
Orientation ensemble (N = 48 units,
AlexNet ReLu1)

0.54 ± 0.10 −0.16 ± 0.10 −0.37 ± 0.06 1.3 × 10−11, F= 30.1

Curvature ensemble (N = 249 units) −0.12 ± 0.04 0.10 ± 0.04 0.02 ± 0.03 9.2 × 10−04, F = 7.1
Color ensemble (N = 329 units) 0.07 ± 0.04 −0.13 ± 0.04 0.05 ± 0.03 1.8 × 10−04, F = 8.7
Face ensemble (N = 331 units) −0.04 ± 0.04 −0.03 ± 0.04 0.07 ± 0.03 5.2 × 10−02, F = 3.0
Body parts ensemble (N = 525) −0.12 ± 0.03 0.04 ± 0.03 0.09 ± 0.02 4.0 × 10−07, F = 14.9
Animate ensemble (N = 187) −0.11 ± 0.05 0.05 ± 0.05 0.06 ± 0.04 2.9 × 10−02, F = 3.6
Monkey v. Human ensemble (N = 309) −0.14 ± 0.04 0.09 ± 0.04 0.05 ± 0.03 4.2 × 10−05, F = 10.2
Food ensemble (N = 823) −0.01 ± 0.02 −0.10 ± 0.02 0.11 ± 0.02 3.6 × 10−10, F = 21.9
Buildings ensemble (N = 910) 0.05 ± 0.02 0.01 ± 0.02 −0.07 ± 0.02 4.5 × 10−04, F = 7.7
Random groupings ensemble (N = 200) −0.06 ± 0.05 −0.02 ± 0.05 0.08 ± 0.04 9.0 × 10−02, F = 2.4
Monkey B
Orientation ensemble (N = 48 units,
AlexNet ReLu1)

0.51 ± 0.08 −0.05 ± 0.09 −0.47 ± 0.07 1.9 × 10−13, F = 36.3

Curvature ensemble (N = 249 units) −0.13 ± 0.04 0.11 ± 0.04 0.02 ± 0.04 1.5 × 10−04, F = 8.9
Color ensemble (N = 329 units) −0.02 ± 0.04 −0.01 ± 0.04 0.03 ± 0.03 0.65, F = 0.4
Face ensemble (N = 331 units) −0.05 ± 0.04 −0.02 ± 0.04 0.07 ± 0.03 6.6 × 10−02, F = 2.7
Body parts ensemble (N = 525) −0.02 ± 0.03 −0.05 ± 0.03 0.07 ± 0.03 5.5 × 10−03, F = 5.2
Animate ensemble (N = 187) −0.12 ± 0.05 −0.09 ± 0.05 0.22 ± 0.04 1.3 × 10−07, F = 16.3
Monkey v. Human ensemble (N = 309) −0.11 ± 0.04 −0.03 ± 0.04 0.15 ± 0.03 1.6 × 10−06, F = 13.5
Food ensemble (N = 823) −0.06 ± 0.02 0.10 ± 0.02 −0.04 ± 0.02 3.5 × 10−07, F = 15.0
Buildings ensemble (N = 910) 0.00 ± 0.02 0.06 ± 0.02 −0.06 ± 0.02 2.8 × 10−04, F = 8.2
Random groupings ensemble (N = 200) −0.08 ± 0.05 0.06 ± 0.05 0.02 ± 0.04 8.3 × 10−02, F = 2.5
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information than typical photographs (consistent with views of
efficient coding) but prefer more information than typically
present in classic stimulus sets.

Lastly, we measured the complexity ratio of prototypes evolved
from AlexNet units and found they were higher than those of the
biological prototypes (Supplementary Fig. 2; AlexNet prototype
median complexity ratio of 0.209 ± 0.003 per 218 units sampled

across layers). Thus, AlexNet is likely sensitive to features that are
only partially preferred by neurons of the ventral stream.

Another way to quantify the relative complexity of any given
prototype is to count its number of distinct parts. We used a
segmentation algorithm called mean-shift clustering33,34 to estimate
the number of pixel groups present in an image: the algorithm
found fewer parts for natural images containing single- and
multiple objects, and more parts for cluttered images (Fig. 3d, e).
The true neural prototypes had fewer segments than both shuffled-
and random-evolution prototypes (median no. of parts for true
prototypes were 52.1 ± 1.1 [monkey A] and 50.8 ± 1.7 [monkey B];
for shuffled- and random-evolution prototypes, values were
60.0 ± 1.6 [monkey A] and 62.6 ± 1.8, [monkey B], P values not
exceeding 1.8 × 10−6, Wilcoxon signed-rank test contrasting true vs.
shuffled, per monkey, simple differences –0.188 and –0.186,
N= 127, 137; Fig. 3f). As above, we also applied the algorithm to
previously published stimulus sets and found that the median
number of parts present in Gabor patches, gratings, line shapes and
curved contour objects ranged from 12.9 ± 0.9 to 20.1 ± 0.3.

In summary, we found that cortical neurons led to the
synthesis of images that were less complex and comprised fewer
parts than those drawn randomly from generative input space
and much less complex than full scenes (ImageNet photographs).
However, these synthetic images were also more complex than
the simpler visual stimuli typically used to characterize tuning,
such as Gabor patches or flat solid curved shapes. Overall, this
suggests that the neural code for primate object recognition
represents features that are less complex than full scenes (i.e.,
scene/object parts), but still contain more information than is
captured by artificial contour-based stimuli.

Prototypes are associated with salient features in natural
scenes. Per some theories of efficient coding, the visual system
should abstract information that relates directly to behavior8. By
visual inspection and per the semantic ensemble analyses, many
of the prototypes we extracted resembled motifs present in
photographs of animal faces. Macaque monkeys are particularly
social animals that obtain important cues from the facial
expressions of conspecifics35–37 and spontaneously observe faces,
objects that look like faces38, and monkeys/animals in general35.
We hypothesized that the prototypes obtained in the previous
experiments might correspond to image regions more likely to be
foveated during free viewing (a relationship predicted by theories
of information selection in V1, and extended here along the
ventral stream10). Such image regions are highly salient, as
defined by low-level cues39,40 and by cognitive information (e.g.
social features).

To test whether prototypes were related to regions of saliency,
we presented the animals with 5223 photographs of natural
scenes; the set included animals in natural settings, human-made
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environments (i.e., cityscapes), artificial objects, and photographs
of their own holding-facility environment (Methods). During
each session, the animals began a given trial by acquiring fixation
on a spot at the center of the monitor, and after ~100 ms a large
photograph appeared, replacing the fixation point (Fig. 4a).
Images were displayed for 1000 ms, and subjects could look
anywhere within the area of the monitor to get reward. The
monkeys made up to 5 saccades per second (Fig. 4b). For each
image, we cropped a macaque-fovea-sized 3° × 3° (width x height)
“scene patch” corresponding to the first acquired fixation41. All
patches were compared to the prototypes in AlexNet fc6 space
using (1 – cosine-distance) as a measure of similarity (i.e., cosine
similarity).

Because the generator images are not photorealistic, we
predicted that the mean distance between prototypes and natural
image fragments would have an arbitrary non-zero value.
Therefore, we needed other distances for comparison. We
measured the mean distance between shuffled prototypes (see
previous section) and the scene patches (Fig. 4c), as well as the
mean distance between prototypes (true and shuffled) and
random scene patches. Random scene patches were obtained by
randomly substituting the images that elicited the monkeys’ eye
movements and extracting the new regions marked by the same
fixation patterns.

The comparisons across image set types were the most
informative. We found that prototypes and viewed patches
showed the highest similarity (median of 0.47 ± 2.0e−03 [A] and
0.46 ± 2.6e−03 [B]), followed by shuffled prototypes to viewed
patches (0.44 ± 2.0e−03 [A] and 0.44 ± 2.2e−03 [B]), prototypes to
non-viewed patches (0.42 ± 2.3e−03 [A], 0.41 ± 2.5e−03 [B],) and
finally, the lowest similarity was between shuffled prototypes and
non-viewed patches (0.39 ± 2.0e−03 [A], 0.39 ± 2.0e−03 [B]).
Overall, the mean cosine similarity between generator images
and photographic patches was 0.429 ± 0.002 (for monkey A) and
0.423 ± 0.002 (monkey B); Comparisons within image set types
established a baseline; we found the overall patch-to-patch
similarity was 0.520 ± 4 × 10−4 (A) and 0.528 ± 4 × 10−4 (B),
and the overall generator image-to-image similarity, 0.649 ± 0.003
(A) and 0.642 ± 0.005 (B). Thus, we found that across group
similarities are lower than within group similarities, but that the
highest across-group similarity was between viewed patches and
true prototypes. This effect was reliable across animals — and
remarkable considering the comparisons were based on fewer
than ~137 prototypes per animal, using an untrained natural
behavior.

We then tested if it was coincidental that prototypes were
closer to viewed patches than shuffled prototypes. We con-
structed a null distribution via permutation testing, by sampling
two groups of AlexNet fc6 vectors at random from the combined
set of true and shuffled prototypes, then measuring how much
closer one random group was to viewed patches compared to how
much closer the other group was to the same viewed patches. We
repeated this 499 times. We found (in both animals) that less than
0.2% of random samples met or exceeded our experimental
evidence for how much closer true prototypes are to viewed
patches than shuffled prototypes. We conclude that prototypes
were more similar to scene regions spontaneously fixated by the
animal, compared to shuffled prototypes; this is consistent with
the hypothesis that prototypes contain features of behavioral
significance.

We have shown that viewed patches were closer to true
prototypes than to shuffled prototypes, and also that true
prototypes were closer to viewed patches than not-viewed
patches. Next, we set out to test whether this effect was due to
differences in the behaviorally relevant content of images or due
to low-level image properties. Specifically, by low-level properties,

we mean those which can be calculated globally (i.e., an expected
value of a function of all pixels), termed global image statistics. As
we will show, our decision to shuffle the order of input vector
elements changed the behaviorally relevant content of images
more than the global image statistics such as textural properties
(which are less directly behaviorally relevant). This analysis
evinced agreement in the cognitive information content of viewed
patches and true prototypes.

In Supplementary Fig. 4, we show that viewed and not-viewed
patches had a greater disparity in global image statistics than true
and shuffled prototypes. The image statistics we used were
energy, entropy, stationarity, mean luminance, and Tamura’s
textures42; all were calculated on the L* channel of the CIE 1976
L*a*b* color space. Median values are reported in Supplementary
Table 1. We pairwise-subtracted the values for all shuffled
prototypes from all true prototypes and did the same for viewed
and not-viewed patches. The values in the “surrogate” group
(shuffled prototypes or not-viewed patches) could have been
systematically offset, systematically more variable (greater
dispersion) or both. The median pairwise signed difference
determined the offset (reported in Supplementary Table 2 and
Supplementary Fig. 4). The unsigned difference combined shift
and spread, and pairwise dividing out the “baseline” group (true
prototypes or viewed patches) scaled the difference by a baseline
(the fractional absolute pairwise distance). Both prototypes and
patches showed significant shifts in all statistics for both monkeys
except for the directionality of prototypes and the regularity of
patches, (untailed Wilcoxon ranksum test, all significant P-values
<5.9 × 10−9, all non-signficant values > 0.1, Supplementary
Table 2). The fractional absolute pairwise difference showed that
patches evinced more shift and spread because all simple-
difference formula effect sizes were positive except for Monkey
B’s entropy statistic (Wilcoxon ranksum test, untailed, all P-
values zero to single precision; Supplementary Table 3). This
confirmed that true and shuffled prototypes were comparatively
more similar than viewed and not-viewed patches according to
global image statistics, corroborating the true/shuffled and
viewed/not-viewed columns of Fig. 4e.

Next, we assessed the content of patches and prototypes by
associating images with semantic categories (Fig. 4f-g). Our goal
was to quantify the relative frequency of key terms associated
with each group. Despite our previous use of Google Cloud
Vision above, it was not appropriate for this analysis because its
vocabulary and verbosity were too large. Thus individual words
were too infrequent to compare relative frequencies across image
sets and there was no easy way to group words or captions into
semantic categories. Hence, we adapted a ResNet architecture
trained for semantic segmentation on the COCO-Stuff dataset43,
which augments the COCO dataset with additional labels and
groups 182 possible labels into 27 semantic categories (see
Methods for details and architecture, Supplementary Table 4 for
label text and hierarchy). We then assessed the frequency that a
semantic label category was associated with images in each of the
eight image datasets (two monkeys and four partitions: patches,
not-viewed patches, true prototypes, shuffled prototypes). We
restricted the analysis to the seven semantic categories that were
assigned more than a minimum number of times, (see Fig. 4d,
Method, Supplementary Table 5 for values). The occurrence
frequencies for these categories were then subjected to a χ2

proportion test with significance level set to 0.05/27 (Bonferroni
adjusted for N= 27) to test whether a given category was more
common in viewed or non-viewed patches or true or shuffled
prototypes (Supplementary Table 6). The analysis confirmed
there were significant differences between the content of true and
shuffled prototypes, and that these were of similar magnitude and
character to those between viewed and not-viewed patches.
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Namely, true prototypes and viewed prototypes were strongly
associated with animals, and shuffled prototypes and not-viewed
patches were respectively associated with background and non-
monkey-food plants (see below). Recalling that true and shuffled

prototypes were not as different as viewed- and not-viewed
patches according to global image statistics, it was noteworthy
that in the case of image content, they did have similar
differences. We conclude that shuffling the order of input vector

prototypes

shuffled
prototypes

patch,
viewed

patch,
not viewed

b.

-6 0 6
horizontal dist. (°)

-6

0

6
ve

rti
ca

l d
is

t. 
(°

)

c.a.

time

e.

0 0.4

-0.2

0

0.2

a.
u.

2

0.65

pro
toty

pe:
vie

wed

shu
ffle

d p
roto

:vie
wed

pro
toty

pe:
not

 vie
wed

shu
ffle

d p
roto

:no
t vi

ew
ed

pro
toty

pe:
shu

ffle
d

vie
wed:

not
 vie

wed
0.5

0.55

0.6

si
m

ila
rit

y
(1

 - 
co

si
ne

 d
is

ta
nc

e)
0.38

0.42

0.46
Monkeys 

A
B

a.u.1prototypes
shuffled proto.
viewed patches
random patches

Patch interpretations

*~
an

im
al

~te
xti

le

ele
ctr

on
ic

*~
fur

nit
ure

*~
gro

un
d
~w

all
pla

nt
-0.04

0

0.04

la
be

l f
re

qu
en

cy
di

ffe
re

nc
e monkey A

monkey B

Prototype interpretations

*~
an

im
al
tex

tile

*el
ec

tro
nic

*~
fur

nit
ure

gro
un

d
*~

wall

*~
pla

nt
-0.04

0

0.04

d.

f. g.

Fig. 4 Evidence for active encoding based on free viewing. a Schematic of free viewing task flow. b Example trial of animal A’s eye-tracked path, beginning at
fixation (0,0)° and making ~5 saccades (red dots/line). c Example prototypes, shuffled prototype surrogates, scene patches viewed by the monkeys, and scene
patches not viewed by the monkeys. Black masks on prototypes and shuffled prototype surrogates show an estimate of the location of the receptive field center.
d Scatter plot representation of the image fragment types in c in AlexNet fc6 space (red = prototypes, gold = shuffled prototypes, blue = viewed patches,
purple= non-viewed (random) patches). eMean similarity of fc6 representations between image sets denoted on the horizontal axis. Gray for monkey A, black
for monkey B. Left panel compares prototypes and viewed patches with their corresponding (same image type) random control. Right panel shows a similarity
between image sets curated by viewing patterns on photos to synthesized images. Standard error bars are shown (n = distance values between prototypes and
patches, 930,500 [125 observed/shuffled prototypes and at least 7444 viewed/non-viewed patches]) f Bar charts showing differences in the frequencies that
certain COCO-stuff categories are identified between viewed and not-viewed patches. Positive values indicate a visual feature category is more common in
viewed patches, negative values indicate a category is more common in not-viewed patches. Data for both monkeys is shown (white = monkey A, black,
monkey B). “*” indicates a χ2 proportion test p-value < 1.9 × 10-3 (Bonferroni adjustment for N = 27) for monkey A, “~” indicates the same for monkey B. Only
categories that are abnormally common in at least one of eight data groups are analyzed (see Methods). Viewed patches are enriched with animal-associated
visual features while non-viewed patches are enriched in visual features associated with furniture, ground, and walls. COCO-stuff has two “furniture” groups,
only the “stuff” furniture group met inclusion criterion. g As in panel f, except showing differences between true and shuffled prototypes. Positive values indicate
a category is more common in true prototypes. True prototypes are enriched in visual features associated with animals and furniture, while shuffled prototypes
are enriched in features associated with plants (not food-related) and walls. Source data are provided as a Source Data file. Depicted individuals have consented
for publication, and have seen these photos in context of the publication.
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elements affected semantic content more than global image
statistics, and thus shuffling was an acceptable way to produce
non-trivial surrogates for image content.

More importantly, assessing the semantic content of patches
and prototypes also bolsters the relevance of ethological and
cognitive information to neural representations, while also
revealing why, in human terms, viewed and non-viewed patches
differed according to global image statistics. We found that viewed
and not-viewed patches showed a strong foreground-vs.-back-
ground dichotomy, with not-viewed patches being more fre-
quently associated with background-type categories. Specifically,
Ground (Χ2= 49.2, p= 2.3 × 10−12 for monkey A, Χ2= 43.4,
p= 4.4 × 10−11 for monkey B) and Wall (Χ2= 7.9, p= 4.8 × 10−3

for monkey A, Χ2= 21.2, p= 4.1×10-6 for monkey B, e.g., Ground
included gravel, mud, railroad; Wall included brick, panel, wood,
etc.). Since backgrounds like grass and walls are plain and
foreground objects tend not to be, this explains the difference in
global image statistics. Conversely, we found that true and shuffled
prototypes showed an animal-vs.-plant dichotomy, with shuffled
prototypes being more frequently associated with plants (which
were not food-related for monkeys). Association with homo-
genous features was unlikely for shuffled prototypes since global
image statistics were preserved. Consequently, the ResNet model
associated the heterogeneity of shuffled prototypes with the Plant
category. Thus, Plant was the null/baseline category for the image
generator. Plant labels were the most common in shuffled
prototypes (Χ2= 37.2, p= 1.1 × 10−9 for monkey A, Χ2= 73,
p= 1.3 × 10−17 for monkey B) — specifically, these were non-
monkey-edible plants (e.g., tree, grass, flower). A background
category weakly associated with shuffled prototypes is Wall
(Χ2= 42.6, p= 6.8 × 10−11 for monkey A, Χ2= 22.7,
p= 1.9 × 10−6 for monkey B). The most important result was
that both viewed patches and true prototypes were more likely to
be assigned a label in the Animal category (e.g. bird, cat, elephant,
etc.) than non-viewed patches (Χ2= 20.0, p= 7.7 × 10−6 for
monkey A, Χ2= 50.2, p= 1.4 × 10−12 for monkey B) or shuffled
prototypes (Χ2= 46.9, p= 7.4 × 10−12 for monkey A, Χ2= 17.3,
p= 3.2 × 10−5 for monkey B). Thus, true prototypes were
independently and robustly confirmed to have more animal
relevance (and therefore behavioral relevance) than shuffled
prototypes, and they also had content more similar to viewed
patches.

The remaining features may also help illuminate the effects of
neural guidance on image synthesis. Furniture was a feature that
was moderately enriched in non-viewed patches (Χ2= 34.5,
p= 4.3 × 10−9 for monkey A, Χ2= 32.4, p= 1.2 × 10−8 for
monkey B) but also in true prototypes (Χ2= 33.1,
p= 8.9 × 10−9 for monkey A, Χ2= 20.6, p= 5.5 × 10−6 for
monkey B; specifically, “furniture < indoor < stuff” from
Supplementary Table 4). Furniture was a category that contained
items that might be behaviorally irrelevant (e.g., stairs);
alternatively, it contains items in the monkey’s housing and lab
environments (e.g., cupboard, cabinet), and those associated with
specularity and/or strong luminance contrasts (e.g., desk, mirror,
light) as might develop in V1/V2 prototypes. The remaining
categories, Textile and Electronics were assigned frequently
enough to meet the criterion for inclusion, but were inconsistent
(i.e., did not occur with significantly different ratios for both
monkeys, see Supplementary Table 6). From this semantic
segmentation and labeling analysis, we can first conclude that
shuffling prototypes destroyed the content of images more
consistently than it modified global image statistics and overall
textural properties, thus validating shuffling as a method for
generating surrogates. Most importantly, we can conclude that
viewed patches and true prototypes shared the important
ecologically relevant property of being related to animals.

Discussion
Neurons in visual cortex must encode specific information from
retinal scenes, a process complicated by the fact that downstream
neural systems may have to decode different types of information at
different periods in the animal’s life. The code must be both rich
and sufficiently flexible to allow various kinds of patterns to be
decoded, but not so rich that it overfits incidental features of the
visual world; to paraphrase, the code must be “as simple as possible,
but not simpler”44. In this study, we defined features of the neural
code for visual recognition as implemented in early and mid-level
visual areas of the cortical hierarchy45, using an image-generating
system, which when combined with a search algorithm, efficiently
found images that maximized neuronal firing rates. We called these
images prototypes. Our work contrasts with other studies referen-
cing efficiency in neural coding because it does not attempt to
characterize sparseness of the spiking code46,47, nor a mutual-
information relationship between spiking patterns and image sta-
tistics. Instead, our concern with efficiency is image-based, follow-
ing the classic motivation of identifying visual attributes that
maximize “concentration of information,”3 using high firing rates as
markers for these attributes.

Why use maximal firing rates as an optimizable objective?
Under optimal conditions, neurons should use their full output
capacity48: for example, in a rate-based code, this means some-
times firing at a low rate and at other times firing at a high rate.
While almost any image stimulus set can modulate neuronal
responses, the generator-based approach leads to images that
explore more of a neuron’s dynamic range — at least as well as
natural images. Although we are exploring alternative objectives,
including population pattern responses, in terms of efficient
coding, achieving a broad output range is a reasonable first step.

Prototypes were information-rich and helpful for alternative ad
hoc coding strategies, consistent with previous findings that
incidental visual information can be decoded from neuronal
responses to complex images49. Although the generator produced
abstract combinations of texture-like images, neurons generally
guided the development of simpler, spatially constrained motifs
of intermediate complexity50. This complexity was also below
that of prototypes encoded by units in neural networks such as
AlexNet (which have similar complexity to shuffled prototypes).
The less-coherent conglomeration of textures in AlexNet and
shuffled prototypes were less compressible than well-segmented
object parts51. This is consistent with the finding that convolu-
tional neural networks are biased towards texture detection
(curiously, networks trained to be robust to adversarial attacks
learn to represent shapes rather than textures52). Furthermore,
there was a floor to the preferred level of complexity, as neurons
moved towards a level of information density in their synthetic
images that exceeded that of the initial generation of synthetic
images and that of Gabor patches, curved contours, and gratings.
The complexity of these prototypes is comparable to that of
textured, segmented object parts. Previous studies showed that
adding multiple objects within the classic receptive fields of
individual neurons can lower their firing rate53,54, likely due to
mechanisms such as normalization. Our study goes beyond these
findings by showing these mechanisms can be engaged by
response optimization, and by showing how such normalizing
mechanisms relate to actual visual attributes. This conceptual
advance also establishes an upper limit to the neurons’ repre-
sentational complexity (e.g., preferred stimulus density). The
observed titrated complexity of prototypes (and their foreground/
background segmentation) also overlap with findings that images
are more memorable when they are well-positioned, bright and
free of clutter55,56.

Even though measured prototype complexity was comparable
across visual areas, they encoded for different types of
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information. How do we reconcile these findings? First, we
evolved using fixed-size textures that were often larger than a
given neuron’s receptive field, so the neuron was free to operate
on any portion of the texture — both through its classical
receptive field and surround. Examining regions limited to clas-
sical receptive fields would affect the measured value of prototype
complexity, so our results have to interpreted as an upper value.
Still, in simulations using AlexNet, we found that units with very
small receptive fields (11 x 11 pixels) that operated on larger
textures (227 × 227 pixels) evolved images with higher complexity
values than we observed in the neuronal data, suggesting that V1/
V2 and V4 array sites operated over a larger fraction of the
texture. In multiunit recordings, prototypes likely reflect the
function of multiple local RF centers; in single-unit recordings,
they will include the effects of surrounds and possibly longer-
range horizontal projections57. Therefore, the prototypes may
reflect an amalgam of simpler features, as expected if neighboring
single neurons in multiunit signals had overlapping but not
identical functional tuning. Also relevant is that our definition of
complexity is based on the minimal description length29, a well-
known principle that is distinct from some common usages in the
neuroscience literature, such as referring to images that are
composites of simpler images or to the complexity of an object
being pictured rather than to the optical patterns of the image.
Given this, there are several ways that neurons that individually
encode for semantically simpler features could also yield proto-
types with higher reconstruction complexity.

The visual system stores important motifs of the animal’s
natural environment that serve as part of an internal model of the
world. Given the constancy of the natural world and the
importance of other animals for survival and reproduction, it is
sensible that this internal model should subsume features related
to generic regions of saliency40 and diagnostic of animals58,59, as
well as the influence of natural scene statistics6,50,60. Our study
advances these views by explicitly demonstrating the content and
complexity of those features. Of note, the creation of specialized
prototypes does not preclude identification of other, non-encoded
objects: artificial neural networks show that any given filter (by
rough analogy, any artificial “neuron”) can be used to analyze an
image, even if the image does not contain any shapes that match
the exact shape of the filter — as long as the subsequent decoder
is well-trained and has access to other neurons. Put succinctly,
motif specialization should make some objects easier to decode
downstream but does not preclude performing generic classifi-
cations. In part, this is shown by our analysis that the same set of
prototypes can be used to extract different kinds of information,
for example, regarding orientation, curvature, and other
semantic-category-level hypotheses, such as faces, body parts and
foods. This is likely what the decoding neural circuits in different
parts of the brain (e.g., prefrontal cortex, perirhinal cortex) must
do, depending on the day-to-day needs of the animal.

Methods
All procedures received ethical approval by the Washington University School of
Medicine Institutional Animal Care and Use Committee and conformed to NIH
guidelines provided in the Guide for the Care and Use of Laboratory Animals. All
relevant ethical regulations for animal and non-human-primate testing and
research were followed.

Experimental setups. Experiments were run in two identical experimental rigs,
each controlled by a computer running MonkeyLogic 261. Stimuli were presented
on ViewPixx monitors (ViewPixx Technologies, QC, Canada) at a resolution of
1920- × 1080 pixels (120 Hz, 61 cm diagonal); subjects were positioned 58 cm from
the monitor during all experiments. Images were presented at the screens’ max-
imum resolution after rescaling to match the size of the image in degrees of the
visual field. Image sizes generally were 3° per size (sometimes up to 4°) as needed to
cover the receptive field and surround. Eye position was tracked using ISCAN
infrared gaze tracking devices (ISCAN Inc., Woburn MA). For most experiments,

the animals performed simple fixation tasks (i.e., holding their gaze on a 0.25°-
diameter circle, within a ~1.5–2.5°-wide window on the center of the monitor for
2–3 s to obtain a drop of liquid reward (water or diluted fruit juice, depending on
the subject’s preference). Rewards were delivered using a DARIS Control Module
System (Crist Instruments, Hagerstown, MD).

Neuronal profiles. Two male adult rhesus macaques (A and B, Macaca mulatta,
ages, 10–11 kg) were implanted with chronic floating microelectrode arrays in the
right hemisphere: one array at the posterior lip of the lunate sulcus (near the V1/V2
transition), one on the prelunate gyrus (V4) and another anterior to the inferior
occipital sulcus (PIT). Based on standard anatomical descriptions13,14,62, we refer
to these sites as V1/V2, V4, and IT. The locations of the arrays were chosen based
on sulcal landmarks and on local vasculature, resulting in an unbiased sample of
neurons. We use the term site to refer to both single- and multiunits; in all
experiments, sites comprised mostly multiunits and some single units.

Microelectrode arrays. Arrays were manufactured by Microprobes for Life Sci-
ences (Gaithersburg, MD). Each array consisted of a ceramic base with 16–32
working electrodes (plus four reference/ground electrodes) made of platinum/iri-
dium, with impedance values of 0.7–1.2 MΩ and lengths of 1.6–2.4 mm (4 mm for
grounds and reference electrodes). To implant the arrays, a craniotomy was per-
formed in the occipito-temporal skull region, followed by a durotomy that allowed
visualization of sulcal and vasculature patterns; arrays were secured to a stereotaxic
arm via suction and inserted into the cortical parenchyma at a rate of ~0.5 mm
every three minutes, regulated by visual inspection of tissue dimpling. Arrays were
fixed in place using titanium mesh (Bioplate, Los Angeles, CA) over collagen-based
dural graft (DuraGen, Integra LifeSciences, Princeton NJ), and cables protected
using Flexacryl (Lang Dental, Wheeling, Illinois). Omnetics connectors were
housed in custom-made titanium pedestals (Crist Instrument Co.,
Hagerstown, MD).

Data pre-processing. Data was recorded using Omniplex data acquisition systems
(Plexon Inc., Dallas, Texas). At the start of every session, the arrays were connected
to Omniplex digital head stages; all channels underwent spike auto-thresholding
(incoming signals were recorded if they crossed a threshold amplitude value,
determined within each channel, such as 2.75 standard deviations relative to zero-
volt baseline). Manual sorting of units took place if the 2D principal component
features of detected waveforms showed clearly separable clusters; clusters not
overlapping with the main “hash” cluster were described as “single units” if they
showed a refractory period; all other signals were described as “multiunits.” No
further spike sorting was performed, as the closed-loop, real-time nature of our
experiments made post-spike processing limited in usefulness.

Localization of receptive field centers. To estimate the best retinotopic location
for evolution experiments, the animals performed a fixation task while a 2°-wide
image was flashed for 100 ms on randomly sampled locations within an invisible
grid. On most days, the grid ranged from (−8,8)° in width to (−4,4)°, in steps of
1–2°. Monkey A participated in 39 receptive fields (RF) center mapping experi-
ments, and monkey B in 51. Each position was tested an average of 6.5 ± 0.04 times
(mean ± SE, N= 6906 total presentations across positions and experiments). The
mean responses to each position were interpolated into a (100x100)-pixel image
(griddata.m) and then fit using a 2-D Gaussian function (fmgaussfilt.m)63. Most
neurons responded best to images placed peri-foveally, ranging from 0.3° to 3° in
monkey A and 0.6° to 2.0° in monkey B, with V4 sites having a subset of parti-
cularly eccentric RFs in both animals (Supplementary Fig. 1). Fits showed
increasingly larger Gaussian widths along with V1/V2, V4, and IT (Table 1),
although they were too large to correspond to stricter definitions of “receptive
fields.” These experiments were also used to select the sites for subsequent analyses
based on their visual responsiveness. For each site, visual responsiveness was
defined as the mean spike rate during the first 50–200 ms after image onset (the late
window) minus the mean spike rate during the first 1–49 ms after image onset
(early window). Across experiments, a given site was defined as visually responsive
if its firing was modulated by image position in at least 10% of all receptive-field-
mapping experiments (per one-way ANOVA, P < 0.01 after false discovery rate
correction; the 10% threshold was chosen because some sites showed single-unit
signals that appeared transiently for a few days, then disappeared).

Selectivity. Neurons were tested for selectivity using a 754-image datastore. The
datastore included photographs of animals (including humans and monkeys, either
shown as a whole or segmented into face/body-part pictures), artificial objects (e.g.,
clocks, cars, kitchen utensils), places (both outdoors and indoors), and foods
(fruits, vegetables). The set also contained computer-generated images such as
Gabor patches (straight, curved, and radial), curved bounded stimuli64, and gen-
erator images from previous publications21 and from neural network simulations
(sources included our own photographs, ImageNet 2012, and datastores accumu-
lated over the years). To select the ImageNet images, we created a datastore object
(imageDatastore.m) and sampled ~500 random images from it. Neuronal sites were
defined as selective if their firing rate changed reliably upon presentation of dif-
ferent images (P < 0.001, one-way ANOVA run per site per experiment, with false-
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discovery rate correction; for monkey A, the median number of unique images per
experiment was 318.3 ± 17.1, presented an average of 5.3 ± 0.7 times; for monkey B,
the median number was 640.3 ± 0.4; presented an average of 4.3 ± 0.9 times).
Tuning for orientation was measured using grayscale Gabor patches in a separate
set of experiments, with six Gabor patches oriented at 0° to 150° in steps of 30° with
0° defined as the right horizontal meridian. Sites were defined as “orientation-
selective” if they showed response modulation to the Gabor sets (P < 0.05, one-way
ANOVA).

To quantify areal responses to photographs vs. artificial line stimuli (e.g., Gabor
patches, bounded contour objects and spirals, N= 640 unique images across sets),
first, we transformed each site’s responses to all images into z-score values (within
that given experiment), in order to allow comparison across sites and experiments.
Only sites whose RFs were located within 1° of the 3°-wide stimulus centers were
examined. We computed each site’s maximum z-score value to all photographs and
to all artificial line objects, and then measured the difference between both
maximum values. These differences were then parsed per visual area and tested for
statistical significance using a Kruskal-Wallis test (with areas as grouping variables)
or Wilcoxon signed-rank test (for comparing V1/V2 and IT differences).

To determine if individual images contained dominant contour orientations,
each image was run through MATLAB’s histogram-of-gradients (HOG) algorithm
(extractHOGFeatures.m) to calculate the magnitude of unsigned gradient filters
distributed across nine orientations φ= { x | 0° ≤ x ≤ 160°, x mod 20= 0 } per
image patch (block size = 9 pixels), denoted as |∇φ | . At each patch, extracted
strengths were used to create a local orientation dominance index as Ilocal =
(max(|∇φ | )-min(|∇φ | )) / (max(|∇φ | )+min(|∇φ | )). Across images, most patches
showed low orientation dominance because they either contained no strong edges
or had meandering edges with no specific direction (e.g., a sand texture, or grid
texture). Only patches with the strongest selectivity corresponded to striking
features of the original image. Thus, to capture the orientation dominance of the
image, we disregarded 75% of the patches and kept only the 25% most selective
patches according to Ilocal. We then computed the average (mean) oriented gradient
magnitudes |∇φ | across all retained patches. The final reported orientation
dominance index per image was the orientation dominance index Iglobal computed
for these mean oriented gradient magnitudes.

To semantically define the selectivity of individual sites, we analyzed the content
of the images via Google Cloud Vision19, which returns multiple descriptive labels
associated with each image. As a third-party resource trained on the world’s largest
image dataset19, this label distribution provided a more comprehensive description
of the images. For each experiment, a subset of images from the 754-sample
datastore was used. First, we measured the experiment-specific label frequency (the
null distributions in Fig. 2). Then for each site, we identified the images that elicited
the highest firing rates and grouped those images’ associated labels (generally two
images per site, corresponding to an average of 14.9 ± 0.5 labels per image). To
determine if the frequency of any given label was disproportionately selected by
sites in each array (IT, V4, V1/V2) relative to the null distributions, we conducted a
bootstrap analysis where each null distribution was resampled 500 times using the
same number of observed top labels across experiments and measured the
frequency of each label within each bootstrap samples. Any given neuron-
associated label was defined as disproportionately selected if its observed frequency
fell outside the 99th percentile of the null frequency distribution. On any given
experiment, sites were only evaluated for selectivity if the stimulus center fell within
1.0° of the site’s RF center (RFs estimated in a different set of experiments, outlined
above).

Prototype synthesis. We performed 264 experiments in two animals (A and B,
127 and 137 experiments) using channels in V1/V2 (16 per monkey), V4 (16 per
monkey), and PIT (32 for monkey A, 21 for B). Every site was tested at least once
regardless of visual responsivity. In some analyses (for example, those in Figs. 1 and
2), 12 experiments conducted in monkey B were excluded because they involved
channels with poor visual responsiveness, per the RF-mapping experiments; in
analyses where shuffled prototypes were involved, those 12 experiments were used
(as the failed attempted evolutions could be informative in defining compressibility
values, for example). We defined the relative success of a prototype extraction
experiment using two scores: (i) if the mean firing rate across the final 10 gen-
erations was higher than the mean firing rate to the first generation (with 95% CI of
the difference between the final and initial firing rate not including zero) and (ii) if
the mean firing rate to the synthetic images was larger than the mean firing rate to
the reference images (which had been preselected due to their effectiveness in
driving activity in that same array site; per the results, this was the more stringent
test). More specifically, the evolution experiments relied on responses to single
presentations of each image; this made the dataset noisier than those relying on
average responses to multiple repetitions. For this reason, in the first analysis, (i) we
designed a bootstrap test to minimize the effect of outliers. On each pass, we
randomly sampled responses across the full experiment and sorted them by gen-
eration and by stimulus type (synthetic vs. reference). The site’s mean activity per
generation was then computed separately for the synthetic and for the reference
images, resulting in two vectors rsynthetic and rreference (where each vector has Nge-

neration elements). Each vector was smoothed with a moving average window of five
generations; the response to the first generation was subtracted from the mean of
the final 10 generations. We collected this difference across 500 iterations and

computed the mean and standard error of this difference per experiment; the
prototype extraction was considered successful if the 95% confidence interval of the
bootstrap distribution did not include zero.

To measure the number of generations needed to reach a prototype, for each
experiment, we convolved the mean firing rate per generation using a moving
mean filter (window N= 5 generations). The amplitude of the curve was defined as
the maximum value across generations minus the value at the first generation. The
mid-point was defined as the generation where one-half of the amplitude was first
reached.

Semantic ensembles. To interpret the synthetic images across visual areas, we
used ensembles of hidden units from AlexNet to score the likelihood of specific
hypotheses about the enrichment of features such as straight contours, curvatures,
color, faces, body parts, etc. For each hypothesis, hidden units were selected based
on their responses to image sets with known properties. For example, to identify
units sensitive to curved vs. straight contours, two image datastores were created,
one containing curved contours (“banana Gabors”) and the other, straight con-
tours; both datastores were propagated into the network and the activations of all
units in each layer were recorded. AlexNet layer 6 was chosen because the gen-
erator used in this study was validated on it20, and AlexNet is more thoroughly
vetted for predicting neuronal responses21,65. Because layer 6 follows all the con-
volutional layers, each unit’s responses involve all parts of the image, thus variation
in feature position was irrelevant. The responses of each unit to both datasets were
compared using a one-tailed Wilcoxon rank-sum test, and only units showing a
statistically higher response to the first dataset (e.g., curved contours) were added
to the semantic ensemble (P < 0.0001). Semantic ensembles comprised hundreds of
units (Table 4). Hypothesis-defining image datastores comprised hundreds of
images selected from various datasets including ImageNet17 and Caltech-25666. In
one control, random data stores were created by sampling images randomly from
the above datasets; in these cases, no units could be found that preferred one set
over another, so random units were instead selected. After ensembles were iden-
tified, all prototypes were inputted into the network; the responses of each
ensemble unit were z-scored across prototypes (but within units), and the mean
response of each unit per areal prototypes was reported.

Complexity metrics. To compute the mean complexity ratio for each image, we used
MATLAB’s discrete cosine transform function (dct2.m). First, each color image was
transformed to grayscale by retaining only the L* channel of the CIE 1976 L*a*b* color
space. Next, pixel values were centered by subtracting the mean value. The image was
then transformed into discrete cosine coefficients, which were then squared to yield the
two-dimensional power-spectrum. To get the fraction of power contained in each
component, the power of each component was divided by the sum of the entire power-
spectrum. The components were then sorted in descending order by fractional power.
The sum of the first N fractional power components yields the total fractional power
contained in those N components. When they are sorted in descending order, this is the
minimum N required to reach that fractional power. We designate nine fractional
power levels ranging from 99.8% to 50%, per the formula f= 1–2 (−9 to −1)) and find
the minimum number of components, N, necessary to reach each fractional power level.
To calculate the final complexity ratio, we average N across all nine fractional power
levels and divide by the total number of components (which is equal to the number of
pixels in the original image).

To compute the median number of parts that composed each prototype, mean-shift
clustering was used. Each image was resized to dimensions of (100x100)-pixels, and
then inputted into the custom functionMs2.m34 using the default bandwidth of 0.2; this
particular function clusters pixels based on color and spatial relationships (proximity). It
returns several estimated clusters along with the number of pixels associated with each
cluster; we retained all clusters with more than 10 pixels.

Random drift evolutions. To simulate synthesis experiments without neuronal gui-
dance, computational simulations were set up as follows. Each simulation began by
sampling an input vector obtained from an experiment and shuffling the position of its
elements. This shuffled vector then served as a target for the evolution, leading to a
different location in generator input space while still preserving the vector norm (and
thus the distance traveled from the center of the generator input space). The first
generation used the same set of input vectors as in the experiments. Each image was
then scored based on the inverse of its distance to the target vector; Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES) was used to identify new candidate vectors
for the next generation. The evolution continued until the mean norm of a given
generation reached the same norm as that of the target vector.

Free viewing. Behavior. The head-fixed subjects were placed in front of a monitor and
their eye positions were tracked with an ISCAN infrared gaze tracking device. To begin
each trial, subjects held initial fixation on a 0.25°-diameter circle at the center of the
screen for 100ms, after which the fixation point was replaced by a full-color scene on a
grey background. Scenes were presented one at a time at 15° × 15° for 1000ms, during
which time the subject was free to view anywhere within a 36° × 32° viewing window
without triggering an error. Trials were aborted and restarted if their gaze left that
window. After each trial, the subject received a fixed liquid reward. To control for the
photographer’s bias and any confounds from the initial center fixation, the original
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color picture was randomly offset by 2° in any direction and embedded within a fixed
gray frame of the same color as the monitor background.

The stimulus set comprised 5223 photographs from different sources, including 1)
random pictures from the COCO dataset67, 2) natural scenes containing primates, and
3) pictures of familiar objects and personnel, taken around the animals’ home cage and
our laboratory. Analysis of the photographs per Google Cloud Vision resulted in
53,000–56,000 labels (2913 to 2965 unique labels), with the most frequent labels
comprising Vertebrate (1.5%), Mammal (1.5%), Vehicle (1.4%), Room (1.4%), Primate
(1.3%), Old world monkey (1.0%) and Wildlife (1.3%).

Analysis. Calibrated eye position data from MonkeyLogic 2 was used for all
analyses. Only successful trials were used (i.e., the monkey’s eye positions remained
within the 36° × 32° window). Eye position data were analyzed using ClusterFix68, a
MATLAB package that uses K-means clustering to parse out saccade times and
fixation durations, based on velocity and acceleration. On each trial, this was used
to find the location of the fixation following the first saccade after image onset: this
image region was then cropped out using imcrop.m to yield a “scene patch.” As a
control, we used the same eye position information and randomly selected an
image from a different trial, then cropped out the region marked by the first
acquired fixation to yield a non-viewed scene patch.

For the prototype-comparison analysis, viewed- and non-viewed fragments
from a given animal were compared to its own prototypes as defined in other
experiments. All fragments, along with prototypes and shuffled prototype
surrogates were inputted into AlexNet, converting each into a layer fc6 activation
vector (4096 × 1). Distance among vectors were computed using a correlation-
based distance (pdist2.m).

Global image statistics. The global image statistics used to measure the fractional
changes reported in Supplementary Tables 1-3 and Supplementary Fig. 4 were
defined and calculated as follows. All statistics were calculated on the luminance
channel of the CIE 1976 L*a*b* color space of the patch and prototype images.
The images to be analyzed were selected as follows: For monkeys, A and B when
viewed and/or non-viewed patches were centered near the edge of the image they
contained the gray background against which images were set. This was never the
case for prototypes, so patches near enough to image edges to include the back-
ground were excluded. This left a minimum of 9749 patches in any patch data set
(see Supplementary Table 1). It is necessary that the prototype data set have
numerical parity with the patch data set. There were 127 and 119 evolution
experiments for monkeys A and B. For each evolution experiment we selected
100 synthesized images, 20 arbitrary selections from each of the last 5 generations.
Using this many images gives numerical parity with the patch data set, while
selecting from the last 5 generations increases the diversity of the selected images
while remaining at or near the algorithm’s point of convergence.

Image entropy (S ¼ �∑255
i¼0p ið Þ*ln p ið Þ� �

) and energy (E ¼ ∑255
i¼0p ið Þ2) were

calculated with 256 bins across the luminance depth of the image.
Stationarity was interpreted to mean that luminance variability has no

positional dependence, and thus integration of luminance values in any direction
would asymptotically approach μL* ´ ðt þ 1Þ, where t is the number of integration
steps (pixels). Hence, the stationarity statistic is the log-likelihood of assumptions
we make about image stationarity. The first step was to resize the image to 256x256
pixels. Then the image was integrated (summed, dx = 1 pixel) in 5 directions, top-
> bottom, bottom- > top, left- > right, right- > left, and center- > out. Each step of

integration produces a vector of values L*t;d
�!

where d denotes the direction of
integration. For center-out integration this vector acquires more elements
(dimensions) until there is one element for each pixel at the image perimeter. At
each step of integration an empirical probability distribution is estimated for vector

element values, noted as Pt L*jL*t;d
�!� �

. If the image followed a linear model, then

this distribution would peak near the value μL* ´ ðt þ 1Þ where μL* is the mean
luminance value of the entire image. Thus, the log of the probability of the expected
peak given the empirical distribution was recorded for each integration step and

noted as Ψt;d ¼ ln Pt μL* ´ t þ 1ð ÞjL*t;d
�!� �� �

. When t is small, this is essentially the

log-likelihood of the mean luminance value along the edge, or near the center —
otherwise it is the log-likelihood of our assumption that there are no positional
dependencies on luminance variability for stationary images. The final stationarity
value is the sum of all recorded values, Σt;dΨt;d , and this is validated through visual
inspection of results.

In Tamura’s texture statistics42, the only free parameter is the choice of
regularization factor for regularity, which was set at 3000. Prior to computing
Tamura texture statistics on patches, the largest central most portion was cropped
and resized to 256 × 256 (e.g., a 192 × 256 image would lose the topmost and
bottom most 32 pixels and be rescaled to 256x256). Generator images were already
256 × 256.

In Supplementary Table 3 we used signed and unsigned differences. To capture

unsigned differences (in Supplementary Table 2) we use dj;i;k ¼ sj;k � bj;i
� �

where sj;k

is the value of the jth statistic for the kth surrogate image (either a shuffled prototype or a
not-viewed patch) and sj;i is the value of the j

th statistic for the ith baseline image (either
a true prototype or a viewed patch). We only compared prototypes to prototypes and

patches to patches. For Supplementary Fig. 4 we also normalize the pairwise difference
for plotting by dividing pairwise differences by the global mean across all data sets for
the jth statistic. For computing absolute (unsigned) fractional differences in
Supplementary Table 3 we also took the absolute value and divided by the baseline:

uj;i;k ¼ sj;k � bj;i
� �

=bj;i

			
			. We drew our conclusions about similarity from the absolute

fractional differences because it accounted for both changes in both the location and
dispersion of the image statistic distributions.

COCO-stuff semantic label statistics. Here we describe our approach to mea-
suring semantic content in different image sets (e.g., prototypes, freely viewed pat-
ches). In order to compare the content of these images, we leveraged the open-ended
labeling abilities of deep neural networks. However, first it was necessary to restrict
the set of labels to ensure overlap between the labels applied to disparate types of
images (e.g., patches and prototypes). With Google Cloud Vision, few labels were
found frequently enough in each class of images to make useful comparisons. Hence,
we used a ResNet architecture69,70 trained on the COCO-Stuff semantic-segmentation
labeled dataset43. This is one of the datasets from which free-viewing stimuli were
drawn. COCO-Stuff augments the COCO dataset with additional annotations for
non-object like categories (e.g., backgrounds like grass or sky). It has 182 labels with
four hierarchical groupings. The fourth level is all 182 base labels, the third is
27 semantic categories. These labels and hierarchies are shown in Supplementary
Table 4. We focused our analysis on the 27 semantic categories, but only those which
were most abundantly (and therefore confidently) identified. We had eight data sets:
viewed patches, not-viewed patches, true prototypes, shuffled prototypes each repe-
ated per monkey. If a category’s occurrence frequency was greater than two standard
deviations above zero in one or more of the eight datasets, it was included in our
analysis (Fig. 4f, g), and we performed a hypothesis test. Only 7/27 categories met this
criterion. The hypothesis test was a Χ2 proportion test between the presence or
absence of a category in viewed vs non-viewed patch or true vs. shuffled prototypes,
the significance threshold is set at 1.8519 × 10−3 (Bonferroni adjustment for N = 27).

The ResNet was designed to apply one label (or no label) to each pixel on the image
using a conditional random field. We modified the architecture to apply multiple labels
to each pixel to reduce the impact of mis-labeling, and to increase the likelihood that
different images would have one or more labels in common. The process for assigning
multiple labels to each pixel was as follows: initially, the ResNet produced a probability
map for each label for all pixels and then a conditional random field assigned one label
to each pixel given the probability of neighboring pixels. The ResNet was run only once.
Each label that occupied an area greater than 1/9th of the total image area was identified
as a “dominant label”. The probability of dominant labels was set to the minimum
probability value of the ResNet output. The probabilities were re-normalized and again
inputted to the conditional random field. This produced a new set of labels and the
process starting with identifying “dominant labels” was repeated nine more times. Each
of the ten one-label maps given as outputs by the conditional random field was retained.
Finally, all labels which occupied more than 1/9th of the total image area in any one-
label map were recorded as the main set of labels for the image.

The Python scripts managing the ResNet architecture and process were
interfaced with the main MATLAB analysis scripts using the built-in interfacing
capabilities of MATLAB. Images were processed with 30 parallel computational
threads. After several days, 1,528 randomly selected viewed patch images from
monkey A were processed (see Global image statistics above for sample curation
details). The decision was made to cut off analysis after 1000 images from each data
set were processed. For patches, images were processed in random order for each
group (viewed/not-viewed, monkey A/monkey B). For prototypes, each experiment
was processed two images at a time. We selected one image from the five last
generations of evolving prototypes and its shuffled counterpart. We then moved on
to the next experiment, looping through again until all experiments had seven or
more prototypes (fourteen or more images) processed. Thus, the frequency
statistics account for 948 or more images from each data set.

Statistics and reproducibility. Each major result was based on over 120 experi-
mental sessions carried out using the same design and equipment type, in two separate
animals, following standard practice in non-human primate electrophysiology.

Data availability
All correspondence and material requests should be addressed to the corresponding
author (C.R.P). Data generated in this study have been deposited in an Open-Science
Framework repository71 at the URL https://osf.io/z6gv2/. We may share more data in the
future, so a timestamped version of the repository at the time of publication is also found
at https://osf.io/z6gv2/. Data can be obtained by downloading a zip file and can be loaded
using MATLAB. Raw spike data and peristimulus histograms are undergoing analyses
and are not yet available. Processed data to illustrate each analysis and figure are available
at Github (https://github.com/PonceLab/as-simple-as-possible). This Github repository
is linked to the aforementioned Open-Science Framework repository. We have shared
the latent vectors obtained during image synthesis experiments and responses to the
images evoked by those latent vectors, along with sufficient metadata to reproduce most
of the results in the publication. Data provided in the OSF repository can be used to
replicate Fig. 1e, f and Fig. 2a, b. In conjunction with code from the GitHub repository,
the data can also be used to recreate Fig. 2d, e and Fig. 3c, e. Results featured in Fig. 4 are
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based on eye movements applied to images for which we hold no copyright and include
pictures depicting identifiable humans, who have not consented for the distribution of
their pictures in the context of this work. Thus we have not released the gaze behavior
data, nor the baseline reference images due to concerns about privacy and distribution of
possibly copyrighted material. However, all of these data are available upon request for
research purposes, with guarantees of confidentiality, by contacting the corresponding
author. Source data for (supplementary) tables are very large and will be available upon
request by contacting the corresponding author. Data used for stimuli and analyses
include ImageNet (https://image-net.org/) and COCO-Stuff (https://github.com/
nightrome/cocostuff). Source data are provided with this paper.

Code availability
Code and links to useful repositories that can be used to reproduce most of the results
and figures (see Data Availability statement) are deposited in a Github repository
(https://github.com/PonceLab/as-simple-as-possible). The link to the timestamped
Zenodo repository is https://doi.org/10.5281/zenodo.522806972.

Received: 7 January 2021; Accepted: 1 November 2021;

References
1. Hasenstaub, A., Otte, S., Callaway, E. & Sejnowski, T. J. Metabolic cost as a

unifying principle governing neuronal biophysics. Proc. Natl Acad. Sci. USA
107, 12329–12334 (2010).

2. Mitchison, G. Axonal trees and cortical architecture. Trends Neurosci. 15,
122–126 (1992).

3. Attneave, F. Some informational aspects of visual perception. Psychol. Rev. 61,
183–193 (1954).

4. Hubel, D. & Wiesel, T. Receptive fields and functional architecture in two
nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).

5. Hubel, D. & Wiesel, T. Receptive fields of single neurones in the cat’s striate
cortex. J. Physiol. 148, 574–591 (1959).

6. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature 381, 607–609 (1996).

7. Bell, A. J. & Sejnowski, T. J. The “independent components” of natural scenes
are edge filters. Vis. Res 37, 3327–3338 (1997).

8. Barlow, H. B. Possible principles underlying the transformations of sensory
messages. in Sensory Communication (ed. Rosenblith, W. A.) 216–234 (MIT
Press, 1961).

9. Zhao, Y., Rothkopf, C. A., Triesch, J. & Shi, B. E. A unified model of the joint
development of disparity selectivity and vergence control. in 2012 IEEE
International Conference on Development and Learning and Epigenetic Robotics,
ICDL 2012 (IEEE, 2012). https://doi.org/10.1109/DevLrn.2012.6400876

10. Zhaoping, L. Theoretical understanding of the early visual processes by data
compression and data selection. Netw. Comput. Neural Syst. 17, 301–334 (2006).

11. Loshchilov, I. A computationally efficient limited memory CMA-ES for large
scale optimization. in GECCO 2014 - Proceedings of the 2014 Genetic and
Evolutionary Computation Conference 397–404 (Association for Computing
Machinery, 2014). https://doi.org/10.1145/2576768.2598294

12. Dosovitskiy, A. & Brox, T. Generating images with perceptual similarity
metrics based on deep networks. Adv. Neural Inf. Process. Syst. (2016).

13. Gattass, R., Gross, C. G. & Sandell, J. H. Visual topography of V2 in the
macaque. J. Comp. Neurol. 201, 519–539 (1981).

14. Gattass, R., Sousa, A. P. B. & Gross, C. G. Visuotopic organization and extent
of V3 and V4 of the macaque. J. Neurosci. 8, 1831–1845 (1988).

15. Ungerleider, L. G., Galkin, T. W., Desimone, R. & Gattass, R. Cortical
connections of area V4 in the macaque. Cereb. Cortex 18, 477–499 (2008).

16. Distler, C., Boussaoud, D., Desimone, R. & Ungerleider, L. G. Cortical
connections of inferior temporal area TEO in macaque monkeys. J. Comp.
Neurol. 334, 125–150 (1993).

17. Russakovsky, O. et al. Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115, 211–252 (2015).

18. Kerby, D. S. The Simple difference formula: an approach to teaching
nonparametric correlation. Compr. Psychol. 3. 11. It. 3, 1 (2014).

19. Google. Vision AI | Derive Image Insights via ML | Cloud Vision API | Google
Cloud. Available at: https://cloud.google.com/vision/.

20. Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T. & Clune, J. Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks.
Proc. 30th Int. Conf. Neural Inf. Process. Syst. (2016).

21. Ponce, C. R. et al. Evolving images for visual neurons using a deep generative
network reveals coding principles and neuronal preferences. Cell (2019).
https://doi.org/10.1016/j.cell.2019.04.005

22. Hubel, D. H. & Wiesel, T. N. Uniformity of monkey striate cortex: a parallel
relationship between field size, scatter, and magnification factor. J. Comp.
Neurol. 158, 295–305 (1974).

23. Hansen, N. The CMA evolution strategy: a tutorial. Preprint at arXiv https://
arxiv.org/abs/1604.00772 (2016).

24. Rosch, E. H. Natural categories. Cogn. Psychol. 4, 328–350 (1973).
25. Kobatake, E. & Tanaka, K. Neuronal selectivities to complex object features in

the ventral visual pathway of the macaque cerebral cortex. J. Neurophysiol. 71,
856–867 (1994).

26. Sporns, O. & Adami, C. Complexity across scientific disciplines. Scholarpedia
2, 1–15 (2012).

27. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a
module in human extrastriate cortex specialized for face perception. J.
Neurosci. 17, 4302–4311 (1997).

28. Ahmed, N., Natarajan, T. & Rao, K. R. Discrete cosine transform. IEEE Trans.
Comput. C.– 23, 90–93 (1974).

29. Barron, A., Rissanen, J. & Yu, B. The minimum description length principle in
coding and modeling. IEEE Trans. Inf. Theory 44, 2743–2760 (1998).

30. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

31. Pasupathy, A. & Connor, C. E. Responses to contour features in macaque area
V4. J. Neurophysiol. 82, 2490–2502 (1999).

32. Hegdé, J. & Van Essen, D. C. Selectivity for complex shapes in primate visual
area V2. J. Neurosci. 20, RC61 (2000).

33. Cheng, Y. Mean & Shift, Mode Seeking, and Clustering. IEEE Trans. Pattern
Anal. Mach. Intell. 17, 790–799 (1995).

34. Alireza. k-means, mean-shift and normalized-cut segmentation. 2020
Available at: https://www.mathworks.com/matlabcentral/fileexchange/52698-
k-means-mean-shift-and-normalized-cut-segmentation.

35. Solyst, J. A. & Buffalo, E. A. Social relevance drives viewing behavior independent
of low-level salience in rhesus macaques. Front. Neurosci. 8, 354 (2014).

36. Emery, N. J., Lorincz, E. N., Perrett, D. I., Oram, M. W. & Baker, C. I. Gaze
following and joint attention in rhesus monkeys (Macaca mulatta). J. Comp.
Psychol. 111, 286–293 (1997).

37. Leonard, T. K., Blumenthal, G., Gothard, K. M. & Hoffman, K. L. How
macaques view familiarity and gaze in conspecific faces. Behav. Neurosci. 126,
781–791 (2012).

38. Taubert, J., Wardle, S. G., Flessert, M., Leopold, D. A. & Ungerleider, L. G.
Face pareidolia in the rhesus monkey. Curr. Biol. 27, 2505–2509.e2 (2017).

39. Harel, J., Koch, C. & Perona, P. Graph-Based Visual Saliency. Proceedings of
the 19th International Conference on Neural Information Processing Systems
545–552 (2007).

40. Itti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for
rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259
(1998).

41. De Monasterio, F. M. & Gouras, P. Functional properties of ganglion cells of
the rhesus monkey retina. J. Physiol. 251, 167–195 (1975).

42. Tamura, H., Mori, S. & Yamawaki, T. Textural features corresponding to
visual perception. IEEE Trans. Syst. Man Cybern. 8, 460–473 (1978).

43. Caesar, H., Uijlings, J. & Ferrari, V. COCO-Stuff: Thing and Stuff Classes in
Context. in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition 1209–1218 (IEEE Computer Society, 2018).
https://doi.org/10.1109/CVPR.2018.00132

44. Prausnitz, F. Roger sessions remembered. Perspect. N. Music 23, 155 (1985).
45. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the

primate cerebral cortex. Cereb. cortex 1, 1 (1991).
46. Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual

cortex during natural vision. Science 287, 1273–1276 (2000).
47. Vinje, W. E. & Gallant, J. L. Natural stimulation of the nonclassical receptive

field increases information transmission efficiency in V1. J. Neurosci. 22,
2904–2915 (2002).

48. Simoncelli, E. P. Vision and the statistics of the visual environment. Curr.
Opin. Neurobiol. 13, 144–149 (2003).

49. Hong, H., Yamins, D. L. K., Majaj, N. J. & DiCarlo, J. J. Explicit information
for category-orthogonal object properties increases along the ventral stream.
Nat. Neurosci. 19, 613–622 (2016).

50. Ullman, S., Vidal-Naquet, M. & Sali, E. Visual features of intermediate
complexity and their use in classification. Nat. Neurosci. 5, 682–687 (2002).

51. Geirhos, R. et al. ImageNet-trained CNNs are biased towards texture;
increasing shape bias improves accuracy and robustness. 7th International
Conference on Learning Representations, ICLR 2019 (International Conference
on Learning Representations, ICLR, 2018).

52. Agarwal, C., Chen, P. & Nguyen, A. Intriguing generalization and simplicity of
adversarially trained neural networks. 5th Annual Workshop on Human
Interpretability in Machine Learning (2020). Available at: http://arxiv.org/abs/
2006.09373.

53. Sato, T. Interactions of visual stimuli in the receptive fields of inferior
temporal neurons in awake macaques. Exp. Brain Res. 77, 23–30 (1989).

54. Rolls, E. T. & Tovee, M. J. The responses of single neurons in the temporal
visual cortical areas of the macaque when more than one stimulus is present in
the receptive field. Exp. Brain Res. 103, 409–420 (1995).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27027-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6723 | https://doi.org/10.1038/s41467-021-27027-8 |www.nature.com/naturecommunications 15

https://image-net.org/
https://github.com/nightrome/cocostuff
https://github.com/nightrome/cocostuff
https://github.com/PonceLab/as-simple-as-possible
https://doi.org/10.5281/zenodo.5228069
https://doi.org/10.1109/DevLrn.2012.6400876
https://doi.org/10.1145/2576768.2598294
https://cloud.google.com/vision/
https://doi.org/10.1016/j.cell.2019.04.005
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772
https://www.mathworks.com/matlabcentral/fileexchange/52698-k-means-mean-shift-and-normalized-cut-segmentation
https://www.mathworks.com/matlabcentral/fileexchange/52698-k-means-mean-shift-and-normalized-cut-segmentation
https://doi.org/10.1109/CVPR.2018.00132
http://arxiv.org/abs/2006.09373
http://arxiv.org/abs/2006.09373
www.nature.com/naturecommunications
www.nature.com/naturecommunications


55. Goetschalckx, L., Leuven, K., Andonian, A., Oliva MIT, A. & Isola MIT, P.
GANalyze: Toward visual definitions of cognitive image properties. in
International Conference on Computer Vision (ed. IEEE/CVF) 5744–5753
(2019).

56. Rust, N. C. & Mehrpour, V. Understanding image memorability. Trends Cogn.
Sci. 24, 557–568 (2020).

57. Bosking, W. H., Zhang, Y., Schofield, B. & Fitzpatrick, D. Orientation
selectivity and the arrangement of horizontal connections in tree shrew striate
cortex. J. Neurosci. 17, 2112–2127 (1997).

58. Kriegeskorte, N. et al. Matching categorical object representations in inferior
temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008).

59. Bracci, S., Ritchie, J. & Kalfas, I. & Op de Beeck, H. The ventral visual pathway
represents animal appearance over animacy, unlike human behavior and deep
neural networks. J. Neurosci. 39, 6513–6525 (2019).

60. Stansbury, D. E., Naselaris, T. & Gallant, J. L. Natural scene statistics account
for the representation of scene categories in human visual cortex. Neuron 79,
1025–1034 (2013).

61. Hwang, J., Mitz, A. R. & Murray, E. A. NIMH MonkeyLogic: Behavioral
control and data acquisition in MATLAB. J. Neurosci. Methods 323, 13–21
(2019).

62. Boussaoud, D., Desimone, R. & Ungerleider, L. G. Visual topography of area
TEO in the macaque. J. Comp. Neurol. 306, 554–575 (1991).

63. Orloff, N. Fit 2D Gaussian with Optimization Toolbox. MATLAB Central File
Exchange (2020). Available at: https://www.mathworks.com/matlabcentral/
fileexchange/41938-fit-2d-gaussian-with-optimization-toolbox.

64. Pasupathy, A. & Connor, C. E. Population coding of shape in area V4. Nat.
Neurosci. 5, 1332–V8 (2002).

65. Bao, P., She, L., McGill, M. & Tsao, D. Y. A map of object space in primate
inferotemporal cortex. Nature 583, 103–108 (2020).

66. Griffin G. and Holub A. and Perona P. Caltech-256 Object Category Dataset.
Caltech-256 Object Category Dataset (2007). Available at: http://
authors.library.caltech.edu/7694.

67. Lin, T. Y. et al. Microsoft COCO: Common objects in context. in Lecture
Notes in Computer Science 8693 LNCS, 740–755 (Springer Verlag, 2014).

68. König, S. D. & Buffalo, E. A. A nonparametric method for detecting fixations
and saccades using cluster analysis: Removing the need for arbitrary
thresholds. J. Neurosci. Methods 227, 121–131 (2014).

69. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L.
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal.
Mach. Intell. 40, 834–848 (2018).

70. Nakashima, K. PyTorch implementation of DeepLab v2 on COCO-Stuff /
PASCAL VOC. (2020). Available at: https://github.com/kazuto1011/deeplab-
pytorch. (Accessed: 6th June 2021)

71. Ponce, C. R. & Johnson, J. as-simple-as-possible. Open Science Framework
(2021). https://doi.org/10.17605/OSF.IO/Z6GV2

72. Rose, O., Johnson, J. K., Wang, B. & Ponce, C. Visual prototypes in the ventral
stream are attuned to complexity and gaze behavior, PonceLab/as-simple-as-
possible. Zenodo (2021). https://doi.org/10.5281/zenodo.5228068

Acknowledgements
We thank Mary Burkemper for technical help collecting the data and Richard T. Born for
comments on the manuscript. David Van Essen provided the brain image from Fig. 1a and
provided permission for its use in this publication. Some stimulus photographs were obtained
from Pexels.org, a copyright-free database (Pexels photographs by Rikka Ameboshi, Shiva
Reddy, Juan Pablo Serrano Arenas, Mali Maeder, Daria Shevtsova, Pixabay, Aleksejs Berg-
manis, David Hansche, and others). We thank the Anitha Pasupathy lab for the source code
for curvature stimuli (https://depts.washington.edu/shapelab).

Author contributions
O.R.: Conceptualization, Methodology, Investigation, Writing – Review, and Editing.
J.K.J.: Conceptualization, Formal analysis, Writing – Review and Editing. B.W.: Con-
ceptualization, Methodology, Software, Writing – Review and Editing. C.R.P.: Con-
ceptualization, Methodology, Formal analysis, Writing – Original Draft, Supervision.

Competing interests
All authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-27027-8.

Correspondence and requests for materials should be addressed to Carlos R. Ponce.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27027-8

16 NATURE COMMUNICATIONS |         (2021) 12:6723 | https://doi.org/10.1038/s41467-021-27027-8 | www.nature.com/naturecommunications

https://www.mathworks.com/matlabcentral/fileexchange/41938-fit-2d-gaussian-with-optimization-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/41938-fit-2d-gaussian-with-optimization-toolbox
http://authors.library.caltech.edu/7694
http://authors.library.caltech.edu/7694
https://github.com/kazuto1011/deeplab-pytorch
https://github.com/kazuto1011/deeplab-pytorch
https://doi.org/10.17605/OSF.IO/Z6GV2
https://doi.org/10.5281/zenodo.5228068
https://depts.washington.edu/shapelab
https://doi.org/10.1038/s41467-021-27027-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Visual prototypes in the ventral stream are attuned to complexity and gaze behavior
	Results
	Characterization of response selectivity
	Neural response-guided generative algorithm
	Prototype differences across areas
	Prototype complexity is comparable to segmented object parts
	Prototypes are associated with salient features in natural scenes

	Discussion
	Methods
	Experimental setups
	Neuronal profiles
	Microelectrode arrays
	Data pre-processing
	Localization of receptive field centers
	Selectivity
	Prototype synthesis
	Semantic ensembles
	Complexity metrics
	Random drift evolutions
	Free viewing
	Global image statistics
	COCO-stuff semantic label statistics
	Statistics and reproducibility

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




