
Under review as a conference paper at ICLR 2024

MAKING MULTIMODAL GENERATION EASIER:
WHEN DIFFUSION MODELS MEET LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present EasyGen, an efficient model designed to enhance multimodal under-
standing and generation by harnessing the capabilities of diffusion models and large
language models (LLMs). Unlike existing multimodal models that predominately
depend on encoders like CLIP or ImageBind and need ample amounts of training
data to bridge the gap between modalities, EasyGen is built upon a bidirectional
conditional diffusion model named BiDiffuser, which promotes more efficient
interactions between modalities. EasyGen handles image-to-text generation by
integrating BiDiffuser and an LLM via a simple projection layer. Unlike most
existing multimodal models that are limited to generating text responses, EasyGen
can also facilitate text-to-image generation by leveraging the LLM to create textual
descriptions, which can be interpreted by BiDiffuser to generate appropriate visual
responses. Extensive quantitative and qualitative experiments demonstrate the
effectiveness of EasyGen, whose training can be easily achieved in a lab setting.

1 INTRODUCTION

Recent times have been remarkable progress in the field of artificial intelligence generated content
(AIGC), notably in technologies like large language models (LLMs) (Chiang et al., 2023; Touvron
et al., 2023; Brown et al., 2020; Chowdhery et al., 2022; Zeng et al., 2022) for text generation
and diffusion models Rombach et al. (2022); Nichol et al. (2022); Saharia et al. (2022) for visual
generation. These breakthroughs have paved the way for the development of large-scale multimodal
generative models, sparking a recent trend of incorporating extra visual modules into LLMs. Collab-
orative models, such as Visual ChatGPT (Wu et al., 2023a) and MM-REACT (Yang et al., 2023),
strategically use externally pre-trained tools to translate visual information into text descriptions and
feed the data into LLMs. However, they are exclusively dependent on pre-trained tools for inference.
Contrarily, end-to-end trained models including the BLIP series (Li et al., 2023b), LLaVA (Liu et al.,
2023), MiniGPT-4 (Zhu et al., 2023), and mPLUG-Owl (Ye et al., 2023) focus on mapping image
information to the text space of LLMs, enabling LLMs to comprehend visual inputs.

Existing end-to-end models are also not without limitations. First, most of these multimodal models
rely on either CLIP (Radford et al., 2021) or ImageBind (Girdhar et al., 2023) as their image encoder.
While these encoders excel in learning unified representations that encompass both text and images,
they face challenges when it comes to transforming between different modalities. This predicament
makes current vision-language models relying heavily on sizable data sets to align CLIP/Bind-encoded
images with the language model, due to the disparity between different modalities. Furthermore,
most of existing multimodal models lack the ability of generating multimodal responses, as they
are primarily designed to understand multimodal content and often fall short in generating content
beyond text. A recent work Emu (Sun et al., 2023) takes a unified approach to generate visual or
textual tokens, but it also heavily relies on vast quantities of training data.

In this work, we propose EasyGen, a model that facilitates multimodal generation by harnessing the
strengths of diffusion models and LLMs. Diffusion models with multiple skills, such as Versatile
Diffusion (Xu et al., 2023) and UniDiffuser (Bao et al., 2023b), have exhibited remarkable capabilities
in accurately capturing multimodal distributions. UniDiffuser, in particular, shows great potential in
accommodating multimodal interactions. It views both image and text as sequential token streams for
diffusion calculations, making it well-suited for the text representations in LLMs that are typically
structured as sequences. However, since UniDiffuser aims to fit all conditional distributions (including
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Could you please provide an introduction 

to this model in the picture?

What other types of green energy 

irrigation systems are feasible?

I’m really intrigued by wind-powered 

irrigation systems. Could you please 

provide a brief introduction and show 

me some pictures related to it?

The image features a solar irrigation system 

working model that is displayed on a table. 

It is made of various materials, such as 

plastic, and features various components, 

including solar panels, water tanks, a pump, 

piping, valves, hoses, faucets, plants, soil, 

dirt, pebbles, bottles, cups, spoons, straws, 

screws and nuts, among others.

There are several other types of 

green energy irrigation systems apart 

from solar power. Some of them 

include wind-powered irrigation 

system, hydro-powered irrigation 

system, tidal-powered irrigation 

system …

A wind-powered irrigation system is a 

type of green energy irrigation system 

that utilizes wind energy to power the 

irrigation process. It involves the use of 

wind turbines, typically mounted on 

towers, which capture the kinetic 

energy of the wind and convert it into 

electrical energy. The generated 

electricity can be stored in batteries … 

Here are some possible pictures:

Figure 1: Our model EasyGen can understand multimodal inputs and generate multimodal responses,
as illustrated by model-generated speech bubbles in grey color, which include both text and images.

those conditioned on noisy inputs) into one model, it is less effective on particular tasks such as
conditional generation based on noise-free inputs. To address this limitation, we finetune UniDiffuser
with a specific focus on the targeted image-to-text and text-to-image tasks. The finetuned model,
referred to as BiDiffuser, forms a core component of EasyGen for text and image generation.

BiDiffuser is able to convert image data into a textual format, which simplifies the process of
synchronizing its embedding space with that of an LLM for semantic comprehension and reasoning.
As illustrated in Figure 2, we bridge BiDiffuser and the LLM using a simple projection layer, which
can be trained efficiently with a small amount of data for image-to-text tasks such as image captioning
and visual question answering. Alternatively, the LLM can be utilized to generate detailed descriptions
and cues derived from text contexts like dialogues, which can aid BiDiffuser in generating accurate
visual responses, as illustrated in Figure 2.

<Image> <Text>

BiDiffuser

BiDiffuser

Projection Layer

LLM

LLM

Text Generation Image Generation

(a) (b)

Figure 2: Overview of EasyGen.

Figure 1 demonstrates the capability of EasyGen in process-
ing multimodal inputs and generating the appropriate multi-
modal responses (see more examples provided in Appendix. H).
Furthermore, EasyGen achieves competitive performance com-
pared to state-of-the-art models with much less training data.
It is worth noting that the training of EasyGen can be per-
formed in a laboratory-level environment. Without employing
parameter-efficient fine-tuning techniques like LoRa (Hu et al.,
2021), EasyGen only requires about 120 A100 (80G) GPU
hours during the pre-training process (for training BiDiffuser)
and 20/72 A100 (80G) GPU hours during the alignment pro-
cess for fine-tuning FlanT5XL/Vicuna-7B. By using LoRa, the
training process of EasyGen can be significantly more efficient.
For instance, the fine-tuning time for Vicuna-7B can be reduced from 70 to just 13 GPU hours (see
Table 10).

2 BASICS OF DIFFUSION MODELS

Unconditional Generation Given a data sample taken from a real data distribution x0 ∼ q(x0),
diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) first destruct the data by constructing a
Markov forward process and gradually injecting noise to the data:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where βt ∈ (0, 1) is the variance added at diffusion step t. Then, they learn to reverse the process:

p(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µt(xt, t), σ
2
t I), (2)

where p(xT ) = N (xT ; 0, I) is the standard Gaussian distribution and µt(·) is the parameterization
of the predicted mean. Diffusion models are trained to maximize the marginal likelihood of the data
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Figure 3: The training process of BiDiffuser involves finetuning UniDiffuser (Bao et al., 2023b) with
a joint objective of image-to-text and text-to-image tasks.

E[log pθ(x0)], and the canonical objective is the variational lower bound of log pθ(x0). Denoising
diffusion probabilistic models (Ho et al., 2020) generate samples xt ∼ q(xt|x0) by injecting noise
ϵ ∼ N (0, I) to the data x0, and train a network ϵθ(·) to predict the added noise ϵ using a standard
mean squared error loss:

L := Ex0,ϵ,t[∥ϵ− ϵθ(xt, t)∥2]. (3)
Note that µt(xt, t) can be derived from ϵθ(xt, t).

Conditional Generation For conditional generation, a paired data (x0,y0) is given, and the aim
is to model the conditional data distribution q(x0|y0), where y0 can be image class or text prompt.
Conditional generation includes classifier guidance (Dhariwal & Nichol, 2021) and classifier-free
guidance (Ho & Salimans, 2021). Classifier guidance requires training an extra classifier on noisy
data at inference time to improve the sample quality. For classifier-free guidance, no classifier needs
to be trained. The denosing network ϵθ(xt|y0) simply conditions on the information encoded in y0.
At inference time, with a guidance scale s, the modified score estimate is further in the direction of
ϵθ(xt|y0) and away from the unconditional model ϵθ(xt|∅) (∅ is a null token) as follows:

ϵ̂θ(xt|y0) = ϵθ(xt|∅) + s · (ϵθ(xt|y0)− ϵθ(xt|∅)). (4)

3 EASYGEN: EASY MULTIMODAL GENERATION WITH A BIDIRECTIONAL
CONDITIONAL DIFFUSION MODEL AND LLMS

We propose EasyGen, a model capable of processing multimodal inputs and generating multimodal
outputs. It achieves easy multimodal generation by leveraging a bidirectional conditional diffusion
model to effectively bridge the gap between different modalities and an LLM to comprehend multi-
modal tasks and produce textual responses containing cues for multimodal message creation. In the
subsequent section, we outline the multimodal generation process of EasyGen.

3.1 BIDIFFUSER: A BIDIRECTIONAL CONDITIONAL DIFFUSION MODEL

Since the text space of LLMs is discrete, to minimize the disparity between the output of a diffusion
model and the input of LLMs, we leverage Unidiffuser (Bao et al., 2023b), a unified diffusion model
capable of transforming images into the discrete text space.

During the training process, UniDiffuser injects noise ϵx and ϵy to a set of paired image-text data
(x0,y0) and generates noisy data xtx and yty , where 0 ⩽ tx, ty ⩽ T represent two individual
timesteps (perturbation levels). It then trains a joint noise prediction network ϵθ(xtx ,yty , t

x, ty) to
predict the noise ϵx and ϵy by minimizing the mean squared error loss:

Eϵx,ϵy,x0,y0
[∥[ϵx, ϵy]− ϵθ(xtx ,yty , t

x, ty)∥2], (5)

where the output of ϵθ is the concatenation of the estimated noise ϵxθ and ϵyθ , i.e., ϵθ = [ϵxθ , ϵ
y
θ ].

By predicting ϵθ(xtx ,yty , t
x, ty) for any tx and ty, UniDiffuser learns all distributions related to

(x0,y0) simultaneously. This includes all conditional distributions: q(x0|y0) for text-to-image gen-
eration, q(y0|x0) for image-to-text generation, and those conditioned on noisy input, i.e., q(x0|yty )
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(a) Pre-Align manner.
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Figure 4: Two different ways of aligning BiDiffuser with LLMs.

and q(y0|xtx), for 0 < tx, ty ≤ T . Learning a conditional distribution q(x0|yty ) or q(y0|xtx) can
be seen as learning a distinct task. From a multitask learning perspective, due to limited network
capacity, learning many tasks simultaneously (i.e., fitting all distributions to a single network) may
result in task competition or task conflict, ultimately leading to suboptimal performance in particular
tasks such as q(x0|y0) and q(y0|x0).

To resolve this issue and enhance the performance of both image-to-text and text-to-image generation
tasks, we finetune UniDiffuser with exclusive emphasis on the two tasks:

L = Eϵx,ϵy,x0,y0
[∥ϵx − ϵxθ (xtx ,y0, t

x, 0)∥2 + α∥ϵy − ϵyθ(x0,yty , 0, t
y)∥2], (6)

where α is a hyperparameter to balance the learning paces of the two tasks. As depicted in Figure 3,
our training objective entails predicting the text y0 based on the input image x0 and vice versa, where
the input conditions for the model are noise-free. We employ classifier-free guidance. During training,
we estimate the noise injected to the image (i.e., ϵxθ (xtx ,y0, t

x, 0)) conditioned on the noise-free text
y0 and the noise to the text (i.e., ϵyθ(x0,yty , 0, t

y)) given the noise-free image x0. During inference,
with a guidance scale s ⩾ 0, we use the modified prediction ϵ̂θ to guide towards the condition:

ϵ̂xθ (xtx ,y0, t
x, 0) = ϵxθ (xtx , ϵ

y, tx, T ) + s · (ϵxθ (xtx ,y0, t
x, 0)− ϵxθ (xtx , ϵ

y, tx, T )),

ϵ̂yθ(x0,yty , 0, t
y) = ϵyθ(ϵ

x,yty , T, t
y) + s · (ϵyθ(x0,yty , 0, t

y)− ϵyθ(ϵ
x,yty , T, t

y)),
(7)

where ϵxθ (xtx , ϵ
y, tx, T ) ( ty = T and yT = ϵy) and ϵyθ(ϵ

x,yty , T, t
y) (tx = T and xT = ϵx)

represent the unconditional models when T is sufficiently large. We name the finetuned model
“BiDiffuser”, signifying its specialized ability in bidirectional conditional generation.

3.2 IMAGE-TO-TEXT GENERATION

BiDiffuser can convert images into vectors in the text space, facilitating alignment with the vector
space of LLMs. In the following, we show how BiDiffuser can be integrated with LLMs to perform
image-to-text generation tasks such as image captioning and visual question answering (VQA).

3.2.1 ALIGNING BIDIFFUSER WITH LLMS

We connect BiDiffuser and LLMs via a simple projection layer, which maps text embeddings obtained
from the output of the diffusion model to the embedding space of LLMs. As shown in Figure 4, the
alignment can take place either prior to the LLM (referred to as Pre-Align manner) or between its
encoder and decoder components (referred to as Mid-Align manner).

Pre-Align Manner As shown in Figure 4a, the projection layer is placed before the LLM to map
the output of BiDiffuser (image representations) to the text embedding space of the LLM. The text
embedding of the input image is then concatenated with the embeddings of the textual instructions
and fed to the LLM for decoding. To synchronize the text space of BiDiffuser with that of the LLM,
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we propose to use the image-grounded text generation (ITG) objective to drive the model to generate
texts based on the input image by computing the auto-regressive loss:

LITG = − 1

L

L∑
l=1

log pθ(w
g
l |w

g
<l, I, TI), (8)

where wg = (wg
1 , ..., w

g
L) represents the ground-truth caption of image I with length L, TI is the text

instruction, and θ denotes the model parameters, which include the parameters of the projection layer
and the LLM.

Mid-Align Manner As shown in Figure 4b, the projection layer is placed between the LLM’s
encoder and decoder, aiming to map the output of BiDiffuser to the embedding space of the text that
is encoded by the LLM’s encoder. Particularly, we argue that the output of BiDiffuser, once mapped
by the projection layer and denoted as ddiff , should align with the image caption that is encoded by
the LLM’s encoder, denoted as dllm. Therefore, to accurately learn the alignment between the image
and text representations, in addition to the ITG loss in Eq. 8, we also employ an image-text distance
minimization (ITDM) loss:

LITDM =
1

N

N∑
i=1

∥ddiff − dllm∥22, Lmid = LITG + LITM. (9)

where N is the batch size, and Lmid is the overall loss. In this manner, the model parameters θ only
include the parameters of the projection layer.

After aligning BiDiffuser with LLMs, EasyGen gains the capability of zero-shot image-to-text
generation, which includes tasks such as image captioning and VQA.

3.2.2 INSTRUCTION-TUNING LLMS TO PROCESS MULTIMODAL TASKS

Before aligning BiDiffuser with an LLM, we perform instruction-tuning on the LLM to equip it with
the capability of understanding multimodal tasks. We construct the instruction data as follows. With
reference to fastchat*, we designed different forms of instructions for different LLMs:

FlanT5: ###Human: <Img><image></Img> + <random[query]>. ###Assistant: <answer>.
Vicuna: USER: <Img><image></Img> + <random[query]>. Assistant: <answer>.

For the <image> placeholder, we substitute it with one of the captions associated with the image.
Note that an image can have multiple captions that convey a similar meaning. For each image, we
randomly choose one of its captions, which is then fixed to be used specifically for the <answer>
placeholder. As for <random[query]>, we randomly select a query from a predefined set of text
queries that prompt the description of the given image as outlined in Table 8.

To avoid overfitting to the captioning task and counter the model’s inclination to generate excessively
short outputs, we have devised specific instructions (blue texts in Table 8), which enable the LLM to
produce concise responses when necessary. Furthermore, we incorporate an additional 80K instances
of multimodal instruction data from LLaVA (Liu et al., 2023), which helps to preserve the LLM’s
capability to generate comprehensive and detailed responses.

Moreover, to equip the LLM with the capability to comprehend various multimodal tasks, we curate
distinct instruction templates for different tasks, as outlined in Appendix F.

3.3 TEXT-TO-IMAGE RESPONSE GENERATION

Most of existing multimodal models, including the BLIP series (Li et al., 2022), LLaVa (Liu et al.,
2023), and MiniGPT4 (Zhu et al., 2023), are unable to provide a multimodal response as they are
primarily designed to generate only textual outputs. On the other hand, Emu (Sun et al., 2023) takes
a unified approach to predict the subsequent visual or textual token in an auto-regressive manner,
but it is heavily reliant on vast quantities of training data. Contrary to the limitations of these
existing models, EasyGen, by leveraging the bidirectional generation capability of BiDiffuser and the
inference capability of LLMs, can produce accurate and high-quality visual response with ease.

*https://github.com/lm-sys/FastChat/tree/main
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To tackle multimodal response generation tasks such as PhotoChat (Zang et al., 2021), we adopt the
approach used in Divter (Sun et al., 2021) (note that Divter cannot encode and process visual images).
First, we finetune the LLM to generate detailed image captions based on dialogue context. Then, we
employ BiDiffuser to create the corresponding images with the produced captions. Specifically, we
replace the image featured in the dialogue with its corresponding descriptive caption, encapsulating it
with task-specific tokens <Img>,</Img> and constructing the following instruction templates:

USER: Dialog history + <Img><image></Img> + Dialog history. Assistant: <response>.
USER: Dialog history. Assistant: <response> + <Img><image></Img>.

A: We went out to go to a 

garage sale this morning. 

B: �at’s awesome! Do 

you play guitar?

<img> An acoustic 
guitar with a 
headstock on top of a 
brick wall. </img>

AutoKL 
Decoder

<Dialogue Context>

Yeah, take a look. <Description>

LLM

BiDiffuser

Te
x
t-

to
-T

e
x
t 

G
e

n
e

ra
ti

o
n

Figure 5: Text-to-image generation by EasyGen.
(Bottom) LLM generates response and description
of the image. (Top) BiDiffuser takes the descrip-
tion as input and generates images.

Note that when <image> appear in the response,
it represents the generated description of the im-
age. Training with the instruction data enables
our model to not only produce text responses
but also perform image intent classification and
generate image captions that BiDiffuser can in-
terpret.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We initialize the encoder-decoder LLM using
pre-trained weights from FlanT5XL or decoder-
only LLM from Vicuna-7B, along with the uti-
lization of the diffusion module from BiDiffuser.

During the alignment process, we maintain the
frozen state of the BiDiffuser. The statistics of the datasets for pre-training, alignment and instruction-
tuning can be found in Appendix A. For the image captioning task, EasyGen is evaluated on both
the MS-COCO (Lin et al., 2014) Karpathy test set and the NoCaps (Agrawal et al., 2019) validation
set. For the VQA task, our method is evaluated on OK-VQA (Marino et al., 2019) validation set and
GQA (Hudson & Manning, 2019) test-dev set.

To adapt the model for multimodal dialogue generation, we fine-tune the LLM and projection layer on
the PhotoChat dataset. We incorporate photo-sharing activities into the dialogue context by generating
<Img><caption></Img>, and utilize cross-entropy loss exclusively for fine-tuning the multimodal
generation task. Given the limited expressiveness of image descriptions in the PhotoChat dataset, as
evidenced by Table 6’s ground truth descriptions, we regenerate image annotations in a text format
similar to that used in MS-COCO.

4.2 EVALUATION

We evaluate EasyGen on various vision-language tasks including image captioning (MS-COCO (Lin
et al., 2014), NoCaps (Agrawal et al., 2019)), visual question answering (OK-VQA (Marino et al.,
2019), GQA (Hudson & Manning, 2019)), and multimodal dialog generation (PhotoChat (Zang
et al., 2021)). We use BLIP (Li et al., 2022), Flamingo (Alayrac et al., 2022), BLIP-2 (Li et al.,
2023b), InstructBlip (Dai et al., 2023), MiniGPT-4 (Zhu et al., 2023), and LLaVA (Liu et al., 2023)
as baselines for image-to-text tasks, and Maria (Liang et al., 2021) and Divter (Sun et al., 2021) as
baselines for the multimodal response generation task. See details in Appendix B and Appendix C.

4.3 OVERALL RESULTS

Table 1 lists the automatic and ChatGPT evaluation results for each baseline and our models on
MS-COCO and VQA datasets. EasyGen outperforms most of the baseline models on both the COCO
test set and NoCaps validation set (zero-shot transfer). Although EasyGen is only pre-trained on a
small dataset MS-COCO, its performance on the image captioning generation task is comparable
to models (e.g., BLIP-2) pre-trained on a large dataset. This indicates that EasyGen can effectively
combine the strength of diffusion module and LLM to generate smooth and informative captions. GPT
scores do not vary significantly because the captions produced by the models in the image-captioning
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Model Dataset
Size

NoCaps (val) COCO (Karpathy) OK-VQA GQA
CIDEr SPICE BLEU@4 CIDEr GPT Accuracy Accuracy

BLIP (Li et al., 2022) 129M 113.2 14.8 40.4 136.7 - - -
Flamingo (Alayrac et al., 2022) 1.8B - - - 138.1 - 50.6 -
BLIP-2 OPT-6.7B (Li et al., 2023b) 129M 121.0 15.3 43.5 145.2 8.4 36.4 36.4
BLIP-2 FlanT5XL (Li et al., 2023b) 129M 121.6 15.8 42.4 144.5 8.3 39.4 44.4
InstructBlip 7B (Dai et al., 2023) 16M 123.1 - 40.8 140.7 - 61.0⋆ 49.2⋆

MiniGPT-4 (Zhu et al., 2023) 5M 42.4 - - - - 37.5 30.8
LLaVA (Liu et al., 2023) 753K 33.1 - 7.9 30.0 8.6 54.4 41.3

EasyGen FlanT5XL 173K 121.2 15.5 43.5 145.7 8.6 41.1 37.2
EasyGen Vicuna-7B 173K 121.8 15.8 42.4 144.6 8.7 45.2 44.6

Table 1: Automatic evaluation and GPT evaluation of our model and the baselines on various vision-
language tasks. The results of EasyGen on NoCaps, OK-VQA and GQA are obtained in a zero-shot
setting. ⋆ indicates that the model was trained on other VQA datasets.

Model Response Generation Description Generation Image
BLEU-1 BLEU-2 PPL↓ ROUGE-L BLEU-1/2 ROUGE-L PPL↓ FID↓

Divter (Sun et al., 2021) 6.5 1.7 59.63 5.69 15.1/11.4 15.81 5.12 29.16
Maria (Liang et al., 2021) 13.8 9.2 48.75 15.17 - - - -

EasyGen FlanT5XL
+ w/ generated desc. 22.3 18.7 4.32 17.24 13.5/10.2 13.84 4.16 10.30
+ w/o generated desc. 17.8 12.4 7.61 15.12 17.4/13.2 16.71 6.23 75.46

Table 2: Automatic evaluation of our model and the baselines on the PhotoChat dataset.

task tend to be quite alike. For the OK-VQA and GQA dataset, the performance of EasyGen is
improved compared with other models of a similar scale. For example, BLIP-2 adopts the task-special
decoding method and achieves 39.4% accuracy on OK-VQA validation set, while ours can get 45.2%
even with a simple decoding method, i.e., greedy search.

Table 2 lists the automatic evaluation results on the PhotoChat dataset. The results of Divter are cited
from (Sun et al., 2021). We fine-tune Maria on PhotoChat dataset only for the response generation
task. Since our EasyGen model can generate response and image description simultaneously, the
response and description generation task has a similar PPL. Compared with other models, our
method has clear advantages in the performance of PPL, indicating that by leveraging LLM, our
model demonstrates strong performance on text generation tasks. Besides, we find that the image
descriptions in the PhotoChat dataset are too concise to adequately convey the information of images.
Therefore, we used the pre-trained model from the first stage to regenerate the image description
(referred to as “w/ generated desc.” in Table 2) which led to a large gap towards ground-truth
descriptions, resulting in lower BLEU-1/2 and ROUGE-L. However, the performance of our model
on BELU-1/2 and ROUGE is higher than other models on response generation tasks, indicating
that introducing richer image descriptions is beneficial for generating more relevant and informative
responses. We also provide some examples (Figure 6) to show the effectiveness of our method.

4.4 ABLATION STUDY

In Table 3, we investigate the impact of different training strategies on the model. After removing the
ITDM loss, the performance of EasyGen is slightly weaker than the original model. It is evident that
the MSE Loss can help to align the semantic spaces of the two models. Furthermore, the performance
of the model will drop significantly after removing the cross-entropy loss, suggesting that constraints
via the language model play a key role. Without the instruction tuning process on LLM, EasyGen has
a significant decline in the performance of automatic evaluations, which indicates that prior tuning of
the LLM to an accurate caption generation model is necessary.

In Table 4, we examine the impact of freezing/tuning BiDiffuser and the LLM. We conducted ablation
studies on image captioning and VQA tasks. It can be observed that the frozen Mid-Align method
outperforms the Pre-Align method in image captioning. This shows that the ITDM loss function is
effective. However, the frozen Mid-Align method exhibits inferior performance in the VQA task.
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Model NoCaps (val) COCO (Karpathy) OK-VQA GQA
CIDEr SPICE SPICE BLEU@4 CIDEr Accuracy Accuracy

EasyGen Mid-Align FlanT5XL 121.2 15.5 25.1 43.5 145.7 31.5 22.6
+ w/o ITDM 118.6 15.3 24.8 42.2 141.5 - -
+ w/o ITG 93.2 12.9 23.0 35.1 127.6 - -
+ w/o LLM pre-tuning 110.8 14.5 24.4 40.7 139.6 25.8 18.1
EasyGen Vicuna-7B 121.8 15.3 24.9 42.4 144.6 45.2 44.6
+ w/o LLM pre-tuning 107.3 14.3 24.2 40.1 137.5 44.1 41.2

Table 3: Ablation studies on the instruction-tuning process and loss functions.

LLM Diffusion
Model Alignment NoCaps COCO(Karpathy) OK-VQA

CIDEr SPICE BLEU@4 CIDEr Accuracy

T5 UniDiffuser Pre-Align 62.4 18.0 26.8 90.7 33.0
T5 BiDiffuser Pre-Align 119.1 25.5 42.6 145.1 41.1
T5 BiDiffuser Mid-Align 121.2 25.1 43.5 145.7 31.5
T5 BiDiffuser Mid-Align 121.5 25.3 43.6 145.7 36.4

Vicuna-7B BiDiffuser Pre-Align 121.8 24.9 42.4 144.6 45.2
Vicuna-7B BiDiffuser Pre-Align 119.0 24.6 40.3 140.3 42.7

Table 4: Ablation studied on image captioning and VQA tasks. / represents we tune/freeze the
weights of the LLM during the alignment process.

We hypothesize that this is due to the integration of mid-aligned target image features with query
information, and the projection layer is insensitive to instruction information. We conduct instruction-
tuning on Pre-Align T5 and Vicuna. Compared to models at the same scale, these instruction-tuned
models achieve superior results. The results clearly demonstrate that the instruction tuned models
outperformed other models significantly on the OK-VQA and GQA datasets.

4.5 FINE-TUNING EASYGEN FOR VQA TASKS

Considering the substantial cost involved in fine-tuning the diffusion model for VQA tasks, we opt to
concatenate the output of BiDiffuser with the image encoded by image CLIP ViT-L/14 and fine-tune
the parameters of the LLM and projection layers. We fine-tune the EasyGen on the training and
validation splits from VQAv2, Text Captions, AOK-VQA and TextVQA datasets.

In order to verify the effectiveness of BiDiffuser, we also add this module to LLaVA Vicuna-7B and
use the same mixture dataset to do instruction tuning. The details of training dataset can be found in
Table 9. Since BiDiffuser can map images into text vectors, BiDiffuser can be directly migrated to the
LLaVA Vicuan-7B model. We keep LLaVA and our model using the same instruction tuning datasets.
Noting that LLaVA has used 595K pretraining data from CC-3M dataset (Sharma et al., 2018) to
align CLIP and LLM. Our model does not pre-align CLIP and LLM, and only uses instruction-tuning
data for training.

Model VQAv2 (test-dev) MMbench (dev) TextVQA

MiniGPT-4 (Zhu et al., 2023) - 24.3 19.4
InstructBLIP Vicuna-7B (Dai et al., 2023) - 36.0 50.1
LLaVA Vicuna-7B (Liu et al., 2023) 77.6 43.6 44.1
LLaVA Vicuna-7B + BiDiffuser 78.2 45.7 46.7
EasyGen ViT-L Vicuna-7B 79.4 45.4 45.5
+ w/o BiDiffuser 71.1 21.4 36.2

Table 5: Comparison with state-of-the-art open-ended generation models fine-tuned for visual
question answering and benchmarks.
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A: I just got back from the pet store and you wouldn’t believe what I saw? 

B: What you saw, can you tell me? 

A: I saw the cutest golden retriever ever… I couldn’t stop looking at this animal… 

A: Check it out - I took a picture. <Img>

A: What’s onn your mind?              B: Good. �anks. I am thinking to make a cake. 

A: Sound yummy, what kind? 

B: I saw a chocolate cake topped with whipped cream. It looks so yummy.  

B: I hope you can see the photo. <Img>

Objects in the photo: Animal, 

Golden retriever, Dog, Carnivore.

Objects in the photo: Baked goods, 

Cake, Dairy

B: Lovely and cute dude A: �e cake looks beautiful, but 

should not be hard to make.

A golden retriever puppy peeking 

through a stuffed animal

A chocolate cake covered with 

whipped cream

B: What a cute golden retriever, I 

want to play with him.

A: Delicious! Do you have a recipe in 

mind for your chocolate cake with 

whipped cream topping?

Ground Truth Ground TruthEasyGen (Ours) EasyGen (Ours)

Dialogue 

Context

Image 

Description

Response

Images

Figure 6: Examples of the generated responses on PhotoChat dataset. The text highlighted in red
indicates the objects present in the image. The turns prefixed with A/B denote the given context.

5 RELATED WORK

Multimodal Language Models. Recent research has witnessed a surge of interest in multi-
modal LLMs, including collaborative models such as Visual ChatGPT (Wu et al., 2023a), MM-
REACT (Yang et al., 2023), and HuggingGPT (Shen et al., 2023), and end-to-end methods including
Flamingo (Alayrac et al., 2022), Img2LLM (Guo et al., 2022), BLIP series (Li et al., 2023b; Dai
et al., 2023; Li et al., 2022), BEiT series (Bao et al., 2021; Wang et al., 2022b), LLaVA (Liu et al.,
2023), mPLUG-owl (Ye et al., 2023), MiniGPT-4 (Zhu et al., 2023), Llama-adapter (Zhang et al.,
2023a), Otter (Li et al., 2023a), OFA (Wang et al., 2022a), and PaLI (Chen et al., 2022). In our works,
EasyGen is built upon a bidirectional conditional diffusion model, which promotes more efficient
interactions between modalities.

Multimodal Diffusion Models. Diffusion generative models (Rombach et al., 2022; Ramesh et al.,
2021; Nichol et al., 2022; Ruiz et al., 2023) have achieved strong results in text conditioned image
generation works. Specifically, Versatile Diffusion (Xu et al., 2023) employs the U-Net (Ronneberger
et al., 2015) architecture with a multi-flow design to tackle multiple modalities and tasks, while
UniDiffuser (Bao et al., 2023b) adopts the U-ViT (Bao et al., 2023a) framework to treat both image
and text as sequential token streams for diffusion calculations. However, these models are unable to
complete complex language tasks. EasyGen combines the advantages of diffusion models and LLMs
and achieves competitive performance in both image-to-text and text-to-image tasks.

Multimodal Response Generation. Recent works have shown significant progress on multimodal
response generation (Koh et al., 2023b; Aghajanyan et al., 2022; Zhang et al., 2023b; Wu et al.,
2023b; Pan et al., 2023; Koh et al., 2023a). Divter (Sun et al., 2021) incorporates text-to-image
generation into text-only dialogue response generation to produce a multimodal response. Leveraging
the power of diffusion models, CoDi (Tang et al., 2023) can generate any combination of output
modalities. Emu (Sun et al., 2023) takes a unified approach to predict the subsequent visual or textual
token in an auto-regressive manne. In EasyGen, we efficiently combine the diffusion model and
LLMs to generate multimodal outputs.

6 CONCLUSION

We have introduced EasyGen, a model that facilitates multimodal understanding and generation. In
contrast to existing models that rely on encoders like CLIP or ImageBind (Girdhar et al., 2023) and
require significant amounts of training data to integrate different modalities, EasyGen offers a more
efficient solution by employing a bidirectional diffusion model named BiDiffuser. This allows for
more effective modal interactions, handling both image-to-text and text-to-image generations by the
fusion of BiDiffuser and LLMs. Comprehensive experiments underscores EasyGen’s effectiveness
and efficiency.
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A DATASETS

We test the effectiveness of EasyGen by experimenting on different tasks including image captioning,
visual question answering (VQA), and multimodal dialogue tasks.

We use the MS-COCO (Lin et al., 2014) dataset for image captioning. Following BLIP-2 (Li et al.,
2023b), we fine-tune EasyGen on MS-COCO and evaluate its performance on the Karpathy test set
and the NoCaps (Agrawal et al., 2019) validation set. In MS-COCO, each image typically has five
captions that convey similar meanings. The training set consists of 82,783 images with 414,113
captions, while the COCO Karpathy test set has 5,000 images and the NoCaps validation set has
4,500 images.

For multimodal dialogue, we utilize the PhotoChat (Zang et al., 2021) dataset, which is a high-quality
dataset consisting of 10,917 images and 12,286 dialogues. Each dialogue is associated with a user
image and its corresponding text description. The dataset is divided into 10,286 training instances,
1,000 development instances, and 1,000 testing instances. Moreover, PhotoChat includes photo-
sharing activities, defined as the process of creating <Img><caption></Img> in this study. Each
conversation in PhotoChat is broken down and constructed into multiple samples so that each round
of responses can be learned. Specifically, we regard the first three turns as the dialog context, and the
subsequent turns as the prediction targets. By converting the dialogues of this dataset into the form
mentioned in 3.3, we obtained 49,240 train, 4,792 dev, and 4,836 test dialogue pairs.

For the VQA task, we conduct a quantitative evaluation on both the OK-VQA (Marino et al., 2019)
validation set (5,046 questions) and the GQA (Hudson & Manning, 2019) test-dev set (12,578
questions). As shown in Table 4, for the frozen LLM, following BLIP-2, we employ the length
penalty in beam search to encourage short answer generation. On the contrary, for the tuned LLM,
we use the VQA instructions (as shown in Table 7) to do instruction tuning during the alignment
process. The data used for instruction tuning is constructed by randomly selecting 5K data from the
VQAv2 (Goyal et al., 2017) training set and 5K data from the Visual Dialog (Murahari et al., 2019)
training set.

B BASELINES

We compare our proposed model with the following state-of-the-art baselines:

BLIP (Li et al., 2022) is a multimodal mixture of encoder-decoder. It can be used as an image-based
text encoder or decoder. We use it to perform caption generation and VQA tasks.

BLIP-2 (Li et al., 2023b) is pre-trained through bootstrapped learning from frozen visual encoder
models and LLMs using an efficient pre-training strategy. We use it to perform caption generation
and VQA tasks.

Flamingo (Alayrac et al., 2022) incorporates new cross-attention layers into Chinchilla language
model (Hoffmann et al., 2022) to inject visual features, and pre-trains the new layers on billions of
image-text pairs. We use it to perform caption generation and VQA tasks.

InstructBlip (Dai et al., 2023) is a vision-language instruction tuning framework that is trained with
BLIP-2 and capable of solving various visual language tasks.

MiniGPT-4 (Zhu et al., 2023) utilizes a single projection layer to align visual information from a
pre-trained vision encoder with an LLM. Note that they employ the same visual encoder as used in
BLIP-2.

LLaVA (Liu et al., 2023) employs a solitary projection layer to convert image features extracted from
the pre-trained CLIP-ViT-L/14 visual encoder into the language embedding space of Vicuna (Chiang
et al., 2023).

Maria (Liang et al., 2021) is a neural conversation agent which can leverage visual world experiences
sourced from a vast image index. It possesses the ability to fetch a relevant image specific to the
conversation and extract a wealth of visual knowledge from it.
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Divter (Sun et al., 2021) focuses on exploring multimodal dialogue generative models. Given the
dialogue context, this model first generates a text response or image description and then generates
an image according to the description.

C IMPLEMENTATION DETAILS

LLM During the alignment process, we utilize the AdamW optimizer with β0 = 0.9, β1 = 0.99, and
weight decay of 0. The LLMs are trained with a cosine learning rate of 2e-5 and a warmup rate of
0.03. We use a batch size of 96 for the frozen LLMs and 32 for the tuned LLMs. During training, we
convert the LLMs (FlanT5XL/Vicuna-7B) to BFloat16/FP16 and BiDiffuser to FP16.

Diffusion Module We inherit the settings from UniDiffuser and utilize pre-trained weights from its
checkpoint for our text-to-image generator. The model is fine-tuned on the MS-COCO dataset, which
contains images with a resolution of 512× 512, for 25K iterations with a batch size of 312. For all of
our sampling processes, we employ DPM-Solver with 50 steps.

D LEARNING CURVES

As explained in Section 3.1 and Section 3.2.1, we perform fine-tuning of BiDiffuser on the MS-
COCO dataset and instruction-tuning of the LLMs on the MS-COCO and LLaVA 80K datasets.
Figure 7 displays the loss curves during the Mid-Align and Pre-Align training stages of FlanT5XL
respectively. It can be seen that the utilization of BiDiffuser in the fine-tuning process exhibits a
notable enhancement in performance across both stages, as compared to UniDiffuser.

Figure 7: The learning curves of fine-tuning BiDiffuser/UniDiffuser for image captioning.

E EVALUATION

For evaluating the quality of text generation, we utilize metrics such as BLEU, Rouge-L, Accuracy,
and PPL (Perplexity). Additionally, following the approach of Vicuna (Chiang et al., 2023) and
LLaVA (Liu et al., 2023), we employ ChatGPT to assess the generated responses from our model.
Specifically, for the image captioning task, we randomly select 30 images from the MS-COCO
Karpathy split and then let ChatGPT score the responses generated by EasyGen and the baseline
models. ChatGPT evaluates the models’ responses based on relevance, details, and accuracy and
assigns an overall score between 1 and 10, with a higher score indicating better performance.

To evaluate the quality of image generation, we use the Frechet Inception Distance (FID) score (Heusel
et al., 2017), which measures the divergence between two multivariate normal distributions.

F INSTRUCTION TUNING

We list the instructions for different tasks in the main paper in Table 7. Specifically, the queries used
to describe the image content are presented in Table 8. Table 7 shows the templates used in Vicuna, if
the LLM employed is FlanT5, kindly use “Human” to substitute “USER” in the instruction templates.
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Dataset Task Split Metric

Image-to-Text

MS-COCO (Lin et al., 2014) Image captioning Test CIDEr, BLEU, SPICE
NoCaps (Agrawal et al., 2019) Image captioning Val CIDEr, SPICE
OK-VQA (Marino et al., 2019) VQA Val Accuracy
GQA (Hudson & Manning, 2019) VQA Test Accuracy

Multimodal Generation PhotoChat Zang et al., 2021 Image dialogue Test PPL, BLEU, ROUGE, FID

Table 6: Summary of the evaluation datasets and metrics.

Task Instruction Template
Image Captioning USER: <image>+random[query] Assistant:

LLaVA 80K
USER: Please answer question from this image: <image> Question: <question> Assistant:
USER: Image: <image> Question: <question> Assistant:
USER: Answer question <question> through the image <image> Assistant:

Multimodal Dialogue USER: Dialog history+<photo>+Dialogue history Assistant:

VQA USER: Image: <image> Question: <question> Short answer: Assistant:

Table 7: Examples of task instruction templates. <image> represents the input image, <question>
denotes the question in the VQA and LLaVA 80K dataset, and <photo> is the image description of
the input image.

1. Describe the image concisely.
2. Provide a brief description of the given image.
3. Can you describe this image briefly?
4. Provide a summary of the visual elements depicted in the image.
5. Give me the essential characteristics of the photograph in a concise manner.
6. Rephrase the image depicted in a concise manner.
7. Describe the objects in this image no in detail.
8. Please introduce the image for me briefly.
9. Give me the image’s descriptions.
10. Please provide a general depiction of the image presented.

Table 8: For the image captioning task, a query instruction is randomly selected.

Data types Dataset Size BiDiffuser Alignment Fine-tuning

Caption MS-COCO caption (Lin et al., 2014) 83K " " %

Visual Genome (Krishna et al., 2017) 86K " % %

Multimodal instruction LLaVA dataset Liu et al. (2023) 80K % " "

VQA VQAv2 (Goyal et al., 2017) 83K % - "

AOK-VQA (Schwenk et al., 2022) 66K % % "

OCR-related tasks Text Captions (Sidorov et al., 2020) 22K % % "

TextVQA (Singh et al., 2019) % % "

Table 9: Description of datasets used in our alignment and VQA fine-tuning stages. Noting that in
alignment process, we used 5K images from VQAv2 dataset.
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Model Trainable Param. Training Images Training Cost
Pre-training

BiDiffuser 952M 169K 120 (A100 80GB) GPU hours

Alignment
Projection Layer + T5XL 4M 163K 20 (RTX3090 24GB) GPU hours
Projection Layer + T5XL 3B 173K 20 (A100 80GB) GPU hours
Projection Layer + Vicuna 7B 173K 72 (A100 80GB) GPU hours

Table 10: EasyGen’s trainable parameters, training data size, and training cost during alignment
process.

Table 9 shows the statistics of the pre-training datasets for BiDiffuser, alignment and VQA tasks. The
VQA model is finetuned with the LM loss using ground-truth answers as targets. For finetuning, the
input image resolution is set to 64 × 4096. We finetune the EasyGen model on mixture datasets for 1
epoch with a batch size of 32. We adopt the AdamW optimizer with β = (0.9, 0.99) with the learning
rate is 2e-5. We use a cosine learning rate decay with a learning rate is 2e-5 and warmup ration is
0.03.

G TRAINING EFFICIENCY

Table 10 summarizes the key factors in training EasyGen. The training process of EasyGen is
computationally efficient, especially with the utilization of the parameter-efficient fine-tuning method
LoRa (Hu et al., 2021). To enable multimodal response generation, we further train the aligned
EasyGen. This process entails fine-tuning the LLM (FlanT5XL) on the PhotoChat dataset for 3
epochs, which typically requires approximately 4 A100 (80G) GPU hours.

H MORE QUALITATIVE RESULTS

We present several instances of the image-captioning task in Figure 8. In Figure 9, Figure 11 and
Figure 10, we compare EasyGen with state-of-the-art multimodal language models. The responses of
MiniGPT-4, LLaVA, mPLUG-owl and InstructBlip are obtained from their official demos. Morever,
in Figure 13 and Figure 12, we show EasyGen’s ability to accept multimodal inputs and generate
multimodal responses.
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EasyGen: A giraffe eating 
grass on a green grass field.

EasyGen: A kitchen with a stove 
and oven in a fireplace.

EasyGen: Two children are 
riding on skis with their parents 
in a snowy street.

EasyGen: A snowboarder flying 
through the air on a frozen 
mountain slope.

EasyGen: Two cats separated by the 
window are looking forward at the 
same time.

EasyGen: A long wooden bench 
with pictures of the world.

Figure 8: Examples of image captioning results by EasyGen.
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MultiModal Chat Group

Please tell me the information about this picture.

Generating some pictures like this.

This painting is a classic representation of a young girl from the 17th century. The girl is depicted wearing a blue 

and white dress, with a pearl earring in her ear. The painting is a masterpiece of Dutch Golden Age art, a period of 

great cultural and economic prosperity in the Netherlands. The girl in the painting is likely depicted as a middle-

class citizen, and the painting may have been commissioned as a portrait or for a specific purpose, such as a 

family crest or a religious painting. The painting is known for its attention to detail, vivid colors, and beautifully 

rendered textures. It is a true masterpiece of Dutch art, and a must- see for anyone interested in the history of art.

EasyGen (ours):

EasyGen (ours):

mPLUG-Owl:

mPLUG-Owl:

LLaVA:

LLaVA:

MiniGPT-4:

MiniGPT-4:

The image is a painting depicting a young girl, likely a Dutch girl in a yellow dress, with her hair tied up in braids 

and a gold earring. She is looking directly into the viewer’s eyes, creating an intimate connection with the observer. 

The painting is set in an indoor scene with a table and chairs visible in the background. The girl is positioned in 

front of the table, and there is an additional person standing to her left. There are also several other people in 

various positions around the room, suggesting a social gathering or a family setting.

Here are a few examples of paintings that are similar in style to the one you described: 1. “Girl with a Pearl Earring” 

by Johannes Vermeer; 2. “The Procuress” by Pieter de Hooch; 3. “The Artist’s Mother” by Gerard van Honthorst …. 

These paintings are all from the 17th century and depict women or groups of people in various settings, often with 

a focus on everyday life. They are known for their attention to detail and realistic depiction of light and shadow.

The image is a portrait of a woman wearing a blue headscarf, a yellow dress, and a pearl earring. 

She is looking to her left, and her outfit and accessories create a visually appealing contrast against 

the background. The woman’s attire and appearance suggest a sense of style and elegance.

I’m sorry, as an AI language model, I am not able to generate images. However, I 

can suggest some ideas for paintings that share a similar style to the portrait of the 

woman in the blue headscarf, yellow dress, and pearl earring by Johannes Vermeer:

The painting depicts a young woman with a pearl earring looking out into the distance. The woman is 

wearing a yellow dress with a blue and white headband. The background is a mix of blue and green, 

with a few trees visible in the distance. The overall mood of the painting is peaceful and contemplative. 

The painting is likely a representation of a woman reflecting on her thoughts or feelings.

Here are some pictures that resemble the painting, featuring young girls with their hair up in braids and 

wearing gold earrings: A young girl in a yellow dress and braided hair, looking directly into the viewer’s eyes. 

Another young woman with her hair in similar braid styles, wears a white dress with gold accents, and has a 

gold necklace. Two girls in matching yellow outfits, with braiding and gold jewelry, standing together and 

looking into each other’ s eyes, creating a warm and inviting atmosphere.

Figure 9: In this case study, for the first question, EasyGen can give an accurate answer including the
background information of the image. With the image generation ability of BiDiffuser, EasyGen can
generate visual responses.
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MultiModal Chat Group

Where can I see this object appeared in this image?

I plan to travel here, what should I pay attention to?

EasyGen (ours):

mPLUG-Owl:

LLaVA:

As you’re looking at a rendering of an iconic white and gold statue of a woman in a field, pay attention to the 
details of the sculpture, the sky, and the surroundings. The statue is situated in a green field, which provides a 
picturesque and serene atmosphere. The sky in the background is blue, suggesting a clear and sunny day. 
To fully appreciate the beauty and significance of the statue, it’s crucial to observe its detail, size, and the 
overall composition of the image. The statue may depict a woman, an important figure in history, or a 
symbol of liberty and freedom. Additionally, pay attention to the field’s surroundings, such as the grass, 
vegetation, and any other elements that contribute to the overall aesthetic.

When visiting the Statue of Liberty, there are a few things you should keep in mind: 
1. The Statue of Liberty is a colossal neoclassical sculpture on Liberty Island in New York Harbor within New York City, 
United States. It was a gift from the people of France to the people of the United States and was dedicated on October 28, 
1886, to commemorate the centennial of the signing of the United States Declaration of Independence. 
2. The statue is 301 feet (92 meters) tall, including its pedestal and base, and is made of iron and steel. It was designed by 
the French sculptor Frederic Auguste Bartholdi and the American architect Emmanuel Louis Masqueray. 
3. To get to the Statue of Liberty, you can take a ferry from Battery Park in Lower Manhattan. There are several ferry 
services that offer tours to the statue, and it’s important to plan ahead and book your tickets in advance to avoid long 
lines. Once you’re on Liberty Island, you can take an elevator or stairs to the top of the pedestal, where you’ll have a 
stunning view of 
4. New York Harbor and the surrounding city skyline. It’s important to note that the pedestal is closed to visitors, but you 
can still get a close-up view of the statue from the observation deck. 
5. Be sure to check the weather forecast before your visit, as the statue can be closed due to high winds or other inclement 
weather conditions. And don’t forget to bring your camera to capture the stunning views and memorable moments!

When planning a trip to visit the Statue of Liberty, there are several things you should pay attention to: 
1. Tickets: You will need to purchase tickets in advance to visit the Statue of Liberty and Ellis Island. You can 
do this through the official Statue of Liberty National Monument website or through authorized ticket sellers. 
2. Accessibility: The Statue of Liberty is accessible via ferry from Battery Park in Lower Manhattan. There are 
also guided tours available, which can provide more information about the history and significance of the 
statue. 
3. Closed areas: Some areas of the Statue of Liberty, such as the pedestal and the crown, are closed to visitors 
due to safety concerns. Make sure to check the official website for the most up-to-date information on 
accessibility and restrictions. 
4. Clothing and footwear: Wear comfortable shoes and dress appropriately for the weather, as you will be 
walking and standing for extended periods of time.

The Statue of Liberty is located in New York City, United States. It is a famous landmark and 
tourist attraction, and you can see it in person by visiting Liberty Island in New York Harbor.

EasyGen (ours):

mPLUG-Owl:

LLaVA:

You can see this blue and white 3D rendering of the Statue of Liberty located in the United States. 
The image features an artistically detailed representation of the famous landmark, which stands tall 
and proud in the skyline. The statue represents the ideals of freedom, democracy, and human rights. 
The scene is captured in a blue sky, emphasizing the beauty and grandeur of the iconic structure.

You can see the Statue of Liberty in the image, standing tall and proud in front of a blue sky.

Figure 10: In this case study, for the first question, EasyGen can give an accurate answer, but the
responses of the other two models are a bit biased. For the second question, EasyGen and LLaVA
both give reasonable advice.

20



Under review as a conference paper at ICLR 2024

How can the girl improve her working environment?

In the image, the young girl is sitting in a room with a laptop in front of her, which suggests that she 

might be working or studying. To improve her working environment, she can consider several factors: 

1. Ergonomics: Ensure that the laptop is placed at eye level or slightly below, and the desk is at a 

comfortable height for her to maintain a neutral posture. Adjustable furniture like a desk or a chair 

can help achieve a comfortable working height. 

2. Lighting: Ensure that the room is well-lit, with natural light or artificial lighting to minimize eye 

strain and improve focus. 

3. Organization: Keep the room clean and organized, with important items within easy reach. This 

can help maintain focus and prevent distractions. 

4. Comfortable environment: Creating a comfortable environment, such as a dedicated workspace 

separate from her bedroom, can help establish boundaries and promote productivity. 

5. Time management: Establish a routine and allocate specific time slots for studying or working on 

her laptop. This can help her stay on track and avoid procrastination. 

By implementing these suggestions, the girl can enhance her working environment and achieve 

better focus, productivity, and overall comfort while working on her laptop.

EasyGen (ours):

mPLUG-Owl:

MiniGPT-4:

To improve her working environment, the girl could consider several options: 

1. Organize her space: Ensure the area where she is working is clean, uncluttered, and well-lit. Remove 

distractions such as toys or other items that might cause her to lose focus. Arrange her books and laptop 

in a manner that is easy to access and comfortable for her to work in. 

2. Create a designated work area: Set up a designated space for her to work, such as a desk, table, or a 

specific corner in the living room. This helps her maintain her focus and minimize distractions. 

3. Provide a comfortable chair and proper lighting: Select a chair with good back support and proper 

ergonomics to ensure she is comfortable while working. Lighting should be bright and evenly distributed 

to minimize shadows and glare. 

4. Set reasonable work hours: Set a reasonable time limit for her to work, and let her know when it’s time 

to take a break. This can help her maintain focus and minimize fatigue. 

By creating a well-organized, comfortable, and productive working environment, the girl can improve her 

focus and efficiency while minimizing distractions during her time spent studying and doing homework.

There are several ways the girl can improve her working environment. One way is to make sure her desk and 

chair are comfortable and adjustable to her height. Another way is to have a clean and organized workspace, 

so she can easily find what she needs. Additionally, she could have a good lighting system to help her see her 

work better. Finally, she could have a cushion or pillow to sit on to help reduce fatigue.

InstructBlip:

The girl in the image can improve her working environment by organizing her surroundings and creating 

a designated study area. To achieve this, she could separate the laptop from other items in the room and 

create a consistent workspace. This can help her maintain focus and reduce distractions, which can 

ultimately enhance her productivity and creativity. Additionally, using a comfortable chair and positioning 

the laptop at a suitable height can help prevent eye strain and promote better posture during long 

periods of work. Using a calm atmosphere with adequate lighting and placing the laptop away from 

windows or other sources of glare can also aid in ensuring a more conducive working environment.

MultiModal Chat Group

Figure 11: From this example, we can find that the response from EasyGen is more comprehensive
and coherent. This shows EasyGen can give reasonable suggestions based on the given image.
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EasyGen

What is the object in the picture and who 

invented it?

What other things did he invent?

Wow, I am interested in phonograph, 

please introduce it and show me some 

picture about it.

The object in the picture is an old 

incandescent light bulb, which was invented 

by Thomas Edison.

In addition to the incandescent light bulb, 

Edison also invented numerous other things, 

including the electric motor, the 

phonograph, and the first practical electric 

lighting system. He was recognized as one of 

the most prolific inventors in history, with 

over 1,000 patents to his name.

A phonograph, also called a record player, is 

an apparatus that plays recorded sound 

using a disk or cylinder of grooved media, 

called a record or a cylinder. The record is 

placed onto a turntable, which is connected 

to a motor that rotates the record at a 

specific speed ….

Here are some possible pictures:

Figure 12: Example of multimodal response generation.
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EasyGen

I like the flowers in this picture. Please 

introduce these flowers.

Show me some close up pictures 

about hydrangeas with pink petals.

The flowers in the picture are blue hydrangeas. 

Hydrangeas are a popular flowering plant that 

are known for their large, showy flowers and 

clusters of small, delicate flowers in shades of 

pink, blue, and white. The blue hydrangeas in the 

picture are likely the “Hydrangea macrophylla” 

variety, which is known for its large, cone-

shaped flowers and blue or pink petals. These 

flowers are often used in floral arrangements 

and as a decorative element in landscap

Figure 13: Example of multimodal response generation.
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