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ABSTRACT

Due to not relying on the rare human-labeled information, self-supervised learn-
ing, especially contrastive learning, attracted much attention from researchers. It
has begun to show its strong advantages on both IID data (independent and identi-
cally distributed data, such as images and texts) and Non-IID data (such as nodes
in graphs). Recently, researchers have begun to explore the quality of contrastive
representations and proposed some metrics for measuring it, such as alignment,
uniformity, and semantic closeness. However, current studies only consider IID
data and ignore the evaluation of representations quality in graph contrastive learn-
ing. In this paper, we investigate and discuss how to generate high-quality repre-
sentations for a general loss (InfoNCE) in graph contrastive learning. We argue
that the properties of global uniformity and local separation are both necessary
to the representation quality. By theoretical analysis, we find that the two prop-
erties can be naturally regulated by temperature τ in InfoNCE loss. Based on
this point, we develop a simple but effective algorithm GLATE to dynamically
adjust the temperature value in the training phase. On node and graph classifica-
tion tasks, GLATE is validated to be competitive with the state-of-the-art graph
contrastive learning algorithms.

1 INTRODUCTION

Self-supervised learning provides a good learning paradigm without high-cost label information
for computer vision (Chen et al. (2020); Chen & He (2021); Grill et al. (2020)), natural language
processing (Wu et al. (2019); Gao et al. (2021)), and speech recognition (Ravanelli et al. (2020);
Kharitonov et al. (2021)). Contrastive-based methods have a prominent place among numerous
self-supervised learning methods (Jaiswal et al. (2021); Le-Khac et al. (2020)). Recently, some
researchers have explored graph contrastive frameworks (consisting of data augmentation, network
encoding, and contrastive learning) for self-supervised learning on graphs (Velickovic et al. (2019);
Peng et al. (2020); Zhu et al. (2020; 2021c); Thakoor et al. (2021)). On benchmark datasets, the state-
of-the-art graph contrastive learning (GCL) algorithms have been verified to be competitive with or
even superior to the supervised learning algorithms in downstream tasks, such as node classification
and graph classification.

Investigating the quality of contrastive representations is important for contrastive learning, but it is
absent in the domain of graphs. Wang & Isola (2020) propose two novel loss functions, alignment
loss Lalign and uniformity loss Luniform, for measuring the image representation quality. By opti-
mizing the integration of Lalign, Luniform, and contrastive loss, the performance on the downstream
task (such as image classification on IMAGENET (Tian et al. (2019))) becomes better. However,
Lalign and Luniform designed for independent and identically distributed (IID) data are not suitable
for Non-IID data such as nodes in a graph.

The InfoNCE (here “NCE” denotes “Noise-Contrastive Estimation”) contrastive loss (Oord et al.
(2018)), as a universal loss function of contrastive learning, generally samples negative examples
uniformly from the whole training data. To optimize the InfoNCE loss, the strategy of hard negative
sampling (Zhuang et al. (2019); Robinson et al. (2021)) collects highly similar but true negative ex-
amples in advance to construct contrastive pairs and is widely used in image processing and metric
learning (Duan et al. (2018); Robinson et al. (2021); Wang & Liu (2021)). This strategy makes the
model be able to correct its mistakes quickly and improve the semantic closeness between represen-
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Figure 1: The normalized embedding distribution on the unit hypersphere (here we simplify it as
the two-dimensional case for a better demonstration). For each node, we use the shape and color to
represent its label and embedding, respectively. (a) is the initial random state; (b), (c), and (d) corre-
spond to the embedding distribution when temperature τ is high (fixed), low (fixed), and dynamically
adjusted, respectively. When τ is relatively high, the same penalties on all negative examples make
the embedding too compact in the local scope. When τ is relatively low, the high penalty on the hard
negative examples (highly similar to the anchor example) will lead to the misplacement of embed-
dings. By dynamically changing τ ’s value, the final result accords with the global uniformity and
local separation.

tations (Wang & Liu (2021)). Despite hard negative sampling’s practical importance in the image
domain, Yang et al. (2020) have proved that it is sub-optimal in the graph domain.

In this paper, we investigate how to generate high-quality node representations under the InfoNCE
contrastive objective in graphs. We highlight the importance of embeddings’ global uniformity and
local separation for GCL. The temperature coefficient τ , as a key component of InfoNCE loss, de-
cides how the current learning state focuses on global uniformity and local separation. We illustrate
this conclusion in Figure 1 and prove it by a gradient analysis in Section 3. The dynamic setting
of τ can generate different learning states for the same task and help the algorithm smoothly transit
from one state to another. Therefore, inspired by the optimizer called Momentum (Qian (1999)), we
develop a Graph contrastive Learning algorithm with dynAmic Temperature Estimation (GLATE).
Compared with the fixed setting of τ , GLATE develops to its full potential on contrastive learning
by further maximizing the self-supervised Information Bottleneck objective.

In a nutshell, the main contributions of this work are as follows:

• To evaluate the node representations in GCL, we propose two new metrics: global unifor-
mity (Eq. (9)) and local separation (Eq. (10)). We prove the importance of temperature τ
to them by theoretical analysis (Section 3.1).

• We develop a simple but very effective GCL algorithm GLATE (Section 3.2). In the training
phase, GLATE dynamically adjusts τ ’s value with its momentum to learn high-quality
representations. With the help of the information bottleneck principle, we analyze the
connections between GLATE and entropy information (Section 3.3).

• The experimental results on node and graph classification tasks indicate that GLATE is
superior to the state-of-the-art GCL algorithms (Section 4). For example, for the task of
transductive node classification, GLATE outperforms baselines by 2.8 percent on average.

2 BACKGROUND AND RELATED WORK

Preliminaries of Graph Contrastive Learning. Let us review an overall graph contrastive learning
process with contrastive pairs. We consider a graph G = (A,X) where A ∈ RN×N denotes the
adjacency matrix, X ∈ RN×M denotes the attribute distribution matrix, N is the number of nodes,
and M is the dimension of attributes. The raw graph G is distorted via random data augmentation
strategies (such as edge removing and attribute masking) to generate two new graphs G̃1 = (A′,X ′)

as well as G̃2 = (A′′,X ′′). Then, the message-passing-based graph neural network (e.g., GCN
proposed in (Kipf & Welling (2016))) is used as a shared encoder of G̃1 and G̃2. It aims to learn node
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embeddings from G̃1 and G̃2. The message passing form of a two-layer GCN is:
Z′ = softmax(Â′ReLU(Â′X ′W 0)W 1), (1)

whereZ ′, Â′, andW 0 (W 1) are node embedding matrix, renormalizedA′, and first-layer (second-
layer) neural network parameters, respectively. Next, in each training epoch, the pre-defined con-
trastive objective encourages GCN to minimize the distance between Z ′ and Z ′′ (another node
embedding matrix learned from G̃2), and meanwhile to maximize the distance between different
nodes (Zhu et al. (2020); Zbontar et al. (2021b); Bardes et al. (2021)). After n rounds of iteration,
we use trained GCN to infer each node’s embedding on G, which is used as the initial value of new
node embedding in different downstream tasks, such as node classification.

Graph Contrastive Objectives. To make positive examples closer and negative examples farther,
different graph contrastive loss functions are defined, such as: 1) Jason-Shannon Divergence (JSD)
loss (Velickovic et al. (2019); Hassani & Khasahmadi (2020)), 2) InfoNCE loss (Zhu et al. (2020);
You et al. (2020); Zhu et al. (2021c); Pan & Kang (2021); Xu et al. (2021)), and 3) Triplet Margin
(TM) loss (Zhang et al. (2019)). According to a recent empirical study (Zhu et al. (2021b)), the
models under the InfoNCE loss generally achieve better performance compared to those under the
other graph contrastive objectives with the participation of negative examples. The important role
of InfoNCE loss in graph contrastive learning motivates our work to have deep insights into a series
of GCL algorithms (e.g. GRACE (Zhu et al. (2020))) derived by it.

Understanding Contrastive Representation Learning. Another main area of concern is under-
standing contrastive representation learning and exploring what high-quality representations are. In
the image domain, alignment, uniformity, and semantic closeness (Wang & Isola (2020); Wang &
Liu (2021)) are thought to be three important metrics for measuring the quality of learned represen-
tations. Hard negative sampling (Robinson et al. (2021); Wang & Liu (2021)) has been proved to
be a successful strategy to meet the needs of the above three metrics. However, recent studies (Xia
et al. (2021); Yang et al. (2020)) have confirmed the existence of sampling bias when using hard
negative sampling for a graph, which limits its application to the graph domain.

3 METHOD

3.1 GRADIENT ANALYSIS

We start with a general contrastive loss function, i.e., InfoNCE loss (Oord et al. (2018); Zhu et al.
(2020)). In the graph domain, it can be formulated as:

L1,2
i = −log

exp( 1
τ
· S(i′, i′′))

exp( 1
τ
· S(i′, i′′)) +

∑
k 6=i

exp(
1

τ
· S(i′, k′′))

︸ ︷︷ ︸
inter−view term

+
∑
k 6=i

exp(
1

τ
· S(i′, k′))

︸ ︷︷ ︸
intra−view term

. (2)

The vector similarity function S(i′, k′′) = f(||h(Z ′i,:)||2, ||h(Z ′′k,:)||2) where f(·) and h(·) are re-
spectively cosine similarity and non-linear projection transformation (two layers of multilayer per-
ception). As h(·) is not shared between different channels, the whole network structure is technically
asymmetric, which leads to the asymmetric result of learned node representations. To eliminate the
bias between different channels, G̃1 and G̃2 are swapped to use, and thus the total loss function is
L = 1

2N

∑N
i=1(L1,2

i + L2,1
i ). To simplify the symbols in Eq. (2), we replace exp( 1

τ · S(i′, k′′)) by
Ei′,k′′ , and then derive the following gradient results:

∇S(i′,i′′)L1,2
i = −

∑
k 6=i Ei′,k′′ +

∑
k 6=i Ei′,k′

τ · (Ei′,i′′ +
∑
k 6=i Ei′,k′′ +

∑
k 6=i Ei′,k′)

, (3)

∇S(i′,j′)L1,2
i = − Ei′,j′

τ · (Ei′,i′′ +
∑
k 6=i Ei′,k′′ +

∑
k 6=i Ei′,k′)

, (4)

∇S(i′,j′′)L1,2
i = − Ei′,j′′

τ · (Ei′,i′′ +
∑
k 6=i Ei′,k′′ +

∑
k 6=i Ei′,k′)

. (5)

These gradient results have the same denominator, which can be removed when we calculate the
gradient ratio between any two of them.
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(a) R(i′, j′; i′, i′′) curve. (b) R(i′, j′′; i′, i′′) curve. (c) R(i′, j′; i′, j′′) curve. (d) R(i′, j′′; i′, j′) curve.

Figure 2: The rate curves under different τ . In (a) and (b), lower τ means more penalties on hard
negative examples. In (c) and (d), low τ deepens the imbalance update between different views.

Lemma 1. Following Eq. (2), the ratio of intra-view negative gradient to positive gradient is

R(i′, j′; i′, i′′) =
∇S(i′,j′)L1,2

i

∇S(i′,i′′)L1,2
i

=
Ei′,j′∑

k 6=i Ei′,k′′ +
∑
k 6=i Ei′,k′

. (6)

The result in Eq. (6) obeys the Boltzmann distribution, as shown in Figure 2 (a,b) (note that we omit
the specific form of R(i′, j′′; i′, i′′) because it has the same property as R(i′, j′; i′, i′′)). It means
that if τ is low (τ ∈ (0, 0.5)), the optimizer will punish more on the hard negative examples than the
easy ones; otherwise, it will nearly make no difference of them. So high τ is good at distinguishing
similar and dissimilar embeddings and low τ is good at partitioning highly similar embeddings to
ensure local separation.

It is also worth noting the rate between the negative gradients of different views, which is defined
as:

R(i′, j′; i′, j′′) =
∇S(i′,j′)L1,2

i

∇S(i′,j′′)L1,2
i

=
Ei′,j′

Ei′,j′′
= exp(

1

τ
· (S(i′, j′)− S(i′, j′′))). (7)

In Eq. (7), τ still plays an important role (note that we omit the specific form of R(i′, j′′; i′, j′)
because it has the same property as R(i′, j′; i′, j′′)). We have the following proposition:

Proposition 1. (Different views’ imbalanced update.). The temperature τ is crucial to balance
the rate between the negative gradients of different views. If τ → ∞, then ∇S(i′,j′)L1,2

i →
∇S(i′,j′′)L1,2

i , i.e., the negative examples of inter-view and intra-view keep the gradient update at
the same speed. Otherwise, there exists an imbalance between ∇S(i′,j′)L1,2

i and ∇S(i′,j′′)L1,2
i . The

imbalance will deepen as τ decreases.

We refer the reader to Appendix A.1 for detailed proof. We illustrate the phenomenon of the im-
balanced gradient update in Figure 2 (c) and (d). Based on the above analysis, we conclude that 1)
high τ is helpful to the embedding’s global uniformity and low τ is helpful to the embedding’s local
separation; 2) high τ can alleviate the negative effect of imbalanced update. Therefore, dynamic
estimation of τ with a relatively high initial value is recommended.

3.2 DYNAMIC TEMPERATURE ESTIMATION WITH MOMENTUM

Some studies (Robinson et al. (2021); Wang & Liu (2021)) have confirmed that the properties of
uniformity and semantic closeness are both necessary for image contrastive learning. In the graph
domain, the closeness of nodes embodies the proximity of the topology information and the similar-
ity of the attribute information. Both of them are incorporated into Z ′, Z ′′ by the encoder of graph
neural networks with the message passing mechanism.

The strategy of hard negative sampling is successful to discriminate the images of similar se-
mantics. It only updates the hard or informative examples by truncating the uninformative ones.
Following Eq. (2), the loss under hard negative sampling can be formulated as: L1,2

i,hard =

−log(Ei′,i′′/(Ei′,i′′ +
∑
Si′,k′′>δ Ei′,k′′ +

∑
Si′,k′>δ Ei′,k′)). Although this strategy is rational in

the image domain (Robinson et al. (2021); Wang & Liu (2021); Zhu et al. (2021a)), it is not suitable
for the graph (we also compare the proposed algorithm with its variant using hard negative sampling,
refer to Table 1). Current negative sampling methods in the graph have a common shortcoming of
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sampling bias, i.e., most of the negative examples being highly similar to the anchor example are
actually positive examples (Xia et al. (2021)). Yang et al. (2020) have proved that a nice negative
sampling distribution should be sub-linearly correlated to the positive sampling distribution in the
graph domain: pneg(i|j) ∝ ppos(i|j)α, α ∈ (0, 1). As the real ppos is unknown and its approxima-
tion is hard to define, we retain all negative examples and employ dynamic temperature estimation
to control global uniformity and local separation.

Based on the gradient analysis in Section 3.1, we propose a new algorithm called GLATE whose
main idea is dynamic temperature estimation. More precisely, at the early stage, the temperature τ
is set high to ensure that all embeddings are split uniformly by imposing nearly equal punishments
on negative examples. As the training goes on, the dissimilar examples are separated gradually and
the distance between similar examples becomes close. At the later stage, τ is set relatively lower to
distinguish the similar and hard negative examples. Therefore, the change of temperature should be
influenced by the uniformity of the node representations.

Inspired by Momentum (Qian (1999)), a classical stochastic gradient descent optimization method,
we calculate the temperature’s current value τt by integrating its last state’s momentum ∆τt−1 and
the current embedding’s global uniformity degree Dt

global together:

τt = τt−1−ε(p∆τt−1 +
1

Dt
global

)︸ ︷︷ ︸
∆τt

. (8)

Also, the global uniformity degree at epoch t Dt
global is defined as:

Dt
global = −log

2

N(N − 1)

∑
i

∑
j<i

exp−||Z
t
i−Zt

j ||
2
2 , (9)

where ε is the learning rate and p is the momentum parameter. In addition, we define the local
separation degree at epoch t and use it as an important metric to measure the model’s uniformity
from a local perspective (Figure 4):

Dt
local = −log

2

N(N − 1)

∑
i

∑
j<i

S(Zti,Z
t
j) · exp−||Z

t
i−Zt

j ||
2
2 , (10)

where S(Zti,Z
t
j) is the cosine similarity between node embeddings Zi and Zj at epoch t.

Compared with the steepest descent ∆τt = −ε/Dt
global, the update rule in Eq. (8) makes τ decrease

at an adjustable pace. At the early stage, τ decreases slowly due to little information accumulation,
while it decreases faster later to distinguish harder negative examples.

3.3 ANALYSIS FROM THE INFORMATION BOTTLENECK PRINCIPLE

Here we analyze GLATE’s intrinsic mechanism and reveal the connection between GLATE and
the information bottleneck principle (Tishby & Zaslavsky (2015); Amjad & Geiger (2019)). As-
suming the node representation matrix obeys the D-dimensional Gaussian distribution: Z ′ ∼
N (µZ ′ ,ΣZ ′) (µZ ′ ∈ R1×D, ΣZ ′ ∈ RD×D), the self-supervised learning’s information bot-
tleneck (IB) principle (Zbontar et al. (2021a)) is to maximize the following Lagrange’s function (we
omit Z ′′ in this section because it has the same properties as Z ′):

IBssl = I(Z′,X)− βI(Z′,X ′) (β > 0), (11)
where I(a,b) is the mutual information between a and b. The motivation behind IBssl is to make
the learned embedding preserve as much feature information of the raw input dataX as possible and
evade the noise in the augmented dataX ′. In addition, a basic property between mutual information
and entropy information is as follow:

Property 1. The relation between mutual information and conditional entropy is I(X,Y ) =
H(X)−H(X|Y ) = H(Y )−H(Y |X).

According to Property 1, Eq. (11) can be rewritten as (note that H(Z ′|X ′) is determined):
IBssl = [H(Z′)−H(Z′|X)]− β[H(Z′)−H(Z′|X ′)] = (1− β)H(Z′)−H(Z′|X). (12)

If 1−β 6 0, then the optimal solution in Eq. 12 will be trivial (it is also known as complete collapse
or dimensional collapse (Hua et al. (2021))). To avoid this issue, we define λ = 1− β > 0 and have
IBssl = λH(Z ′) − H(Z ′|X). So the connection between information bottleneck principle and
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entropy information is
max IBssl = max λH(Z′)−H(Z′|X) (λ ∈ (0, 1)). (13)

Zhu et al. (2020) have proved that the loss in Eq. (2) is the upper bound of InfoNCE loss:
L1,2
i ≥ LInfoNCE, so minimizing L1,2

i is equivalent to minimizing LInfoNCE’s upper bound. Be-
cause InfoNCE’s principle is to pull positive pairs to be closer (i.e., to minimize H(Z ′|X)) and
push negative pairs to be farther (i.e., to maximize H(Z ′)), it can be viewed as a specific form
of IBssl. Therefore, we can conclude that minimizing L1,2

i is equivalent to maximizing the lower
bound of IBssl.
Next, we discuss the effect of temperature τ for H(Z ′). We have the following proposition:
Proposition 2. (Temperature τ is crucial to H(Z ′).) When each column of Z ′ is normalized, the
node embedding’s entropy H(Z ′) increases with the decrease of τ .

We refer the reader to Appendix A.2 for detailed proof. In Proposition 2, the condition of the
normalized column inZ ′ is actually hard to meet. Also, if always keeping a low τ and only focusing
on the local separation (as shown in Figure 1 (c)), it is easy to generate the problem of embedding
misplacement. So the local separation (low τ ) should be arranged after the global uniformity (high
τ ).

4 EXPERIMENTS

In this section, we verify GLATE’s performance on two most important graph-related tasks: node
classification and graph classification. The node classification task includes two types of learning:
transductive learning and inductive learning1. With the help of the loss curve, global uniformity
metric and local separation metric, we design some ablation studies to understand the contributions
of different components in GLATE to the overall system. For the detailed dataset descriptions and
experimental setups, please refer to Appendix A.4 and A.5. More experimental designs and results
can be seen in Appendix A.6.

4.1 NODE CLASSIFICATION TASK

4.1.1 RESULTS OF TRANSDUCTIVE LEARNING

We compare GLATE with several baseline models including the supervised GCN (Kipf & Welling
(2016)) model and self-supervised GCL models, as well as several variants of GLATE.

We compare six different GCL models which implement a variety of techniques. DGI (Velickovic
et al. (2019)) and GMI (Peng et al. (2020)) use graph contrastive objectives based on the mutual
information maximization. MVGRL (Hassani & Khasahmadi (2020)) learns node’s and graph’s
representations from two structural views: first-order neighbors and a graph diffusion. Following
SimCLR (Chen et al. (2020)), GRACE (Zhu et al. (2020)) and GCA (Zhu et al. (2021c)) employ
InfoNCE loss to learn node representations for graph data. Inspired by BYOL (Grill et al. (2020)),
BGRL (Thakoor et al. (2021)) imitatively uses an asymmetric encoder structure to get rid of GCL’s
dependence on negative pairs. The variants of GLATE include four GLATE models with fixed
temperature values and a GLATE model with the hard negative sampling. The hard negative sam-
pling strategy only collects hard negative examples (the similarity threshold δ = 0.8) to construct
contrastive pairs.

Table 1 shows the accuracy scores on the task of transductive node classification. We can find that
GLATE outperforms all the baseline models on the three datasets with an average improvement of
2.8 percent. Unsurprisingly, an extremely high (or low) temperature value cannot make the model
converge. By setting dynamic temperature values, GLATE performs better than the models with a
fixed temperature value, especially on Citeseer. Other experiments about the temperature values can
be seen in Section 4.3.

4.1.2 RESULTS OF INDUCTIVE LEARNING

1Our code is available at: https://github.com/anonymousICLR22/GLATE.
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Table 1: Comparison with the state-of-the-art GCL algorithms on transductive node classification.

Methods Cora Citeseer Pubmed
Supervised GCN (Kipf & Welling (2016)) 81.50 70.30 84.90
DGI (Velickovic et al. (2019)) 82.60±0.40 68.80±0.70 86.00±0.10
GMI (Peng et al. (2020)) 83.00±0.30 72.40±0.10 79.90±0.20
MVGRL (Hassani & Khasahmadi (2020)) 83.50±0.40 73.30±0.5 80.10±0.70
GRACE (Zhu et al. (2020)) 83.30±0.40 72.10±0.50 86.70±0.10
GCA (Zhu et al. (2021c)) 80.90±0.41 72.14±0.06 86.01±0.05
BGRL (Thakoor et al. (2021)) 82.77±0.75 64.45±0.15 84.34±0.17
Average value 82.67 70.53 83.84
Hard negative sampling (Threshold δ = 0.8) 83.14±0.43 67.11±0.56 85.28±0.14
Fixed temperature (τ = 10000)

§
31.62±0.00 41.50±0.15 62.71±0.10

Fixed temperature (τ = τinitial = 0.8) 84.32±0.15 67.83±0.22 85.23±0.08
Fixed temperature (τ = τlower = 0.2) 83.10±0.28 64.02±0.54 82.13±0.06
Fixed temperature (τ = 0.01)

†
15.07±0.00 10.48±0.00 21.90±0.00

GLATE 84.80±0.33 73.40±0.19 87.29±0.12
§

The value of training loss is almost not changed.
†

The value of training loss eventually becomes “NaN”.

Methods PPI
Raw features 42.20

Supervised GraphSAGE-GCN 96.90±0.20
GraphSAGE-GCN 46.50
GraphSAGE-mean 48.60

GraphSAGE-LSTM 48.20
GraphSAGE-pool 50.20

DGI+GraphSAGE−GCN 63.80±0.20
GMI+GraphSAGE−GCN 65.00±0.02

GRACE+GraphSAGE−GCN 66.20±0.10
BGRL+GraphSAGE−GCN 67.52±0.05

GLATE+GraphSAGE−GCN 68.41±0.01

Table 2: Comparison with the state-of-the-art
GCL methods on inductive node classification.

For the task of inductive learning, we use
GraphSAGE-GCN (Hamilton et al. (2017)) as
the encoder of GLATE and other GCL base-
line models including DGI, GMI, GRACE, and
BGRL. We also compare our model with un-
supervised GraphSAGE models with different
aggregation functions, which are denoted as
GraphSAGE-*. The method of “Raw features”
only uses node features as inputs, so its accu-
racy score can be regarded as the lower-bound
of all methods. “Supervised GraphSAGE-
GCN” uses supervised learning with the en-
coder of GraphSAGE-GCN and its accuracy
score can be seen as the upper-bound of
all methods. From Table 2, we find that
GLATE+GraphSAGE−GCN outperforms all the self-supervised baselines and is 0.89 percent ahead
of the nearest competitor BGRL. Moreover, all the GCL models perform better than unsupervised
GraphSAGE models, which shows the effectiveness of GCL on inductive node classification.

4.1.3 RESULTS ON LARGER GRAPH DATASET

Methods Validation set Test set
Supervised GCN 73.00±0.17 71.74±0.29

DGI 71.26±0.11 70.34±0.16
GRACE 72.61±0.15 71.51±0.11
BGRL 72.53±0.09 71.64±0.12
GLATE 72.80±0.02 72.13±0.05

Table 3: Comparison with the state-of-the-art GCL
methods on ogbn-arxiv dataset.

To verify GLATE’s scalability, we select a
larger graph dataset ogbn-arxiv2 to test its
performance. The ogbn-arxiv dataset is a di-
rected graph, representing the citation net-
work between all Computer Science (CS)
arXiv papers indexed by Microsoft Academic
Graph (MAG). There are 169,343 nodes and
1,166,243 edges in ogbn-arxiv. The results
are shown in Table (3). Apart from GLATE,
all of the reported experimental results are from Thakoor et al. (2021). For GRACE and GLATE, we
subsample 2048 nodes from the full graph as each anchor node’s negative examples. From Table 3,
we can see that GLATE outperforms the three GCL methods and is competitive with the supervised
GCN model on validation and test sets.

2https://ogb.stanford.edu/docs/nodeprop/

7



Under review as a conference paper at ICLR 2022

4.2 GRAPH CLASSIFICATION TASK

Next, we evaluate GLATE’s performance on the graph classification task using four graph bench-
mark datasets. Here we choose the following methods as baseline models: node2vec (Grover &
Leskovec (2016)), sub2vec (Adhikari et al. (2018)), graph2vec (Narayanan et al. (2017)), InfoGraph
(Sun et al. (2020)), and GraphCL (You et al. (2020)). All the baselines and GLATE are used to
generate graph embeddings by unsupervised learning. These embeddings are as the inputs of the
downstream SVM classifier. In GLATE, we use graph isomorphism network (Xu et al. (2018)) as
its encoder networks, which is the same as GraphCL’s. The results are shown in Table 4. Apart
from GLATE, all of the reported results are from (You et al. (2020)). From Table 4, we can see that
GLATE outperforms all the baselines on most datasets except on IMDB-B with small graph size (the
number of average nodes is less than 20). Besides, compared with another GCL method GraphCL,
the average accuracy result of GLATE is higher than it 1.2 percent.

Table 4: Comparison with graph representation learning methods on graph classification task.

Methods NCI1 PROTEINS MUTAG IMDB-B
node2vec 54.89±1.61 57.49±3.57 72.63±10.20 -
sub2vec 52.84±1.47 53.03±5.55 61.05±15.80 55.26±1.54

graph2vec 73.22±1.81 73.30±2.05 83.15±9.25 71.10±0.54
InfoGraph 76.20±1.06 74.44±0.31 89.01±1.13 73.03±0.87
GraphCL 77.87±0.41 74.39±0.45 86.80±1.34 71.14±0.44
GLATE 78.03±0.61 74.68±0.21 90.88±0.33 71.60±0.85

4.3 ABLATION STUDIES

4.3.1 PERFORMANCE ON THE TRAINING LOSS

In this section, we use different temperature mechanisms to visualize the effects of temperature and
momentum on the training loss. Specifically, we design different training strategies to analyze the
components of temperature and momentum, including 1) removing dynamic temperature estimation
by fixing τ as 0.4 or 0.8; 2) replacing the momentum with an alternative dynamic solution, i.e,
multiplying τ by a fixed decay factor at each epoch; 3) removing the constraint of the temperature’s
lower-bound (denoted as “GLATE w/o τlower” in Figure 3); 4) our proposed model GLATE (denoted
as “GLATE w/ τlower” in Figure 3). We visualize the change of training loss under the above
strategies for transductive learning in Figure 3.

(a) Cora (b) Citeseer (c) Pubmed

Figure 3: The curves of loss under different training strategies on Cora, Citeseer, and Pubmed. The
loss value of GLATE w/o τlower eventually becomes “NaN”.

To evaluate the static and dynamic settings, we mainly focus on the performances of “τ = 0.4”,
“τ = 0.8”, and “GLATE w/ τlower” in Figure 3. Although GLATE converges slower than the
settings of τ = 0.4 and τ = 0.8, it eventually obtains a lower loss value. Compared with the static
setting, the dynamic temperature estimation can explore a larger learning space, which improves the
model’s learning ability.

To evaluate the effect of the momentum mechanism, we mainly focus on “dynamic decay”, “GLATE
w/o τlower”, and “GLATE w/ τlower” in Figure 3. Both GLATE w/o τlower and GLATE w/ τlower
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have faster convergence speeds than the setting of dynamic decay, which indicates the effectiveness
of momentum. In addition, when without the constraint of τlower, the model’s convergence speed
becomes very fast during training, which eventually leads to the overflow of loss (“NaN”). So we
can conclude that both momentum and τlower are necessary to GLATE.

4.3.2 PERFORMANCE ON GLOBAL UNIFORMITY AND LOCAL SEPARATION

As we discussed in previous sections, global uniformity and local separation are two important met-
rics for measuring the quality of graph contrastive representations. We use −Dt

global and −Dt
local

(global uniformity degree Dt
global and local separation degree Dt

local are defined in Eq. (9) and Eq.
(10), respectively) as the coordinates to evaluate the quality of learned representations in GLATE.
We plot the changing trend of results under these two metrics in Figure 4. The datum of each epoch
is a single point. Because the coordinates mean the negative uniformity degree and negative sepa-
ration degree, the ideal result lies in the left lower corner. From Figure 4, we find all of the three
experimental settings (GLATE, GLATE with a fixed temperature τinitial = 0.8, as well as GLATE
with a fixed temperature τlower = 0.2) can make the results of uniformity and separation better in
the training phase. Moreover, the performance of GLATE is significantly better than those of the
other two methods. Note that the changing trend on Pubmed is different from those on Cora and
Citeseer because we implement mini-batch training for the dataset of Pubmed and full-batch training
for the other two datasets, respectively.

Training's direction

(a) Cora

Training's direction

(b) Citeseer

Training's direction

(c) Pubmed

Figure 4: The results of global uniformity and local separation on Cora, Citeseer, and Pubmed.
Here the horizontal and vertical axis represent−Dt

global and−Dt
local, respectively. The black arrow

represents the training directions of all methods. The point in the left-lower corner corresponds to
the best result.

5 CONCLUSION AND DISCUSSION

In this paper, we discuss the limitations of the classical InfoNCE objective for graph contrastive
learning: when using a fixed temperature, the InfoNCE objective can only capture a certain state of
embedding distribution and ignore the others. By theoretical analysis, we find that the temperature
τ is crucial to control the representation distribution’s global uniformity and local separation and
thus introduce GLATE, a simple but effective algorithm for graph contrastive learning. GLATE
uses dynamic temperature estimation with momentum to adjust the gradient rates so that it can cater
to different distribution states. On both tasks of node classification and graph classification, we
show GLATE’s advantages over the state-of-the-art GCL algorithms. By some ablation studies, we
illustrate the positive effects brought by the dynamic temperature setting and visualize the results
under the two new metrics in the training phase.

Broader impacts. Studying the temperature’s property is an interesting topic in contrastive learning,
even in deep learning. Considering the dominant role of InfoNCE objectives in graph contrastive
learning, we believe that deep insights into the temperature in InfoNCE objectives have an impor-
tant impact on the development of graph contrastive learning. In our work, the gradient analysis
and dynamic temperature estimation are not only suitable to GRACE but also any graph contrastive
learning algorithm based on InfoNCE objectives. More experimental details about GLATE’s gener-
ality can be seen in Appendix A.6.1.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proof. Using Eq. (4) and (5), we derive:
∇S(i′,j′)L1,2

i

∇S(i′,j′′)L1,2
i

=
Ei′,j′

Ei′,j′′
= exp(

1

τ
· (S(i′, j′)− S(i′, j′′)). (14)

Here 1/τ is a scaling coefficient of S(i′, j′) − S(i′, j′′). If τ → ∞, the whole exponential term
tends to 1, so we conclude ∇S(i′,j′)L1,2

i → ∇S(i′,j′′)L1,2
i . If τ decreases, the difference between

∇S(i′,j′)L1,2
i and ∇S(i′,j′′)L1,2

i will be larger.

A.2 PROOF OF PROPOSITION 2

Property 2. IfZ obeys a D-dimensional Gaussian distribution: Z ∼ N (µZ ,ΣZ ) (µZ ∈ R1×D,,

ΣZ ∈ RD×D), then H(Z) =
D

2
(ln2π + 1) +

1

2
ln(detΣZ ).

Proof. If τ decreases, then the learning algorithm will punish more on hard examples than easy
examples. So it makes the similarity between hard negative examples lower. Besides, the easy
negative examples are always dissimilar. So we have Z ′iZ

′T
j → 0 (i 6= j) and Z ′iZ

′T
i → 1. Due to

n� d (dense node representations), the (normalized) columns ofZ ′ tend to be linearly independent
and Z ′TZ ′ → ID (ID is an identity matrix, ID ∈ RD×D). Due to (ΣZ ′)i,j = Cov[Z ′i,Z

′
j ], we

can rewrite the determinant of ΣZ ′ as:

det(ΣZ ′) = det(Z ′TZ ′) =

D∏
i=1

λi = exp(

D∑
i=1

logλi) (15)

where λ1, λ1, · · ·λD are ΣZ ′ ’s eigenvalues. According to Jensen inequality, as log(·) is a concave

function, we have 1
D

∑D
i=1 logλi 6 log

∑D
i=1 λi

D = 0 (note that
∑D
i=1 λi = trace(ΣZ ′) = D). So

det(ΣZ ′) 6 exp(0) = 1. Note that if Z ′TZ ′ → ID, then det(ΣZ ′) → 1 (i.e., its upper bound)
and H(Z ′) tends to be its global maximum (according to Property 2).

A.3 THEORETICAL DIFFERENCE WITH THE CURRENT WORK

We investigate another work (https://arxiv.org/abs/2106.05819) using the analysis of the graph in-
formation bottleneck principle. Here we give some explanation about the difference between our
theoretical basis and theirs. The main difference is the negative terms in the information bottle-
neck when ignoring the impact of the coefficients. We analyze the information bottleneck principles
of https://arxiv.org/abs/2106.05819 (denoted as IB1ssl) and our paper (denoted as IB2ssl) in detail
and give the proof below. For the task of learning node representations Z ′ and Z ′′, Equation (5) in
https://arxiv.org/abs/2106.05819 can be represented as: IB1ssl = I(Z ′, Z ′′) = H(Z ′)−H(Z ′|Z ′′).
As H(Z ′|Z ′′) = H(Z ′, Z ′′)−H(Z ′′), then

IB1ssl = H(Z ′) +H(Z ′′)−H(Z ′, Z ′′). (16)

While, in our paper (Equation (11)): IB2ssl = λH(Z ′)−H(Z ′|X) (λ ∈ (0, 1)). Because Z ′′ has
the same property as Z ′, we have:

IB2ssl =
λ

2
∗ (H(Z ′) +H(Z ′′))− 1

2
∗ (H(Z ′|X) +H(Z ′′|X)). (17)

Regardless of the effect of coefficients, an intuitive understanding to Equation (16) and (17) is: the
common goal of IB1ssl and IB2ssl is to learn the most informative part of raw dataX and remove the
redundant information from it. Although IB1ssl and IB2ssl have consistent optimization objectives,
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they have a minor difference at the minimization term: one is to minimize H(Z ′, Z ′′) and the other
is to minimize H(Z ′|X) + H(Z ′′|X). It implies that IB1ssl replies more on the choice of pre-
defined graph augmentation strategies, while IB2ssl is not limited to graph augmentation strategies.
In a summary, if we aim to select the most suitable graph augmentation strategies, IB1ssl is more
helpful; but if we want to avoid the bad impact of an improper choice of graph augmentation, IB2ssl
is better than IB1ssl.

A.4 DATASETS

For the node classification task, we utilize some commonly-used benchmarks in the experiments, in-
cluding four citation networks (Cora, Citeseer, Pubmed, and ogbn-arxiv) for the transductive single-
label node classification task, as well as the Protein-Protein Interaction dataset (PPI) for the inductive
multi-label node classification task. In the citation networks, each node represents a paper whose
features are topic types (Cora, Citeseer, and Pubmed) or are a vector obtained by averaging the
embeddings of words in its title and abstract (ogbn-arxiv), and each edge represents the citation
relationship between papers. In the PPI dataset, there are 24 graphs. Each node in the graphs of PPI
denotes a protein with biological features, and each edge denotes the interaction between proteins.
The details of the datasets are in Table 5.

For the graph classification task, we use four datasets including NCI1 (small molecules), PROTEINS
(small molecules), MUTAG (bioinformatics), and IMDB-B (social networks). Their detailed infor-
mation is shown in Table 6.

Table 5: Details of datasets for node classification task.
Datasets # Nodes # Edges # Features # Classes

Cora 2,708 10,556 1,433 7
Citeseer 3,327 9,228 3,703 6
Pubmed 19,717 88,651 500 3

ogbn-arxiv 169,343 1,166,243 128 40
PPI (24 graphs) 56,944 818,716 50 121(multi-label)

Table 6: Details of datasets for graph classification task.

Datasets # Graphs # Avg. Nodes # Avg. Edges # Classes
NCI1 4110 29.87 32.30 2

PROTEINS 1113 39.06 72.82 2
MUTAG 188 17.93 19.79 2
IMDB-B 1000 19.77 96.53 2

A.5 EXPERIMENTAL SETUPS

Under the contrastive setting, we use data augmentation strategies, i.e., edge removing and node
feature masking, to generate the new graphs G̃1 = (A′,X ′) and G̃2 = (A′′,X ′′). For the transduc-
tive task, we use a classical two-layer GCN model (Kipf & Welling (2016)), whose message passing
form is Eq. (1), as the encoder of GLATE. For the inductive task, the encoder model is a two-layer
GraphSAGE model (Hamilton et al. (2017)). Its message passing process can be formalized as:

Zki = σ
(
W · CONCAT(Zk−1i ,AGGREGATE({Zk−1j , j ∈ N (i)}))

)
(18)

where Z0
i = Xi, σ denotes the activation function, N (i) denotes the neighbors of node i, the

aggregation function AGGREGATE(·) can employ arbitrary aggregators such as GCN, Mean,
LSTM or Pool. In experiments, we consistently choose GCN as the aggregator for all methods.

To evaluate the performance of the GLATE, we use a logistic regression model with a one-vs-rest
classifier framework for the downstream classification tasks. The size of both the hidden layer
representations and the node representations are set to 256 for the transductive task and 512 for the
inductive task. The temperature’s initial value τinitial is set as 0.8 and τ will decrease every 20
epochs until τlower = 0.2 in all the experiments of GLATE. The model runs 200 epochs and 100
epochs for the transductive and inductive tasks, respectively.
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A.6 MORE EXPERIMENTS

A.6.1 THE GENERALITY OF DYNAMIC TEMPERATURE ESTIMATION

Considering the dominant role of InfoNCE objectives in GCL, we believe that deep insights into
the temperature in InfoNCE objectives will have an important impact on the development of GCL.
To validate our method’s generality, we conduct experiments for another GCL method GraphCL
using the InfoNCE objective on four graph datasets. The results of the graph classification task are
shown in Table 7 (“Improved GraphCL” denotes a new GraphCL method using dynamic temperature
estimation). We can see that the dynamic temperature estimation indeed brings positive effects to
GraphCL.

Table 7: Results on the graph classification task. “Improved GraphCL” is a new GraphCL method
using dynamic temperature estimation.

Methods NCI1 PROTEINS MUTAG IMDB-B
node2vec 54.89±1.61 57.49±3.57 72.63±10.20 -
sub2vec 52.84±1.47 53.03±5.55 61.05±15.80 55.26±1.54

graph2vec 73.22±1.81 73.30±2.05 83.15±9.25 71.10±0.54
InfoGraph 76.20±1.06 74.44±0.31 89.01±1.13 73.03±0.87
GraphCL 77.87±0.41 74.39±0.45 86.80±1.34 71.14±0.44

Improved GraphCL 78.22±0.59 74.58±0.66 89.27±0.15 71.20±0.35

A.6.2 TIME COMPLEXITY ANALYSIS

Because τ decreases every 20 epochs, compared with GRACE, the extra time cost for computing a
new τ ’s value is minor. When computing the full negatives, GLATE’s time complexity is quadratic
in the size of the input graph per epoch (O(N2)). When computing the sampled negatives (we denote
the number of sampled negatives as k), GLATE’s time complexity is linear in the size of the input
graph per epoch (O(kN )).

We also record the total running time of the two most representative baselines and GLATE in Table
8. We run all experiments on NVIDIA GeForce GTX 1080 Ti. As GLATE relies on less training
epochs to achieve competitive results than GRACE and BGRL, it spends less training time than the
other baselines.

Table 8: Time costs of GRACE, BGRL, and GLATE.

Methods Cora Citeseer Pubmed
GRACE 6.7 seconds 11.2 seconds 207.0 seconds
BGRL 6.3 seconds 8.1 seconds 149.7 seconds
GLATE 3.9 seconds 5.9 seconds 28.6 seconds

A.6.3 EXPERIMENTAL RESULTS ON THE OTHER GRAPH DATASETS.

Table 9: Results on the datasets of Amazon and Coauthor.
Methods Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

DGI 83.95±0.47 91.61±0.22 92.15±0.63 94.51±0.52
GMI 82.21±0.31 90.68±0.17 OOM OOM

MVGRL 87.52±0.11 91.74±0.07 92.11±0.12 95.33±0.03
GRACE 87.46±0.22 92.15±0.24 92.93±0.01 95.26±0.02

GCA 88.94±0.15 92.53±0.16 93.10±0.01 95.73±0.03
BGRL 89.68±0.31 92.87±0.27 93.21±0.18 95.56±0.12
GLATE 89.96±0.20 93.12±0.14 93.01±0.27 95.97±0.08
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We evaluate GLATE’s performance on the datasets of Amazon-Computers, Amazon-Photo,
Coauthor-CS, and Coauthor-Physics, which are also used in GCA. The graphs in these datasets
are larger than those in Cora and Citeseer. For example, there are totally 13,752 nodes and 245,861
edges in the graph of Amazon-Computers; there are totally 34,493 nodes and 247,962 edges in the
graph of Coauthor-Physics. The experimental results are shown in Table 9. We can see that GLATE
outperforms GRACE and is competitive with BGRL on the four datasets.

A.6.4 SENSITIVITY ANALYSIS

We analyze the effects of different hyperparameters p1 and p2 (p1, p2 are the probability of removing
edges and masking features) for GLATE’s performance. We plot the accuracy score’s results on the
datasets of Cora, Citeseer, and Pubmed in Figure 5. Although GLATE’s best results occur at different
locations (e.g., p1 = p2 = 0.8 for Citeseer, p1 = 0.1 and p2 = 0.4 for Pubmed) in different datasets,
we note that the average of the difference between peak and valley performance values is less than
9 percent. It indicates that GLATE is not very sensitive to the two hyperparameters. Therefore,
GLATE is robust to p1 and p2.

(a) Cora (b) Citeseer (c) Pubmed

Figure 5: GLATE’s performance with different values of hyperparameters p1 and p2.

Table 10: GLATE’s performances with different temperatures under different contrastive view.

p1 = 0.9 p1 = 0.8 p1 = 0.6 p1 = 0.4 p1 = 0.2

p2 = 0.9

82.26 (1.0) 83.35 (1.0) 84.27 (1.0) 83.58 (1.0) 83.19 (1.0)
83.35 (0.8) 84.02 (0.8) 82.75 (0.8) 84.46 (0.8) 83.95 (0.8)
84.18 (0.6) 82.47 (0.6) 84.66 (0.6) 80.35 (0.6) 83.26 (0.6)
83.51 (0.4) 83.83 (0.4) 83.12 (0.4) 82.40 (0.4) 84.92 (0.4)
82.50 (0.2) 83.88 (0.2) 82.89 (0.2) 85.33 (0.2) 84.06 (0.2)

p2 = 0.8

84.52 (1.0) 83.93 (1.0) 84.92 (1.0) 81.85 (1.0) 83.95 (1.0)
82.73 (0.8) 86.07 (0.8) 82.03 (0.8) 81.90 (0.8) 83.37 (0.8)
83.46 (0.6) 83.79 (0.6) 81.20 (0.6) 82.68 (0.6) 82.54 (0.6)
82.20 (0.4) 82.75 (0.4) 82.20 (0.4) 83.69 (0.4) 83.51 (0.4)
83.90 (0.2) 84.32 (0.2) 82.73 (0.2) 84.55 (0.2) 84.39 (0.2)

p2 = 0.6

83.39 (1.0) 83.74 (1.0) 84.11 (1.0) 82.52 (1.0) 81.53 (1.0)
84.36 (0.8) 82.52 (0.8) 82.40 (0.8) 83.00 (0.8) 82.73 (0.8)
83.97 (0.6) 83.33 (0.6) 84.13 (0.6) 82.84 (0.6) 82.29 (0.6)
83.69 (0.4) 85.40 (0.4) 84.52 (0.4) 84.73 (0.4) 84.18 (0.4)
83.19 (0.2) 83.99 (0.2) 83.00 (0.2) 82.66 (0.2) 84.39 (0.2)

p2 = 0.4

83.33 (1.0) 84.89 (1.0) 85.06 (1.0) 84.52 (1.0) 82.66 (1.0)
82.63 (0.8) 83.74 (0.8) 84.27 (0.8) 84.11 (0.8) 83.72 (0.8)
83.51 (0.6) 84.52 (0.6) 82.52 (0.6) 84.48 (0.6) 84.78 (0.6)
84.41 (0.4) 84.29 (0.4) 81.41 (0.4) 84.70 (0.4) 85.18 (0.4)
82.84 (0.2) 84.78 (0.2) 81.76 (0.2) 84.09 (0.2) 83.42 (0.2)

p2 = 0.2

83.81 (1.0) 80.51 (1.0) 83.38 (1.0) 82.33 (1.0) 83.16 (1.0)
82.80 (0.8) 84.20 (0.8) 84.80 (0.8) 83.69 (0.8) 82.38 (0.8)
82.75 (0.6) 82.86 (0.6) 84.52 (0.6) 83.97 (0.6) 82.66 (0.6)
83.76 (0.4) 85.40 (0.4) 82.39 (0.4) 83.19 (0.4) 84.27 (0.4)
84.46 (0.2) 82.31 (0.2) 81.72 (0.2) 85.08 (0.2) 83.53 (0.2)
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Moreover, we evaluate GLATE’s performance using different selections of τinitial under different
initial contrastive views. The results on Cora are shown in Table 10 (p1 and p2 denote the rate of
removing edges and masking features, respectively; the number in square brackets is the selected
value of τinitial). We can see that using high τinitial (such as 0.6, 0.8, and 1.0) is better when p1
and p2 are large (top left corner), while using low τinitial is more suitable to the opposite situation
(bottom right corner). As the lower-bound of τ is fixed as 0.2, we think it is reasonable because a
wider adjustable range of temperatures is helpful to GLATE to learn from more noisy data.
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