BoLA: Block-wise Lottery Ticket Adaptation for Large Language Models

Anonymous ACL submission

Abstract

We propose Block-wise Lottery Ticket
Adaptation (BoLA), a novel and simple sparse
fine-tuning framework designed to enhance
parameter efficiency in adapting large language
models (LLMs) to new domains. Unlike
conventional parameter-efficient fine-tuning
(PEFT) methods such as LoRA and DoRA,
which rely on dense adaptation, BoLA intro-
duces a block-wise sparse selection mechanism.
This mechanism searches for and updates only
a subset of the parameters that are relevant
for domain-specific learning. By integrating
lottery ticket-style search with block-level
granularity, BoLA mitigates catastrophic
forgetting and enables interpretable, efficient
adaptation while remaining compatible with
existing PEFT techniques. Experiments on the
math and commonsense reasoning benchmark
demonstrate that BoLA achieves competitive
performance with LoRA and DoRA. Our
experiment code is available at https://
anonymous. 4open.science/r/peft-B728.

1 Introduction

With the advent of large language models (LLMs),
itis no longer necessary to train separate models for
each individual NLP task. Instead, a single general-
purpose model can perform a wide range of tasks
simply by providing suitable instructions. It is well-
established that the performance of these models
follows empirical scaling laws: as the number of
parameters increases, model quality improves ac-
cording to a power-law relationship (Kaplan et al.,
2020). However, training such LLMs requires mas-
sive computational resources, imposing significant
demands in terms of hardware and energy consump-
tion. For example, if the number of trainable pa-
rameters is ¢, the model state is 16 bits, and the
optimizer state is 32 bits, then 16 x ¢ bytes of
computing resources are required (Suhoi, 2024).
Consequently, training an LLM with 8B parame-
ters typically requires approximately 128 GB or

d d
W, € RF%m

Fixed Parameters W, € Rkxnxm

W e R4

Sparse Parameters
AW € R4

x €R?

Figure 1: Overview of the proposed BoLA, which con-
structs trainable sparse weights AW € R%*4 for fine-
tuning, where W are block-wise score weights, and W,
are block-wise value weights. Blue indicates frozen pa-
rameters, red indicates trainable parameters, and white
indicates zero parameters.

more of GPU memory. This substantial memory
footprint poses a challenge for researchers and en-
gineers attempting to fine-tune such models for
specific domains or tasks.

To address this issue, parameter-efficient fine-
tuning (PEFT) methods (Houlsby et al., 2019) have
been proposed, that fine-tune pre-trained models us-
ing only a minimal number of trainable parameters.
Among these, reparameterized PEFT approaches
such as LoRA (Hu et al., 2022) and DoRA (Liu
et al., 2024) employ low-rank decomposition to re-
duce the number of trainable parameters. Moreover,
since these methods do not alter the model archi-
tecture, they have gained significant popularity due
to their comparable performance to full fine-tuning
but with reduced GPU memory requirements. No-
tably, QLoRA (Dettmers et al., 2023) enables the
fine-tuning of 8B-scale LLMs using as little as 24
GB of GPU memory, depending on the precision
and optimization techniques employed. These ad-
vancements significantly improve the accessibility
and efficiency of adapting large-scale models to a

https://anonymous.4open.science/r/peft-B728
https://anonymous.4open.science/r/peft-B728
https://anonymous.4open.science/r/peft-B728

wide range of domains and tasks.

Since PEFT methods are dense methods that update
all parameters of the target module, they are prone
to catastrophic forgetting (Ramasesh et al., 2022;
Dong et al., 2024; Luo et al., 2025), a phenomenon
in which the pre-trained knowledge of the original
model is overwritten. However, it has been found
that sparse methods (Panda et al., 2024; Xu and
Zhang, 2024; Rios et al., 2025) also work well.
Sparse methods offer several features over dense
methods:

* They update only a specified subset of parame-
ters, minimizing contamination of the original
weights and helping to avoid catastrophic for-
getting.

» They provide interpretability by identifying
which parameters encode knowledge relevant
to the target task or domain.

Sparse methods typically adapt models through a
two-stage pipeline consisting of first searching for
the optimal parameter subset, and then fine-tuning
those parameters. However, this search phase intro-
duces additional computational overhead, increas-
ing the complexity of implementation.

To tackle this problem, we propose Block-wise
Lottery Ticket Adaptation (BoLLA) as shown in Fig-
urel, which is designed to simultaneously search
for and update block-wise target parameters, in-
spired by Lottery Ticket Hypothesis (LTH) (Fran-
kle and Carbin, 2019; Ramanujan et al., 2020). We
evaluate BoLA across several language models and
domains, demonstrating the relationship between
training domains and training parameters through
score maps. The experimental results show that
BoLA is highly compatible with LoRA and DoRA,
and can serve as a substitute for them despite being
a sparse method. The sparsity of BoLA minimizes
contamination of the original weights and helps
to avoid catastrophic forgetting. Furthermore, by
leveraging score maps, we show that the number
of trainable parameters required tends to increase
as the domain data becomes more distant from the
distribution trained by the pretrained model. The
summary of our contributions are as follows:

* We introduce BoLA as a new and simple
sparse-PEFT method capable of mitigating
catastrophic forgetting during model merging,
which is difficult to achieve with dense-PEFT
methods such as LoORA and DoRA.

* We demonstrate that BoLA can provide model
interpretability by making it easier to identify
where domain-specific knowledge is acquired.

* We demonstrate that BoLA is highly compati-
ble with LoRA and DoRA and can be used as
a substitute for them.

2 Related Works

Lottery Ticket Hypothesis (LHT) (Frankle and
Carbin, 2019) posits that within a randomly initial-
ized neural network, there exist subnetworks that,
when trained in isolation, can achieve test accuracy
comparable to that of the original network. This
hypothesis enables pruning pretrained models to
arbitrary sizes. These subnetworks, called winning
tickets, are identified by examining the magnitude
of the trained dense weights to prune unimportant
connections (Frankle and Carbin, 2019; Ramanu-
jan et al., 2020). Several more-efficient methods
have been proposed to identify winning tickets ear-
lier and more effectively during the dense training
phase (Chen et al., 2022; Yuan et al., 2025). Meth-
ods that perform training and pruning simultane-
ously have also been proposed (You et al., 2025).
Parameter-Efficient Fine-Tuning (PEFT) meth-
ods (Houlsby et al., 2019) are designed to reduce
the high expense of fine-tuning large language mod-
els. Since the number of trainable parameters
directly affects GPU memory consumption dur-
ing training (Suhoi, 2024), PEFT methods attempt
to reduce the number of trainable parameters us-
ing various techniques. These methods can be di-
vided into several categories (Han et al., 2024),
among which reparameterized PEFT is notable
for its high performance and lack of extra infer-
ence burden. Reparameterized PEFT represents
the change in fine-tuned weight W’ change with
W' = W, + AW. Moreover, the storage cost is
reduced because it is sufficient to store only the
weights AW. We further classify reparameterized
PEFT into dense-PEFT and sparse-PEFT, based on
whether trainable weights AW are constructed as
a dense or sparse matrix.

Dense-PEFT employs a dense matrix for train-
able weights AW € R%*¢. LoRA (Hu et al.,
2022) applies low-rank matrix decomposition to
approximate AW = BA, where B € R?™*" and
A € R™ 9. The rank r is much smaller than
the dimension d, which leads to a reduction in
the number of trainable parameters from 2rd to
d? where r<d. DoRA (Liu et al., 2024) decom-

poses AW into its magnitude and direction as
AW = mAW'/||AW’||, thereby enhancing per-
formance by bridging the gap between the learning
patterns of full fine-tuning (Full-FT) and LoRA
while maintaining a low computational cost. Vari-
ants of LoRA (Edalati et al., 2022; Zhang et al.,
2023; Kopiczko et al., 2024; Hayou et al., 2024)
have also been proposed. Additionally, methods to
construct the trainable weight AW using Fourier
transforms (?Gao et al., 2024) or specially designed
operations have been proposed (Jiang et al., 2024;
Tan et al., 2024). These dense-PEFT methods up-
date all parameters of the target module and leads
to catastrophic forgetting (Ramasesh et al., 2022;
Dong et al., 2024; Luo et al., 2025). Therefore, it is
not suited for model merging that combines models
from multiple domains.

Sparse-PEFT employs a sparse matrix for train-
able weights AW € R*?. A sparse matrix is a
matrix in which most elements are zero. LoTA
(Panda et al., 2024) introduces a sparse function
to build AW = Sparse(I, V') where I € R* and
V € R* indicate indices and values respectively.
The sparse function constructs AW from a set of
indices I and corresponding values V, represent-
ing only non-zero entries, thereby inducing spar-
sity. LoTA (Panda et al., 2024) identifies the index
through lottery ticket scores obtained in a prior
stage before fine-tuning. Although SpaRTA (Rios
et al., 2025) randomly select indices, they similarly
require a prior stage to identify and update them
before fine-tuning. These sparse-PEFT methods
require computational or design cost to determine
which parameters to update before fine-tuning.
Our method simultaneously performs the search
and update of trainable parameters inspired by LTH.
Therefor it does not require a prior stage to identify
indices and can be easily applied as a replacement
for popular dense-PEFT methods such as LoRA
and DoRA. To the best of our knowledge, this is the
first PEFT framework that simultaneously searches
for and updates target parameters. We validate the
performance and efficacy of our method through
comprehensive experiments.

3 BoLA: Our Sparse PEFT

Figure 1 introduces our newly proposed sparse-
PEFT, Block-wise Lottery Ticket Adaptation
(BoLA). To mitigate the computational burden
of individually identifying important parameters,
BoLA partitions the weights into several blocks

and conducts exploration at the block level, as illus-
trated in Figure 1. BoLA searches for and updates
block-wise target parameters, also known as lottery
tickets (Frankle and Carbin, 2019), based on the
block-wise magnitude of sparse weights. BoLA
employs the reparametrization PEFT framework,
where the fine-tuned weights W/ € R%*9 can be
represented as:

W' =W, + AW, 1

where W, € R*? is the frozen pre-trained

weights, ATV € R* is the trainable block sparse
weights, d is the dimension of input and output. As
depicted in Figure 1, the sparse block weight is one
in which nonzero elements are clustered into dense
blocks, while the remainder consists of zero blocks.
To construct sparse weights, both the values V' and
their corresponding insertion indices [are required.
In this approach, since the sparse weights are con-
structed at the block level, the trainable weight
AW can be represented as:

AW = BlockSparse(/, V))

where BlockSparse(/, V') is a function that gener-
ates a block-sparse weight given indices I € R”
and values V' € RF*(d/n)x(d/m) 1p this context,
k denotes the number of trainable blocks, and n
and m specify the division numbers along the input
and output dimensions, respectively. The values
with the same position are accumulated. Both [
and V are derived from trainable score weights

W, € RFX7Xm and trainable block weights W, €
REX (d/n)x(d/m) as:

I = arg max(Wy), 3)
nxm
V=W, “)

where arg max(-) returns the index of the maxi-
mum value. Equation 3 identifies the top block po-
sitions with the highest scores across the n x m grid
for each candidate in W, € RF*"*™ where each
score reflects the importance of a block. Assuming
that blocks with larger magnitudes correspond to
more important block parameters, we identify the
top-k indices I € R by computing the arg max
over W, € RFX"X™ along with n. x m dimension,
which encodes the magnitude of each block. The
corresponding values to be inserted at these posi-
tions are derived from W, € R¥*(d/n)x(d/m) That
is, the indices are obtained from Wy, while the val-
ues themselves are sourced from W,,. The same

Forward

Figure 2: Illustration of our straight through estimator
with AW. The non-trainable sparse blocks are set to
zero during the forward pass, and set to one during the
backward pass to allow gradients.

block can be selected multiple times, in which case
its associated values are cumulatively aggregated.
In order to ensure that gradients can flow into Wy
by assigning it the role of a magnitude M, equation
1 can be rewritten as:

W' =W, + Mo AW, (5)
M=) Growf, (6)
k

where © denotes the element-wise (Hadamard)
product and the matrix G € R *"*™) i defined
to scale the selected blocks by a scalar factor .
The weights W are initialized using a uniform
Kaiming distribution (He et al., 2015), while W, is
initialized to zero. This initialization ensures that
the trainable weights AW start from zero, similar
to LoRA variants (Hu et al., 2022; Edalati et al.,
2022; Zhang et al., 2023; Kopiczko et al., 2024;
Hayou et al., 2024; Liu et al., 2024), which is key
for stable training (Liao et al., 2023).

Since this involves a sparse parameter update, gra-
dients do not propagate through the score parame-
ters W outside the top-k selection. Inspired by the
motivation behind the Edge-popup algorithm (Ra-
manujan et al., 2020), we adopt straight-through
estimation (Bengio et al., 2013) to allow gradients
to flow through all score parameters, including
those not selected in the forward pass. This en-
ables dynamic block selection during training. In
the backpropagation process, as shown in Figure 2,
the non-trainable sparse blocks are set to one:

Vw.L =Vl AW, (7

AW, if (i) € I,

1.0 if otherwise,

then it allows gradients to propagate seamlessly
even through blocks that do not contain any as-
signed values. This mechanism not only enables
gradient flow through all parameters W, but also
allows the model to dynamically re-evaluate and
update block importance throughout training, lead-
ing to more flexible and adaptive sparse representa-
tions.

The number of trainable parameters ¢ = knm +
kdd/nm = k(nm+ dd/nm) is determined by the
weights W, € RFX"X™m and W, € RFx(d/n)x(d/m)
where n and m are block size and k is the num-
ber of trainable blocks. Setting nm = d yields
¢ = k(d + d) = 2kd such that the number of
trainable parameters is similar to ¢ = 2rd as in
LoRA (Hu et al., 2022). As a result, this formula-
tion enables straightforward replacement of LoRA,
thereby positioning BoLA as a compatible and effi-
cient alternative for parameter-efficient fine-tuning.

4 Experiments

We conduct a series of experiments to demonstrate
the effectiveness of our method across various
language models and tasks. Specifically, we use
RoBERTa as a small-scale model and LLaMA3 as
a large-scale model. For evaluation, we consider
datasets from the GLUE benchmark, along with
benchmarks targeting mathematical and common-
sense reasoning. We adopt LoRA (Hu et al., 2022),
DoRA (Liu et al., 2024), and SpaRTA (Rios et al.,
2025) as strong baselines. To ensure a fair com-
parison, we configured the hyperparameters such
that the number of trainable parameters matched
that of LoRA and SpaRTA. However, in DoRA,
the number of trainable parameters was increased
by the dimension d of the magnitude. Further-
more, we maintained hyperparameter settings as
consistent as possible across different experimen-
tal conditions to facilitate reproducibility (see Ap-
pendix A for details). All experiments are con-
ducted on NVIDIA H100 80GB GPUs. We used
four GPUs for RoBERTa-125M and eight GPUs
for Llama3-8B. RoBERTa-125M is trained using
float32 precision owing to its smaller size, while
LLaMA3-8B is trained using bfloat16 precision to
reduce memory consumption and accelerate train-
ing on H100 GPUs. All experiments are imple-
mented using PyTorch, Hugging Face Transform-

Method #Params. MNL SST2 MRPC CoLA OQNLI QQP RTE SST-B Avg.
Full-FT 125M 87.6 94.7 88.7 62.1 929 91.8 783 90.6 859
LoRA 03M 875 951 89.5 63.6 931 909 78.0 90.9 86.1
DoRA 03M 852 944 87.8 648 924 885 79.8 90.9 855
SpaRTA 03M 869 95.2 89.7 61.1 925 905 755 90.8 853
BoLA 03M 842 936 89.0 60.1 90.7 883 75.8 89.5 83.9

Table 1: RoBERTa-125M with different adaptation methods on the GLUE benchmark. #Params. indicates that
the number of trainable paramters excluded with classification head module. We report the overall (matched and
mismatched) accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for
other tasks. For all metrics, higher values indicate better performance. The highest values are indicated in bold.

Method #Params. MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg.
Base 22.8 6.3 25.1 20.5 13.0 105 164
LoRA 56.6M 48.0 21.7 79.5 13.8 76.2 51.7 485
DoRA 57.4M 51.8 234 77.7 15.7 77.2 549 50.1
SpaRTA 56.6M 52.0 24.3 82.5 10.2 80.5 51.0 50.1
BoLA 56.6M 52.8 19.9 87.1 9.1 81.1 549 50.8

Table 2: Llama3-8B with different adaptation methods on the math benchmark. #Params. indicates that the number
of trainable paramters. We report the accuracy on each dataset and its higher value is better for all metrics. The

highest values are indicated in bold.

Method #Params. BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.
Base 512 632 335 93 450 27.4 27.6 23.6 35.1
LoRA 56.6M 750 794 80.0 96.0 85.6 90.4 79.4 85.2 839
DoRA 57.4M 746 893 799 955 85.6 90.5 80.4 85.8 84.1
SpaRTA 56.6M 737 877 79.1 953 84.1 91.8 79.8 84.0 844
BoLA 56.6M 744 87.1 79.7 964 85.2 91.5 79.4 82.1 84.5

Table 3: Llama3-8B with different adaptation methods on the commonsense benchmark. #Params. indicates that
the number of trainable paramters. We report the accuracy on each dataset and its higher value is better for all
metrics. The highest values are indicated in bold. Note that HS and WG are abbreviations for HellaSwag and

WinoGrande, respectively.

ers (Wolf et al., 2020), and the PEFT (Mangrulkar
et al., 2022) library.

4.1 GLUE Benchmark

We evaluate BoLLA in comparison with LoRA,
DoRA, and SpaRTA using the relatively small lan-
guage model RoBERTa-125M (Liu et al., 2019)
for English GLUE benchmark (Wang et al., 2018).
Although GLUE consists of nine downstream tasks,
consistency with previous work (Hu et al., 2022),
we report the results on eight downstream tasks and
their average. We also report the number of train-
able parameters, excluding the classification head
to ensure a fair comparison of adaptation modules.
We present the results in Table 1. The results for
each run are taken from the best epoch. On av-
erage, BoLA performed slightly worse than Full-
FT. However, it achieved competitive performance

with Full-FT on MRPC and SST-B. This limitation
arises from the fact that BoLA can update only kd
parameters, which hinders the effective incorpora-
tion of domain knowledge into ROBERTa-125M.

4.2 Math and Commonsense Benchmark

We evaluate BoLA in comparison with LoRA,
DoRA, and SpaRTA using the LLM LLaMA3-8B
(Llama-Team, 2024) and benchmarks for math and
commonsense reasoning. The math and common-
sense benchmarks consist of eight and six tasks,
respectively, each with predefined training and test-
ing sets. Following the experimental setup of (Hu
et al., 2023), we merge the training data from all
eight commonsense tasks to construct a unified
training dataset and evaluate the individual test-
ing dataset for each task. We use the math 10K

Sparse Parameters
AW € R¥X4

| [

Figure 3: Transition diagram of block shapes deter-
mined by the hyperparameters n and m. Red and white
blocks represent selected and unselected parameters,
respectively. We define configurations as “structured”
when eithern = dorm = d

and commonsense 170K datasets' to fine-tune the
models.

The results of the math benchmark are shown in Ta-
ble 2. BoLA demonstrated improved performance
over the baseline on the MultiArith, AddSub, Sin-
gleEq, and SVAMP tasks. On average, BoLA
achieves performance comparable to DoRA and
SpaRTA. The results of the commonsense bench-
mark are shown in Table 3. BoLA demonstrated
improved performance over the baseline on the HS
and WG tasks. On average, BoLA achieves higher
performance than DoRA and SpaRTA. In the case
of commonsense tasks, the base model already per-
forms reasonably well, and thus no performance
degradation was observed across any of the PEFT
methods. It is observed that, in contrast to dense ap-
proaches, sparse methods benefit more significantly
from larger model sizes.

5 Ablation Study

In this section, we introduce the impact of hyper-
parameter in BoLA.

5.1 Structured vs. Unstructured

The hyperparameters n and m determine the num-
ber of block divisions and the input and output
dimensions, thereby defining the shape of the train-
able block weights. Figure 4 presents the perfor-
mance trends as n is varied under the constraint
nm = d. In this study, we define configurations as
“structured” when either n = d or m = d, meaning
that block weights span the full input or output di-

"https://github.com/AGI-Edgerunners/LLM-Adapters

95
907 p e /’;'
85
80 =

o

e

7 75

[-4
704 —o— MNLI

SST-2
—— MRPC
651 —4— ColA
—¥— QONLI
607 —— QQP
_/ RTE
55 —#— STS-B

T T T T T T T T T
0 100 200 300 400 500 600 700 800
Block Size n

Figure 4: Evaluation results for various block sizes n
for RoOBERTa-125M on GLUE tasks. The horizontal
axis corresponds to size m, which is varied from 1 to
d = 768 under the constraint that nm = d = 768
remain constant. Each marker represents the evaluation
result for a downstream task included in the GLUE
benchmark.

mension. All other configurations are considered
“unstructured”.

We evaluate the impact of block weight shapes
on RoBERTa-125M performance using the GLUE
benchmark, as shown in Figure 4. Overall, it is
observed that increasing the block size n generally
leads to improved performance. This indicates that
a higher output dimensionality plays a crucial role,
and therefore, it is preferable to set the value of n
to its maximum. Since the structured configuration
with the maximum n performs well across many
downstream tasks, it is more effective to focus on
tuning the number of base blocks k and the scaling
factor . This is analogous to tuning the rank r
and scaling factor v in methods such as LoRA and
DoRA.

6 Analysis of Sparse Update

In this section, we present two complementary ben-
efits of sparse-PEFT compared with dense-PEFT,
namely, enhanced interpretability and reduced per-
formance dropout during model merging.

6.1 Interpretability of Model Structure

The sparsity of BoLA enhances model interpretabil-
ity by making it easier to identify where domain-
specific knowledge is acquired. Figure 5 shows
the Llama3-8B (Llama-Team, 2024) weights AW
of LoRA and BoLA, trained on math and com-
monsense datasets. LORA updates all parameters,
whereas BoL A searches for and updates only a

o LoRA Delta Weight for ‘base_model.model.model layers 31.self_attn.k_proj’

0.0004

0.0003

0.0002

400 0.0001

0.0000

~0.0001

800 ~0.0002

~0.0003

500 1000 1500 2000 2500 3000 3500 4000
Out Features

, BOLA Delta Weight for ‘base_model.model.model Jayers 31.self attn.k_proj'

1000

500 1000 1500 2000 2500 3000 3500 4000
Out Features

LoRA Delta Weight for 'base_model.model.model.layers.31.self_attn.k_proj'

0.003

0.002

0.001

0.000

~0.001

-0.002

500 1000 1500 2000 2500 3000 3500 4000
Out Features

BoLA Delta Weight for 'base_model.model.model.layers.31.self_attn.k_proj'

1000

500 1000 1500 2000 2500 3000 3500 4000
Out Features

Figure 5: Visualization map of the trained weights AW in the last layer of Llama3-8B. The top shows LoRA
weights and the bottom shows BoL A weights. The maps on the left and right were trained on mathematical and
commonsense reasoning data, respectively. Color intensity indicates the magnitudes of the weights. In BoLA,
although the number of selectable blocks is k£ = 32, it may appear to be fewer due to index duplication.

small, important subset. Therefore, in BoLA, it
becomes evident that most of the trainable weights
AW are zero.

BoLA divides the weights into n and m blocks
in the input and output dimensions, respectively,
and only the k& blocks with the highest scores are
selected and updated. Interestingly, BoLA tends
to utilize all of k& blocks for the math domain. In
contrast, BoLA tends to utilize significantly fewer
blocks for the commonsense domain. This suggests
that the model tends to acquire a greater amount
of knowledge in the math domain, where its ini-
tial performance is weaker, while acquiring only
limited knowledge in the commonsense domain,
where it initially performs well.

As shown in Figure 5, while LoRA has full access
to all parameters, BoLA achieves comparable per-
formance by accessing only k/nm = 32/4096 =
0.78% of the total parameters. Therefore, only a
small subset of parameters is crucial for domain-
specific adaptation in LLMs. This observation is
consistent with prior work suggesting that certain
parameters play specialized roles (Yu et al., 2025).

6.2 Sparse Model Merge

One notable property of sparse-PEFT is the mini-
mal overlap between weights trained on different
domains, which contributes to reduced interference
during model merging. LoTA (Panda et al., 2024)
leverages this property to demonstrate that catas-

Figure 6: Performance comparison of model merging on
the math benchmark. Bar plots show the performance of
math-domain LoRA and BoLLA models (filled), and their
counterparts after merging with commonsense-domain
models (hatched).

trophic forgetting can be mitigated during model
merging. Catastrophic forgetting (Ramasesh et al.,
2022; Dong et al., 2024; Luo et al., 2025) refers
to the degradation in performance on previously
learned tasks that occurs when LLMs are fine-tuned
on multiple domains or tasks in a sequential manner.
Figures 6 and 7 show that sparse-PEFT BoL A sim-
ilarly reduces catastrophic forgetting during model
merging. The models used in this table were trained
as described in section 4. In the math benchmark,
LoRA exhibits significantly degraded performance
across all datasets when merging weights trained on
math with those trained on commonsense, resulting
in an average drop of 2.7 points. Notably, Multi-
Arith experiences substantial performance degra-

 ANNNNANNNNNNNNNANNANNNANNN £

NNANNENNANNRNNNNNNNNNNNN 7
> A AERNENARNANANNNN NN

7%
?
7
)

" ANNNNNANNANNANNNNNNNNNNN
" A RNNANNNNNNNNNNNNNNNNNN £ £

J
0,
%,
%
%
o

", OSSN\

P
",

Figure 7: Performance comparison of model merging
on the commonsense benchmark. Bar plots show the
performance of commonsense-domain LoRA and BoLA
models (filled), and their counterparts after merging
with math-domain models (hatched).

dation. In contrast, BoLA exhibits a performance
improvement of 3.6 points on average after merg-
ing, demonstrating its robustness to catastrophic
forgetting. No notable performance degradation
occurs on MultiArith. In the commonsense bench-
mark, LoRA significantly degraded performance
across all datasets when merging weights trained on
math with those trained on commonsense, resulting
in an average drop of 22.1 points. Notably, Hel-
laswag and Winogrande experience substantial per-
formance degradation. In contrast, BoLA exhibits
only a minor performance decline of 2.7 points on
average after merging, demonstrating its robustness
to catastrophic forgetting. No notable performance
degradation occurs on Hellaswag and Winogrande.
BoLLA models trained independently on the math
and commonsense domains can be merged without
significant performance degradation.

Unlike dense-PEFT approaches, which often suf-
fer from catastrophic forgetting and require costly
fine-tuning, sparse-PEFT enables seamless integra-
tion of instruction-following and domain-specific
capabilities. As shown in Figure 8, a key chal-
lenge in domain adaptation using dense-PEFT is
that all parameters are overwritten during training,
potentially erasing the model’s original instruction-
following behavior. In contrast, sparse-PEFT up-
dates only a small subset of parameters, allowing
domain adaptation while preserving the core char-
acteristics of the instruction model.

Furthermore, if the instruction model itself is
trained using sparse-PEFT, subsequent domain-
specific adaptation can be achieved with even fewer
parameter updates. This layered sparsity enables
efficient and modular fine-tuning, making sparse-
PEFT a highly practical approach for developing
locally specialized models.

:’I>

Dense-PEFT:
LoRA, DoRA, ...

Sparse-PEFT:
LoTA, BolA, ...

Fixed Parameters

—

Dense-PEFT:
LoRA, DoRA, ...

—

Sparse-PEFT;
LOTA, BoLA, ...

W e Réxd

Fixed Parameters

Math-Domain

Instruction-Task

Figure 8: Workflow diagram illustrating model devel-
opment using dense-PEFT and sparse-PEFT. During
domain-specific training, dense-PEFT updates all model
parameters, which may lead to overwriting the original
instruct model. In contrast, sparse-PEFT selectively
updates only a small subset of parameters, thereby pre-
serving the instruct model and reducing the risk of unin-
tended changes.

In summary, sparse-PEFT offers a robust and effi-
cient approach to developing domain-specialized
models without compromising the integrity or per-
formance of the base model.

7 Conclusion

This work introduces Block-wise Lottery Ticket
Adaptation (BoLA), as a novel and simple sparse-
PEFT for large language models designed to si-
multaneously search for and update parameters,
a capability not found in previous methods. Fur-
thermore, BoLA is highly compatible with popu-
lar dense-PEFT methods LoRA and DoRA, across
various downstream tasks and model architectures.
Therefore, BoLA serves as a costless alternative
to LoRA and DoRA, as its ability to merge fine-
tuned weights back into the pre-trained model guar-
antees no extra inference overhead. Furthermore,
unlike dense-PEFT, BoLA provides interpretabil-
ity in knowledge acquisition and supports model
merging without catastrophic forgetting. For future
work, we wish to explore the generalizability of our
method in other domains beyond audio and vision.

Limitations

Our PEFT approach demonstrates the potential to
alleviate catastrophe forgetting during model merg-
ing. However, when the characteristics of the target
domains differ significantly, there is no guarantee
that the trained parameters will remain mutually ex-
clusive. As a future direction, we plan to extend the

method to allow users to explore and update critical
parameters within user-specified regions, enabling
more effective control over parameter redundancy.

References

Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. 2013. Estimating or propagating gradients
through stochastic neurons for conditional computation.
Preprint, arXiv:1308.3432.

Xiaohan Chen, Jason Zhang, and Zhangyang Wang.
2022. Peek-a-boo: What (more) is disguised in a ran-
domly weighted neural network, and how to find it effi-
ciently. In International Conference on Learning Rep-
resentations.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetuning
of quantized LLMs. In Thirty-seventh Conference on
Neural Information Processing Systems.

Guanting Dong, Hongyi Yuan, Keming Lu, Cheng-
peng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2024.
How abilities in large language models are affected
by supervised fine-tuning data composition. Preprint,
arXiv:2310.05492.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Par-
tovi Nia, James J. Clark, and Mehdi Rezagholizadeh.
2022. Krona: Parameter efficient tuning with kronecker
adapter. Preprint, arXiv:2212.10650.

Jonathan Frankle and Michael Carbin. 2019. The lot-
tery ticket hypothesis: Finding sparse, trainable neural
networks. Preprint, arXiv:1803.03635.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu,
Bingzhe Wu, Liang Chen, and Jia Li. 2024. Parameter-
efficient fine-tuning with discrete fourier transform.
Preprint, arXiv:2405.03003.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-tuning
for large models: A comprehensive survey. Preprint,
arXiv:2403.14608.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.
LoRA+: Efficient low rank adaptation of large mod-
els. In Forty-first International Conference on Machine
Learning.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
Preprint, arXiv:1502.01852.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference on
Learning Representations.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria, and
Roy Lee. 2023. LLM-adapters: An adapter family for
parameter-efficient fine-tuning of large language mod-
els. In Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pages
5254-5276, Singapore. Association for Computational
Linguistics.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan
Zhang, Haizhen Huang, Furu Wei, Weiwei Deng, Feng
Sun, Qi Zhang, Deqing Wang, and Fuzhen Zhuang.
2024. Mora: High-rank updating for parameter-efficient
fine-tuning. Preprint, arXiv:2405.12130.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. 2024. VeRA: Vector-based random matrix adap-
tation. In The Twelfth International Conference on
Learning Representations.

Baohao Liao, Shaomu Tan, and Christof Monz. 2023.
Make your pre-trained model reversible: From pa-
rameter to memory efficient fine-tuning. Preprint,
arXiv:2306.00477.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. DoRA: Weight-
decomposed low-rank adaptation. In Forty-first Interna-
tional Conference on Machine Learning.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. Preprint,
arXiv:1907.11692.

Llama-Team. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou,
and Yue Zhang. 2025. An empirical study of catas-
trophic forgetting in large language models during con-
tinual fine-tuning. Preprint, arXiv:2308.08747.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.com/
huggingface/peft.

Ashwinee Panda, Berivan Isik, Xiangyu Qi, Sanmi
Koyejo, Tsachy Weissman, and Prateek Mittal. 2024.
Lottery ticket adaptation: Mitigating destructive inter-
ference in llms.

https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://openreview.net/forum?id=moHCzz6D5H3
https://openreview.net/forum?id=moHCzz6D5H3
https://openreview.net/forum?id=moHCzz6D5H3
https://openreview.net/forum?id=moHCzz6D5H3
https://openreview.net/forum?id=moHCzz6D5H3
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://arxiv.org/abs/2310.05492
https://arxiv.org/abs/2310.05492
https://arxiv.org/abs/2310.05492
https://arxiv.org/abs/2212.10650
https://arxiv.org/abs/2212.10650
https://arxiv.org/abs/2212.10650
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2405.03003
https://arxiv.org/abs/2405.03003
https://arxiv.org/abs/2405.03003
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://openreview.net/forum?id=NEv8YqBROO
https://openreview.net/forum?id=NEv8YqBROO
https://openreview.net/forum?id=NEv8YqBROO
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1902.00751
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://doi.org/10.18653/v1/2023.emnlp-main.319
https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://arxiv.org/abs/2306.00477
https://arxiv.org/abs/2306.00477
https://arxiv.org/abs/2306.00477
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/2406.16797
https://arxiv.org/abs/2406.16797
https://arxiv.org/abs/2406.16797

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kem-
bhavi, Ali Farhadi, and Mohammad Rastegari. 2020.
What’s hidden in a randomly weighted neural network?
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and
Ethan Dyer. 2022. Effect of scale on catastrophic for-
getting in neural networks. In International Conference
on Learning Representations.

Jesus Rios, Pierre Dognin, Ronny Luss, and
Karthikeyan N. Ramamurthy. 2025. Sparsity may be
all you need: Sparse random parameter adaptation.
Preprint, arXiv:2502.15975.

Daniil Suhoi. 2024. Efficient deep learning: A compre-
hensive overview of optimization techniques. Hugging
Face Blog.

Wenxuan Tan, Nicholas Roberts, Tzu-Heng Huang, Ji-
tian Zhao, John Cooper, Samuel Guo, Chengyu Duan,
and Frederic Sala. 2024. More fine-tuning with 10x
fewer parameters. In ICML 2024 Workshop on Founda-
tion Models in the Wild.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 353-355,
Brussels, Belgium. Association for Computational Lin-
guistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, and 3 others. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 38—45, Online. Association for Computa-
tional Linguistics.

Jing Xu and Jingzhao Zhang. 2024. Random masking
finds winning tickets for parameter efficient fine-tuning.
Preprint, arXiv:2405.02596.

Haoran You, Baopu Li, Zhanyi Sun, Xu Ouyang, and
Yingyan Celine Lin. 2025. Supertickets: Drawing task-
agnostic lottery tickets from supernets via jointly ar-
chitecture searching and parameter pruning. Preprint,
arXiv:2207.03677.

Mengxia Yu, De Wang, Qi Shan, Colorado J Reed, and
Alvin Wan. 2025. The super weight in large language
models. Preprint, arXiv:2411.07191.

Fei Yuan, Chang Ma, Shuai Yuan, Qiushi Sun, and Lei
Li. 2025. KS-lottery: Finding certified lottery tickets
for multilingual transfer in large language models. In
Proceedings of the 2025 Conference of the Nations of the
Americas Chapter of the Association for Computational

10

Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 9077-9090, Albuquerque, New
Mexico. Association for Computational Linguistics.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. 2023. Adaptive budget allocation for parameter-
efficient fine-tuning. In The Eleventh International Con-
ference on Learning Representations.

https://openaccess.thecvf.com/content_CVPR_2020/html/Ramanujan_Whats_Hidden_in_a_Randomly_Weighted_Neural_Network_CVPR_2020_paper.html
https://openreview.net/forum?id=GhVS8_yPeEa
https://openreview.net/forum?id=GhVS8_yPeEa
https://openreview.net/forum?id=GhVS8_yPeEa
https://arxiv.org/abs/2502.15975
https://arxiv.org/abs/2502.15975
https://arxiv.org/abs/2502.15975
https://huggingface.co/blog/Isayoften/optimization-rush
https://huggingface.co/blog/Isayoften/optimization-rush
https://huggingface.co/blog/Isayoften/optimization-rush
https://openreview.net/forum?id=AzTz27n6O2
https://openreview.net/forum?id=AzTz27n6O2
https://openreview.net/forum?id=AzTz27n6O2
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2405.02596
https://arxiv.org/abs/2405.02596
https://arxiv.org/abs/2405.02596
https://arxiv.org/abs/2207.03677
https://arxiv.org/abs/2207.03677
https://arxiv.org/abs/2207.03677
https://arxiv.org/abs/2207.03677
https://arxiv.org/abs/2207.03677
https://arxiv.org/abs/2411.07191
https://arxiv.org/abs/2411.07191
https://arxiv.org/abs/2411.07191
https://doi.org/10.18653/v1/2025.naacl-long.458
https://doi.org/10.18653/v1/2025.naacl-long.458
https://doi.org/10.18653/v1/2025.naacl-long.458
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

A Hyperparameters

For all experiments, we select the learning rate that achieves the highest validation performance from the
range {le—3, 5e—4, le—4, 5e—5, le—5}, and report the corresponding results.

Hyperparameter

LoRA DoRA SpaRTA BoLA

Epochs
Dropout
Sequence Length
Optimizer

LR

LR Scheduler
Batch Size
Warmup Ratio
Weight Decay
Target Modules
r

(n,m)

k

o

Dropout

30
0.1
512
AdamW
le-3
Linear
64
0.06
0.1

QK

le-3 Se-4 le-3

(24,32)
12,288 8
16 16 4 4
0.1

Table 4: Hyperparameter configurations of LoORA, DoRA, SpaRTA, and BoLA for ROBERTa-125M on the GLUE

benchmark.

Hyperparameter

LoRA DoRA SpaRTA BoLA

Epochs
Dropout
Sequence Length
Optimizer

LR

LR Scheduler
Batch Size
Warmup Ratio
Weight Decay
Target Modules
r

(n,m)

k

o

Dropout

3
0.1
512
AdamW
le-5
Linear
128
0.06
0.0
Q.K,V,U,D
32 32

5e-5 5e-5 le-3

(64,64)
353,894 32
64 64 4 4
0.1

Table 5: Hyperparameter configurations of LoRA, DoRA, SpaRTA, and BoLA for Llama3-8B on the math

benchmark.

11

Hyperparameter | LoORA DoRA SpaRTA BoLA
Epochs 3

Dropout 0.1

Sequence Length 512

Optimizer AdamW

LR le-4 le-4 le-5 Se-5
LR Scheduler Linear

Batch Size 128

Warmup Ratio 0.06

Weight Decay 0.0

Target Modules Q.K,V,U,D

T 32 32

(n,m) (64,64)
k 353,894 32
o 64 64 4 4
Dropout 0.1

Table 6: Hyperparameter configurations of LoRA, DoRA, SpaRTA, and BoL A for Llama3-8B on the commonsense
benchmark.

12

	Introduction
	Related Works
	BoLA: Our Sparse PEFT
	Experiments
	GLUE Benchmark
	Math and Commonsense Benchmark

	Ablation Study
	Structured vs. Unstructured

	Analysis of Sparse Update
	Interpretability of Model Structure
	Sparse Model Merge

	Conclusion
	Hyperparameters

