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Abstract001

We propose Block-wise Lottery Ticket002
Adaptation (BoLA), a novel and simple sparse003
fine-tuning framework designed to enhance004
parameter efficiency in adapting large language005
models (LLMs) to new domains. Unlike006
conventional parameter-efficient fine-tuning007
(PEFT) methods such as LoRA and DoRA,008
which rely on dense adaptation, BoLA intro-009
duces a block-wise sparse selection mechanism.010
This mechanism searches for and updates only011
a subset of the parameters that are relevant012
for domain-specific learning. By integrating013
lottery ticket-style search with block-level014
granularity, BoLA mitigates catastrophic015
forgetting and enables interpretable, efficient016
adaptation while remaining compatible with017
existing PEFT techniques. Experiments on the018
math and commonsense reasoning benchmark019
demonstrate that BoLA achieves competitive020
performance with LoRA and DoRA. Our021
experiment code is available at https://022
anonymous.4open.science/r/peft-B728.023

1 Introduction024

With the advent of large language models (LLMs),025

it is no longer necessary to train separate models for026

each individual NLP task. Instead, a single general-027

purpose model can perform a wide range of tasks028

simply by providing suitable instructions. It is well-029

established that the performance of these models030

follows empirical scaling laws: as the number of031

parameters increases, model quality improves ac-032

cording to a power-law relationship (Kaplan et al.,033

2020). However, training such LLMs requires mas-034

sive computational resources, imposing significant035

demands in terms of hardware and energy consump-036

tion. For example, if the number of trainable pa-037

rameters is ϕ, the model state is 16 bits, and the038

optimizer state is 32 bits, then 16 × ϕ bytes of039

computing resources are required (Suhoi, 2024).040

Consequently, training an LLM with 8B parame-041

ters typically requires approximately 128 GB or042
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Figure 1: Overview of the proposed BoLA, which con-
structs trainable sparse weights ∆W ∈ Rd×d for fine-
tuning, where Ws are block-wise score weights, and Wv

are block-wise value weights. Blue indicates frozen pa-
rameters, red indicates trainable parameters, and white
indicates zero parameters.

more of GPU memory. This substantial memory 043

footprint poses a challenge for researchers and en- 044

gineers attempting to fine-tune such models for 045

specific domains or tasks. 046

To address this issue, parameter-efficient fine- 047

tuning (PEFT) methods (Houlsby et al., 2019) have 048

been proposed, that fine-tune pre-trained models us- 049

ing only a minimal number of trainable parameters. 050

Among these, reparameterized PEFT approaches 051

such as LoRA (Hu et al., 2022) and DoRA (Liu 052

et al., 2024) employ low-rank decomposition to re- 053

duce the number of trainable parameters. Moreover, 054

since these methods do not alter the model archi- 055

tecture, they have gained significant popularity due 056

to their comparable performance to full fine-tuning 057

but with reduced GPU memory requirements. No- 058

tably, QLoRA (Dettmers et al., 2023) enables the 059

fine-tuning of 8B-scale LLMs using as little as 24 060

GB of GPU memory, depending on the precision 061

and optimization techniques employed. These ad- 062

vancements significantly improve the accessibility 063

and efficiency of adapting large-scale models to a 064
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wide range of domains and tasks.065

Since PEFT methods are dense methods that update066

all parameters of the target module, they are prone067

to catastrophic forgetting (Ramasesh et al., 2022;068

Dong et al., 2024; Luo et al., 2025), a phenomenon069

in which the pre-trained knowledge of the original070

model is overwritten. However, it has been found071

that sparse methods (Panda et al., 2024; Xu and072

Zhang, 2024; Rios et al., 2025) also work well.073

Sparse methods offer several features over dense074

methods:075

• They update only a specified subset of parame-076

ters, minimizing contamination of the original077

weights and helping to avoid catastrophic for-078

getting.079

• They provide interpretability by identifying080

which parameters encode knowledge relevant081

to the target task or domain.082

Sparse methods typically adapt models through a083

two-stage pipeline consisting of first searching for084

the optimal parameter subset, and then fine-tuning085

those parameters. However, this search phase intro-086

duces additional computational overhead, increas-087

ing the complexity of implementation.088

To tackle this problem, we propose Block-wise089

Lottery Ticket Adaptation (BoLA) as shown in Fig-090

ure1, which is designed to simultaneously search091

for and update block-wise target parameters, in-092

spired by Lottery Ticket Hypothesis (LTH) (Fran-093

kle and Carbin, 2019; Ramanujan et al., 2020). We094

evaluate BoLA across several language models and095

domains, demonstrating the relationship between096

training domains and training parameters through097

score maps. The experimental results show that098

BoLA is highly compatible with LoRA and DoRA,099

and can serve as a substitute for them despite being100

a sparse method. The sparsity of BoLA minimizes101

contamination of the original weights and helps102

to avoid catastrophic forgetting. Furthermore, by103

leveraging score maps, we show that the number104

of trainable parameters required tends to increase105

as the domain data becomes more distant from the106

distribution trained by the pretrained model. The107

summary of our contributions are as follows:108

• We introduce BoLA as a new and simple109

sparse-PEFT method capable of mitigating110

catastrophic forgetting during model merging,111

which is difficult to achieve with dense-PEFT112

methods such as LoRA and DoRA.113

• We demonstrate that BoLA can provide model 114

interpretability by making it easier to identify 115

where domain-specific knowledge is acquired. 116

• We demonstrate that BoLA is highly compati- 117

ble with LoRA and DoRA and can be used as 118

a substitute for them. 119

2 Related Works 120

Lottery Ticket Hypothesis (LHT) (Frankle and 121

Carbin, 2019) posits that within a randomly initial- 122

ized neural network, there exist subnetworks that, 123

when trained in isolation, can achieve test accuracy 124

comparable to that of the original network. This 125

hypothesis enables pruning pretrained models to 126

arbitrary sizes. These subnetworks, called winning 127

tickets, are identified by examining the magnitude 128

of the trained dense weights to prune unimportant 129

connections (Frankle and Carbin, 2019; Ramanu- 130

jan et al., 2020). Several more-efficient methods 131

have been proposed to identify winning tickets ear- 132

lier and more effectively during the dense training 133

phase (Chen et al., 2022; Yuan et al., 2025). Meth- 134

ods that perform training and pruning simultane- 135

ously have also been proposed (You et al., 2025). 136

Parameter-Efficient Fine-Tuning (PEFT) meth- 137

ods (Houlsby et al., 2019) are designed to reduce 138

the high expense of fine-tuning large language mod- 139

els. Since the number of trainable parameters 140

directly affects GPU memory consumption dur- 141

ing training (Suhoi, 2024), PEFT methods attempt 142

to reduce the number of trainable parameters us- 143

ing various techniques. These methods can be di- 144

vided into several categories (Han et al., 2024), 145

among which reparameterized PEFT is notable 146

for its high performance and lack of extra infer- 147

ence burden. Reparameterized PEFT represents 148

the change in fine-tuned weight W ′ change with 149

W ′ = Wo + ∆W . Moreover, the storage cost is 150

reduced because it is sufficient to store only the 151

weights ∆W . We further classify reparameterized 152

PEFT into dense-PEFT and sparse-PEFT, based on 153

whether trainable weights ∆W are constructed as 154

a dense or sparse matrix. 155

Dense-PEFT employs a dense matrix for train- 156

able weights ∆W ∈ Rd×d. LoRA (Hu et al., 157

2022) applies low-rank matrix decomposition to 158

approximate ∆W = BA, where B ∈ Rd×r and 159

A ∈ Rr×d. The rank r is much smaller than 160

the dimension d, which leads to a reduction in 161

the number of trainable parameters from 2rd to 162

d2 where r≪d. DoRA (Liu et al., 2024) decom- 163
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poses ∆W into its magnitude and direction as164

∆W = m∆W ′/∥∆W ′∥, thereby enhancing per-165

formance by bridging the gap between the learning166

patterns of full fine-tuning (Full-FT) and LoRA167

while maintaining a low computational cost. Vari-168

ants of LoRA (Edalati et al., 2022; Zhang et al.,169

2023; Kopiczko et al., 2024; Hayou et al., 2024)170

have also been proposed. Additionally, methods to171

construct the trainable weight ∆W using Fourier172

transforms (?Gao et al., 2024) or specially designed173

operations have been proposed (Jiang et al., 2024;174

Tan et al., 2024). These dense-PEFT methods up-175

date all parameters of the target module and leads176

to catastrophic forgetting (Ramasesh et al., 2022;177

Dong et al., 2024; Luo et al., 2025). Therefore, it is178

not suited for model merging that combines models179

from multiple domains.180

Sparse-PEFT employs a sparse matrix for train-181

able weights ∆W ∈ Rd×d. A sparse matrix is a182

matrix in which most elements are zero. LoTA183

(Panda et al., 2024) introduces a sparse function184

to build ∆W = Sparse(I, V ) where I ∈ Rk and185

V ∈ Rk indicate indices and values respectively.186

The sparse function constructs ∆W from a set of187

indices I and corresponding values V , represent-188

ing only non-zero entries, thereby inducing spar-189

sity. LoTA (Panda et al., 2024) identifies the index190

through lottery ticket scores obtained in a prior191

stage before fine-tuning. Although SpaRTA (Rios192

et al., 2025) randomly select indices, they similarly193

require a prior stage to identify and update them194

before fine-tuning. These sparse-PEFT methods195

require computational or design cost to determine196

which parameters to update before fine-tuning.197

Our method simultaneously performs the search198

and update of trainable parameters inspired by LTH.199

Therefor it does not require a prior stage to identify200

indices and can be easily applied as a replacement201

for popular dense-PEFT methods such as LoRA202

and DoRA. To the best of our knowledge, this is the203

first PEFT framework that simultaneously searches204

for and updates target parameters. We validate the205

performance and efficacy of our method through206

comprehensive experiments.207

3 BoLA: Our Sparse PEFT208

Figure 1 introduces our newly proposed sparse-209

PEFT, Block-wise Lottery Ticket Adaptation210

(BoLA). To mitigate the computational burden211

of individually identifying important parameters,212

BoLA partitions the weights into several blocks213

and conducts exploration at the block level, as illus- 214

trated in Figure 1. BoLA searches for and updates 215

block-wise target parameters, also known as lottery 216

tickets (Frankle and Carbin, 2019), based on the 217

block-wise magnitude of sparse weights. BoLA 218

employs the reparametrization PEFT framework, 219

where the fine-tuned weights W ′ ∈ Rd×d can be 220

represented as: 221

W ′ = Wo +∆W, (1) 222

where Wo ∈ Rd×d is the frozen pre-trained 223

weights, ∆W ∈ Rd×d is the trainable block sparse 224

weights, d is the dimension of input and output. As 225

depicted in Figure 1, the sparse block weight is one 226

in which nonzero elements are clustered into dense 227

blocks, while the remainder consists of zero blocks. 228

To construct sparse weights, both the values V and 229

their corresponding insertion indices I are required. 230

In this approach, since the sparse weights are con- 231

structed at the block level, the trainable weight 232

∆W can be represented as: 233

∆W = BlockSparse(I, V ) (2) 234

where BlockSparse(I, V ) is a function that gener- 235

ates a block-sparse weight given indices I ∈ Rk 236

and values V ∈ Rk×(d/n)×(d/m). In this context, 237

k denotes the number of trainable blocks, and n 238

and m specify the division numbers along the input 239

and output dimensions, respectively. The values 240

with the same position are accumulated. Both I 241

and V are derived from trainable score weights 242

Ws ∈ Rk×n×m and trainable block weights Wv ∈ 243

Rk×(d/n)×(d/m) as: 244

I = arg max
n×m

(Ws), (3) 245

246
V = Wv, (4) 247

where arg max(·) returns the index of the maxi- 248

mum value. Equation 3 identifies the top block po- 249

sitions with the highest scores across the n×m grid 250

for each candidate in Ws ∈ Rk×n×m, where each 251

score reflects the importance of a block. Assuming 252

that blocks with larger magnitudes correspond to 253

more important block parameters, we identify the 254

top-k indices I ∈ Rk by computing the arg max 255

over Ws ∈ Rk×n×m along with n×m dimension, 256

which encodes the magnitude of each block. The 257

corresponding values to be inserted at these posi- 258

tions are derived from Wv ∈ Rk×(d/n)×(d/m). That 259

is, the indices are obtained from Ws, while the val- 260

ues themselves are sourced from Wv. The same 261
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Figure 2: Illustration of our straight through estimator
with ∆W . The non-trainable sparse blocks are set to
zero during the forward pass, and set to one during the
backward pass to allow gradients.

block can be selected multiple times, in which case262

its associated values are cumulatively aggregated.263

In order to ensure that gradients can flow into Ws264

by assigning it the role of a magnitude M , equation265

1 can be rewritten as:266

W ′ = Wo +M ⊙∆W, (5)267

268

M =
∑
k

Gk ⊙W k
s , (6)269

where ⊙ denotes the element-wise (Hadamard)270

product and the matrix G ∈ R(k×n×m) is defined271

to scale the selected blocks by a scalar factor α.272

The weights Ws are initialized using a uniform273

Kaiming distribution (He et al., 2015), while Wv is274

initialized to zero. This initialization ensures that275

the trainable weights ∆W start from zero, similar276

to LoRA variants (Hu et al., 2022; Edalati et al.,277

2022; Zhang et al., 2023; Kopiczko et al., 2024;278

Hayou et al., 2024; Liu et al., 2024), which is key279

for stable training (Liao et al., 2023).280

Since this involves a sparse parameter update, gra-281

dients do not propagate through the score parame-282

ters Ws outside the top-k selection. Inspired by the283

motivation behind the Edge-popup algorithm (Ra-284

manujan et al., 2020), we adopt straight-through285

estimation (Bengio et al., 2013) to allow gradients286

to flow through all score parameters, including287

those not selected in the forward pass. This en-288

ables dynamic block selection during training. In289

the backpropagation process, as shown in Figure 2,290

the non-trainable sparse blocks are set to one:291

∇WsL = ∇WL ·∆W, (7)292

293

∆W =

{
∆W i,j if (i, j) ∈ I ,
1.0 if otherwise,

(8) 294

then it allows gradients to propagate seamlessly 295

even through blocks that do not contain any as- 296

signed values. This mechanism not only enables 297

gradient flow through all parameters Ws but also 298

allows the model to dynamically re-evaluate and 299

update block importance throughout training, lead- 300

ing to more flexible and adaptive sparse representa- 301

tions. 302

The number of trainable parameters ϕ = knm + 303

kdd/nm = k(nm+ dd/nm) is determined by the 304

weights Ws ∈ Rk×n×m and Wv ∈ Rk×(d/n)×(d/m) 305

where n and m are block size and k is the num- 306

ber of trainable blocks. Setting nm = d yields 307

ϕ = k(d + d) = 2kd such that the number of 308

trainable parameters is similar to ϕ = 2rd as in 309

LoRA (Hu et al., 2022). As a result, this formula- 310

tion enables straightforward replacement of LoRA, 311

thereby positioning BoLA as a compatible and effi- 312

cient alternative for parameter-efficient fine-tuning. 313

4 Experiments 314

We conduct a series of experiments to demonstrate 315

the effectiveness of our method across various 316

language models and tasks. Specifically, we use 317

RoBERTa as a small-scale model and LLaMA3 as 318

a large-scale model. For evaluation, we consider 319

datasets from the GLUE benchmark, along with 320

benchmarks targeting mathematical and common- 321

sense reasoning. We adopt LoRA (Hu et al., 2022), 322

DoRA (Liu et al., 2024), and SpaRTA (Rios et al., 323

2025) as strong baselines. To ensure a fair com- 324

parison, we configured the hyperparameters such 325

that the number of trainable parameters matched 326

that of LoRA and SpaRTA. However, in DoRA, 327

the number of trainable parameters was increased 328

by the dimension d of the magnitude. Further- 329

more, we maintained hyperparameter settings as 330

consistent as possible across different experimen- 331

tal conditions to facilitate reproducibility (see Ap- 332

pendix A for details). All experiments are con- 333

ducted on NVIDIA H100 80GB GPUs. We used 334

four GPUs for RoBERTa-125M and eight GPUs 335

for Llama3-8B. RoBERTa-125M is trained using 336

float32 precision owing to its smaller size, while 337

LLaMA3-8B is trained using bfloat16 precision to 338

reduce memory consumption and accelerate train- 339

ing on H100 GPUs. All experiments are imple- 340

mented using PyTorch, Hugging Face Transform- 341

4



Method #Params. MNL SST2 MRPC CoLA QNLI QQP RTE SST-B Avg.
Full-FT 125M 87.6 94.7 88.7 62.1 92.9 91.8 78.3 90.6 85.9
LoRA 0.3M 87.5 95.1 89.5 63.6 93.1 90.9 78.0 90.9 86.1
DoRA 0.3M 85.2 94.4 87.8 64.8 92.4 88.5 79.8 90.9 85.5
SpaRTA 0.3M 86.9 95.2 89.7 61.1 92.5 90.5 75.5 90.8 85.3
BoLA 0.3M 84.2 93.6 89.0 60.1 90.7 88.3 75.8 89.5 83.9

Table 1: RoBERTa-125M with different adaptation methods on the GLUE benchmark. #Params. indicates that
the number of trainable paramters excluded with classification head module. We report the overall (matched and
mismatched) accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for
other tasks. For all metrics, higher values indicate better performance. The highest values are indicated in bold.

Method #Params. MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg.
Base 22.8 6.3 25.1 20.5 13.0 10.5 16.4
LoRA 56.6M 48.0 21.7 79.5 13.8 76.2 51.7 48.5
DoRA 57.4M 51.8 23.4 77.7 15.7 77.2 54.9 50.1
SpaRTA 56.6M 52.0 24.3 82.5 10.2 80.5 51.0 50.1
BoLA 56.6M 52.8 19.9 87.1 9.1 81.1 54.9 50.8

Table 2: Llama3-8B with different adaptation methods on the math benchmark. #Params. indicates that the number
of trainable paramters. We report the accuracy on each dataset and its higher value is better for all metrics. The
highest values are indicated in bold.

Method #Params. BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.
Base 51.2 63.2 33.5 9.3 45.0 27.4 27.6 23.6 35.1
LoRA 56.6M 75.0 79.4 80.0 96.0 85.6 90.4 79.4 85.2 83.9
DoRA 57.4M 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 84.1
SpaRTA 56.6M 73.7 87.7 79.1 95.3 84.1 91.8 79.8 84.0 84.4
BoLA 56.6M 74.4 87.1 79.7 96.4 85.2 91.5 79.4 82.1 84.5

Table 3: Llama3-8B with different adaptation methods on the commonsense benchmark. #Params. indicates that
the number of trainable paramters. We report the accuracy on each dataset and its higher value is better for all
metrics. The highest values are indicated in bold. Note that HS and WG are abbreviations for HellaSwag and
WinoGrande, respectively.

ers (Wolf et al., 2020), and the PEFT (Mangrulkar342

et al., 2022) library.343

4.1 GLUE Benchmark344

We evaluate BoLA in comparison with LoRA,345

DoRA, and SpaRTA using the relatively small lan-346

guage model RoBERTa-125M (Liu et al., 2019)347

for English GLUE benchmark (Wang et al., 2018).348

Although GLUE consists of nine downstream tasks,349

consistency with previous work (Hu et al., 2022),350

we report the results on eight downstream tasks and351

their average. We also report the number of train-352

able parameters, excluding the classification head353

to ensure a fair comparison of adaptation modules.354

We present the results in Table 1. The results for355

each run are taken from the best epoch. On av-356

erage, BoLA performed slightly worse than Full-357

FT. However, it achieved competitive performance358

with Full-FT on MRPC and SST-B. This limitation 359

arises from the fact that BoLA can update only kd 360

parameters, which hinders the effective incorpora- 361

tion of domain knowledge into RoBERTa-125M. 362

4.2 Math and Commonsense Benchmark 363

We evaluate BoLA in comparison with LoRA, 364

DoRA, and SpaRTA using the LLM LLaMA3-8B 365

(Llama-Team, 2024) and benchmarks for math and 366

commonsense reasoning. The math and common- 367

sense benchmarks consist of eight and six tasks, 368

respectively, each with predefined training and test- 369

ing sets. Following the experimental setup of (Hu 370

et al., 2023), we merge the training data from all 371

eight commonsense tasks to construct a unified 372

training dataset and evaluate the individual test- 373

ing dataset for each task. We use the math 10K 374
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Figure 3: Transition diagram of block shapes deter-
mined by the hyperparameters n and m. Red and white
blocks represent selected and unselected parameters,
respectively. We define configurations as “structured”
when either n = d or m = d

and commonsense 170K datasets1 to fine-tune the375

models.376

The results of the math benchmark are shown in Ta-377

ble 2. BoLA demonstrated improved performance378

over the baseline on the MultiArith, AddSub, Sin-379

gleEq, and SVAMP tasks. On average, BoLA380

achieves performance comparable to DoRA and381

SpaRTA. The results of the commonsense bench-382

mark are shown in Table 3. BoLA demonstrated383

improved performance over the baseline on the HS384

and WG tasks. On average, BoLA achieves higher385

performance than DoRA and SpaRTA. In the case386

of commonsense tasks, the base model already per-387

forms reasonably well, and thus no performance388

degradation was observed across any of the PEFT389

methods. It is observed that, in contrast to dense ap-390

proaches, sparse methods benefit more significantly391

from larger model sizes.392

5 Ablation Study393

In this section, we introduce the impact of hyper-394

parameter in BoLA.395

5.1 Structured vs. Unstructured396

The hyperparameters n and m determine the num-397

ber of block divisions and the input and output398

dimensions, thereby defining the shape of the train-399

able block weights. Figure 4 presents the perfor-400

mance trends as n is varied under the constraint401

nm = d. In this study, we define configurations as402

“structured” when either n = d or m = d, meaning403

that block weights span the full input or output di-404

1https://github.com/AGI-Edgerunners/LLM-Adapters
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Figure 4: Evaluation results for various block sizes n
for RoBERTa-125M on GLUE tasks. The horizontal
axis corresponds to size m, which is varied from 1 to
d = 768 under the constraint that nm = d = 768
remain constant. Each marker represents the evaluation
result for a downstream task included in the GLUE
benchmark.

mension. All other configurations are considered 405

“unstructured”. 406

We evaluate the impact of block weight shapes 407

on RoBERTa-125M performance using the GLUE 408

benchmark, as shown in Figure 4. Overall, it is 409

observed that increasing the block size n generally 410

leads to improved performance. This indicates that 411

a higher output dimensionality plays a crucial role, 412

and therefore, it is preferable to set the value of n 413

to its maximum. Since the structured configuration 414

with the maximum n performs well across many 415

downstream tasks, it is more effective to focus on 416

tuning the number of base blocks k and the scaling 417

factor α. This is analogous to tuning the rank r 418

and scaling factor α in methods such as LoRA and 419

DoRA. 420

6 Analysis of Sparse Update 421

In this section, we present two complementary ben- 422

efits of sparse-PEFT compared with dense-PEFT, 423

namely, enhanced interpretability and reduced per- 424

formance dropout during model merging. 425

6.1 Interpretability of Model Structure 426

The sparsity of BoLA enhances model interpretabil- 427

ity by making it easier to identify where domain- 428

specific knowledge is acquired. Figure 5 shows 429

the Llama3-8B (Llama-Team, 2024) weights ∆W 430

of LoRA and BoLA, trained on math and com- 431

monsense datasets. LoRA updates all parameters, 432

whereas BoLA searches for and updates only a 433
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Figure 5: Visualization map of the trained weights ∆W in the last layer of Llama3-8B. The top shows LoRA
weights and the bottom shows BoLA weights. The maps on the left and right were trained on mathematical and
commonsense reasoning data, respectively. Color intensity indicates the magnitudes of the weights. In BoLA,
although the number of selectable blocks is k = 32, it may appear to be fewer due to index duplication.

small, important subset. Therefore, in BoLA, it434

becomes evident that most of the trainable weights435

∆W are zero.436

BoLA divides the weights into n and m blocks437

in the input and output dimensions, respectively,438

and only the k blocks with the highest scores are439

selected and updated. Interestingly, BoLA tends440

to utilize all of k blocks for the math domain. In441

contrast, BoLA tends to utilize significantly fewer442

blocks for the commonsense domain. This suggests443

that the model tends to acquire a greater amount444

of knowledge in the math domain, where its ini-445

tial performance is weaker, while acquiring only446

limited knowledge in the commonsense domain,447

where it initially performs well.448

As shown in Figure 5, while LoRA has full access449

to all parameters, BoLA achieves comparable per-450

formance by accessing only k/nm = 32/4096 =451

0.78% of the total parameters. Therefore, only a452

small subset of parameters is crucial for domain-453

specific adaptation in LLMs. This observation is454

consistent with prior work suggesting that certain455

parameters play specialized roles (Yu et al., 2025).456

6.2 Sparse Model Merge457

One notable property of sparse-PEFT is the mini-458

mal overlap between weights trained on different459

domains, which contributes to reduced interference460

during model merging. LoTA (Panda et al., 2024)461

leverages this property to demonstrate that catas-462
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Figure 6: Performance comparison of model merging on
the math benchmark. Bar plots show the performance of
math-domain LoRA and BoLA models (filled), and their
counterparts after merging with commonsense-domain
models (hatched).

trophic forgetting can be mitigated during model 463

merging. Catastrophic forgetting (Ramasesh et al., 464

2022; Dong et al., 2024; Luo et al., 2025) refers 465

to the degradation in performance on previously 466

learned tasks that occurs when LLMs are fine-tuned 467

on multiple domains or tasks in a sequential manner. 468

Figures 6 and 7 show that sparse-PEFT BoLA sim- 469

ilarly reduces catastrophic forgetting during model 470

merging. The models used in this table were trained 471

as described in section 4. In the math benchmark, 472

LoRA exhibits significantly degraded performance 473

across all datasets when merging weights trained on 474

math with those trained on commonsense, resulting 475

in an average drop of 2.7 points. Notably, Multi- 476

Arith experiences substantial performance degra- 477
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Figure 7: Performance comparison of model merging
on the commonsense benchmark. Bar plots show the
performance of commonsense-domain LoRA and BoLA
models (filled), and their counterparts after merging
with math-domain models (hatched).

dation. In contrast, BoLA exhibits a performance478

improvement of 3.6 points on average after merg-479

ing, demonstrating its robustness to catastrophic480

forgetting. No notable performance degradation481

occurs on MultiArith. In the commonsense bench-482

mark, LoRA significantly degraded performance483

across all datasets when merging weights trained on484

math with those trained on commonsense, resulting485

in an average drop of 22.1 points. Notably, Hel-486

laswag and Winogrande experience substantial per-487

formance degradation. In contrast, BoLA exhibits488

only a minor performance decline of 2.7 points on489

average after merging, demonstrating its robustness490

to catastrophic forgetting. No notable performance491

degradation occurs on Hellaswag and Winogrande.492

BoLA models trained independently on the math493

and commonsense domains can be merged without494

significant performance degradation.495

Unlike dense-PEFT approaches, which often suf-496

fer from catastrophic forgetting and require costly497

fine-tuning, sparse-PEFT enables seamless integra-498

tion of instruction-following and domain-specific499

capabilities. As shown in Figure 8, a key chal-500

lenge in domain adaptation using dense-PEFT is501

that all parameters are overwritten during training,502

potentially erasing the model’s original instruction-503

following behavior. In contrast, sparse-PEFT up-504

dates only a small subset of parameters, allowing505

domain adaptation while preserving the core char-506

acteristics of the instruction model.507

Furthermore, if the instruction model itself is508

trained using sparse-PEFT, subsequent domain-509

specific adaptation can be achieved with even fewer510

parameter updates. This layered sparsity enables511

efficient and modular fine-tuning, making sparse-512

PEFT a highly practical approach for developing513

locally specialized models.514

Fixed Parameters
𝑊 ∈ ℝௗ×ௗ

Fixed Parameters
𝑊 ∈ ℝௗ×ௗ

: Frozen
: Trainable

Dense-PEFT:
LoRA, DoRA, …

Dense-PEFT:
LoRA, DoRA, …

Sparse-PEFT:
LoTA, BoLA, …

Sparse-PEFT:
LoTA, BoLA,, …

Instruction-Task Math-Domain

Figure 8: Workflow diagram illustrating model devel-
opment using dense-PEFT and sparse-PEFT. During
domain-specific training, dense-PEFT updates all model
parameters, which may lead to overwriting the original
instruct model. In contrast, sparse-PEFT selectively
updates only a small subset of parameters, thereby pre-
serving the instruct model and reducing the risk of unin-
tended changes.

In summary, sparse-PEFT offers a robust and effi- 515

cient approach to developing domain-specialized 516

models without compromising the integrity or per- 517

formance of the base model. 518

7 Conclusion 519

This work introduces Block-wise Lottery Ticket 520

Adaptation (BoLA), as a novel and simple sparse- 521

PEFT for large language models designed to si- 522

multaneously search for and update parameters, 523

a capability not found in previous methods. Fur- 524

thermore, BoLA is highly compatible with popu- 525

lar dense-PEFT methods LoRA and DoRA, across 526

various downstream tasks and model architectures. 527

Therefore, BoLA serves as a costless alternative 528

to LoRA and DoRA, as its ability to merge fine- 529

tuned weights back into the pre-trained model guar- 530

antees no extra inference overhead. Furthermore, 531

unlike dense-PEFT, BoLA provides interpretabil- 532

ity in knowledge acquisition and supports model 533

merging without catastrophic forgetting. For future 534

work, we wish to explore the generalizability of our 535

method in other domains beyond audio and vision. 536

Limitations 537

Our PEFT approach demonstrates the potential to 538

alleviate catastrophe forgetting during model merg- 539

ing. However, when the characteristics of the target 540

domains differ significantly, there is no guarantee 541

that the trained parameters will remain mutually ex- 542

clusive. As a future direction, we plan to extend the 543

8



method to allow users to explore and update critical544

parameters within user-specified regions, enabling545

more effective control over parameter redundancy.546
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A Hyperparameters 716

For all experiments, we select the learning rate that achieves the highest validation performance from the 717

range {1e−3, 5e−4, 1e−4, 5e−5, 1e−5}, and report the corresponding results. 718

Hyperparameter LoRA DoRA SpaRTA BoLA
Epochs 30
Dropout 0.1
Sequence Length 512
Optimizer AdamW
LR 1e-3 5e-4 1e-3 1e-3
LR Scheduler Linear
Batch Size 64
Warmup Ratio 0.06
Weight Decay 0.1
Target Modules Q,K
r 8 8
(n,m) (24, 32)
k 12,288 8
α 16 16 4 4
Dropout 0.1

Table 4: Hyperparameter configurations of LoRA, DoRA, SpaRTA, and BoLA for RoBERTa-125M on the GLUE
benchmark.

Hyperparameter LoRA DoRA SpaRTA BoLA
Epochs 3
Dropout 0.1
Sequence Length 512
Optimizer AdamW
LR 5e-5 5e-5 1e-5 1e-3
LR Scheduler Linear
Batch Size 128
Warmup Ratio 0.06
Weight Decay 0.0
Target Modules Q,K,V,U,D
r 32 32
(n,m) (64, 64)
k 353,894 32
α 64 64 4 4
Dropout 0.1

Table 5: Hyperparameter configurations of LoRA, DoRA, SpaRTA, and BoLA for Llama3-8B on the math
benchmark.
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Hyperparameter LoRA DoRA SpaRTA BoLA
Epochs 3
Dropout 0.1
Sequence Length 512
Optimizer AdamW
LR 1e-4 1e-4 1e-5 5e-5
LR Scheduler Linear
Batch Size 128
Warmup Ratio 0.06
Weight Decay 0.0
Target Modules Q,K,V,U,D
r 32 32
(n,m) (64, 64)
k 353,894 32
α 64 64 4 4
Dropout 0.1

Table 6: Hyperparameter configurations of LoRA, DoRA, SpaRTA, and BoLA for Llama3-8B on the commonsense
benchmark.
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