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Atlas: Learning to Optimally Memorize the Context at Test Time
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Abstract

Transformers have been established as the most popular backbones in sequence modeling, mainly due to their
effectiveness in in-context retrieval tasks and the ability to learn at scale. Their quadratic memory and time complexity,
however, bound their applicability in longer sequences and so has motivated researchers to explore effective alternative
architectures such as modern recurrent neural networks (a.k.a long-term recurrent memory module). Despite their recent
success in diverse downstream tasks, they struggle in tasks that requires long context understanding and extrapolation to
longer sequences. We observe that these shortcomings come from three disjoint aspects in their design: (1) limited memory
capacity that is bounded by the architecture of memory and feature mapping of the input; (2) online nature of update,
i.e., optimizing the memory only with respect to the last input; and (3) less expressive management of their fixed-size
memory. To enhance all these three aspects, we present Atlas, a long-term memory module with high capacity that learns
to memorize the context by optimizing the memory based on the current and past tokens, overcoming the online nature of
long-term memory models. Building on this insight, we present a new family of Transformer-like architectures, called
DeepTransformers, that are strict generalizations of the original Transformer architecture. Our experimental results on
language modeling, common-sense reasoning, recall-intensive, and long-context understanding tasks show that Atlas
surpasses the performance of Transformers and recent linear recurrent models. Atlas further improves the long context
performance of Titans, achieving +80% accuracy in 10M context length of BABILong benchmark.

1 Introduction

The attention module (Bahdanau et al. 2014) is a critical building block in modern deep learning architectures (Achiam
et al. 2023; Behrouz, Zhong, et al. 2024; Kamath et al. 2025; Vaswani et al. 2017), excelling due to its scalability and
performance in in-context retrieval tasks. In principle, attention functions as an associative memory, computing direct
pairwise token dependencies to store key-value mappings and retrieve them via query-key similarities. Computing this
pairwise dependencies, however, while accurate, causes quadratic space and time complexity, limiting their applicability in
long context understanding, memorization, or modeling (Dalal et al. 2025; Li, Huang, et al. 2024; Liu, Lin, et al. 2024).

Recent research efforts aim to overcome the limitations of Transformers—i.e., pure attention-based architectures—in
long-context modeling by designing more efficient yet effective recurrent neural networks (Behrouz, Zhong, et al. 2024;
Peng, Zhang, et al. 2025; Schlag et al. 2021). These modern recurrent architectures can be unified as associative memory
modules optimizing an internal objective termed ’attentional bias’ (Behrouz, Razaviyayn, et al. 2025). Unlike Transformers’
growing KV cache, these models use fixed-size memory, necessitating improved memory management. Consequently,
there’s growing interest in enhancing RNN memory management through more effective: (i) Learning rules, from additive
learning (Katharopoulos et al. 2020) to DeltaNet’s Delta rule (Schlag et al. 2021); (ii) Forget (Retention) Gates, from RetNet’s
input-independent gating (Sun, Dong, et al. 2023) to adaptive gating in Titans (Behrouz, Zhong, et al. 2024) and RWKV-
7 (Peng, Zhang, et al. 2025); and (iii) Memory Architectures, from vector-valued memory (Peng, Alcaide, et al. 2023; Sun,
Dong, et al. 2023) to neural deep memory modules (Behrouz, Zhong, et al. 2024; Sun, Li, et al. 2024).

Despite the success of these improved models in a diverse set of downstream benchmarks, they often struggle with long
context understanding, in-context retrieval, and extrapolation to longer sequences (Arora, Eyuboglu, Zhang, et al. 2024;
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Table 1: A summary of the recent modern recurrent neural networks. We compare these architectures based on five
characteristics: (1) Dynamic decay; (2) Deep neural memory; (3) non-linear memory capacity; (4) Locally optimal: managing
memory by (approximating) the second-order information about tokens; (5) Flexible context: the ability to flexibly memorize
the context. 𝜙 (·) and 𝜙∗ (·) represent polynomial and infinite-dimensional feature mappings (see Equation 22).

Model Attentional Bias ℓ (·; ·) Optimizer Dynamic Deep Non-linear Locally Flexible Memory Write OperationDecay Memory Capacity† Optimal Context

Attention
∑𝐿
𝑡=1 𝑎𝑡 ∥Mk𝑡 − v𝑡 ∥22 NP‡ ✗ ✗ ✓ ✓ ✗ M𝑡 =M𝑡−1 ∪ {(k𝑡 , v𝑡 )}

SWA
∑𝐿
𝑡=𝑐 𝑎𝑡 ∥Mk𝑡 − v𝑡 ∥22 NP ✗ ✗ ✓ ✓ ✓ M𝑡 = (M𝑡−1 \ {(k𝑐 , v𝑐 )}) ∪ {(k𝑡 , v𝑡 )}

Linear Attention ⟨M𝑡k𝑡 , v𝑡 ⟩ GD ✗ ✗ ✗ ✗ ✗ M𝑡 =M𝑡−1 + v𝑡k⊤𝑡
RetNet ⟨M𝑡k𝑡 , v𝑡 ⟩ GD ✗ ✗ ✗ ✗ ✗ M𝑡 = 𝛼M𝑡−1 + v𝑡k⊤𝑡
GLA ⟨M𝑡k𝑡 , v𝑡 ⟩ GD ✓ ✗ ✗ ✗ ✗ M𝑡 = Diag(𝛼𝑡 )M𝑡−1 + v𝑡k⊤𝑡
PolySketchFor. ⟨M𝑡k

𝑝

𝑡 , v𝑡 ⟩ GD ✗ ✗ ✓ ✗ ✗ M𝑡 =M𝑡−1 + v𝑡 (k⊤𝑡 )𝑝
TTT ∥M𝑡 (k𝑡 ) − v𝑡 ∥22 GD ✗ ✓ ✗ ✗ ✗ M𝑡 =M𝑡−1 − 𝜂∇ℓ (M𝑡−1; k𝑡 , v𝑡 )
DeltaNet ∥M𝑡k𝑡 − v𝑡 ∥22 GD ✗ ✗ ✗ ✗ ✗ M𝑡 = (I − 𝛽𝑡k𝑡k⊤𝑡 )M𝑡−1 + 𝛽𝑡v𝑡k⊤𝑡
Longhorn ∥M𝑡k𝑡 − v𝑡 ∥22 Implicit GD ✗ ✗ ✗ ✗ ✗ M𝑡 = (I − 𝛿𝑡k𝑡k⊤) M𝑡−1 + (𝛿𝑡 ⊙ v𝑡 ) k𝑡 §
Gated DeltaNet ∥M𝑡k𝑡 − v𝑡 ∥22 GD ✓ ✗ ✗ ✗ ✗ M𝑡 = 𝛼𝑡 (I − 𝛽𝑡k𝑡k⊤𝑡 )M𝑡−1 + 𝛽𝑡v𝑡k⊤𝑡
RWKV-7 ∥M𝑡k𝑡 − v𝑡 ∥22 GD ✓ ✗ ✗ ✗ ✗ M𝑡 = (diag(𝛼𝑡 ) − 𝛽𝑡k𝑡k⊤𝑡 )M𝑡−1+ 𝛽𝑡v𝑡k⊤𝑡

Titans ∥M𝑡 (k𝑡 ) − v𝑡 ∥22 GD w/ M.∗ ✓ ✓ ✗ ✗ ✗
M𝑡 = 𝛼𝑡M𝑡−1 + S𝑡
S𝑡 = 𝜂𝑡S𝑡−1 − 𝜃𝑡∇ℓ (M𝑡−1; k𝑡 , v𝑡 )

Titans– ∥M𝑡 (k𝑡 ) − v𝑡 ∥22 GD ✓ ✓ ✗ ✗ ✗ M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡∇ℓ (M𝑡−1; k𝑡 , v𝑡 )
Moneta ∥M𝑡 (k𝑡 ) − v𝑡 ∥𝑝𝑝 GD ✓ ✓ ✓ ✗ ✗ M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡∇ℓ (M𝑖−1; k𝑡 , v𝑡 )
Memora ∥M𝑡 (k𝑡 ) − v𝑡 ∥22 GD ✓ ✓ ✗ ✗ ✗ M𝑡 = 𝜎 (𝛼𝑡 log(M𝑡−1) − 𝜂𝑡∇ℓ (M𝑡−1; k𝑡 , v𝑡 ))

Our Models

DLA ⟨M𝑡 (𝜙 (k𝑡 )), v𝑡 ⟩ GD ✓ ✓ ✗ ✗ ✗ M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡∇ℓ (M𝑡−1; k𝑡 , v𝑡 )
DeepTransformer⋇ ⟨M𝑡 (𝜙∗ (k𝑡 )), v𝑡 ⟩ GD ✓ ✓ ✓ ✗ ✗ M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡∇ℓ (M𝑡−1; k𝑡 , v𝑡 )
SWDT

∑𝐿
𝑖=𝑐 ⟨M𝑡 (𝜙∗ (k𝑖 )), v𝑖⟩ GD ✓ ✓ ✓ ✗ ✓ M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡∇ℓ (M𝑡−1; k𝑡 , v𝑡 )

OmegaNet
∑𝐿
𝑖=𝑐 𝛾𝑖 ∥M𝑡 (𝜙 (k𝑖 )) − v𝑖 ∥22 GD ✓ ✓ ✓ ✗ ✓ M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡∇ℓ (M𝑡−1; k𝑡 , v𝑡 )

Dot⋇
∑𝐿
𝑖=𝑐 𝛾𝑖 ∥M𝑡 (𝜙∗ (k𝑖 )) − v𝑖 ∥22 GD ✓ ✓ ✓ ✗ ✓ M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡∇ℓ (M𝑡−1; k𝑡 , v𝑡 )

Atlas
∑𝐿
𝑖=𝑐 𝛾𝑖 ∥M𝑡 (𝜙 (k𝑖 )) − v𝑖 ∥22 Muon ✓ ✓ ✓ ✓ ✓

M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡 NS-5(S𝑡 )
S𝑡 = 𝜃𝑡S𝑡−1 − ∇ℓ (M𝑡−1; k𝑡 , v𝑡 )

† The matrix-valued memory version is considered. ‡ NP: Nonparametric § 𝛿𝑡 =
𝛽𝑡

1+𝛽𝑡k⊤𝑡 k𝑡
. ∗ Gradient Descent with Momentum. ⋇ Without Normalization.

Behrouz, Zhong, et al. 2024; Wen et al. 2024; Yang, Kautz, et al. 2024). We observe these shortcomings arise from three
design aspects: (1) The online nature of their memory update, where memory is optimized based on the current token
while retaining past memory state, leading to memorization of individual tokens without considering broader context;
(2) The limited capacity of memory, where architecture and key-value feature mappings restrict the number of perfectly
mappable key-value pairs; and (3) The expressiveness of memory management (i.e., the internal objective’s optimizer), as
most recent models use gradient descent that relies on the first-order information about the dynamics of tokens, causing
the memory to converge to spurious local minima and learn less effective key-value mappings.

Memory Perspective

Associative memory—the ability to map different entities or events—is an inseparable component of learning in hu-
mans (Terry 2017) and so has motivated several recent studies to understand the state-of-the-art deep learning architectures
through its lens (Behrouz, Razaviyayn, et al. 2025; Behrouz, Zhong, et al. 2024; Ramsauer et al. 2021; Wang et al. 2025).
In this perspective, memory is defined as a neural update caused by an input; the more surprising the input is, the more
it affects the memory and so is memorable. Therefore, finding an effective “surprise metric” is a critical step towards
designing such memory modules. As earlier discussed by Behrouz, Razaviyayn, et al. (2025) and Behrouz, Zhong, et al.
(2024), almost all existing architectures use a surprise metric that updates the memory based on the current input. An
event (as a sequence of tokens), however, might not consistently be surprising through a long-period of time although it is
memorable. To overcome this issue, Behrouz, Zhong, et al. (2024) suggest breaking the surprise metric into two parts of
“momentary” and “past” surprise, incorporating the cumulative surprise of past inputs when updating the memory with
respect to the current input. This design, however, can miss the context by memorizing individual tokens. To this end, in
this work, we present a long-term neural memory module that measures the surprise of a local (or global) context window,
meaning that it learns how to memorize the (token) context at test time.

Through the paper, we use the terminology “Test TimeMemorization” because the process involves storing and retrieving in-
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formation strictly within the global context, without updating the model’s core learned parameters (i.e., outer-loop) or initial
states from pre-training. Typically, no persistent learning or skill acquisition carries over to new, independent global context
once the memory is cleared. Thus, we prefer the use of "test time memorization" over using "test time training".

Contributions

In this paper, we aim to overcome the abovementioned limitations—i.e., (1) online nature, (2) limited memory capacity, and
(3) less expressive memory management—by designing a long-term neural memory module with high capacity and the
ability to memorize the context, instead of tokens. We further build upon these insights and present a family of strictly
more powerful Transformers. More specifically:

Better Understanding of Memory Capacity and its Bottleneck. To improve the limited memory capacity, we suggest
using higher-order feature mappings (e.g., polynomial feature kernels) on input tokens. We provide theoretical justifications
on why deeper memory modules and/or higher-order feature mapping can enhance memory capacity—i.e., the maximum
number of linearly independent key-value associations the memory can perfectly map.

New Expressive Learning Rule. To overcome the online nature of recent recurrent models, this work presents a sliding
window update rule, called Omega rule, that optimizes and updates memory based on all past tokens in a given context
window, not just the last. This allows the model to better manage its fixed-size memory and memorize a local context
instead of individual tokens.

Strict Generalization of Transformers. Next, we show how our Omega rule formulation connects to global and local
softmax attentions (i.e., Sliding Window Attention - SWA) and present a new family of Transformer-like architectures,
called DeepTransformers and its sliding window variants SWDT, that strictly generalize Transformers (Vaswani et al.
2017). We further present a novel baseline of Deep Linear Attention (DLA) to demonstrate the role of deep memory.

New Memory Modules with Better Memory Management. Building upon the above improvements, we present
OmegaNet, a new architecture using polynomial features on its keys and queries, while updating its memory based on
Omega and gradient descent. To further enhance memory management, we introduce Atlas, which leverages the popular
Muon optimizer (Jordan et al. 2024) for updating the internal memory. We show that both OmegaNet and Atlas can
take advantage of parallelizable training algorithms, resulting in fast training without substantial overhead compared
to the online version (i.e., context window = 1). To the best of our knowledge, Atlas is the first parallelizable recurrent
architecture that optimizes the memory using the (approximation) of second-order information (i.e., has locally optimal
memory module).

Improvement on Diverse Downstream Tasks. Extensive experiments validate our model designs and proposed
techniques, including ablations of modern architectures. We evaluated DeepTransformers, OmegaNet, and Atlas on
diverse benchmarks—language modeling, common-sense reasoning, recall-intensive, and needle-in-haystack tasks—where
they outperformed modern linear RNNs, local attention (SWA), and Transformers. Furthermore, we studied the effects of
memory architecture, feature mapping, memory management algorithm (internal optimizer), and Omega rule on memory
module capacity and performance in long-context understanding tasks.

Proofs, additional experimental results, discussions on related work, and the details of experiments are in Appendix.

2 Preliminaries

In this section, we first discuss the notation that we use through the paper and then review the background concepts and
related work. Additional discussion on related studies are in Appendix A.

Notations. We let 𝑥 ∈ R𝑁×𝑑in be the input,M𝑡 be the state of memoryM at time 𝑡 , K be the keys, V be the values,
and Q be the query matrices. We use bold lowercase letters with subscript 𝑡 to refer to vectors correspond to time 𝑡
(i.e., k𝑡 , v𝑡 , and q𝑡 ). Following Behrouz, Razaviyayn, et al. (2025), we use ℓ (M𝑡 ; k𝑡 , v𝑡 ) to refer to the attentional bias (i.e.,
the internal memory objective). Through the paper, we use simple MLPs with LM ≥ 1 layers and residual connection
as the architecture of the memory moduleM(·). Notably, despite this choice, all of our model formulations are simply
adaptable to other memory architecture choices; e.g., linear matrix-valued memory (LM = 1). When it is needed, we
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parameterized the memory module with 𝜽M := {𝑊1, . . . ,𝑊LM , . . . }, which at least includes the parameters of linear layers
in the MLP.

2.1 Backgrounds

Attention. Attention is a critical component of Transformers that acts as their associative memory (Behrouz, Razaviyayn,
et al. 2025; Bietti et al. 2023; Sun, Li, et al. 2024). Given input 𝑥 ∈ R𝑁×𝑑in , causal attention computes output y ∈ R𝑁×𝑑in over
input dependent key, value, and query matrices Q = 𝑥WQ,K = 𝑥WK, and V = 𝑥WV as:

y𝑖 =
𝑖∑︁
𝑗=1

exp
(
q⊤𝑖 k𝑗/

√
𝑑in

)
v𝑗∑𝑖

ℓ=1 exp
(
q⊤
𝑖
kℓ/
√
𝑑in

) =
1
𝑍𝑖

𝑖∑︁
𝑗=1

exp
(
q⊤𝑖 k𝑗/

√︁
𝑑in

)
v𝑗 , (1)

where WQ,WK, and WV ∈ R𝑑in×𝑑in are learnable parameters, and 𝑍𝑖 =
∑𝑖
ℓ=1 exp

(
q⊤𝑖 kℓ/

√
𝑑in

)
is the normalization term.

Despite Transformers’ simple parallelizable training and effectiveness in recall-intensive tasks (Arora, Eyuboglu, Zhang,
et al. 2024), their generation process and long-context scaling are significant drawbacks, as attention requires at least 𝑁 ×𝑑
operations per token to calculate the output (see Equation 1). Therefore, in recent years, there have been an extensive
research effort to design alternative architectures. We divide and review these studies into two groups: (1) Linear shallow
memory recurrent models, (2) Deep memory modules:

(Linear) Recurrent Models. Linear RNNs have recently gained attention as efficient Transformer alternatives due to their
parallelizable, linear-time training and comparable performance (Peng, Alcaide, et al. 2023; Sun, Dong, et al. 2023). Early
modern RNN variants, often based on Hebbian (Hebb 2005) or Delta (Widrow et al. 1988) learning rules, compress data into
vector-valued or matrix-valued memory (Kacham et al. 2024b; Katharopoulos et al. 2020; Lim et al. 2024; Liu, Wang, et al.
2024; Schlag et al. 2021; Sun, Dong, et al. 2023). LetM𝑡 ∈ R𝑑×𝑛 be the memory (where 𝑛 = 1 yields vector-valued memory),
and k, v ∈ R𝑑 be the keys and values (projections of input 𝑥𝑡 ∈ R𝑑 )). A simple general formulation for such linear RNNs
is:

M𝑡 = 𝐴𝑡 ∗M𝑡−1 + v𝑡k⊤𝑡 , (2)

where ∗ is an arbitrary associative operator and 𝐴𝑡 is a data-(in)dependent diagonal or low-rank plus identity matrix (Yang,
Wang, Zhang, et al. 2024). Despite the efficient linear recurrent nature of these models, their memory can overflow, particu-
larly with increasing context length. Although forget gates have recently significantly improved memory management in
these architectures (Peng, Zhang, et al. 2025; Sun, Dong, et al. 2023), their memory’s expressivity remains bounded by its
linear structure.

Deep Memory Module. To overcome the limited expressivity of memory and to enhance the effective context length
recurrent models, recent studies focus on a new line of architectures with deep memory modules (Behrouz, Razaviyayn,
et al. 2025; Behrouz, Zhong, et al. 2024; Irie et al. 2021; Sun, Li, et al. 2024). These architectures are built on the meta-learning
perspective, where the memory is a deep MLP architecture updated by gradient descent (with momentum). Recently,
Behrouz, Razaviyayn, et al. (2025) present a framework to accurately unifies popular sequence models as the instances of
test time memorization. That is, sequence models are associative memory modules that aim to learn the underlying mapping
between given keys and values by optimizing an internal memory objective, called attentional bias. This optimization
is based on an iterative optimization algorithms such as gradient descent. More formally, associative memory is defined
as:

Definition 1 (Behrouz, Razaviyayn, et al. (2025)). Given a set of keys K ⊆ R𝑑𝑘 and valuesV ⊆ R𝑑𝑣 , associative memory
is an mappingM : K → V . Learning the associative memory is based on an objective L, called Attentional Bias, that
determines the type of memory and its priorities:

M∗ = argmin
M

L(M(K);V). (3)

Optimizing this objective using an iterative algorithm (e.g., gradient descent) results in the memory update rule. Thus, the
sequence model is a meta in-context learner with two optimization levels:
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Figure 1: Comparison of learning to memorize (Left) individual tokens, and (Right) the context.

1. Inner Loop: Where parameters of the memory module are optimized (i.e., 𝜽M = {𝑊1,𝑊2, . . . ,𝑊LM ,...}). In the inner
optimization loop, all other parameters from the model are considered hyperparameters and are fixed and not
optimized.

2. Outer Loop: Where all other parameters of the model are optimized, such as linear projections, MLP layers,
convolutions, etc.

Our terminology builds on this framework. Therefore, instead of full recurrent formulations, we describe models by their:
(1) memory architecture, (2) internal objective (i.e., attentional bias), and (3) memory learning algorithm (optimizer). In
most cases, models use matrix-valued memory with online gradient descent; for brevity in such instances, we refer to an
architecture solely by its internal memory objective. For additional discussions and examples, see Appendix B.

3 Learning to Memorize the Context at Test Time

Long-term associative memory, crucial for human learning (Terry 2017), has inspired many artificial neural architec-
tures (Behrouz, Razaviyayn, et al. 2025; Behrouz, Zhong, et al. 2024; He et al. 2024; Hopfield 1982; Krotov and Hopfield
2016; Ramsauer et al. 2021; Schmidhuber and Hochreiter 1997). While many such models use matrix- or vector-valued
memory to compress past data (Schlag et al. 2021; Von Oswald et al. 2023; Yang, Kautz, et al. 2024), recent studies advocate
for deep non-linear neural memory that encodes past abstractions into its parameters (Behrouz, Razaviyayn, et al. 2025;
Behrouz, Zhong, et al. 2024; Dalal et al. 2025; Sun, Li, et al. 2024). For long-context reasoning/understanding, however, these
long-term neural memory modules still require: (1) High capacity—the maximum (key, value) pairs storable in parameters
(see §3.1); (2) A powerful internal memory objective (i.e., attentional bias) to learn complex mapping between keys and
values (see §3.2); (3) Powerful memory management for better fixed-size memory management (see §3.2); and (4) An
efficient parallel training process for large-scale training on modern accelerators (see §3.3).

This section further discusses these challenges and presents Omega rule: an expressive memory update rule with direct
access to tokens in a local context window, which memorizes context rather than individual tokens.

3.1 Associative Memory with Super Linear Capacity

As previously discussed, an effective long-term memory module should store past data abstractions in its parameters.
However, with a fixed number of memory parameters, a key unanswered question remains: “what is the maximum number
of uncorrelated (key, value) pairs that a model can store?” To answer this, we start with the simplest case: matrix memory,
an ℓ2 regression loss as the attentional bias (i.e., ℓ (M𝑡 ; k𝑡 , v𝑡 ) = ∥M𝑡 (k𝑡 ) − v𝑡 ∥22), optimized by gradient descent:

Proposition 1 (Capacity of ℓ2 Attentional Bias). LetM be a matrix-valued memory with 𝑑𝑣 × 𝑑𝑘 parameters that optimizes
the internal objective of ℓ (M𝑡 ; k𝑡 , v𝑡 ) = ∥M𝑡k𝑡 − v𝑡 ∥22 with gradient descent. M can store the mapping of at most O (𝑑𝑘 )
pairs of (k𝑖 , v𝑖 ) with linearly independent keys.

The above proposition indicates that matrix-valued memory with delta update rule has sub-linear capacity with respect to
its number of parameters. This means that the number of independent patterns that can be stored in a fixed-size memory
with size𝑀 is strictly less than 𝑐 ×𝑀 , for some 𝑐 ∈ R+. Recent recurrent models suggest using deep memory modules to
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store the abstraction of the past into the parameters of a deep neural network (Behrouz, Razaviyayn, et al. 2025; Behrouz,
Zhong, et al. 2024; Irie et al. 2021; Sun, Li, et al. 2024). While these deep memory architectures can intuitively enhance the
expressive power in modeling complex underlying mapping patterns between keys and values, it is still unclear that if they
enhance the memory capacity.

Theorem 1 (Effect of Deep Memory). Let M(·) be an MLP with LM ≥ 2 layers, 𝑑𝑘 input dimension, and 𝑑ℎ hidden
dimension. Then,M(·) can store the mapping of at least O (𝑑𝑘𝑑𝑣) and at most O

(
𝑑𝑘𝑑𝑣

∑LM
𝑖=1 min{𝑑 ( 𝑗 )

ℎ
} 𝑗≥𝑖𝑑 ( 𝑗+1)ℎ

)
pairs of

(k𝑖 , v𝑖 ) with linearly independent keys.

This theorem indicates that deepmemory not only improves representational power but also further boosts network capacity,
with advantages growing with depth. However, the upper bound remains subquadratic in key and value dimensions,
raising the question if a long-term memory module can achieve super-linear capacity.

As stated earlier, the dimension of k𝑡 s is crucial for increasing memory capacity. Simply increasing all key and value
dimensions, however, significantly increase the number of parameters (O(𝑑in) per each extra dimension) and memory usage,
particularly with long contexts. To address this, building on methods from Kacham et al. (2024a) and Krotov and Hopfield
(2016), we suggest using separable kernels 𝜎 (𝑥,𝑦) = 𝜙 (𝑥)⊤𝜙 (𝑦) for keys and queries. As an example of such kernels, we
focus on polynomial kernels of degree at most 𝑝 to increase input dimensionality and thus network capacity. Given 𝑝 ∈ N,
let 𝜙𝑝 (𝑥) = [𝑥𝛽 ] |𝛽 | ≤𝑝 be a polynomial mapping of 𝑥 with degree at most 𝑝 . We redefine the associative memory module in
Definition 1 by replacing the inner objective of L(M(K);V) with L(M (𝜙 (K)) ;V). This polynomial mapping enhances
representational power by increasing the effective dimensionality of keys without additional parameter overhead for the
input projections. Next, we discuss their effect on memory capacity, even with a single matrix-valued memory:

Proposition 2 (Memory Capacity with Polynomial Mapping). Let 𝜙𝑝 (·) be a polynomial mapping with degree at most
𝑝 , andM be a matrix-valued memory that optimizes the internal objective of ℓ (M𝑡 ;𝜙𝑝 (k𝑡 ), v𝑡 ) = ∥M𝑡𝜙𝑝 (k𝑡 ) − v𝑡 ∥22 with
gradient descent.M can store the mapping of at most O

(
𝑑𝑘
𝑝
)
pairs of (k𝑖 , v𝑖 ) with linearly independent keys, where 𝑑𝑘 is the

dimension of keys k𝑖 .

Beyond the above intuition, polynomial kernels are further motivated by two perspectives: (1) Approximating Softmax
using Taylor series; and (2) Input feature gating. For the sake of clarity, we continue with linear memory and two popular
attentional biases i.e., ℓ (1) (M𝑡 ; k𝑡 , v𝑡 ) = ⟨M𝑡k𝑡 , v𝑡 ⟩ and ℓ (2) (M𝑡 ; k𝑡 , v𝑡 ) = ∥M𝑡𝜙 (k𝑡 ) − v𝑡 ∥22. The same process can be
applied on other attentional objectives and deep memory modules. Optimizing these objectives using gradient descent in
the inner loop results in the following recurrent formulas:

ℓ (1) (M𝑡 ; k𝑡 , v𝑡 ) : M𝑡 =M𝑡−1 + 𝜂𝑡v𝑡𝜙 (k𝑡 )⊤, (Hebbian Rule)

ℓ (2) (M𝑡 ; k𝑡 , v𝑡 ) : M𝑡 =
(
I − 𝜂𝑡𝜙 (k𝑡 )𝜙 (k𝑡 )⊤

)
M𝑡−1 + 𝜂𝑡v𝑡𝜙 (k𝑡 )⊤. (Delta Rule)

Kernel Attention Perspective for the Special Case of Hebbian Rule. The formulation for (Hebbian Rule) is equivalent
to kernel linear attentions (Arora, Eyuboglu, Zhang, et al. 2024; Hua et al. 2022; Kacham et al. 2024b; Kasai et al. 2021;
Katharopoulos et al. 2020; Wang et al. 2025). In this viewpoint, the role of 𝜙 (.) is to approximate Softmax or more
accurately the exponential kernel. Since exponential kernel with normalization (i.e., Softmax) is not separable, it results in
Transformers’ quadratic time and memory complexity. However, Transformers’ exponential feature map kernel (exp(q⊤𝑖 k𝑗 ))
can be approximated using its Taylor series as:

exp
(
q⊤𝑖 k𝑗

)
≈ 1 + q⊤𝑖 k𝑗 +

(q⊤𝑖 k𝑗 )2

2!
+
(q⊤𝑖 k𝑗 )3

3!
+ . . . (4)

Our polynomial feature map extends this approximation to a more general case of:

exp
(
q⊤𝑖 k𝑗

)
≈ 𝜙𝑝 (q)𝜙 (k)⊤= 𝑎0 + 𝑎1q𝑖k⊤𝑗 + 𝑎2 (q⊤𝑖 k𝑗 )2 + 𝑎3 (q⊤𝑖 k𝑗 )3 + · · · + 𝑎𝑝 (q⊤𝑖 k𝑗 )𝑝 , (5)

with learnable parameters 𝑎𝑖 ∈ R initialized at 𝑎𝑖 = 1
𝑖! , the polynomial kernel can be viewed as an expressive approximator

of Softmax attention. This provides theoretical motivation for using polynomial kernels, especially when memory capacity
is limited; i.e., with (i) linear memory and (ii) Hebbian learning rule. This intuition, however, further generalizes to more
expressive cases using deep memory modules and more complex attentional biases (i.e., Eq. Delta Rule). That is, exp(·)
feature mapping has infinite dimension and provides a more powerful similarity measure of keys and queries (i.e., q⊤𝑖 k𝑗 );
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however, its computation with normalization can cause additional memory and time complexity to the model. Using
polynomial kernels in architectures with deep memory and complex attentional bias can further enhance performance
by approximating more powerful representations for keys-queries similarities (i.e., q⊤𝑖 k𝑗 ). See Section 4 for additional
discussions on exponential kernels and Transformers.

Input Gating Interpretation. Another perspective that motivates the use of polynomial features is their more expressive
representational power in modeling complex functions compared to the simple case of 𝜙 (𝑥) = 𝑥 . That is, the coefficients of
𝑎𝑖s can be seen as input feature gating, in which 𝑎𝑖 → 0 means excluding the feature map of [𝑥 𝑗 ] | 𝑗 |=𝑖 , and 𝑎𝑖 → 1 means
retaining the corresponding feature. This is similar to the gating mechanisms of RNNs but on the input rather than the
memory. This gating mechanism clearly provides a more representational power as the model can learn to set 𝑎𝑖 → 0 for
all 𝑖 ≠ 1 and 𝑎1 → 1, resulting in the simple case of 𝜙 (𝑥) = 𝑥 .

3.2 Long-term Memory with Context Memorization

As discussed earlier, one of the critical drawback of most existing recurrent models is their online nature, in which they
optimize the inner objective (attentional bias) with respect to only the current input while retaining the previous state of
the memory (Behrouz, Razaviyayn, et al. 2025; Liu, Wang, et al. 2024), i.e.,

min
M

ℓ (M; k𝑡 , v𝑡 ) + Ret𝑡 (M,M𝑡−1), (6)

where Ret(·, ·) is the retention gate. This online nature while making the optimization of the memory simpler and faster,
can cause sub-optimal memorization of the context as memory is greedily memorize individual tokens. In a more general
case, however, one can optimize the memory at each time stamp with respect to the entire context (input sequence),
i.e.,

min
M

𝑡∑︁
𝑖=1

ℓ (M; k𝑖 ; v𝑖 ). (7)

This strict global formulation generally presents two critical limitations: (1) Efficiency: One of the important advantages of
recurrent architectures is their efficiency at longer context in both training and inference. Optimizing the memory with
respect to all the past tokens (entire context), however, (i) causes additional optimization constraints at each memory
update step, resulting in inefficiency at extremely large sequences, and (ii) requires caching the past keys and values at
the test time, increasing the memory consumption; (2) Context Pruning: In large context tasks optimizing with all past
tokens can cause sub-optimal performance mainly due to the context change (or irrelevant context) in the middle of the
input sequence. This observation has resulted to design architectures with retention (forget) gate, enabling models to erase
memory when past context is no longer needed (Behrouz, Razaviyayn, et al. 2025; Behrouz, Zhong, et al. 2024; Peng, Zhang,
et al. 2025; Sun, Dong, et al. 2023; Yang, Wang, Shen, et al. 2024).

To address these limitations, we present a sliding window recurrent model that optimizes its attentional bias w.r.t. a
window of past tokens. For a memory moduleM(·) and window length 𝑐 ≥ 1, we optimize the memory internal objective
as:

min
M

𝑡∑︁
𝑖=𝑡−𝑐+1

𝛾
(𝑡 )
𝑖

ℓ (M; k𝑖 , v𝑖 ), (8)

where ℓ (M; k𝑖 , v𝑖 ) measures the predicted mapping for (k𝑖 , v𝑖 ) pair and 𝛾 (𝑡 )𝑖 is the decay term for the effect of 𝑖-th token in
the optimization process. Building upon this formulation, we present Omega rule, which is strictly more powerful than the
popular Delta learning rule (Schlag et al. 2021; Widrow et al. 1988):

Omega Rule: Let k𝑖 ∈ R𝑑𝑘 and v𝑖 ∈ R𝑑𝑣 be the input keys and values, andM(·) be a neural architecture that
serves as the memory module. Given a local context length of 𝑐 ∈ N≥1, the updating the memory moduleM using
Omega learning rule is defined as optimizing the following loss function with gradient descent:

min
M

𝑡∑︁
𝑖=𝑡−𝑐+1

𝛾
(𝑡 )
𝑖
∥M (k𝑖 ) − v𝑖 ∥22 (9)
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Figure 2: The illustration of tokens dependencies in SWA and Atlas or OmegaNet with different context length.

Following Behrouz, Razaviyayn, et al. 2025, this update rule can be extended to 𝑞-Omega rule (or other variants) by
replacing ℓ2 (·) with ℓ𝑞 (·). In the extreme cases of (1) 𝑐 = 1: the update rule becomes online (Delta rule); and (2) 𝑐 = ∞ or
context length: the update becomes global optimization w.r.t. all past tokens. In this formulation, parameters 𝛾 (𝑡 )

𝑖
∈ [0, 1]

act as hard (direct) gates for the past tokens. That is, 𝛾 (𝑡 )
𝑖
→ 0 means that the model directly prunes the optimization of

𝑖-th token in the local context, while 𝛾 (𝑡 )
𝑖
→ 1 means fully incorporating the optimization of memory for 𝑖-th token in the

local context. In our design, we use input-dependent parameters for 𝛾 (𝑡 )
𝑖

, providing in-context pruning ability. Note that,
the design of sliding window recurrence allows such flexibility as for each token we need a constant number of gates;
i.e., {𝛾 (𝑡 )

𝑖
}𝑐𝑖=1. Using input-dependent gates for the global optimization (Equation 7), however, can result in significant

parameter increase and memory usage, diminishing the advantages of recurrent models.

OmegaNet. We now present OmegaNet, a novel sequence model that updates its memory using Omega rule. To enhance
the memory capacity of OmegaNet, we use polynomial kernels on ks and qs. Accordingly, optimizing the objective in
Equation 9, results in an update rule of OmegaNet as:

M𝑡 = 𝛼𝑡M𝑡−1 − ∇
𝑡∑︁

𝑖=𝑡−𝑐+1
𝛾
(𝑡 )
𝑖
∥M (𝜙 (k𝑖 )) − v𝑖 ∥22︸                                    ︷︷                                    ︸

Surprise of the context

, (10)

or in the spacial case of linear memory:

M𝑡 =

(
diag(𝛼𝑡 ) −

𝑡∑︁
𝑖=𝑡−𝑐+1

𝛾
(𝑡 )
𝑖
𝜙 (k𝑖 )𝜙 (k𝑖 )⊤

)
M𝑡−1 −

𝑡∑︁
𝑖=𝑡−𝑐+1

𝛾
(𝑡 )
𝑖

v𝑖𝜙 (k𝑖 )⊤. (11)

From the memory perspective, Omega rule (OmegaNet) does not measure the surprise of a token, but the surprise of a
local context based on the context-aware combination of individual tokens within the context.

Beyond Gradient Descent. The concept of Omega rule and “test time memorization of context” can simply be extended
to optimizing the objective in Equation 9 with any arbitrary optimizer, even beyond simple gradient descent. We use two
extreme cases for 𝑐 as the illustrations. In the first case, we let 𝑐 = 1, 𝛾 (𝑡 )

𝑖
= 1, and use gradient descent with momentum as

the optimizers, resulting in the following update rule:

M𝑡 = 𝛼𝑡M𝑡−1 + S𝑡 (12)
S𝑡 = 𝜃𝑡S𝑡−1 − 𝜂𝑡∇ℓ (M𝑡−1; k𝑡 , v𝑡 ). (13)

This update rule is equivalent to the long-term neural memory in Titans (Behrouz, Zhong, et al. 2024). In the second case,
using a linear memoryM, letting 𝛾 (𝑡 )

𝑖
= 1, and 𝑐 be equal to the context length, the memory update process is equivalent

to optimizing the (regularized) least-squares problem:

M𝑡 = min
M

𝑡∑︁
𝑖=1
∥Mk𝑖 − v𝑖 ∥22 . (14)
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Von Oswald et al. (2023) suggest directly optimizing the above objective and use Sherman-Morrison formula (Sherman
et al. 1950) to recursively calculate the inverse term in the optimal solution. Despite the optimality of memory, such direct
solutions comes with the cost of non-parallelizable training and also are limited to only the linear matrix-valued memory
setup. Furthermore, as discussed earlier, the global nature without any direct hard gating terms (i.e., 𝛾 (𝑡 )

𝑖
s) can force the

model to not prune the context, damaging the performance in longer sequences.

3.3 Parallelizing Omega Rule

While Omega rule provides a more general and expressive formulation for the design of memory modules than Hebbian or
Delta learning rules, its applicability to large-scale models relies on its efficiency in training. To this end, we discuss a fast
parallelizable training algorithms that does not add any significant computational overhead with the online counterpart
version (i.e., 𝑐 = 1). A naive implementation requires materializing 𝑐 gradients ∇ℓ ∈ R𝑑in×𝑑in , which can result in a
significantly higher memory footprint and I/O cost when 𝑑in is large. Also, to fully utilize hardware accelerators such
as TPUs and GPUs, it is important to tensorize computations and maximize the use of matmul operations. Motivated
by recent work (Behrouz, Zhong, et al. 2024; Sun, Li, et al. 2024), we propose a simple sliding window masking strategy
that supports efficient parallel training while avoiding substantial memory overhead. Specifically, we partition the input
sequence with length 𝐿 into chunks of size 𝑏 ≥ 1, each of which is represented by S𝑖 = {x(𝑖−1)𝑏+1, . . . , x𝑖𝑏}. Then for each
chunk, we calculate the gradients with respect to the last state of the previous chunk. For the sake of clarity, we first
assume 𝛾 (𝑡 )

𝑖
= 𝜂𝑡 for all positions in the sequence. When the chunk size is 𝑏 = 1, the update rule is:

M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡
𝑡∑︁

𝑖=𝑡−𝑐+1
∇ℓ (M𝑡−1; k𝑖 , v𝑖 ), (15)

whereM𝑡 is the model state at step 𝑡 , 𝛼𝑡 and 𝜂𝑡 are the weight decay and learning rate parameters respectively, and (k𝑖 , v𝑖 )
denote the input pair at position 𝑖 . In practice, we strike a balance between the fully recurrent form and the fully parallel
form by dividing the sequence into smaller chunks. Within each chunk (intra-chunk), we apply parallel computation, while
across chunks (inter-chunk), we adopt a recurrent computation scheme. We now define 𝑡 ′ = 𝑡 −mod(𝑡, 𝑏). That is, for time
steps 𝑡 such that 𝑡 ′ ≤ 𝑡 < 𝑡 ′ + 𝑏, the update rule within each chunk becomes:

M𝑡 = 𝛼𝑡 ...𝛼𝑡 ′M𝑡 ′ −
𝑡∑︁

𝑛=𝑡 ′

𝛼𝑡 ...𝛼𝑡 ′

𝛼𝑛 ...𝛼𝑡 ′
𝜂𝑛

𝑛∑︁
𝑖=𝑛−𝑐+1

∇ℓ (M𝑡 ′ ; k𝑖 , v𝑖 )︸                      ︷︷                      ︸
𝐺𝑡

(16)

In our implementation, for 𝐺𝑡 , we follow the same gradient computation approach as described in Titans (Behrouz, Zhong,
et al. 2024) but additionally apply a sliding window mask𝑀𝑠 during the broadcasting operation (e.g., using einsum). When
𝑐 = 1, the sliding window mask𝑀𝑠 reduces to the identity matrix. For 𝑐 > 1,𝑀𝑠 is an identity matrix except that the 𝑐 − 1
positions immediately preceding each diagonal entry are also set to 1. This allows gradient contributions from a window
of size 𝑐 , enabling efficient computation without materializing all gradients inside the chunk.

4 DeepTransformers: Transformers with Deep Memory

Recent studies have extensively discussed Transformer architectures through the lens of associative memory (Behrouz,
Razaviyayn, et al. 2025; Sun, Li, et al. 2024; Wang et al. 2025). Accordingly, it is natural to ask how our discussions of
memory capacity as well as Omega rule can affect Transformers. In this section, we discuss how our formulation of
Omega rule is connected to Transformers and their sliding window counterparts (i.e., SWA). We then further provide two
extensions to Transformers, each of which is a strict generalization of Transformers.

4.1 Online and Local Context Optimization of Memory

Connection to Sliding Window Attention. Softmax attention block can also be reformulated as a non-parametric
solution to the ℓ2 (·) regression with Nadaraya-Watson estimators (Fan 2018; Zhang et al. 2022):

M∗ = argmin
M

𝐿∑︁
𝑖=1

s(k𝑖 , q)∥v𝑖 −M∥22 =
𝐿∑︁
𝑖=1

s(k𝑖 , q)∑𝐿
𝑗=1 s(k𝑗 , q)

v𝑖 , (17)
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where 𝐿 is the sequence length. While this formulation optimizes the memoryM with respect to the entire sequence
length, one can limit the optimization process to the past 𝑐 tokens, resulting in:

M∗ = argmin
M

𝑡∑︁
𝑖=𝑡−𝑐+1

s(k𝑖 , q𝑖 )∥v𝑖 −M∥22 =
𝑡∑︁

𝑖=𝑡−𝑐+1

s(k𝑖 , q)∑𝑡
𝑗=𝑡−𝑐+1 s(k𝑗 , q)

v𝑖 , (18)

which is equivalent to the sliding window attention (SWA). This connection provides an important insight on the difference
of attention and recurrent models: Not only attention is a non-parametric solution (contrary to the parametric nature
of recurrent models), it globally optimizes its internal objective (attentional bias), while most recent modern recurrent
models are online learners (Behrouz, Razaviyayn, et al. 2025; Peng, Zhang, et al. 2025; Sun, Li, et al. 2024; Yang, Kautz, et al.
2024)1 . Our formulations of sliding window RNN and Omega rule fill this gap by optimizing the memory with respect to a
context window of past tokens based on parametric methods, effectively memorizing the context instead of individual
tokens.

Deep Linear Attention. As a novel baseline, we present Deep (Gated) Linear Attention (DLA) that replaces a matrix-valued
memory in (gated) linear attention (Katharopoulos et al. 2020; Yang, Wang, Shen, et al. 2024) with a deep neural network
(e.g., 𝑘-layer MLP). As discussed earlier in (Hebbian Rule), using dot product similarity as the internal attentional bias
results in linear attention. Thus, leveraging recent deep memory modules (Behrouz, Razaviyayn, et al. 2025; Behrouz,
Zhong, et al. 2024; Sun, Li, et al. 2024), we optimize the memory using gradient descent with dot product attentional
bias:

M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡∇ℓ (M𝑡−1;𝜙 (k𝑡 ), v𝑡 ), (19)

where ℓ (M𝑡−1;𝜙 (k𝑡 ), v𝑡 ) = ⟨M𝑡−1 (𝜙 (k𝑡 )), v𝑡 ⟩ and 𝜙 (·) is a polynomial kernel. The training of DLA can simply be
parallelized using the hybrid of linear and non-linear chunk-wise training, the same as Behrouz, Zhong, et al. (2024) and
Sun, Li, et al. (2024) and our discussion in Section 3.3.

Sliding Window Linear Attention. Building upon the above intuition and the connection of our formulation to SWA,
we present Sliding Window Linear Attention (SWLA) block. Following the formulation of linear attention in associative
memory perspective (Behrouz, Razaviyayn, et al. 2025), we use dot product similarity (i.e., ℓ (M𝑡 ; k𝑖 , v𝑖 ) = ⟨M𝑡 (k𝑖 ), v𝑖⟩) as
the attentional bias and optimize the loss function using gradient descent. For the sake of clarity, we use a linear memory
here to derive the closed form:

M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡∇
𝑡∑︁

𝑖=𝑡−𝑐+1
ℓ (M𝑡−1;𝜙 (k𝑖 ), v𝑖 ) =M𝑡−1 +

𝑡∑︁
𝑖=𝑡−𝑐+1

𝛾
(𝑡 )
𝑖

v𝑖𝜙 (k𝑖 )⊤ (20)

In the online case (𝑐 = 1) and 𝜙 (·) = (·), this recurrence is the same as linear attention (Katharopoulos et al. 2020).

4.2 Memory Capacity and Exponential Kernels

We first recall the formulation of softmax attention in Transformers (i.e., Equation 1):

y𝑖 =
1∑𝑖

ℓ=1 exp
(
q⊤
𝑖
kℓ/
√
𝑑in

) 𝑖∑︁
𝑗=1

exp
(
q⊤𝑖 k𝑗/

√︁
𝑑in

)
v𝑗 , (21)

which its exp(·) kernel is not separable and so cannot be written as a recurrence. Following the discussion in Kacham et al.
(2024b), one can see exp(·) kernel (compared to polynomial kernel 𝜙𝑝 (·)) as a feature map that maps the input into an

1Two of the exceptions are Titans (Behrouz, Zhong, et al. 2024) and Mesa-layer (Von Oswald et al. 2023), where Mesa-layer optimizes the memory with
respect to all past tokens (comes with the cost of slow training), and Titans optimizes the memory with respect to all past tokens but with an implicit
decay term (i.e., the result of the momentum) for each past token, maintaining parallelizability.
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infinite dimension. That is, we define:

𝜙∗ (𝑥) =

©­­­­­­­­«

1
𝑥√
1

𝑥⊗2√
2!

𝑥⊗3√
3!
...

ª®®®®®®®®¬
, 𝜙𝑝 (𝑥) = 𝑥⊗𝑝 , (22)

where 𝑥⊗𝑝 = 𝑥 ⊗ 𝑥⊗(𝑝−1) is a “self-tensoring” operator with Kronecker product (Kacham et al. 2024b) and so:

exp(q⊤𝑡 k𝑡 ) = 𝜙∗ (q𝑡 )⊤𝜙∗ (k𝑡 ). (23)

Based on the above kernel, we can reformulate the attention (see Equation 21) as: (we remove 1/
√
𝑑in term for the sake of

simplicity)

y𝑖 =
1∑𝑖

ℓ=1 exp
(
q⊤
𝑖
kℓ/
√
𝑑in

) 𝑖∑︁
𝑗=1

v𝑗𝜙∗ (k𝑗 )⊤𝜙∗ (q𝑖 ) =
1∑𝑖

ℓ=1 exp
(
q⊤
𝑖
kℓ/
√
𝑑in

) (
𝑖∑︁
𝑗=1

𝜙∗ (v𝑗k𝑗 )⊤
)
𝜙∗ (q𝑖 ) =M𝑖𝜙

∗ (q𝑖 ), (24)

This formulation, provides another important insight on the differences of attention and (kernel) recurrent models: Softmax
attention as an associative memory has an unboundedmemory and so can better memorize larger context into its parameters.
Building upon this insight, we present DeepTransformers by replacing polynomial kernel with 𝜙∗ (·) kernel in Deep
Linear Attention formulation (Equation 19), resulting in unnormalized formulation of:

M𝑡 =M𝑡−1 − ∇⟨M𝑡−1 (𝜙∗ (k𝑡 )), v𝑡 ⟩. (25)

In the special case of linear memory, we can derive the closed form for the above formulation as:

M𝑡 =M𝑡−1 − ∇⟨M𝑡−1𝜙
∗ (k𝑡 ), v𝑡 ⟩ =M𝑡−1 + v𝑡𝜙∗ (k𝑡 )⊤ =

𝑡∑︁
𝑖=1

v𝑖𝜙∗ (k𝑖 )⊤ ⇒ y𝑡 =M𝑡𝜙
∗ (q𝑡 ) =

𝑡∑︁
𝑖=1

v𝑖 exp(q⊤𝑖 k𝑖 ), (26)

which matches the output of the unnormalized Transformers. Therefore, DeepTransformers are strict generalizations of
Transformers with softmax attention (Vaswani et al. 2017).

4.3 Deep Omega Transformer (Dot): Transformers with Omega learning rule

Our above formulation of DeepTransformers is based on the (Hebbian Rule), which is also used in original Transformers.
However, as discussed earlier, using more powerful memory management and learning rules in associative memory
modules can further enhance their performance. To this end, we extend the above formulation by replacing the Hebbian
rule with our Omega learning rule, resulting in an unnormalized formulation of Deep Omega Transformers (Dot):

M𝑡 =M𝑡−1 − ∇
𝑡∑︁

𝑖=𝑡−𝑐+1
𝛾
(𝑡 )
𝑖
∥M (𝜙∗ (k𝑖 )) − v𝑖 ∥22. (27)

We now discuss special instances of Dot to provide further intuition on its generalized formulation.

Linear Memory. This setup results in the following unnormalized formulation:

M𝑡 =

(
I −

𝑡∑︁
𝑖=𝑡−𝑐+1

𝛾
(𝑡 )
𝑖
𝜙∗ (k𝑖 )𝜙∗ (k𝑖 )⊤

)
M𝑡−1 −

𝑡∑︁
𝑖=𝑡−𝑐+1

𝛾
(𝑡 )
𝑖

v𝑖𝜙∗ (k𝑖 )⊤ (28)

⇒ y𝑡 =M𝑡𝜙
∗ (q𝑡 ) =

(
I −

𝑡∑︁
𝑖=𝑡−𝑐+1

𝛾
(𝑡 )
𝑖
𝜙∗ (k𝑖 )𝜙∗ (k𝑖 )⊤

)
M𝑡−1𝜙

∗ (q𝑡 ) −
𝑡∑︁

𝑖=𝑡−𝑐+1
𝛾
(𝑡 )
𝑖

v𝑖 exp(q⊤𝑡 k𝑖 ). (29)
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Online Case with 𝑐 = 1. We now let 𝑐 = 1:

M𝑡 =
(
I − 𝜂𝑡𝜙∗ (k𝑡 )𝜙∗ (k𝑡 )⊤

)
M𝑡−1 − 𝜂𝑡v𝑡𝜙∗ (k𝑡 )⊤ (30)

⇒ y𝑡 =M𝑡𝜙
∗ (q𝑡 ) =

(
I − 𝜂𝑡𝜙∗ (k𝑡 ) exp(q⊤𝑡 k𝑡 )

)
M𝑡−1 − 𝜂𝑡v𝑡 exp(q⊤𝑡 k𝑡 ). (31)

The above (unnormalized) formulation can be seen as the generalization of Transformers with Delta Rule. Therefore, due
to the unbounded memory, Dot not only appends the new keys and values (similar to original Transformers), but it also
replaces the new value with its predicted value from the previous state.

5 Atlas: A Locally Optimal Memory with High Capacity

Although the design of Omega rule allows the model to memorize the context instead of individual tokens and also the use
of polynomial (or exponential) feature mapping increases memory capacity, the memory management (i.e., optimization of
mappings between keys and values) is still limited to a simple gradient descent. This choice of optimizer can lead the model
to a low-quality solution at a local optima, damaging the performance of the model in longer contexts. To overcome this
issue, we suggest using Muon optimizer (Jordan et al. 2024) (with weight decay) that not only approximates second-order
information, but it also mostly leverages matrix multiplication and can be parallelized across the sequence. Accordingly,
the use of Muon for optimizing the internal objective in Equation 9, results in the following update rule:

M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡 NewtonShulz-𝑘 (S𝑡 ), (32)

S𝑡 = 𝜃𝑡S𝑡−1 + ∇
𝑡∑︁

𝑖=𝑡−𝑐+1
𝛾
(𝑡 )
𝑖
∥M (𝜙∗ (k𝑖 )) − v𝑖 ∥22 , (33)

where 𝑐 is the local context length and 𝑘 is the number steps for NewtonShulz operations. For the additional discussion on
the algorithm and this operation we refer the reader to Jordan et al. (2024). Following the literature on Muon optimizer, we
know that when 𝑘 →∞, then NewtonShulz-𝑘 (S𝑡 ) converges to the nearest semi-orthogonal matrix to the momentum
term S𝑡 and so approximate second-order information with a lower error. Therefore, interestingly, parameter 𝑘 can be
considered as an internal test-time compute parameter in Atlas, where using more steps can potentially result in better
memorization.

5.1 Parallel Training

In this section, we discussed how the training process of Atlas can be parallelized. For the sake of clarity, we assume
𝑐 = 1. Generalizing the process to arbitrary value for 𝑐 follows the procedure in Section 3.3. We use the same process as
we discussed in Section 3.3 and so chunk the sequence and compute all the gradients with respect to the last state of the
previous chunk. Accordingly, using the recurrence of Atlas with momentum but without , we have:

M𝑡 = 𝛼𝑡M𝑡−1 + S𝑡 (34)
S𝑡 = 𝜃𝑡S𝑡−1 − 𝜂𝑡∇ℓ (M𝑡 ′ ; k𝑡 , v𝑡 ). (35)

Since 𝑡 ′ is the last state of the previous chunk, we can calculate all the gradients before hand and so we let 𝑢𝑡 =

∇ℓ (M𝑡 ′ ; k𝑡 , v𝑡 ). Therefore, we have:

M𝑡 = 𝛼𝑡M𝑡−1 + S𝑡 (36)
S𝑡 = 𝜃𝑡S𝑡−1 − 𝜂𝑡𝑢𝑡 . (37)

Now by expanding the second recurrence, we have:

S𝑡 = 𝜃𝑡S𝑡−1 − 𝜂𝑡∇ℓ (M𝑡 ′ ; k𝑡 , v𝑡 )︸             ︷︷             ︸
𝑢𝑡

, (38)

⇒ S𝑡 = 𝜃𝑡 ...𝜃1︸︷︷︸
𝛽𝑡

S0 −
𝑡∑︁
𝑖=1

𝜃𝑡 ...𝜃1

𝜃𝑖 ...𝜃1
𝜂𝑖𝑢𝑖 = 𝛽𝑡S0 − Θ ⊙ 𝐸 ⊙ 𝐺, (39)
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Figure 3: Visualization of the Atlas’s (and our other variants’) architecture, and its hybrid counterpart with SWA.

where 𝐺 is the gradient matrix, 𝐸 and Θ are diagonal matrices with value 𝜃 and 𝜂, and ⊙ is broadcasting.

The main advantage of the above formulation (chunk wise recurrence) is that the recurrence of momentum is independent
of the state of memory. That is, we can calculate all the momentum terms in the beginning of the chunk using the above
formulation. Now in the Muon case, we want to use Newton-Schulz algorithm on the momentum terms, which results
in:

S′𝑡 ← Newton-Schulz5(S𝑡 ), (40)
M𝑡 =M𝑡−1 + S′𝑡 . (41)

Since the calculation of all S𝑡 s can be done in parallel, the calculation of Newton-Schulz5(·) can also be done in paral-
lel.

Architectural Backbone. As for the architectural backbone, we follow the recent modern recurrent models (Allen-Zhu
2025; Arora, Eyuboglu, Zhang, et al. 2024; Behrouz, Zhong, et al. 2024; Yang, Wang, Zhang, et al. 2024) and use linear layers
to project keys, values, and queries, followed by short convolution layers with size 4. We apply normalization on keys and
queries to stabilize the training. We also follow Behrouz, Zhong, et al. (2024) and use two hybrid variants of MAL and
MAG for our Atlas model. The architectures are illustrated in Figure 3. For models with deep memory architectures we
use 2-layer MLP with residual connections:

M(·) = (·) +𝑊1𝜎 (𝑊2 (·)) . (42)

We further extend this memory architecture, which is commonly used in recent studies (Behrouz, Razaviyayn, et al. 2025;
Behrouz, Zhong, et al. 2024; Irie et al. 2021), to gated MLP layer as:

M(·) = (·) +𝑊1 (𝜎 (𝑊2 (·)) ⊗𝑊3 (·)) , (43)

where𝑊1,𝑊2,𝑊3 are linear learnable matrices. We refer to Atlas with the above memory architecture as Atlas++.

6 Experiments

Next, we evaluate the performance of Atlas, OmegaNet, DeepTransformers, and Dot in language modeling, common-
sense reasoning, needle in haystack, and in-context recall tasks. Although we also discussed several other variants, such as
SWLA, in our experiments we focus on the above models so in addition to comparison with state-of-the-art models, we
also answer the following questions:

1. Is deep memory effective for softmax attention? (see Table 2 — comparison of Transformer++ and DeepTrans-
formers)
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2. Does the use of Omega improve the performance softmax attention? (see Table 2 — comparison of Transformer++,
DeepTransformers, and Dot)

3. Does the Omega rule provide more expressive memory update? (see Table 2 and Table 6 — the performance of
OmegaNet, and Atlas)

4. Is locally optimal memory update effective? (see Table 2 and Table 6 — comparison of OmegaNet, and Atlas)

5. Is non-linear feature mapping effective? (see Table 6)

6. Can the proposed improvements close the gap with Transformers in in-context recall tasks? (see Table 5)

7. What is the effect of the internal optimizer on the memory? (see Figure 6)

Setup. We train our models with training context window of size 4K using FineWeb dataset (Penedo et al. 2024). We use
model size of 340M, 400M, 790M, and 1.3B parameters and train them on 15B, 15B, 30B, and 100B tokens sampled from
the dataset. Baseline results are reported by Behrouz, Razaviyayn, et al. (2025), Behrouz, Zhong, et al. (2024), and Yang,
Kautz, et al. (2024). Perplexity is measured on held-out validation data. As for the downstream tasks, we evaluate trained
models on Wikitext (Merity et al. 2017), LMB (Paperno et al. 2016), PIQA (Bisk et al. 2020), HellaSwag (Zellers et al. 2019),
WinoGrande (Sakaguchi et al. 2021), ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark, Cowhey, et al. 2018), SIQA (Sap
et al. 2019), and BoolQ (Clark, Lee, et al. 2019). Additional details about the experimental setups and other used datasets
are in Appendix E.

6.1 Language Modeling and Common-Sense Reasoning

The results for Atlas, and OmegaNet as well as their corresponding baselines of SWDT, DLA, DeepTransformers,
and Dot with the size of 760M and 1.3B are reported in Table 2. (see Appendix F for the results of small scale). Among
non-hybrid models, including Transformer++, our Atlas, and OmegaNet achieve the best performance in both perplexity
and accuracy measures. We attribute this performance to their ability to memorize the context rather than individual tokens.
Comparing OmegaNet with Titans, that also uses the same momentary objective (i.e., ℓ2 loss), but with context window
of 1, we can observe the effectiveness of having non-online learning rule. On the other hand, our models, alone without
any attention, can outperform hybrid models, while their hybrid variant of MAG further improve their performance. This
performance gain is also related to the use of polynomial kernels that enhance the memory capacity of the model. See
Table 6 for a more controlled study on the effect of different components.

Comparing Transformer++ with our more generalized Transformers (i.e., DeepTransformers, and Dot) we observe a
consistent performance improvement. We attribute this performance to their deep memory, which makes them more
powerful to model the dependencies of tokens. Comparing Dot with DeepTransformers, we can see the advantage of
Omega rule, which helps the model to better manage its memory.

Figure 4: Performance of Atlas and baselines on BABILong
benchmark. Atlas surpasses Titans performance and effec-
tively scale to 10M context length in this task.

Figure 5: The effect of local context length (i.e. 𝑐) on the
performance of OmegaNet with different global context
length.
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Table 2: Performance of Atlas and baselines on language modeling and common-sense reasoning tasks. Hybrid models
are marked with ∗. The best results are highlighted highlighted .

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.

ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ ↑

760M params / 30B tokens

Transformer++ 25.21 27.64 35.8 66.9 42.2 51.9 60.4 32.5 39.5 60.4 48.69
DeepTransformers (ours) 20.32 20.67 36.9 68.4 49.8 52.8 65.7 34.9 40.2 61.8 51.31
Dot (ours) 19.96 20.15 39.0 69.1 50.7 53.1 66.2 37.0 40.3 63.7 52.39

RetNet 26.08 24.45 34.5 67.2 41.6 52.1 63.2 32.8 38.4 57.9 48.46
DeltaNet 24.37 24.60 37.1 66.9 42.0 50.7 64.9 31.4 39.9 59.0 48.97
TTT 24.17 23.51 34.7 67.3 43.9 51.0 64.5 33.8 40.2 59.6 47.32
Gated DeltaNet 21.18 22.09 35.5 68.0 44.9 50.7 66.9 33.1 39.2 59.1 49.69
Samba∗ 20.63 22.71 39.7 69.2 47.4 52.0 66.9 33.2 39.0 61.2 51.08
Gated DeltaNet-H2∗ 19.88 20.83 39.2 69.0 48.2 52.6 67.0 35.5 39.4 61.1 51.49
Titans (LMM) 20.04 21.96 37.4 69.3 48.5 52.3 66.3 35.8 40.1 62.8 51.56
Memora 22.28 22.31 38.2 67.8 49.3 53.3 63.6 36.1 40.9 63.0 51.52

SWDT (ours) 19.89 21.52 36.2 68.3 45.2 53.0 65.4 34.2 39.5 59.5 50.1
DLA (ours) 23.12 22.09 36.1 68.0 47.9 52.7 65.8 34.6 39.1 59.6 50.46

OmegaNet (ours) 19.16 20.14 38.7 69.8 50.0 53.3 67.8 36.8 39.6 64.4 52.56
Atlas (ours) 18.92 21.01 39.1 69.7 50.2 53.5 67.5 37.1 40.7 64.3 52.77
Atlas++ (ours) 19.04 20.03 39.7 69.7 51.1 53.2 68.2 37.4 40.9 64.4 53.09

Atlas (MAG) 18.62 21.18 40.0 70.3 50.5 53.0 68.1 36.5 41.2 65.0 53.08
Atlas (MAL) 19.07 21.46 38.8 69.2 50.5 53.6 67.3 36.1 41.0 64.5 52.63

1.3B params / 100B tokens

Transformer++ 18.53 18.32 42.6 70.0 50.2 53.5 68.8 35.1 40.7 57.1 52.25
DeepTransformers (ours) 15.67 12.63 49.4 72.6 57.0 58.8 71.1 37.5 41.6 61.5 56.19
Dot (ours) 15.28 11.96 50.1 73.3 57.5 60.4 72.2 41.2 42.7 61.4 57.35

RetNet 19.08 17.27 40.5 70.1 49.2 54.1 67.3 33.8 40.8 60.4 52.02
Mamba2 16.56 12.56 45.7 71.9 55.7 55.2 72.5 37.9 40.2 60.1 54.89
DeltaNet 17.71 16.88 42.5 70.7 50.9 53.3 68.5 35.7 40.2 55.3 52.14
Gated DeltaNet 16.42 12.17 46.6 72.2 55.8 57.4 71.2 38.4 40.6 60.2 55.32
Samba∗ 16.13 13.29 44.9 70.9 53.4 55.6 68.8 36.2 40.0 62.1 54.00
Gated DeltaNet-H2∗ 15.91 12.55 48.8 72.2 56.9 57.8 71.4 39.1 41.2 61.6 56.18
Titans (LMM) 15.60 11.41 49.1 73.1 56.3 59.8 72.4 40.8 42.1 61.0 56.82
Memora 15.90 12.04 48.7 73.1 56.0 57.4 71.5 37.9 40.2 61.3 55.87

OmegaNet (ours) 14.91 11.26 49.7 73.4 57.6 59.7 72.6 40.3 42.4 62.1 57.23
Atlas (ours) 14.97 10.98 50.1 73.9 57.3 60.2 72.8 41.0 42.9 62.8 57.62
Atlas++ (ours) 14.40 10.72 50.8 73.5 59.4 61.1 71.3 43.7 42.5 61.9 58.03

6.2 Long Context: Needle In a Haystack

One of our main motivations to design Atlas is to enhance the performance of long-term neural memory module in
long context tasks. Accordingly, to evaluate the effectiveness of our designs for improving the effective context length
and memory capacity, we perform an experiment on needle-in-haystack tasks of RULER (Hsieh et al. 2024) benchmark.
The performance of Atlas and its hybrid variants, as well as our Transformer-like architectures and baselines are
reported in Table 3. Atlas shows very good performance compared to the recurrent baselines, outperforming modern
recurrent neural networks such as Titans and DeltaNet. Its hybrid variants further improve its effective context length,
effectively extrapolating to sequences with ×4 of their training context size. We attribute this performance to the proposed
enhancements for the capacity of the memory. We further perform ablation studies to validate this claim. Also, our
Transformer-like architectures outperforms the baselines, even our hybrid variants of Atlas in longer contexts. This
shows the importance of exponential feature mapping in longer sequences.

6.3 Long Context: BABILong Benchmark

To compare the effectiveness of Atlas with Titans (Behrouz, Zhong, et al. 2024) in ultra-large sequences, we further
evaluate Atlas’s performance on BABILong benchmark (Kuratov et al. 2024). In this experiment, we follow Behrouz,
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Table 3: Performance of Atlas and baselines on S-NIAH task from RULER benchmark. The best results among simple
and hybrid models are highlighted.

Model S-NIAH-PK S-NIAH-N S-NIAH-W

2K 4K 8K 16K 2K 4K 8K 16K 2K 4K 8K

TTT 98.4 98.8 98.0 88.4 60.2 36.6 10.2 4.4 78.8 28.0 4.4
DeltaNet 96.8 98.8 98.6 71.4 47.2 15.4 12.8 5.4 46.2 20.0 1.6
Titans (LMM) 99.8 98.4 98.2 96.2 100.0 99.8 93.4 80.2 90.4 89.4 85.8
Atlas 100 99.2 98.0 97.0 100.0 100.0 93.0 84.0 93.2 90.6 86.2

Samba 98.8 98.0 97.4 97.2 98.8 98.6 96.2 95.6 96.8 90.0 84.0
Gated DeltaNet-H2∗ 99.2 97.8 97.4 98.4 98.0 97.8 96.2 95.8 97.4 96.8 88.4
Atlas (MAG) 100 100 99.4 98.6 100 99.2 97.4 97.0 99.4 98.2 92.4
Atlas (MAL) 99.8 99.6 98.4 96.8 99.8 98.0 97.2 96.8 98.0 98.4 92.6
DeepTransformers 100 100 98.2 97.8 100 98.8 97.8 94.0 95.8 92.2 88.4
Dot 100 100 99.6 98.6 100 100 97.8 96.8 99.0 98.4 93.2

Zhong, et al. (2024) and use MAC architecture but without persistent memory tokens. We also follow the original setup in
the benchmark and fine-tune our model. The results are reported in Figure 4. While Atlas shows competitive and on par
performance with Titans until 1M context length, the performance of Titans drops in 10M. Atlas, however, maintains its
performance and achieve +80% accuracy in 10M context length. We attribute this to more powerful memory; in terms of
(1) memory management (i.e., the use of Muon), (2) better memory capacity due to polynomial kernels, and (3) its nature to
memorize the context, instead of individual tokens.

In previous sections, we show the effectiveness of our Transformer-like architectures (i.e., DeepTransformers and Dot) in
both language modeling and long-context needle-in-haystack tasks. From now on, we focus on our recurrent architectures
(i.e., Atlas, and OmegaNet) to show the importance of presented improvements.

6.4 Learnability Experiments

We have also performed some small-scale experiments to analyze the function-learning capability of small MLPs in an
online fashion. In this setting, we have a sequence of tuples (𝑖1, 𝑜1), . . . (𝑖𝑡 , 𝑜𝑡 ) with both 𝑖 𝑗 , 𝑜 𝑗 ∈ R𝑑 for all 𝑗 . We train an
MLPM in an online fashion to minimize loss𝑗 = ∥𝑖 𝑗 − 𝑜 𝑗 ∥22/∥𝑜 𝑗 ∥22 – specifically, we compute the gradient at time step 𝑗 as
∇M.paramsloss𝑗 and use standard optimizers such as Adam, Rmsprop and SGD to update the parameters. Such experiments
help us understand the representation power of the models we use to represent memory and the power of optimization
algorithms to quickly learn the underlying sequence mapping.

We study five different sequence to sequence functions:

1. Low Rank Mappings: We sample a random low rank matrix W = XY with X ∈ R𝑑×𝑘 and Y ∈ R𝑘×𝑑 . We then
sample 𝑖1, . . . , 𝑖𝑡 randomly from a Gaussian distribution and set 𝑜 𝑗 = WT · 𝑖 𝑗 for all 𝑗 ∈ [𝑡].

2. MLP Mappings: We sample an MLPM with 1 input, 1 hidden and 1 output layer which uses GELU non-linearity.
We set the hidden dimension to 𝑑 so that there is no expansion. We then sample 𝑖1, . . . , 𝑖𝑡 randomly from a Gaussian
distribution and then set 𝑜 𝑗 =M(𝑖 𝑗 ) for all 𝑗 ∈ [𝑡].

3. Attention+MLP Mapping: We sample (𝑖1, . . . , 𝑖𝑡 ) from a Gaussian distribution and an MLPM as above. We
additionally sample three 𝑑 ×𝑑 matricesWQ,WK andWV and compute 𝑞 𝑗 = WQ

T · 𝑖 𝑗 , 𝑘 𝑗 = WK
T · 𝑖 𝑗 and 𝑣 𝑗 = WK

T · 𝑖 𝑗
for all 𝑗 ∈ [𝑡]. We then compute 𝑜 ′1, . . . , 𝑜

′
𝑡 as outputs of the causal masked attention mechanism applied on

{𝑞 𝑗 } 𝑗∈[𝑡 ], {𝑘 𝑗 } 𝑗∈[𝑡 ], {𝑣 𝑗 } 𝑗∈[𝑡 ] and finally compute 𝑜 𝑗 =M(𝑜 𝑗 ).

4. Attention Outputs as Inputs: We do the same as above except that we output 𝑜 ′𝑗 as the input sequence and 𝑜 𝑗 as
the output sequence.

5. Sliding Window Attention + MLP Mapping: We do the same as in Attention + MLP Mapping setting except
that we use a sliding window attention instead of full attention. We use a sliding window of 512 in our experiments.
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(a)M with 2 hidden layers and no expansion. (b)M with 3 hidden layers and no expansion.

(c)M with 2 hidden layers and 4x expansion. (d)M with 3 hidden layers and 4x expansion.

Figure 6: Loss curves for different setting with various hyperparameters
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Table 4: Performance of Atlas, OmegaNet, and baselines on the synthetic benchmark of MAD (Poli et al. 2024). Atlas
outperforms all the baselines, including Transformers.

Compression (Noisy) ICR Fuzzy ICR Selective Memorization AverageCopying

Transformers 49.4 100 48.2 95.9 83.8 75.46
Gated DeltaNet 44.8 100 32.5 96.2 81.7 71.04
Titans 49.6 100 49.7 99.4 83.5 76.44

OmegaNet (ours) 50.9 100 54.2 99.6 90.2 78.98
Atlas (ours) 51.6 100 54.9 99.6 91.4 79.50

Note that the settings 3 and 5 are much harder to learn since they require (partially) memorizing the previous inputs and
outputs to be able to learn the function that maps 𝑖 𝑗 to 𝑜 𝑗 , whereas the settings 1, 2 and 4 do not need to memorize the
previous input-output pairs and just need to learn the underlying low-rank matrix or the MLP that maps the inputs to
outputs.

The setting 4 is slightly different to setting 2 in that the inputs are not-independent at each time step and are correlated
by the attention mechanism we use to compute the inputs. Thus a strong learning algorithm maybe able to utilize the
underlying correlations to learn the mapping faster in setting 4 versus setting 2.

Table 5: The performance of our models (Atlas, and OmegaNet) com-
pared to baselines. While still Transformers achieve the best results in
in-context recall tasks, our design of context memorization and polyno-
mial feature maps can close the gap with Transformers.

SWDE NQ DROP FDA SQUAD TQA Average

Transformers 84.9 23.0 28.4 72.5 48.1 64.4 53.55
Gated DeltaNet 63.2 19.1 26.7 33.4 39.6 59.7 40.28
Titans 65.1 20.7 27.2 37.3 42.6 61.0 42.31

OmegaNet (ours) 67.4 21.1 27.2 39.0 43.2 60.9 43.13
Atlas (ours) 66.8 21.9 27.4 40.7 44.1 61.3 43.70

Table 6: Ablation Study on Atlas. All compo-
nents of Atlas are positively contributing to its
performance.

Model Language Modeling C.S. Reasoning
ppl ↓ acc ↑

Atlas 19.97 52.77

+Gated MLP Memory 19.53 53.09

+Attn (MAG) 19.90 53.08
+Attn (MAL) 20.26 52.63

Linear Memory 21.03 49.74
w/o Muon 19.65 52.56
𝑐 = 1 21.98 49.26
w/o Polynomial Mapping 22.14 50.57

We set 𝑑 = 256 and show the loss curves vs sequence position for all the five settings with function learning MLPM being
defined and trained with different settings in Figure 6. We can see that in all the settings, the model learns non-trivial
mappings from inputs to outputs with the 𝑙𝑜𝑠𝑠 𝑗 = ∥𝑖 𝑗 − 𝑜 𝑗 ∥22/∥𝑜 𝑗 ∥22 being smaller than 1 eventually. Most notably, the
correlations in inputs in setting 4 induced by the attention mechanism makes the model quickly learn the mapping
compared to in setting 2 and the models usually learn the best in setting 1 which is the least complex function.

The models do the worst in settings 3 and 5 which require the models to (partially) memorize the inputs and outputs to
learn the attention mechanism outputs. Surprisingly, the models learn to do better in setting 3 vs setting 5, when we would
expect that capacity requirement for setting 3 to be higher than setting 5. We hypothesize that the learning algorithm is
unable to make the model ‘forget’ old inputs which makes the loss worse in sliding window setting when compared to
global attention setting. A caveat of our analysis is that, the attention computation is done on randomly initialized vectors
and hence the attention matrix is usually not spiky, unlike in the attention matrix for trained set of query, key and value
vectors in LLMs. This leads to attention outputs being close to the mean of value vectors in the context.

6.5 Additional Experiments: In-context Recall, MAD Synthetic Benchmark, and Associative

Recall

In this section, we first evaluate the performance of our models on MAD benchmark, a synthetic benchmark that evaluate
the performance of models in recall, memorization, compression, and copying tasks (Poli et al. 2024). The results are
reported in Table 4. Atlas achieves the best results in all aspects, particularly in memorization, which shows the importance
of its components for enhancing the memory capacity.
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In-context recall tasks is one of the most challenging benchmarks for recurrent neural networks. In this section, we follow
Arora, Eyuboglu, Zhang, et al. (2024) and perform experiments on SWDE (Lockard et al. 2019), NQ (Kwiatkowski et al. 2019),
DROP (Dua et al. 2019), FDA (Arora, Yang, et al. 2023), SQUAD (Rajpurkar et al. 2016), and TQA (Kembhavi et al. 2017) to
evaluate and compare the performance of Atlas with baselines and Transformers. The results are reported in Table 5.
While Transformers still achieve the best results in in-context recall tasks, Atlas and OmegaNet shows competitive
performance and performs better than state-of-the-art recurrent models. We again attribute this performance to better
memory management and capacity.

Figure 7: The results for associativemem-
ory recall.

Figure 8: Scaling patterns of Atlas, and OmegaNet with respect to (Left) training
context length, and (Right) FLOPs.

Finally, following Yang, Wang, Zhang, et al. (2024) and Arora, Eyuboglu, Timalsina, et al. (2023) we evaluate the performance
of Atlas and Dot in Multi-Query Associative Recall (MQAR) task (Arora, Eyuboglu, Timalsina, et al. 2023). The results are
reported in Figure 7. Both models show good performance compared to baselines and Atlas achieve the best performance
per memory size compared to state-of-the-art models such as DeltaNet (Yang, Wang, Zhang, et al. 2024).

6.6 Ablation Study and Scaling Patterns

In this section, we perform an ablation study on the differernt components of Atlas, and also evaluate its scaling patterns
with respect to the number of parameters and also the context length of the training. The results for ablation study
are reported in Table 6. The results show that: (1) more powerful memory architectures such as gated MLP can further
enhance the performance of Atlas; (2) The hybrid variants further improve the performance, where MAG shows better
improvement compared to MAL architecture; (3) Polynomial mappings as well as deep memory are particularly important
when we use context memorization (i.e., Omega rule). Figure 5 also shows the effect of local context length (i.e., 𝑐) on the
performance of the model. With the increase of 𝑐 we can achieve better performance, mainly due to the gating parameters
of 𝛾 that can prune the context, whenever it is needed.

Model Size. Figure 8 shows the scaling pattern of Atlas, and OmegaNet, with respect to number of parameters and
compared to baseline. Both models achieve a good scaling pattern with increasing the model size, achieving lower perplexity
in all scales compared to baselines.

Context Length. Figure 8 shows the scaling pattern of Atlas, and OmegaNet, with respect to the context length and
compared to baseline. Both models due to high memory capacity can scale well, when increasing the context length.

7 Conclusion

We introduced Atlas, a new long-term memory module designed to address the core limitations of modern recurrent
models in long-context understanding: limited memory capacity, online-only updates, and weak memory management. Our
proposed sliding window learning rule, higher-order feature mappings, and advanced memory optimizers offer a principled
and scalable approach to overcoming these challenges. Empirically, our models—OmegaNet, Atlas, DeepTransformers,
and Dot—achieve consistent improvements over Transformers and recent RNN variants across diverse benchmarks.
Theoretically, we provided insight into memory capacity and optimization dynamics, offering explanations for the context
length limitations observed in prior works.
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A Additional Related Work

Modern Linear Recurrent Neural Networks
2
. Recent research endeavors have concentrated on mitigating the quadratic

computational complexity and inherent limitations of Transformer models in processing long-context sequences. This
has led to the development of efficient recurrent alternatives, primarily motivated by their rapid inference and training
capabilities (Tiezzi et al. 2024). Initial advancements in this domain, exemplified by models such as RetNet (Sun, Dong,
et al. 2023), RWKV (Peng, Alcaide, et al. 2023), and S5 (Smith et al. 2023), employed data-independent transition matrices
coupled with Hebbian-like update mechanisms. Subsequently, a second generation of models emerged, incorporating
input-dependent parameters within these linear architectures (e.g., linear RNNs (Hasani et al. 2023; Smith et al. 2023),
RWKV6 (Peng, Goldstein, et al. 2024)). These models also explored more expressive memory updating rules, notably
those based on the delta rule (Liu, Wang, et al. 2024; Peng, Zhang, et al. 2025; Schlag et al. 2021; Yang, Kautz, et al. 2024;
Yang, Wang, Zhang, et al. 2024). Further evolution in this line of research has extended these memory architectures to
deeper models, while concurrently utilizing delta-rule-like update mechanisms (Sun, Li, et al. 2024) or data-dependent
momentum-based update rules with forget gating (Behrouz, Zhong, et al. 2024). More recently, to augment the performance
of delta-rule-based sequential models, Siems et al. (2025) have proposed the application of multiple gradient descent
updates per token, thereby yielding more expressive sequence models, particularly in state tracking tasks. In addition to the
above fast linear recurrent sequence models, several studies have focused on RNNs with non-linear recurrence (Behrouz,
Razaviyayn, et al. 2025; Csordás et al. 2024; Gonzalez et al. 2024; Karami et al. 2025; Lim et al. 2024; Merrill et al. 2024;
Schöne et al. 2025; Von Oswald et al. 2023), and how their training can be faster (Gonzalez et al. 2024; Lim et al. 2024;
Schöne et al. 2025).

Fast Weight Programs. The conceptualization of linear layers as key-value associative memory systems can be traced
back to Hopfield networks (Hopfield 1982). This concept was subsequently developed in the context of fast weight
programmers, wherein dynamic fast programs are integrated into recurrent neural networks to serve as writable memory
stores (Schlag et al. 2021; Schmidhuber 1992; Schmidhuber 1993). Among the learning paradigms for such systems, Hebbian
learning (Hebb 2005) and the delta rule (Prados et al. 1989) have emerged as the most prominent. Both learning rules
have been the subject of extensive investigation within the existing literature (Irie et al. 2021; Munkhdalai, Sordoni, et al.
2019; Munkhdalai and Yu 2017; Schlag et al. 2021; Schmidhuber 1992; Yang, Kautz, et al. 2024; Yang, Wang, Zhang, et al.
2024).

Hopfield Networks. Our formulation is architecturally founded upon the broad concept of associative memory, wherein
the primary objective is to learn an underlying mapping between keys and values. Seminal work by Hopfield (1982) on
Hopfield Networks introduced one of the earliest neural architectures explicitly based on associative memory, defining
it through the minimization of an energy function for storing key-value pairs. Although traditional Hopfield networks
have seen diminished applicability in recent years, primarily due to constraints in vector-valued memory capacity and
the nature of their energy function, several contemporary studies have focused on enhancing their capacity through
various methodologies. These include efforts by Krotov (2021), Li, Li, et al. (2024), and Krotov and Hopfield (2016). Notably,
extensions to the energy function of these models, often incorporating exponential kernels, have been explored (Krotov
and Hopfield 2016; Lucibello et al. 2024). Furthermore, the relationship between these modernized Hopfield networks and
Transformer architectures has been a subject of recent investigation (Hu et al. 2024; Ramsauer et al. 2021).

B Miras Framework

As discussed earlier, Behrouz, Razaviyayn, et al. (2025) formalized the concept of associative memory as:

Definition 2 (Behrouz, Razaviyayn, et al. (2025)). Given a set of keys K ⊆ R𝑑𝑘 and valuesV ⊆ R𝑑𝑣 , associative memory
is an mappingM : K → V . Learning the associative memory is based on an objective L, called Attentional Bias, that
determines the type of memory and its priorities:

M∗ = argmin
M

L(M(K);V). (44)

2Note that here the term “linear” refers to their fast training and inference procedures. This does not refer to their recurrence formula as some models
like Titans (Behrouz, Zhong, et al. 2024), Yaad, Moneta, Memora (Behrouz, Razaviyayn, et al. 2025), and TTT (Sun, Li, et al. 2024) are based on non-linear
recurrence but fast at training and inference.
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Optimizing this objective using an iterative algorithm (e.g., gradient descent) results in the memory update rule. Thus, the
sequence model is a meta in-context learner with two optimization levels:

1. Inner Loop: Where parameters of the memory module are optimized (i.e., 𝜽M = {𝑊1,𝑊2, . . . ,𝑊LM ,...}). In the inner
optimization loop, all other parameters from the model are considered hyperparameters and are fixed and not
optimized.

2. Outer Loop: Where all other parameters of the model are optimized, such as linear projections, MLP layers,
convolutions, etc.

B.1 Examples

As an example, one can define the linear attention as the optimization of dot-product similarity with gradient descent: i.e.,
ℓ̃𝑡 := ⟨M𝑡−1k𝑡 , v𝑡 ⟩. That is,

M𝑡 =M𝑡−1 − 𝜂𝑡∇ℓ̃𝑡 (M𝑡−1; k𝑡 , v𝑡 ) =M𝑡−1 − 𝜂𝑡∇⟨M𝑡−1k𝑡 , v𝑡 ⟩ (45)
=M𝑡−1 + 𝜂𝑡v𝑡k⊤𝑡 . (46)

As an another example, if we use regression loss, instead of the dot-product similarity, we can obtain the DeltaNet (Schlag
et al. 2021):

M𝑡 =M𝑡−1 − 𝜂𝑡∇∥M𝑡k𝑡 − v𝑡 ∥22 = I − 𝜂𝑡k𝑡k⊤𝑡 M𝑡−1 + v𝑡k⊤𝑡 . (47)

C Supporting Proofs

Proposition 1 (Capacity of ℓ2 Attentional Bias). LetM be a matrix-valued memory with 𝑑𝑣 × 𝑑𝑘 parameters that optimizes
the internal objective of ℓ (M𝑡 ; k𝑡 , v𝑡 ) = ∥M𝑡k𝑡 − v𝑡 ∥22 with gradient descent. M can store the mapping of at most O (𝑑𝑘 )
pairs of (k𝑖 , v𝑖 ) with linearly independent keys.

Proof. Let 𝐾 = [k1 · · · k𝑚] ∈ R𝑑𝑘×𝑚 and 𝑉 = [v1 · · · v𝑚] ∈ R𝑑𝑣×𝑚 . The optimization problem becomes minimizing the
Frobenius norm ∥M𝐾 −𝑉 ∥22. Exact memorization requires solving the linear systemM𝐾 = 𝑉 .

Vectorizing the expression yields the system (𝐾⊤⊗𝐼𝑑𝑣 )vec(M) = vec(𝑉 ), which has𝑚𝑑𝑣 scalar equations in𝑑𝑘𝑑𝑣 unknowns.
When the keys are linearly independent, rank(𝐾) =𝑚, and hence the system matrix has full row rank𝑚𝑑𝑣 . Solvability
thus requires𝑚𝑑𝑣 ≤ 𝑑𝑘𝑑𝑣 , or equivalently𝑚 ≤ 𝑑𝑘 . This matches classic results on the storage capacity of linear associative
memories such as the Willshaw model and Hopfield networks, where capacity is tied to the rank of the input embedding
(Hopfield 1982; Willshaw et al. 1969).

When 𝑚 ≤ 𝑑𝑘 and 𝐾 has full column rank, one can construct an exact interpolating solution via the Moore–Penrose
pseudoinverse:M∗ = 𝑉𝐾⊤. ThenM∗𝐾 = 𝑉𝐾⊤𝐾 = 𝑉 , achieving zero training error. Thus the upper bound is tight.

Moreover, full-batch gradient descent on this objective with step size 0 < 𝜂 < 2/𝜆max (𝐾𝐾⊤) yields iterates M𝑡+1 =

M𝑡 − 𝜂 (M𝑡𝐾 −𝑉 )𝐾⊤, which converge to the minimum-norm interpolating solutionM† = 𝑉𝐾⊤ when𝑚 ≤ 𝑑𝑘 . This is a
well-known implicit bias of gradient descent in overparameterized linear models (Satpathi et al. 2021).

Finally, the same rank-based constraint governs the capacity of linear or multi-head attention modules. In such architectures,
the output context matrix has rank at most rank(𝐾) ≤ 𝑑𝑘 , which directly limits their expressivity. Recent analyses identify
this “low-rank bottleneck” as a capacity-limiting effect in Transformers (Bhojanapalli et al. 2020). □

Theorem 1 (Effect of Deep Memory). Let M(·) be an MLP with LM ≥ 2 layers, 𝑑𝑘 input dimension, and 𝑑ℎ hidden
dimension. Then,M(·) can store the mapping of at least O (𝑑𝑘𝑑𝑣) and at most O

(
𝑑𝑘𝑑𝑣

∑LM
𝑖=1 min{𝑑 ( 𝑗 )

ℎ
} 𝑗≥𝑖𝑑 ( 𝑗+1)ℎ

)
pairs of

(k𝑖 , v𝑖 ) with linearly independent keys.

Early theoretical works established that even simple network architectures can memorize a significant number of input-
output mappings, with capacity often related to the number of network parameters (e.g., weights and biases) and the input
dimensionality Baum (1988), Cover (1965), and Huang (2003). For instance, Baum (1988) demonstrated that

⌈
𝑁
𝑑

⌉
neurons

are sufficient for a single-hidden-layer network with threshold units to memorize 𝑁 input-label pairs from R𝑑 .
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Networks employing Rectified Linear Units (ReLUs), exhibit a piecewise affine behavior. The input space is partitioned
into numerous linear regions, and within each region, the network computes a distinct affine transformation Montufar
et al. (2014) and Pascanu et al. (2014). This structure is pivotal for analyzing their expressive power and storage capacity.
The precise relationship between depth, width, the number of linear regions, and the ultimate capacity to store specific
key-value associations, especially with constraints like linearly independent keys, remains an active area of research.

Proof. Let𝑚 denote the number of (k𝑖 , v𝑖 ) pairs memorized exactly byM, and assume the keys {k𝑖 }𝑚𝑖=1 ⊂ R𝑑𝑘 are linearly
independent. Let 𝑑 (0)

ℎ
:= 𝑑𝑘 , 𝑑

(LM )
ℎ

:= 𝑑𝑣 , and for each layer 1 ≤ ℓ ≤ LM , define𝑊 (ℓ ) ∈ R𝑑
(ℓ )
ℎ
×𝑑 (ℓ−1)

ℎ . Biases are omitted for
simplicity.

Since 𝜎 (𝑥) = max(0, 𝑥) is piecewise linear, the composition of linear maps and ReLU activations yields a piecewise affine
function. For any fixed activation pattern (i.e., fixed sign of pre-activations), the MLP acts as:

M(·) = 𝐴 · +𝐵, where 𝐴 =𝑊 (LM )𝐷 (LM−1)𝑊 (LM−1) · · ·𝐷 (1)𝑊 (1) ,

and each 𝐷 (ℓ ) is a diagonal {0, 1} matrix selecting the active units. Therefore, when all keys fall into the same linear region
(which occurs generically after a small perturbation),M is a single affine transformation.

Let K := [k1 · · · k𝑚] ∈ R𝑑𝑘×𝑚 and V := [v1 · · · v𝑚] ∈ R𝑑𝑣×𝑚 . Exact memorization implies 𝐴K = V, so:

rank(V) ≤ rank(𝐴), 𝑚 = rank(K) ≤ min{rank(𝐴), 𝑑𝑘 }.

Now observe:

𝐴 =𝑊 (LM ) 𝐷 (LM−1)𝑊 (LM−1)︸                 ︷︷                 ︸
𝑅LM−1

· · ·𝐷 (1)𝑊 (1)︸     ︷︷     ︸
𝑅1

,

and thus the rank of𝐴 is bounded by the minimal width encountered along each path times the immediate input dimension:

rank(𝐴) ≤
LM∑︁
𝑖=1

(
min
𝑗≥𝑖

𝑑
( 𝑗 )
ℎ

)
𝑑
(𝑖 )
ℎ

= O
(
𝑑𝑘𝑑𝑣

LM∑︁
𝑖=1

min
𝑗≥𝑖

𝑑
( 𝑗 )
ℎ
𝑑
(𝑖+1)
ℎ

)
.

Hence,

𝑚 ≤ O
(
𝑑𝑘𝑑𝑣

LM∑︁
𝑖=1

min
𝑗≥𝑖

𝑑
( 𝑗 )
ℎ
𝑑
(𝑖+1)
ℎ

)
□

Proposition 2 (Memory Capacity with Polynomial Mapping). Let 𝜙𝑝 (·) be a polynomial mapping with degree at most
𝑝 , andM be a matrix-valued memory that optimizes the internal objective of ℓ (M𝑡 ;𝜙𝑝 (k𝑡 ), v𝑡 ) = ∥M𝑡𝜙𝑝 (k𝑡 ) − v𝑡 ∥22 with
gradient descent.M can store the mapping of at most O

(
𝑑𝑘
𝑝
)
pairs of (k𝑖 , v𝑖 ) with linearly independent keys, where 𝑑𝑘 is the

dimension of keys k𝑖 .

Proof. Let us begin by analyzing the dimension of the lifted feature space induced by 𝜙𝑝 . A monomial in 𝑑𝑘 variables of
total degree exactly ℓ has the form k𝛼 =

∏𝑑𝑘
𝑗=1 𝑘

𝛼 𝑗

𝑗
, where 𝛼 ∈ N𝑑𝑘 and |𝛼 | := ∑𝑑𝑘

𝑗=1 𝛼 𝑗 = ℓ . The number of such monomials
is given by the classical stars-and-bars formula, which counts the number of integer solutions to 𝛼1 + · · · +𝛼𝑑𝑘 = ℓ , yielding(

𝑑𝑘 + ℓ − 1
ℓ

)
.
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Summing over all degrees ℓ = 0 to 𝑝 gives the total number of monomials (i.e., the output dimension of 𝜙𝑝 ),

𝐷 =

𝑝∑︁
ℓ=0

(
𝑑𝑘 + ℓ − 1

ℓ

)
=

(
𝑑𝑘 + 𝑝
𝑝

)
,

where the final identity follows from the hockey-stick identity in combinatorics.

To characterize the memorization capacity, we reformulate the loss in matrix notation. Let Φ := [𝜙𝑝 (k1) · · · 𝜙𝑝 (k𝑚)] ∈
R𝐷×𝑚 and 𝑉 := [v1 · · · v𝑚] ∈ R𝑑𝑣×𝑚 . Then the objective becomes

𝐿(M) = 1
2 ∥MΦ −𝑉 ∥22.

Exact memorization corresponds to the existence of a matrixM such thatMΦ = 𝑉 . This is a linear system in whichM
acts on the columns of Φ, so the rank of Φ necessarily limits the number of independent targets v𝑖 that can be fitted exactly.

By the sub-multiplicativity of rank, for any matrices 𝐴 and 𝐵, we have

rank(𝐴𝐵) ≤ min{rank(𝐴), rank(𝐵)}.

Applying this toMΦ yields

rank(MΦ) ≤ rank(Φ) ≤ 𝐷.

Now consider a case where the targets v1, . . . , v𝑚 are linearly independent; for instance, take 𝑉 = [𝑒1, . . . , 𝑒𝑚], the first
𝑚 standard basis vectors. Then rank(𝑉 ) = 𝑚. If𝑚 > 𝐷 , we necessarily have rank(MΦ) < rank(𝑉 ) for every choice of
M, implying that the systemMΦ = 𝑉 is unsolvable. Hence, the loss remains strictly positive, and exact memorization is
impossible.

This establishes that no method, regardless of optimization procedure, can memorize more than 𝐷 =
(
𝑑𝑘+𝑝
𝑝

)
independent

input-output pairs under a degree-≤ 𝑝 polynomial lifting. Since
(
𝑑𝑘+𝑝
𝑝

)
= Θ(𝑑𝑝

𝑘
) for fixed 𝑝 , the result follows: the

memorization capacity is bounded above by O(𝑑𝑝
𝑘
). □

D Detailed Formulations of All Architectures

In this section, for the sake of clarity, we discuss the details of all architectures that we discuss through the paper:

D.1 Deep Linear Attention (DLA)

We design Deep Linear Attention (DLA)—linear attention module that uses a deep MLP as the memory (KV cache)—as one
of the baselines of this study. Given input x ∈ R𝑁×𝑑in , we project the input into matrices of keys, values and queries:

Q =
©­­«
q1
...

q𝑁

ª®®¬ = xW𝑄 , K =
©­­«
k1
...

k𝑁

ª®®¬ = xW𝐾 , V =
©­­«
v1
...

v𝑁

ª®®¬ = xW𝑉 , (48)

where W𝑄 ,W𝐾 , and W𝑉 are learnable linear layers. We then define memory as a learning module that optimizes the
inner-dot product similarity using gradient descent: i.e.,

min
M
⟨M(k𝑡 ), v𝑡 ⟩︸         ︷︷         ︸
ℓ (M𝑡−1;k𝑡 ,v𝑡 )

. (49)

The above optimization using gradient descent results in the following recurrence (we also add weight decay with
input-dependent parameter 𝛼𝑡 ):

M𝑡 = 𝛼𝑡M𝑡−1 − 𝜂𝑡∇ℓ (M𝑡−1; k𝑡 , v𝑡 ) (50)

which in the case of linear memory (i.e.,M𝑡 =𝑊𝑡 ∈ R𝑑×𝑑 ) it becomes:

𝑊𝑡 = 𝛼𝑡𝑊𝑡−1 + v𝑡k⊤𝑡 , (51)

which is the formulation of gated linear attention. We use the same training process as other models (see Section 3.3).
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D.2 Sliding Window Linear Attention (SWLA)

The design of SWLA is the same as the design of DLA, but with the use of sliding window objective. That is, given keys,
values, and queries:

Q =
©­­«
q1
...

q𝑁

ª®®¬ = xW𝑄 , K =
©­­«
k1
...

k𝑁

ª®®¬ = xW𝐾 , V =
©­­«
v1
...

v𝑁

ª®®¬ = xW𝑉 , (52)

we optimize the internal objective of:

min
M

𝑡∑︁
𝑖=𝑡−𝑐+1

⟨M𝑡−1 (k𝑖 ), v𝑖⟩︸                     ︷︷                     ︸
ℓ (M𝑡−1;k𝑡 ,v𝑡 )

. (53)

The above formulation, results in:

M𝑡 = 𝛼𝑡M𝑡−1 − ∇ℓ (M𝑡−1; k𝑡 , v𝑡 ) = 𝛼𝑡M𝑡−1 −
𝑡∑︁

𝑖=𝑡−𝑐+1
𝜂
(𝑡 )
𝑖
∇⟨M𝑡−1 (k𝑖 ), v𝑖⟩, (54)

which in the case of linear memory (i.e.,M𝑡 =𝑊𝑡 ∈ R𝑑×𝑑 ) it becomes:

M𝑡 = 𝛼𝑡M𝑡−1 −
𝑡∑︁

𝑖=𝑡−𝑐+1
𝜂
(𝑡 )
𝑖

v𝑖k⊤𝑖 . (55)

D.3 OmegaNet

In the design of OmegaNet, we use replace the dot-prodcut similarity objectivewith ℓ (M𝑡−1; k𝑡 , v𝑡 ) =
∑𝑡
𝑖=𝑡−𝑐+1 ∥M𝑡−1 (𝜙 (k𝑖 ))−

v𝑖 ∥22 ,which results in the recurrence of:

M𝑡 = 𝛼𝑡M𝑡−1 − ∇ℓ (M𝑡−1; k𝑡 , v𝑡 ) = 𝛼𝑡M𝑡−1 −
𝑡∑︁

𝑖=𝑡−𝑐+1
𝜂
(𝑡 )
𝑖
∇∥M𝑡−1 (𝜙 (k𝑖 )) − v𝑖 ∥22 . (56)

In the above formulation, 𝜙 (.) is the polynomial feature mapping function.

D.4 Atlas

In the Atlas, we use the same internal objective as OmegaNet but we optimize it using Muon optimizer (Jordan et al.
2024) with weight decay. That is,

M𝑡 = 𝛼𝑡M𝑡−1 + Newton-schulz5(S𝑡 ) (57)

S𝑡 = 𝜃𝑡S𝑡−1 −
𝑡∑︁

𝑖=𝑡−𝑐+1
𝜂
(𝑡 )
𝑖
∇∥M𝑡−1 (𝜙 (k𝑖 )) − v𝑖 ∥22. (58)

E Experimental Details

In our experimental setup we follow recent studies on linear recurrent models (Behrouz, Razaviyayn, et al. 2025; Behrouz,
Zhong, et al. 2024; Yang, Kautz, et al. 2024), we use Wikitext (Merity et al. 2017), LMB (Paperno et al. 2016), PIQA (Bisk
et al. 2020), HellaSwag (Zellers et al. 2019), WinoGrande (Sakaguchi et al. 2021), ARC-easy (ARC-e) and ARC-challenge
(ARC-c) (Clark, Cowhey, et al. 2018), SIQA (Sap et al. 2019), and BoolQ (Clark, Lee, et al. 2019). Also, the baselines results
are from Behrouz, Razaviyayn, et al. (2025) and Behrouz, Zhong, et al. (2024). In the training, we use T5 tokenizer with a
vocabulary size of 32K and use training length of 4K tokens (2K for SWA). We employ AdamW optimizer with learning
rate of 4𝑒-4 with cosine annealing schedule with batch size of 0.5M tokens, and weight decay of 0.1. The architectural
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Table 7: Architectural Details.

Model Block Dim Head Peak LR Token

170M 12 768 16 3e-3 15B
340M 24 1024 16 1.5e-3 15B
760M 24 1536 16 1.25e-3 30B
1.3B 18 2048 8 7e-4 100B

details are also reported in Table 7. The baseline results for 1.3B are from Yang, Kautz, et al. (2024) and for 760M are from
Behrouz, Razaviyayn, et al. (2025) and Behrouz, Zhong, et al. (2024).

For the memory architecture, unless state otherwise, we use an MLP with 2 layers with expansion factor of 4 and GELU
activation function (Hendrycks et al. 2016). We also use residual connections and layer norm at the end of each chunk:
M(𝑥) = 𝑥 +𝑊1𝜎 (𝑊2𝑥).

F Additional Experimental Results

In this section, we provide additional experimental results to support the design of our models, understand the effect of
different components and also evaluate their performance in long context, in-context recall and MAD tasks.

F.1 Language Modeling and Common-sense Reasoning (Small Scale)

In Section 6 we presented a subset of results on language modeling and common-sense reasoning tasks. In this section, we
further report the results for all scales of models. The results are in Table 8.

State-of-the-art Results. Looking at the performance of Atlas and OmegaNet, both architectures perform favorably
compared to modern linear recurrent models and Transformers, achieving lower perplexity and better accuracy in
downstream tasks. Even the fully recurrent version of these models outperform hybrid models such as Samba (Ren et al.
2024) and Gated DeltaNet-H2 (Yang, Kautz, et al. 2024). Using the hybrid variants of MAG and MAL further improve the
performance of Atlas, which shows the complementary role of recurrent long-term memory and attention.

The Effect of Design. Comparing the performance of Atlas, OmegaNet, and baselines SWLA and DLA, we can see
the role of ℓ2 regression loss as the attentional bias. Also, the better performance of SWLA compared to GLA and RetNet
indicates the importance of memorizing the context, instead of memorizing individual tokens.
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Table 8: Performance of Atlas and baselines on language modeling and common-sense reasoning tasks. The best results
are highlighted highlighted .

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.

ppl ↓ ppl ↓ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ acc_n ↑ acc ↑ acc ↑ ↑

340M params / 15B tokens

Transformer++ 31.52 41.08 30.76 62.98 34.76 50.53 45.21 24.05 36.81 58.24 42.92
RetNet 32.50 49.73 28.24 62.61 34.15 50.91 44.27 23.62 36.79 59.72 42.54
GLA 28.51 43.02 28.73 64.05 35.96 50.00 54.19 24.29 37.13 58.39 44.09
Mamba 30.83 40.21 29.94 63.79 35.88 49.82 49.24 24.56 35.41 60.07 43.59
DeltaNet 28.65 47.30 28.43 63.52 35.95 49.63 52.68 25.37 37.96 58.79 44.04
TTT 27.44 34.19 30.06 63.97 35.71 50.08 53.01 26.11 37.32 59.83 44.51
Gated DeltaNet 27.01 30.94 34.11 63.08 38.12 51.60 55.28 26.77 34.89 59.54 45.42
Moneta 26.19 29.31 35.70 63.99 39.23 52.04 55.96 27.15 37.29 60.22 46.44
Yaad 26.61 29.11 34.09 64.93 39.86 51.12 54.75 28.64 33.82 60.29 45.93
Memora 27.16 30.44 33.68 65.21 39.17 51.23 53.40 27.99 34.1 59.29 45.51

DLA (ours) 27.93 35.09 30.8 62.9 36.2 50.4 53.5 26.7 37.1 59.7 44.76
SWDT (ours) 26.98 33.95 32.4 63.1 38.2 50.9 54.9 25.9 37.5 59.6 45.31

OmegaNet (ours) 26.03 28.76 35.6 65.3 39.7 52.0 56.1 28.6 37.7 60.4 46.93
Atlas (ours) 25.88 28.54 36.1 64.9 40.1 52.7 56.4 28.8 38.1 61.2 47.28

31


	Introduction
	Preliminaries
	Backgrounds

	Learning to Memorize the Context at Test Time
	Associative Memory with Super Linear Capacity
	Long-term Memory with Context Memorization
	Parallelizing Omega Rule

	DeepTransformers: Transformers with Deep Memory
	Online and Local Context Optimization of Memory
	Memory Capacity and Exponential Kernels
	Deep Omega Transformer (Dot): Transformers with Omega learning rule

	Atlas: A Locally Optimal Memory with High Capacity
	Parallel Training

	Experiments
	Language Modeling and Common-Sense Reasoning
	Long Context: Needle In a Haystack
	Long Context: BABILong Benchmark
	Learnability Experiments
	Additional Experiments: In-context Recall, MAD Synthetic Benchmark, and Associative Recall
	Ablation Study and Scaling Patterns

	Conclusion
	Additional Related Work
	Miras Framework
	Examples

	Supporting Proofs
	Detailed Formulations of All Architectures
	Deep Linear Attention (DLA)
	Sliding Window Linear Attention (SWLA)
	OmegaNet
	Atlas

	Experimental Details
	Additional Experimental Results
	Language Modeling and Common-sense Reasoning (Small Scale)


