
Unpacking SDXL Turbo: Interpreting Text-to-Image Models with Sparse

Autoencoders

Viacheslav Surkov Chris Wendler Mikhail Terekhov Justin Deschenaux
Robert West Caglar Gulcehre

EPFL

Original +up.0.0 #1941 +up.0.1 #3997 +down.2.1 #2301 +down 2.1 #4998 +up 0.1 #1635 +down 2.1 #3912

Figure 1. Enabling features learned by sparse autoencoders results in interpretable changes in SDXL Turbo’s image generation process.
The image captions correspond to feature codes comprised of transformer block name and feature index.

Abstract

Sparse autoencoders (SAEs) have become a core ingredi-
ent in the reverse engineering of large-language models
(LLMs). For LLMs, they have been shown to decompose in-
termediate representations that often are not interpretable
directly into sparse sums of interpretable features, facilitat-
ing better control and subsequent analysis. However, simi-
lar analyses and approaches have been lacking for text-to-
image models. We investigated the possibility of using SAEs
to learn interpretable features for SDXL Turbo, a few-step
text-to-image diffusion model. To this end, we train SAEs on
the updates performed by transformer blocks within SDXL
Turbo’s denoising U-net. We find that their learned features
are interpretable, causally influence the generation process,
and reveal specialization among the blocks. In particular,
we find one block that deals mainly with image composition,
one that is mainly responsible for adding local details, and
one for color, illumination, and style. Therefore, our case
study on SDXL Turbo is an important first step towards bet-
ter understanding the internals of generative text-to-image
models and showcases the potential of features learned by
SAEs for the visual domain.

We provide code to reproduce our experiments, along
with a demo application, in https://github.com/
surkovv/sdxl-unbox1

1The code base contains scripts to collect training data and train SAEs.
Additionally, the provided demo application that allows to browse pre-
trained SAE features and to edit the image generation process by modify-
ing SAE feature coefficients.

1. Introduction

Text-to-image generation is a rapidly evolving field. The
DALL-E model first captured public interest [41], combin-
ing learned visual vocabularies with sequence modeling to
produce high-quality images based on user input prompts.
Today’s best text-to-image models are largely based on text-
conditioned diffusion models [3, 37, 38, 44–46]. This can
be partially attributed to the stable training dynamics of dif-
fusion models, which makes them easier to scale than pre-
vious approaches such as generative adversarial neural net-
works [16]. As a result, they can be trained on internet
scale image-text datasets like LAION-5B [47] and learn to
generate photorealistic images from text.

However, the underlying logic of the neural networks
that enable the text-to-image pipelines we have today, due
to their black-box nature, is not well understood. Unfor-
tunately, this lack of interpretability is typical in the deep
learning field. For example, advances in image recogni-
tion [26] and language modeling [6, 15] come mainly from
scaling models [21], rather than from an improved under-
standing of their internals. Recently, the emerging field
of mechanistic interpretability has sought to alleviate this
limitation by reverse engineering visual models [34] and
transformer-based LLMs [40]. At the same time, diffusion
models have remained underexplored.

This work focuses on SDXL Turbo, a recent open-source
few-step text-to-image diffusion model. We import meth-
ods from a toolbox originally developed for language mod-
els, which allows inspection of the intermediate results of
the forward pass [5, 8, 12, 20]. Moreover, some of these

https://github.com/surkovv/sdxl-unbox
https://github.com/surkovv/sdxl-unbox

methods even enable reverse engineering of the entire task-
specific subnets [32]. In particular, sparse autoencoders
(SAEs) [5, 12, 54] are considered a breakthrough in inter-
pretability for LLMs. They have been shown to decompose
intermediate representations of the LLM forward pass – of-
ten difficult to interpret due to polysemanticity2 – into sparse
sums of interpretable and monosemantic features. These
features are learned in an unsupervised way, can be auto-
matically annotated using LLMs [7], and facilitate subse-
quent analysis, for example, circuit extraction [32].

Contributions. In this work, we investigate whether we
can use SAEs to draw insights about the computation per-
formed by the one-step generation process of SDXL Turbo,
which is a recent open-source few-step text-to-image diffu-
sion model.

To facilitate our analysis, we developed a library called
SDLens that allows us to cache and manipulate intermediate
results of SDXL Turbo’s forward pass. We use our library
to create a dataset of SDXL Turbo’s intermediate feature
maps of several transformer blocks inside SDXL Turbo’s
U-net on 1.5M LAION-COCO prompts [47, 48]. We then
use these feature maps to train multiple SAEs for each trans-
former block. Finally, we perform a quantitative and quali-
tative analysis of the SAEs’ learned features:

1. We empirically show the potential of SAEs to learn
highly interpretable features that causally affect the
generation in SDXL Turbo (see Fig. 1).

2. We develop visualization techniques to analyze the in-
terpretability and causal effects of the learned features.

3. We perform a case study in which we visualize
and interpret the active features in different trans-
former blocks, finding evidence that certain trans-
former blocks of SDXL Turbo’s U-net specialize in
image composition, adding details, and style.3

4. We follow up our qualitative case study by designing
multiple quantitative experiments showing that our hy-
potheses also hold up on larger sample sizes.

5. As part of our quantitative analysis, we create an au-
tomatic feature annotation pipeline for the transformer
block, which appears responsible for image composi-
tions.

Thus, we show that SAEs learn interpretable features
that causally affect SDXL Turbo’s image generation pro-
cess. Importantly, the learned features provide insight into
the computational details of SDXL Turbo’s forward pass,
such as the different roles of the investigated transformer
blocks. By open-sourcing our library and SAEs, we lay the
foundation for further research in this area.

2A phenomenon where a single neuron or feature encodes multiple,
unrelated concepts [17].

3The blocks down.2.1 and up.0.1 have been already known in the
community as “composition” and “style” blocks [50]. However, in this
paper we provide the first thorough and fine-grained investigation of them.

Note on visualizations. Qualitative analysis by inspec-
tion of generated images is crucial for this type of research.
Thus, we provide additional visualizations in the App. B
and C.

2. Background

2.1. Sparse Autoencoders

Let h(x) → Rd be an intermediate result during a forward
pass of a neural network on input x. In a fully connected
neural network, h(x) could correspond to a vector of neuron
activations. In transformers, which are neural network ar-
chitectures that combine attention with fully connected lay-
ers and residual connections, h(x) could either refer to the
content of the residual stream after a layer, an update to the
residual stream by a layer, or a vector of neuron activations
within a fully connected layer.

It has been shown [5, 12, 54] that in many neural net-
works, especially LLMs, intermediate representations can
be well approximated by sparse sums of nf → N learned
feature vectors, i.e.,

h(x) ↑
nf∑

ω=1

sω(x)fω, (1)

where sω(x) are the input-dependent coefficients, most of
which are equal to zero and f1, . . . , fnf → Rd is a learned
dictionary of feature vectors. Importantly, the features are
usually interpretable.

Sparse autoencoders. To implement the sparse decom-
position from equation 1, the vector s containing the nf

coefficients of the sparse sum, is parameterized by a single
linear layer followed by an activation function, called the
encoder,

s = ENC(h) = ω(W ENC(h↓ bpre) + bact), (2)

in which h → Rd is the latent that we aim to decompose,
ω(·) is an activation function, W ENC → Rnf→d is a learnable
weight matrix and bpre and bact are learnable bias terms. We
omitted the dependencies h = h(x) and s = s(h), which
are clear from the context.

Similarly, the learnable features are parametrized by a
single linear layer called decoder,

h↑ = DEC(s) = W DECs+ bpre, (3)

in which W DEC = (f1| · · · |fnf) → Rd→nf is a learnable
matrix. Its columns take the role of learnable features and
bpre is a learnable bias term. 4

4An extended version of this section, including training details, is in
the App. E.

DOWN.0 (no attn)

DOWN.1.0

DOWN.1.1

DOWN.2.0

DOWN.2.1

MID.0

UP.0.0

UP.0.1

UP.0.2

UP.1.0

UP.1.1

UP.1.2

UP.2 (no attn)

ResNet

Upsampler

Downsampler

Figure 2. Cross-attention transformer blocks in SDXL’s U-net.

2.2. Few-Step Diffusion Models: SDXL Turbo

SDXL Turbo [46] is a distilled version of Stable Diffusion
XL [38], a powerful latent diffusion model. SDXL Turbo
allows high-quality sampling in as few as 1-4 steps. It em-
ploys a denoising network implemented using a U-net sim-
ilar to Rombach et al. [44].

The U-net consists of a down-sampling path, a bottle-
neck, and an up-sampling path, each comprising one or
more U-net blocks connected via up- and down-samplers.
U-net blocks are built from residual networks, with some
blocks incorporating multiple cross-attention transformer
blocks while others do not. We refer to these transformer
blocks by their short names (e.g., down.2.1, as illustrated in
Fig. 2). Each transformer block is composed of several ba-
sic transformer layers, each consists of self-attention, cross-
attention, and MLP layers. Importantly, the text condition-
ing is achieved via cross-attention to text embeddings per-
formed by 11 transformer blocks embedded in the down-,
up-sampling paths, and the bottleneck. An architecture dia-
gram displaying the relevant blocks along with their names
can be found in Fig. 2.

3. Sparse Autoencoders for SDXL Turbo

With the necessary definitions at hand, in this section we
show a way to apply SAEs to SDXL Turbo. In the follow-
ing, we assume that all SDXL Turbo generations are done
using a 1-step process.

Where to apply the SAEs. We apply SAEs to updates
performed within the cross-attention transformer blocks re-
sponsible for incorporating the text prompt (for details con-
sider the App. A). Each of these blocks consists of multi-

ple transformer layers, which attend to all spatial locations
(self-attention) and to the text prompt embeddings (cross-
attention).

Formally, the εth cross-attention transformer block up-
dates its inputs in the following way

D[ε]outij = D[ε]inij + T [ε](D[ε]in, c)ij , (4)

in which D[ε]in, D[ε]out → Rh→w→d denote the resid-
ual stream before and after application of the ε-th cross-
attention transformer block respectively. The transformer
block itself calculates the function T [ε] : Rh→w→d ↔
Rh→w→d. Note that we omitted the dependence on input
noise zt and text embedding c for both D[ε]in(zt, c) and
D[ε]out(zt, c).

We train SAEs on the residual updates
T [ε](D[ε]in, c)ij → Rd denoted by

!D[ε]ij := T [ε](D[ε]in, c)ij = D[ε]outij ↓D[ε]inij . (5)

That is, we jointly train one encoder ENC[ε] and decoder
DEC[ε] pair per transformer block ε and share it over all
spatial locations i, j. For notational convenience we omit
block indices from now. We do this for the 4 (out of 11)
transformer blocks (Fig. 2) that we found have the high-
est impact on the generation, namely, down.2.1, mid.0,
up.0.0 and up.0.1.

Feature maps. We refer to !D → Rh→w→d as dense
feature map and applying ENC to all image locations results
in the sparse feature map S → Rh→w→nf with entries

Sij = ENC(!Dij). (6)

We refer to the feature map of the ϑth learned feature us-
ing Sω → Rh→w. This feature map Sω contains the spa-
tial activations of the ϑth learned feature. Its associated
feature vector fω → Rd is a column in the decoder matrix
W DEC = (f1| · · · |fnf) → Rd→nf . Using this notation, we
can represent each element of the dense feature map as a
sparse sum

!Dij ↑
nf∑

ω=1

Sω
ijfω, with Sω

ij = 0 for most ϑ → {1, . . . , nf}.

(7)
Training. In order to train an SAE for a transformer

block, we collected dense feature maps !Dij from SDXL
Turbo one-step generations on 1.5M prompts from the
LAION-COCO [48]. Each feature map has dimensions of
16 ↗ 16, resulting in a training dataset of 384M dense fea-
ture vectors per transformer block. For the SAE training
process, we followed the methodology described in [19],
using the TopK activation function and an auxiliary loss to
handle dead features. For more details on the SAE training
and for training metrics consider the App. E.

4. Qualitative Analysis

In this section, we perform a visual qualitative analysis to
gain deeper insight into the behavior and characteristics of
the learned features across transformer blocks. First, we in-
troduce feature visualization techniques and then use them
to conduct a case study. For the sake of simplicity in the
notation, we omit the transformer block index ε.

4.1. Feature Visualization Techniques

We introduce our methods used for feature visualization
used in Fig. 3. Informally, given a feature, spatial activa-
tions (denoted by hmap) highlight the regions of an image
where the feature activates during generation process. Ac-
tivation modulation (A. columns) refers to the intervention
process in which the feature activations are enhanced or di-
minished. This technique is used to demonstrate how the
manipulation of a feature’s value affects the generated im-
age. Finally, empty-prompt interventions (B. column) illus-
trate the isolated role of the feature by disabling all other
features during generation conditioned on an empty prompt.
In the remainder of this section, we provide formal defini-
tions and details.

Spatial activations. We visualize a sparse feature map
Sω → Rh→w containing activations of a feature ϑ across the
spatial locations by up-scaling it to the size of the generated
images and overlaying it as a heatmap over the generated
images. In the heatmap, red indicates the highest feature
activation, and blue represents the lowest non-zero one.

Top dataset examples. For a given feature ϑ, we sort
dataset examples according to their average spatial activa-
tion

aω =
1

wh

h∑

i=1

w∑

j=1

Sω
ij → R. (8)

We use equation 8 to define the top dataset examples and to
sample from the top 5% quantile of the activating examples
(aω > 0). We will refer to them as top 5% images for a
feature ϑ.

Note that Sω
ij always depends on an embedding of

the input prompt c and input noise z1, via Sij(c, z1) =
ENC(!Dij(c, z1)), which we usually omit for ease of no-
tation. As a result, aω also depends on c and z1. When we
refer to the top dataset examples, we mean our (c, z1) pairs
with the largest values for aω(c, z1).

Activation modulation. We design interventions that
allow us to modulate the strength of the ϑth feature. Specif-
ically, we achieve this by adding or subtracting a multiple of
the feature ϑ on all of the spatial locations i, j proportional
to its original activation Sω

ij

!D↑
ij = !Dij + ϖSω

ijfω, (9)

in which !Dij is the update performed by the transformer
block before and !D↑

ij after the intervention, ϖ → R is a

modulation factor, and fω is the ϑth learned feature vector.
In the following, we will refer to this intervention as activa-
tion modulation intervention.

Note that Sω
ij can be also freely defined allowing for the

application of sparse features to arbitrary images and spatial
positions (refer to Fig. 1 for examples).

Activation on empty context. Another way of visual-
izing the causal effect of features is to activate them while
doing a forward pass on the empty prompt c(“”). To do so,
we turn off all other features at the transformer block ε of
intervention and turn on the target feature ϑ. Formally, we
modify the forward pass by setting

Dout→

ij = Din
ij + ϱkµωfω, (10)

in which Dout→
ij replaces residual stream plus transformer

block update, Din
ij is the input to the block, fω is the ϑth

learned feature vector, ϱ → R is a hyperparameter to ad-
just the intervention strength, and µω is a feature-dependent
multiplier obtained by taking the average activation across
positive activations of ϑ (collected over a subset of 50.000
dataset examples). Multiplying it by k aims to recover the
coefficients lost by setting the other features to zero. Further
in the text, we will refer to this intervention as empty-prompt
intervention, and the images generated using this method
with ϱ set to 1, as empty-prompt intervention images.

Note that we directly added/subtracted feature vectors to
the dense vectors for both intervention types instead of en-
coding, manipulating sparse features, and decoding. This
approach helps mitigate side effects caused due to recon-
struction loss (see App. F).

4.2. Top Features Activated by a Prompt

Combining the feature visualization techniques in Fig. 3, we
depict the features with the highest average activation when
processing the prompt: “A cinematic shot of a professor
sloth wearing a tuxedo at a BBQ party”. We present an
analysis of the transformer blocks in order of decreasing
interpretability.

Down.2.1. The down.2.1 transformer block appears
to contribute to the image composition. Several features
relate to the prompt: 4539 “sloth”, 4751 “a tuxedo”, 2881
“party”.

Activation modulation interventions with negative ϖ (A.
-6.0 columns) result in removing or changing scene objects
in ways that align with the heatmap (hmap column) and the
top examples (C columns): 1674 removes the light chains in
the back, 4608 the umbrellas/tents, 4539 the 3D animation-
like sloth face, and, 4751 changes the type of suit. Simi-
larly, enhancing the same features (A. 6.0 column) makes
the corresponding elements more visible and distinct.

Notably, activating the features on the empty prompt of-
ten creates meaningful images with related elements (B.

(a) Top 5 features of down.2.1 (b) Top 5 features up.0.1

(c) Top 5 features of up.0.0 (d) Top 5 features of mid.0

Figure 3. The top 5 features of down.2.1 (a), up.0.1 (b), up.0.0 (c) and mid.0 (d) for the prompt: “A cinematic shot of a professor
sloth wearing a tuxedo at a BBQ party.” Each row represents a feature. The first column depicts a feature heatmap (highest activation red
and lowest nonzero one blue). The columns with titles containing “A” show feature modulation interventions, those containing “B” the
intervention of turning on the feature on the empty prompt, and the ones containing “C” depict top dataset examples. Floating point values
in the title denote ω and ε values.

column). For reference, with the fixed random seed we use,
the empty prompt generation without interventions resem-
bles a painting of a piece of nature with a lot of green and
brown tones.

While top dataset examples (C.0, C.1) and empty prompt
intervention (B.) mostly agree with the feature activation
heatmaps (hmap column), some of them provide additional
insights, e.g., 2881, which activates on the suit, seems to
correspond to (masqueraded) characters in a (festive) scene.

Up.0.1. Based on our observations, the features of
up.0.1 appear to contribute to the style.

Interestingly, turning on the up.0.1 features on the
empty prompt (B. column) results in texture-like images.
Furthermore, the contribution of activation modulation in-

terventions (A. columns) is highly localized and most of
inactive image area remains unchanged. For the up.0.1
we find it remarkable that often the features’ ablations and
amplifications are counterparts: 500 (light, shadow), 2727
(shadow, light), 3936 (blue, orange).

Up.0.0. For the third transformer block, up.0.0, we
observe that most top dataset examples and their activations
(C columns) are quite interpretable: 3603 corresponds to
party decorations, 5005 to the upper part of a tent, 775 to
buttons on a suit, 153 to the lower animal jaw, 1550 to col-
lars. All the features exhibit an expected causal effect on
the generation when ablated or enhanced (A. columns).

The activation regions of the features often are very con-
centrated. Similarly to up.0.1, activation modulation in-

terventions leave inactive image regions mostly unaffected.
For the empty prompt, activating these features produces
abstract-looking images that are hard to relate to the other
columns. Thus, we excluded this visualization technique
and instead added one more dataset example. In summary,
the learned features of this transformer block primarily add
local details to the generation and, importantly, they are ef-
fective only within a suitable context.

Mid.0. The specific role of the fourth block (mid.0) is
not well understood. We find it more difficult to interpret
because most interventions in the mid.0 block have sub-
tle effects. We did not include empty-prompt intervention
results because they barely affect the generation.

Despite these subtle effects, dataset examples (C.
columns) and heatmaps (hmap column) mostly agree with
each other and are specific enough to be interpretable: 4755
activates on bottom right part of faces, 4235 on left part
of (animal) faces, 1388 on people in the background, and,
5102 on outlines the left border of the main object in the
scene. We hypothesize that mid.0’s features are more ab-
stract, potentially encoding spatial location and relations be-
tween objects.

Random feature visualizations. In the App. C, we pro-
vide additional visualizations of a sample of features by pre-
senting their top activating examples and the effects of in-
terventions.

5. Quantitative Evaluation

In this section, we follow up on qualitative insights by col-
lecting quantitative evidence.

5.1. Annotation Pipeline

Feature annotation with an LLM followed by further evalu-
ation is a common way to assess feature properties such as
specificity, sensitivity, and causality [7]. We found it appli-
cable to the features learned by the down.2.1 transformer
block, which have a strong effect on the generation. Thus,
they are amendable to automatic annotation using visual
language models (VLMs) such as GPT-4o [35]. In contrast,
for the features of other blocks with more subtle effects, we
found VLM-generated captions to be unsatisfactory. In or-
der to caption the features of down.2.1, we prompt GPT-
4o with a sequence of 14 images. The first five images are
irrelevant to the feature (i.e., the feature was inactive during
the generation of the images), followed by a progression
of 4 images with increasing average activation values, and
finished by five images with the highest average activation
values. The last nine images are provided alongside their
so-called “coldmaps”: a version of an image with weakly
active and inactive regions being faded and concealed. The
prompt template and examples of the captions can be found
in the App. G.

5.2. Experimental Details

We perform a series of experiments to get statistical insights
into the features. We report the majority of the experimental
scores in the format M(S). When the score is reported in
the context of a SDXL Turbo transformer block, it means
that we computed the score for each feature of the block
and set M and S to mean and standard deviation across
the feature scores. Note that S does not represent the error
margin of M , as the actual error margin is much lower.5
Therefore, almost all the differences in the reported means
are statistically significant. For the baselines, we calculate
the mean and standard deviation across the scores of a 100-
element sample.

Table 1. Specificity, texture score, and color activation for different
blocks and baselines.

Block Specificity Texture Color

Down.2.1 0.71 (0.11) 0.16 (0.02) 86.2 (14.9)
Mid 0.62 (0.11) 0.14 (0.01) 84.7 (16.3)
Up.0.0 0.66 (0.12) 0.18 (0.03) 86.3 (16.5)
Up.0.1 0.65 (0.11) 0.20 (0.02) 73.8 (20.6)
Random 0.50 (0.10) 0.13 (0.02) 90.7 (54.9)
Same Prompt 0.89 (0.06) – –
Textures – 0.18 (0.02) –

Interpretability. Features are usually considered inter-
pretable if they are sufficiently specific, i.e., images exhibit-
ing the feature share some commonality. In order to mea-
sure this property, we compute the similarity between im-
ages on which the feature is active. High similarity between
these images is a proxy for high specificity. For each fea-
ture, we collect 10 random images among top 5% images
for this feature and calculate their average pairwise CLIP
similarity [10, 39]. This value reflects how semantically
similar the contexts are in which the feature is most ac-
tive. We display the results in the first column of Table 1,
which shows that the CLIP similarity between images with
the feature active is significantly higher then the random
baseline (CLIP similarity between random images) for all
transformer blocks. This suggests that the generated images
share similarities when a feature is active.

For down.2.1 we compute an additional interpretabil-
ity score by comparing how well the generated annotations
align with the top 5% images. The resulting CLIP simi-
larity score is 0.21 (0.03) and significantly higher then the
random baseline (average CLIP similarity with random im-
ages) 0.12 (0.02). To obtain an upper bound on this score
we also compute the CLIP similarity to an image generated
from the feature annotation, which is 0.25 (0.03).

Causality. We can use the feature annotations to mea-
sure a feature’s causal strength by comparing the empty

5Given that M is computed over a sample of 1280 elements, the confi-
dence interval of M can be estimated as M ± S · 0.055.

prompt intervention images with the caption.6 The CLIP
similarity between intervention images and feature caption
is 0.19 (0.04) and almost matches the annotation-based in-
terpretability score of 0.21 (0.03). This suggests that fea-
ture annotations effectively describe to the corresponding
empty-prompt intervention images. Notably, the annota-
tion pipeline did not use empty-prompt intervention images
to generate captions. This fact speaks for the high causal
strength of the features learned on down.2.1.

Sensitivity. A feature is considered sensitive when ac-
tivated in its relevant context. As a proxy for the context,
we have chosen the feature annotations obtained with the
auto-annotation pipeline. For each learned feature, we col-
lected the 100 prompts from a 1.5M sample of LAION-
COCO with the highest sentence similarity based on sen-
tence transformer embeddings of all-MiniLM-L6-v2
[43]. Next, we run SDXL Turbo on these prompts and count
the proportion of generated images in which the feature is
active on more than 0%, 10%, 30% of the image area, re-
sulting in 0.60 (0.32), 0.40 (0.34), 0.27 (0.30) respectively,
which is much higher than the random baseline, which is at
0.06 (0.09), 0.003 (0.006), 0.001 (0.003). However, the
average scores are < 1 and thus not perfect. This may
be caused by incorrect or imprecise annotations for subtle
features and, therefore, hard to annotate with a VLM and
SDXL Turbo failing to comply with some prompts.

Relatedness to texture. In Fig. 3 the empty prompt in-
terventions of the up.0.1 features resulted in texture-like
pictures. To quantify whether this consistently happens, we
design a simple texture score by computing CLIP similar-
ity between an image and the word “texture”. Using this
score, we compare empty-prompt interventions of the dif-
ferent transformer blocks with each other and real-world
texture images. The results are in the second column of
Table 1 and suggest that empty-prompt intervention images
of up.0.1 and up.0.0 resemble textures and some of the
down.2.1 images look like textures as well. For up.0.0,
we did not observe any connection of these images to the
top activating images. Interestingly, the score of up.0.1 is
higher than the one of the real-world textures dataset (Cim-
poi et al. [11]).

Color sensitivity. In our qualitative analysis, we sug-
gested that the features learned on up.0.1 relate to texture
and color. If this holds, the image regions that activate a fea-
ture should not differ significantly in color on average. To
test that, we calculate the “average” color for each feature:
this is a weighted average of pixel colors with the feature ac-
tivation values as weights. To determine the average color
of a each feature we compute it over a sample of 10 images
of the feature’s top 5% images. Then, we calculate Manhat-
tan distances between the colors of the pixels and the “aver-

6We require feature captions for the causality and sensitivity analyses,
we only have them for down.2.1.

age” color on the same images (the highest possible distance
is 3 · 255 = 765). Finally, we take a weighted average of
the Manhattan distances using the same weights. We report
these distances for different transformer blocks and for the
images generated on random prompts from LAION-COCO.
We present the results in the third column of Table 1. The
average distance for the up.0.1 transformer block is, in
fact, the lowest.

Table 2. Manhattan distances between original and intervened im-
ages at varying intervention strengths outside/inside of the fea-
ture’s activation map.

Block -10 -5 5 10

Down.2.1 148.2 / 116.0 124.2 / 94.4 101.4 / 78.7 128.9 / 105.60
Mid 69.2 / 32.2 39.4 / 18.5 33.2 / 15.2 59.9 / 29.82
Up.0.0 105.3 / 38.4 77.7 / 23.7 63.6 / 23.3 88.6 / 37.08
Up.0.1 125.0 / 26.8 73.1 / 16.4 68.6 / 21.9 98.9 / 34.74

Intervention locality. We suggested that features
learned on up.0.0 and up.0.1 primarily influence local
regions of the generation, with minimal effect outside the
active areas. To test this, we measure changes in the top 5%
images inside and outside the active regions while perform-
ing activation modulation interventions. To exclude weak
activation regions from consideration, a pixel is considered
inside the active area if the corresponding patch has an acti-
vation value larger than 50% of the image patches, and it is
outside the active area if the corresponding patch has zero
activation. Table 2 reports Manhattan distances between
the original images and the intervened images outside and
inside the active areas for activation modulation interven-
tion strengths -10, -5, 5, 10. The features for up.0.0 and
up.0.1 have a stronger effect inside the active area than
outside, unlike down.2.1 where the difference is smaller.

6. Related Work

In this section, we discuss relevant prior research.
Layer specialization in diffusion models. Similar to

our findings on the roles of SDXL Turbo’s transformer
blocks, [1, 52, 56] observe specializations among the lay-
ers and denoising steps of text-to-image diffusion models
as well. Voynov et al. [52] introduce layer-specific embed-
dings for the text conditioning and find that different sets of
layers are more effective for influencing the generation of
specific concepts such as styles or objects. For a selected set
of image attributes (e.g., color, object, layout, style), Agar-
wal et al. [1] analyze which attributes are captured in which
timestamp and layer. They also find that a subset of these
attributes is often captured in the same layer and across the
same denoising step. Zhang et al. [56] observe that during
the denoising process of diffusion models first the layout
forms (in early timestamps), then the content, and finally
the material and style.

In contrast to these prior works, our approach takes a
fundamentally different perspective and does not rely on ei-
ther handcrafted attributes or prompts. Instead, we intro-
duce a new lens for analyzing SDXL Turbo’s transformer
blocks, which reveals specialization among the blocks as
well. Interestingly, our findings on SDXL Turbo, which is
a distilled, few-step diffusion model parallel [56]’s observa-
tions, which identify that composition precede material and
style. In SDXL Turbo, this progression occurs across the
layers instead of the denoising timestamps.

Analyzing the latent space of diffusion models. Kwon
et al. [27] show that diffusion models have a semantically
meaningful latent space. Park et al. [36] analyze the la-
tent space of diffusion models using Riemannian geome-
try. Li et al. [28] and Dalva and Yanardag [13] present self-
supervised methods for finding semantic directions. Simi-
larly, Gandikota et al. [18] show that the attribute variations
lie in a low-rank space by learning LoRA adapters [22] on
top of pre-trained diffusion models. Brack et al. [4] and
Wang et al. [53] demonstrate effective semantic vector al-
gebraic operations in the latent space of DMs, as observed
by Mikolov et al. [33]. However, none of those works train
SAEs to interpret and control the latent space.

Mechanistic interpretability. Sparse autoencoders
have recently been popularized by [5], in which they show
that it is possible to learn interpretable features by decom-
posing neuron activations in MLPs in 2-layer transformer
language models. At the same time, a parallel work de-
composed the elements of the residual stream [12], which
followed up on [49]. To our knowledge, the first work that
applied sparse autoencoders to transformer-based LLM was
[54], which learned a joint dictionary for features of all lay-
ers. Recently, sparse autoencoders have gained much trac-
tion, and many have been trained even on state-of-the-art
LLMs [19, 29, 51]. In addition, great tools are available for
inspection [30] and automatic interpretation [7] of learned
features. [32] have shown how to use SAE features to facil-
itate automatic circuit discovery.

The studies most closely related to our work are [2],
[23] and [14]. Ismail et al. [23] apply concept bottleneck
methods [25] that decompose latent concepts into vectors
of interpretable concepts to generative image models, in-
cluding diffusion models. Unlike the SAEs that we train,
this method requires labeled concept data. Daujotas [14]
decomposes CLIP [10, 39] vision embeddings using SAEs
and use them for conditional image generation with a diffu-
sion model called Kandinsky [42]. Importantly, using SAE
features, they are able to manipulate the image generation
process in interpretable ways. In contrast, in our work, we
train SAEs on intermediate representations of the forward
pass of SDXL Turbo. Consequently, we can interpret and
manipulate SDXL Turbo’s forward pass on a finer granular-
ity, e.g., by intervening on specific transformer blocks and

spatial positions. Another closely related work to ours is
[2], in which neurons in generative adversarial neural net-
works are interpreted and manipulated. The interventions
in [2] are similar to ours, but on neurons instead of sparse
features. In order to identify neurons corresponding to a
semantic concept, [2] require semantic segmentation maps.

7. Conclusion and Discussion

We trained SAEs on SDXL Turbo’s opaque intermediate
representations. This study is the first in the academic lit-
erature to mechanistically interpret the intermediate rep-
resentations of a modern text-to-image model. Our find-
ings demonstrate that SAEs can extract interpretable fea-
tures and have a significant causal effect on the generated
images. Importantly, the learned features provide insights
into SDXL Turbo’s forward pass, revealing that transformer
blocks fulfill specific and varying roles in the generation
process. In particular, our results clarify the functions of
down.2.1, up.0.0, and up.0.1. However, the role of
mid.0 remains less defined; it seems to encode more ab-
stract information and interventions are less effective.

We follow up with a discussion of the results and their
implications for future research. Based on our observations,
we suggest a preliminary hypothesis about SDXL Turbo’s
generation process: down.2.1 decides on top-level com-
position, mid.0 encodes low-level semantics, up.0.0
adds details based on the two above, and up.0.1 fills in
color, texture, and style.

Our work focuses on analyzing SDXL Turbo’s interme-
diate representations. As a relatively compact, few-step dif-
fusion model with a small number of naturally partitioned
components, SDXL Turbo turned out to be convenient to
analyze with SAEs. However, the application of the pro-
posed techniques to larger and more complex text-to-image
diffusion models with alternative architectures represents a
promising direction for further research. We provide some
motivational results on PixArt LCM [9] in the App. H. Ad-
ditionally, we observe that SAE features learned on SDXL
Turbo’s one-step generation are applicable to modify few-
step (2-4) generation workflow (App. D).

Analyzing larger diffusion models with higher number of
diffusion steps would benefit from advanced interpretabil-
ity techniques capable of capturing connections between
its components and across denoising steps. For example,
such techniques are explored in [31, 32]. Marks et al. [32]
compute circuits showing how different layers and attention
heads wire together and Lindsey et al. [31] introduce cross-
coders, a variation of SAEs that allows to learn a shared set
of features over latents corresponding to different layers.

Our work highlights the potential of SAEs in revealing
the internal structure of diffusion models like SDXL Turbo,
and it could help future researchers answer more sophisti-
cated questions about image generation.

Acknowledgements

The authors thank Danila Zubko for the initial contribution,
David Bau, Tim R. Davidson, Niv Cohen, Gytis Daujotas
and Alexander Sharipov for the valuable discussions and
feedback, as well as RCP and IC clusters maintainers.

Robert West’s lab is partly supported by grants from
the Swiss National Science Foundation (200021 185043,
TMSGI2 211379), Swiss Data Science Center (P22 08),
H2020 (952215), Microsoft, and Google.

Caglar Gulcehre’s lab is supported by nimble.ai.

References

[1] Aishwarya Agarwal, Srikrishna Karanam, Tripti Shukla, and
Balaji Vasan Srinivasan. An image is worth multiple words:
Multi-attribute inversion for constrained text-to-image syn-
thesis. arXiv preprint arXiv:2311.11919, 2023. 7

[2] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou,
Joshua B Tenenbaum, William T Freeman, and Antonio Tor-
ralba. Gan dissection: Visualizing and understanding gener-
ative adversarial networks. In International Conference on
Learning Representations, 2019. 8

[3] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng
Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce
Lee, Yufei Guo, et al. Improving image generation with
better captions. Computer Science. https://cdn. openai.
com/papers/dall-e-3. pdf, 2(3):8, 2023. 1

[4] Manuel Brack, Felix Friedrich, Dominik Hintersdorf, Lukas
Struppek, Patrick Schramowski, and Kristian Kersting. Sega:
Instructing text-to-image models using semantic guidance.
In Advances in Neural Information Processing Systems,
pages 25365–25389. Curran Associates, Inc., 2023. 8

[5] Trenton Bricken, Adly Templeton, Joshua Batson, Brian
Chen, and Adam Jermyn et al. Towards monosemanticity:
Decomposing language models dictionary learning. Trans-
former Circuits, 2023. 1, 2, 8, 12, 13

[6] Tom B Brown. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020. 1

[7] Juang Caden, Paulo Gonçalo, Drori Jacob, and Belrose Nora.
Open source automated interpretability for sparse autoen-
coder features, 2024. Accessed: 2024-09-27. 2, 6, 8

[8] Haozhe Chen, Carl Vondrick, and Chengzhi Mao. Selfie:
Self-interpretation of large language model embeddings.
arXiv preprint arXiv:2403.10949, 2024. 1

[9] Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul,
Ping Luo, Hang Zhao, and Zhenguo Li. Pixart-{\delta}:
Fast and controllable image generation with latent consis-
tency models. arXiv preprint arXiv:2401.05252, 2024. 8,
15

[10] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell
Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuh-
mann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scal-
ing laws for contrastive language-image learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2818–2829, 2023. 6, 8

[11] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A.
Vedaldi. Describing textures in the wild. In Proceedings of

the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2014. 7

[12] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert
Huben, and Lee Sharkey. Sparse autoencoders find highly
interpretable features in language models. arXiv preprint
arXiv:2309.08600, 2023. 1, 2, 8, 12

[13] Yusuf Dalva and Pinar Yanardag. Noiseclr: A con-
trastive learning approach for unsupervised discovery of in-
terpretable directions in diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 24209–24218, 2024. 8

[14] Gytis Daujotas. Interpreting and steering features in images,
2024. Accessed: 2024-09-27. 8

[15] Jacob Devlin. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[16] Prafulla Dhariwal and Alex Nichol. Diffusion models beat
gans on image synthesis, 2021. 1

[17] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas
Schiefer, Tom Henighan, Shauna Kravec, Zac Hatfield-
Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger
Grosse, Sam McCandlish, Jared Kaplan, Dario Amodei,
Martin Wattenberg, and Christopher Olah. Toy models of
superposition. Transformer Circuits, 2022. 2, 13

[18] Rohit Gandikota, Joanna Materzynska, Tingrui Zhou, Anto-
nio Torralba, and David Bau. Concept sliders: Lora adaptors
for precise control in diffusion models, 2023. 8

[19] Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh,
Rajan Troll, Alec Radford, Ilya Sutskever, Jan Leike, and
Jeffrey Wu. Scaling and evaluating sparse autoencoders.
arXiv preprint arXiv:2406.04093, 2024. 3, 8, 13

[20] Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas
Dixon, and Mor Geva. Patchscope: A unifying framework
for inspecting hidden representations of language models.
arXiv preprint arXiv:2401.06102, 2024. 1

[21] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan
Clark, et al. Training compute-optimal large language mod-
els. arXiv preprint arXiv:2203.15556, 2022. 1

[22] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models, 2021.
8

[23] Aya Abdelsalam Ismail, Julius Adebayo, Hector Corrada
Bravo, Stephen Ra, and Kyunghyun Cho. Concept bottle-
neck generative models. In The Twelfth International Con-
ference on Learning Representations, 2023. 8

[24] William B Johnson, Joram Lindenstrauss, and Gideon
Schechtman. Extensions of lipschitz maps into banach
spaces. Israel Journal of Mathematics, 54(2):129–138, 1986.
13

[25] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen
Mussmann, Emma Pierson, Been Kim, and Percy Liang.
Concept bottleneck models. In International conference on
machine learning, pages 5338–5348. PMLR, 2020. 8

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25, 2012. 1

[27] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion
models already have a semantic latent space, 2023. 8

[28] Hang Li, Chengzhi Shen, Philip Torr, Volker Tresp, and Jin-
dong Gu. Self-discovering interpretable diffusion latent di-
rections for responsible text-to-image generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12006–12016, 2024.
8

[29] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy,
Lewis Smith, Nicolas Sonnerat, Vikrant Varma, János
Kramár, Anca Dragan, Rohin Shah, and Neel Nanda.
Gemma scope: Open sparse autoencoders everywhere all at
once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.
8

[30] Johnny Lin and Joseph Bloom. Neuronpedia: Interactive
reference and tooling for analyzing neural networks, 2023.
Software available from neuronpedia.org. 8

[31] Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas
Conerly, Joshua Batson, and Christopher Olah. Sparse cross-
coders for cross-layer features and model diffing. Trans-
former Circuits, 2024. 8

[32] Samuel Marks, Can Rager, Eric J Michaud, Yonatan Be-
linkov, David Bau, and Aaron Mueller. Sparse feature cir-
cuits: Discovering and editing interpretable causal graphs in
language models. arXiv preprint arXiv:2403.19647, 2024.
2, 8

[33] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space,
2013. 8

[34] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel
Goh, Michael Petrov, and Shan Carter. An overview of early
vision in inceptionv1. Distill, 5(4):e00024–002, 2020. 1

[35] OpenAI. Hello gpt-4o, 2024. Accessed: 2024-09-28. 6
[36] Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo,

and Youngjung Uh. Understanding the latent space of dif-
fusion models through the lens of riemannian geometry. In
Advances in Neural Information Processing Systems, pages
24129–24142. Curran Associates, Inc., 2023. 8

[37] Pablo Pernias, Dominic Rampas, Mats L Richter, Christo-
pher J Pal, and Marc Aubreville. Würstchen: An efficient
architecture for large-scale text-to-image diffusion models.
arXiv preprint arXiv:2306.00637, 2023. 1

[38] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. Sdxl: Improving latent diffusion models
for high-resolution image synthesis, 2023. 1, 3

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 6, 8

[40] Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and
Ziyu Yao. A practical review of mechanistic interpretabil-
ity for transformer-based language models. arXiv preprint
arXiv:2407.02646, 2024. 1

[41] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In International confer-
ence on machine learning, pages 8821–8831. Pmlr, 2021. 1

[42] Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Malt-
seva, Vladimir Arkhipkin, Igor Pavlov, Ilya Ryabov, An-
gelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and
Denis Dimitrov. Kandinsky: An improved text-to-image
synthesis with image prior and latent diffusion. In Proceed-
ings of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pages
286–295, 2023. 8

[43] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence
embeddings using siamese bert-networks. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguis-
tics, 2019. 7

[44] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2022. 1, 3

[45] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

[46] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin
Rombach. Adversarial diffusion distillation, 2023. 1, 3

[47] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for training
next generation image-text models. Advances in Neural In-
formation Processing Systems, 35:25278–25294, 2022. 1,
2

[48] Christoph Schuhmann, Andreas Köpf, Richard Vencu, Theo
Coombes, Romain Beaumont, and Benjamin Trom. Laion
coco: 600m synthetic captions from laion2b-en, 2022. Ac-
cessed: 2024-10-01. 2, 3

[49] Lee Sharkey, Dan Braun, and beren. Interim research re-
port: Taking features out of superposition with sparse au-
toencoders, 2022. Accessed: 2024-09-27. 8

[50] Matteo Spinelli. Advanced style transfer with the mad scien-
tist node. YouTube video, 2024. Accessed: 2024-09-17. 2,
11

[51] Adly Templeton and Tom Conerly et al. Scaling monose-
manticity: Extracting interpretable features from claude 3
sonnet, 2024. Accessed: 2024-09-27. 8

[52] Andrey Voynov, Qinghao Chu, Daniel Cohen-Or, and Kfir
Aberman. p+: Extended textual conditioning in text-to-
image generation. arXiv preprint arXiv:2303.09522, 2023.
7

[53] Zihao Wang, Lin Gui, Jeffrey Negrea, and Victor Veitch.
Concept algebra for (score-based) text-controlled generative

models. In Advances in Neural Information Processing Sys-
tems, pages 35331–35349. Curran Associates, Inc., 2023. 8

[54] Zeyu Yun, Yubei Chen, Bruno A Olshausen, and Yann Le-
Cun. Transformer visualization via dictionary learning: con-
textualized embedding as a linear superposition of trans-
former factors. arXiv preprint arXiv:2103.15949, 2021. 2,
8, 12

[55] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 14

[56] Yuxin Zhang, Weiming Dong, Fan Tang, Nisha Huang,
Haibin Huang, Chongyang Ma, Tong-Yee Lee, Oliver
Deussen, and Changsheng Xu. Prospect: Prompt spectrum
for attribute-aware personalization of diffusion models. ACM
Transactions on Graphics (TOG), 42(6):1–14, 2023. 7, 8

A. Finding Causally Influential Transformer

Blocks

We narrow down design space of the 11 cross-attention
transformer blocks (see Fig. 4) to those with the highest
causal impact on the output. In order to assess their causal
impact on the output we qualitatively study the effect of in-
dividually ablating each of them (see Fig. 5). As can be seen
in Fig. 5 each of the middle blocks down.2.1, mid.0,
up.0.0, up.0.1 have a relatively high impact on the out-
put respectively. In particular, the blocks down.2.1 and
up.0.1 stand out. It seems like most colors and textures
are added in up.0.1, which in the community is already
known as “style” block [50]. Ablating down.2.1, which
is also already known in the community as “composition”
block, impacts the entire image composition, including ob-
ject sizes, orientations and framing. The effects of ablating
other blocks such as mid.0 and up.0.0 are more subtle.
For mid.0 it is difficult to describe in words and up.0.0
seems to add local details to the image while leaving the
overall composition mostly intact.

B. Case Study: Most Active Features on a

Prompt

Fig. 10 demonstrates an extended version of qualitative
analysis case study, showcasing 9 top features instead of
5.

C. Case Study: Random Features

In this case study, we explore the learned features indepen-
dently of any specific prompt. In Fig. 11 and Fig. 12, we
demonstrate the first 5 and last 5 learned features for each
transformer block (since SAEs were initialized randomly
before training, we can treat these features as a random sam-
ple). As SAEs are randomly initialized before the training
process, these sets can be considered as random samples
of features. Each feature visualization consists of 3 images

DOWN.0 (no attn)

DOWN.1.0

DOWN.1.1

DOWN.2.0

DOWN.2.1

MID.0

UP.0.0

UP.0.1

UP.0.2

UP.1.0

UP.1.1

UP.1.2

UP.2 (no attn)

ResNet

Upsampler

Downsampler

Figure 4. Cross-attention transformer blocks in SDLX’s U-net.

of top 5% images for this feature, and their perturbations
with activation modulation interventions. For down.2.1
and up.0.1, we also include the empty-prompt interven-
tion images. Additionally, we provide visualizations of sev-
eral selected features in App. C Fig. 13 and demonstrate
the effects of their forced activation on unrelated prompts
in App. C Fig. 14.

Feature plots. We provide the same plots as in Fig. 11
but for the last six feature indices of each transformer block
in Fig. 12 and the corresponding prompts in Table 6. Ad-
ditionally, provide some selected features for down.2.1
and up.0.1 in Fig. 13 and the corresponding prompts in
Table 7.

Intervention plots. Additionally, we provide plots in
which we turn on features from Fig. 13 but in unrelated
prompts (as opposed to top dataset example prompts that
already activate the features by themselves). For simplic-
ity here we simply turn on the features across all spatial
locations, which does not seem to be a well suitable strat-
egy for up.0.1, which usually acts locally. To showcase,
the difference we created one example image in Fig. 8, in
which we manually draw localized masks to turn on the cor-
responding features.

D. Interventions on a Few-Step Generation

Process

Figure 6 illustrates interventions similar to those high-
lighted in the main text head illustration, applied to the 4-
step generation process. For this experiment, we employed
equal activation maps and consistent strengths across all
four denoising steps. Remarkably, the features’ functions

Figure 5. We generate images for the prompts “A dog playing with a ball cartoon.”, “A photo of a colorful model.”, “An astronaut riding
on a pig on the moon.”, “A photograph of the inside of a subway train. There are frogs sitting on the seats. One of them is reading a
newspaper. The window shows the river in the background.” and “A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party.”
while ablating the updates performed by different cross-attention layers (indicated by the titles). The title “baseline” corresponds to the
generation without interventions.

Original +up.0.0 #1941 +up.0.1 #3997 +down.2.1 #2301 +down 2.1 #4998 +up 0.1 #1635 +down 2.1 #3912

Figure 6. Enabling features learned by sparse autoencoders in SDXL Turbo’s 4-step generation process.

were preserved, and the interventions produced images of
decent quality. This indicates that features learned during
the 1-step generation process may generalize effectively to
a few-step setting.

E. Sparse Autoencoders and Superposition

This is an extended version of Sparse Autoencoders subsec-
tion of background section.

Let h(x) → Rd be some intermediate result of a forward
pass of a neural network on the input x. In a fully con-
nected neural network, the components h(x) could corre-
spond to neurons. In transformers, which are residual neu-
ral networks with attention and fully connected layers, h(x)
usually either refers to the content of the residual stream
after some layer, an update to the residual stream by some
layer, or the neurons within a fully connected block. In gen-
eral, h(x) could refer to anything, e.g., also keys, queries,
and values. It has been shown [5, 12, 54] that in many
neural networks, especially LLMs, intermediate represen-

tations can be well approximated by sparse sums of nf → N
learned feature vectors, i.e.,

h(x) ↑
nf∑

ω=1

sω(x)fω, (11)

where sω(x) are the input-dependent7 coefficients most of
which are equal to zero and f1, . . . , fnf → Rd is a learned
dictionary of feature vectors.

Importantly, these learned features are usually highly in-
terpretable (specific), sensitive (fire on the relevant con-
texts), causal (change the output in expected ways in in-
tervention) and usually do not correspond directly to indi-
vidual neurons. There are also some preliminary results on
the universality of these learned features, i.e., that differ-
ent training runs on similar data result in the corresponding
models picking up largely the same features [5].

Superposition. By associating task-relevant features
with directions in Rd instead of individual components of

7In the literature this input dependence is usually omitted.

h(x) → Rd, it is possible to represent many more features
than there are components, i.e., nf >> d. As a result, in
this case, the learned dictionary vectors f1, . . . , fnf cannot
be orthogonal to each other, which can lead to interference
when too many features are on (thus the sparsity require-
ment). However, it would be theoretically possible to have
exponentially (in d) many almost orthogonal directions em-
bedded in Rd.8

Using representations like this, the optimization process
during training can trade off the benefits of being able to
represent more features than there are components in h with
the costs of features interfering with each other. Such rep-
resentations are especially effective if the real features un-
derlying the data do not co-occur with each other too much,
that is, they are sparse. In other words, in order to repre-
sent a single input (“Michael Jordan”) only a small subset of
the features (“person”, ..., “played basketball”) is required
[5, 17].

The phenomenon of neural networks that exploit repre-
sentations with more features than there are components (or
neurons) is called superposition [17]. Superposition can ex-
plain the presence of polysemantic neurons. The neurons,
in this case, are simply at the wrong level of abstraction.
The closest feature vector can change when varying a neu-
ron, resulting in the neuron seemingly reacting to or steering
semantically unrelated things.

Sparse autoencoders. In order to implement the sparse
decomposition from equation 11, the vector s containing
the nf coefficients of the sparse sum is parameterized by a
single linear layer followed by an activation function, called
the encoder,

s = ENC(h) = (W ENC(h↓ bpre) + bact), (12)

in which h → Rd is the latent that we aim to decompose,
ω(·) is an activation function, W ENC → Rnf→d is a learnable
weight matrix and bpre and bact are learnable bias terms. We
omitted the dependencies h = h(x) and s = s(h) that are
clear from context.

Similarly, the learnable features are parametrized by a
single linear layer, called decoder,

h↑ = DEC(s) = W DECs+ bpre, (13)

in which W DEC = (f1| · · · |fnf) → Rd→nf is a learnable
matrix of whose columns take the role of learnable features
and bpre is a learnable bias term.

Training. The pair ENC and DEC are trained in a way
that ensures that h↑ is a sparse sum of feature vectors. Given
a dataset of latents h1, . . . , hn, both encoder and decoder

8It follows from the Johnson-Lindenstrauss Lemma [24] that one can
find at least exp(dω2/8) unit vectors in Rd with the dot product between
any two not larger than ω.

are trained jointly to minimize a proxy to the loss

min
W ENC,W DEC

bpre,bact

n∑

i=1

↘h↑
i ↓ hi↘22 + ς↘si↘0, (14)

where hi = h(xi), si = ENC(h(xi)) (when we refer to
components of s we use sω instead), the ↘h↑

i ↓ hi↘22 is a
reconstruction loss, ↘si↘0 a regularization term ensuring the
sparsity of the activations and ς the corresponding trade-off
term.

In practice, ↘si↘0 cannot be efficiently optimized di-
rectly, which is why it is usually replaced with ↘si↘1 or
other proxy objectives.

Technical details. In our work, we make use of the top-
k formulation from [19], in which ↘si↘0 ≃ k is ensured by
introducing the a top-k function TopK into the encoder:

s = ENC(h) = RELU(TopK(W ENC(h↓bpre)+bact)). (15)

As the name suggests, TopK returns a vector that sets all
components except the top k ones to zero.

In addition [19] use an auxiliary loss to handle dead fea-
tures. During training, a sparse feature ϑ is considered dead
if sω remains zero over the last 10M training examples.

The resulting training loss is composed of two terms:
the L2-reconstruction loss and the top-auxiliary L2-
reconstruction loss for dead feature reconstruction. For a
single latent h, the loss is defined

L(h, h↑) = ↘h↓ h↑↘22 + φ↘h↓ h↑
aux↘22 (16)

In this equation, the h↑
aux is the reconstruction based on

the top kaux dead features. This auxiliary loss is introduced
to mitigate the issue of dead features. After the end of
the training process, we observed none of them. Follow-
ing [19], we set φ = 1

32 and kaux = 256, performed tied
initialization of encoder and decoder, normalized decoder
rows after each training step. The number of learned fea-
tures nf is set to 5120, which is four times the length of the
input vector. The value of k is set to 10 as a good trade-off
between sparsity and reconstruction quality. Other train-
ing hyperparameters are batch size: 4096, optimizer: Adam
with learning rate: 10↓4 and betas: (0.9, 0.999).

F. SAE Training Results

We trained several SAEs with different sparsity levels and
sparse layer sizes and observed no dead features. To
assess reconstruction quality, we processed 100 random
LAION-COCO prompts through a one-step SDXL Turbo
process, replacing the additive component of the corre-
sponding transformer block with its SAE reconstruction.

The explained variance ratio and the output effects
caused by reconstruction are shown in Table 3. Fig. 7

presents random examples of reconstructions from an SAE
with the following hyperparameters: k = 10, nf = 5120,
trained on down.2.1. The reconstruction causes minor
deviations in the images, and the fairly low LPIPS [55] and
pixel distance scores also support these findings. However,
to prevent these minor reconstruction errors from affecting
our analysis of interventions, we decided to directly add or
subtract learned directions from dense feature maps.

Table 3. Distances and explained variance ratio in generated im-
ages. “Mean” represents the average pixel Manhattan distance be-
tween original and reconstruction-intervened images, with a maxi-
mum possible value of 765. “Median” represents the median Man-
hattan distance per pixel, averaged over all images. ’LPIPS’ refers
to the average LPIPS score, measuring perceptual similarity. “Ex-
plained variance ratio” denotes the ratio of variance explained by
the trained SAEs to the total variance.

k nf Configuration Mean | Median LPIPS EV (%)

5

640

down.2.1 83.29 | 50.04 0.3383 56.0
mid.0 52.64 | 26.82 0.2032 43.4
up.0.0 55.89 | 30.69 0.2276 44.8
up.0.1 52.67 | 34.53 0.2073 50.3

5120

down.2.1 74.68 | 41.49 0.3036 67.8
mid.0 48.82 | 24.60 0.1845 50.8
up.0.0 49.19 | 25.86 0.1969 57.2
up.0.1 47.50 | 31.11 0.1775 59.5

10

640

down.2.1 73.65 | 41.79 0.2893 62.8
mid.0 46.80 | 23.10 0.1772 51.5
up.0.0 48.43 | 25.80 0.1908 52.5
up.0.1 43.06 | 26.85 0.1638 58.7

5120

down.2.1 64.97 | 34.77 0.2582 73.7
mid.0 44.02 | 21.72 0.1627 58.8
up.0.0 42.08 | 21.54 0.1624 64.2
up.0.1 39.77 | 24.84 0.1453 67.1

20

640

down.2.1 59.29 | 31.47 0.2291 69.9
mid.0 39.95 | 19.44 0.1459 60.0
up.0.0 40.15 | 21.06 0.1499 60.9
up.0.1 31.97 | 18.15 0.1196 66.7

5120

down.2.1 56.37 | 29.04 0.2190 78.8
mid.0 37.28 | 17.82 0.1328 66.5
up.0.0 35.73 | 18.03 0.1302 70.6
up.0.1 30.31 | 17.22 0.1104 74.2

G. Annotation Pipeline Details

We used GPT-4o to caption learned features on down.2.1.
For each feature, the model was shown a series of 5 unre-
lated images, a progression of 9 images, the i-th of those
corresponds to ⇐ i · 10% average activation value of the
maximum. Finally, we show 5 images corresponding to the
highest average activations. Since some features are active
on particular parts of images, the last 9 images are provided
alongside their so-called “coldmaps”: a version of an im-
age with weakly active and inactive regions being faded and
concealed.

The images were generated by 1-step SDXL Turbo diffu-
sion process on 50↑000 random prompts of LAION-COCO
dataset.

G.1. Textual Prompt Template

Here is the prompt template for the VLM.

System. You are an experienced mechanistic in-
terpretability researcher that is labeling features
from the hidden representations of an image gen-
eration model.

User. You will be shown a series of images gen-
erated by a machine learning model. These im-
ages were selected because they trigger a specific
feature of a sparse auto-encoder, trained to detect
hidden activations within the model. This feature
can be associated with a particular object, pattern,
concept, or a place on an image. The process will
unfold in three stages:

1. **Reference Images:** First, you’ll see sev-
eral images *unrelated* to the feature. These will
serve as a reference for comparison.

2. **Feature-Activating Images:** Next, you’ll
view images that activate the feature with varying
strengths. Each of these images will be shown
alongside a version where non-activated regions
are masked out, highlighting the areas linked to
the feature.

3. **Strongest Activators:** Finally, you’ll be
presented with the images that most strongly
activate this feature, again with corresponding
masked versions to emphasize the activated re-
gions.

Your task is to carefully examine all the images
and identify the thing or concept represented by
the feature. Here’s how to provide your response:

- **Reasoning:** Between ‘<thinking>‘ and
‘</thinking>‘ tags, write up to 400 words ex-
plaining your reasoning. Describe the visual pat-
terns, objects, or concepts that seem to be consis-
tently present in the feature-activating images but
not in the reference images.

- **Expression:** Afterward, between
‘<answer>‘ and ‘</answer>‘ tags, write
a concise phrase (no more than 15 words) that
best captures the common thing or concept across
the majority of feature-activating images.

Note that not all feature-activating images may
perfectly align with the concept you’re describ-
ing, but the images with stronger activations
should give you the clearest clues. Also pay at-
tention to the masked versions, as they highlight
the regions most relevant to the feature.

User. These images are not related to the feature:
{Reference Images}
User. This is a row of 9 images, each illustrat-
ing increasing levels of feature activation. From

Figure 7. Images generated from 10 random prompts taken from the LAION-COCO dataset are shown in the first row. In the second row,
down.2.1 updates are replaced by their SAE reconstructions (k = 10, nf = 5120). The third row visualizes the differences between the
original and reconstructed images.

left to right, each image shows a progressively
higher activation, starting with the image on the
far left where the feature is activated at 10% rel-
ative to the image that activates it the most, all
the way to the far right, where the feature acti-
vates at 90% relative to the image that activates it
the most. This gradual transition highlights the
feature’s growing importance across the series.
{Feature-Activating Images}
User. This row consists of 9 masked versions of
the original images. Each masked image corre-
sponds to the respective image in the activation
row. Areas where the feature is not activated are
completely concealed by a white mask, while re-
gions with activation remain visible.) {Feature-
Activating Images Coldmaps}
User. These images activate the feature most
strongly. {Strongest Activators}
User. These masked images highlight the ac-
tivated regions of the images that activate the
feature most strongly. The masked images cor-
respond to the images above. The unmasked
regions are the ones that activate the feature.
{Strongest Activators Coldmaps}

G.2. Example of Prompt Images

The images used to annotate feature 0 are shown in Fig. 9.

G.3. Examples of Generated Captions

We present the captions generated by GPT-4o for the first
and last 10 features in Table 4.

H. SAE Features on Pixart-LCM XL

We trained sparse autoencoders on updates from three trans-
former blocks of the Pixart-LCM XL model [9] during 4-

(a) Intervention history (b) Result

Figure 8. Local edits showcase up.0.1’s ability to locally change
textures in the image without affecting the remaining image. Mul-
tiple consecutive interventions are possible (a). The first in (a) row
depicts the original image and each subsequent row we add an in-
tervention by drawing a heatmap with a brush tool and then turning
on the feature labelling the row only on that area. The other num-
ber (240) is the absolute feature strength of the edit. Figure (b)
shows the final result in full resolution (512x512).

step generation process. Figure 15 shows activation maps
of several features that were among the most active during
a forward pass. We found that some features are triggered
by specific objects, while others respond to particular spa-
tial positions in the image, or their activation regions may
be scattered. However, individual features typically do not
exhibit the expected causal effects. We hypothesize that

Table 4. down.2.1 first 10 and last 10 feature captions.

Block Feature Caption

down.2.1 0 Organizational/storage items for documents and office supplies
1 Luxury kitchen interiors and designs
2 Architectural Landmarks and Monumental Buildings
3 Upper body clothing and attire
4 Rustic or Natural Wooden Textures or Surfaces
5 Intricately designed and ornamental brooches
6 Technical diagrams and instructional content
7 Feature predominantly activated by visual representations of dresses
8 Home decor textiles focusing on cushions and pillows
9 Eyewear: glasses and sunglasses
5110 Concept of containment or organized enclosure
5111 Groups of people in collective settings
5112 Modern minimalist interior design
5113 Indoor plants and greenery
5114 Feature sensitivity focused on sneakers
5115 Handling or manipulating various objects
5116 Athletic outerwear, particularly zippered sporty jackets
5117 Spectator Seating in Sporting Venues
5118 Textiles and clothing materials, focus on textures and folds
5119 Yarn and Knitting Textiles

Figure 9. The images used by GPT-4o to generate captions for
feature 0. From top to bottom: irrelevant images to feature 0; im-
age progression from left to right, showing increasing activation
of SAE feature 0, with low activation on the left and high acti-
vation on the right; “Coldmaps” representing the image progres-
sion; images corresponding to the highest activation of feature 0;
“Coldmaps” corresponding to these highest activation images.

this may be because features across different transformer
blocks are not interdependent and may exhibit causal ef-
fects only in combination. Future research is encouraged
to employ advanced interpretability techniques to better un-
derstand and resolve these complex feature interactions.

(a) Top 9 features of down.2.1 (b) Top 9 features up.0.1

(c) Top 9 features of up.0.0 (d) Top 9 features of mid.0

Figure 10. The top 9 features of down.2.1 (a), up.0.1 (b), up.0.0 (c) and mid.0 (d) for the prompt: “A cinematic shot of a
professor sloth wearing a tuxedo at a BBQ party.” Each row represents a feature. The first column depicts a feature heatmap (highest
activation red and lowest nonzero one blue). The column titles containing “A” show feature modulation interventions, the ones containing
“B” the intervention of turning on the feature on the empty prompt, and the ones containing “C” depict top dataset examples. Floating
point values in the title denote ω and ε values.

(a) down.2.1 (b) mid.0 (c) up.0.0 (d) up.0.1

Figure 11. We visualize 6 features for down.2.1 (a), mid.0 (b), up.0.0, and up.0.1. We use three columns for each transformer
block and three rows for each feature. For down.2.1 and up.0.1 we visualize the two samples from the top 5% quantile of activating
dataset examples (middle) together a feature ablation (left) and a feature enhancement (right), and, activate the feature on the empty prompt
with ε = 0.5, 1, 2 from left to right. For mid.0 and up.0.0 we display three samples with ablation and enhancement. Captions are in
Table 5.

Table 5. Prompts for the top 5% quantile examples in Fig. 11

Block Feature Prompt

down.2.1 0 A file folder with the word document management on it.
0 Two blue folders filled with dividers.
1 A kitchen with an island and bar stools.
1 An unfinished bar with stools and a wood counter.
2 The Taj Mahal, or a white marble building in India.
2 The Taj Mahal, or a white marble building in India.
3 A man and woman standing next to each other.
3 Two men in suits hugging each other outside.
4 An old Forester whiskey bottle sitting on top of a wooden table.
4 Red roses and hearts on a wooden table.
5 A beaded brooch with pearls and copper.
5 An image of a brooch with diamonds.

mid.0 0 The Boss TS-3W pedal has an electronic tuner.
0 An engagement ring with blue sapphire and diamonds.
0 The women’s pink sneaker is shown.
1 A white ceiling fan with three blades.
1 A ceiling fan with three blades and a light.
1 The ceiling fan is dark brown and has two wooden blades.
2 The black dress is made from knit and has metallic sleeves.
2 The back view of a woman wearing a black and white sports bra.
2 The woman is wearing a striped swimsuit.
3 An old-fashioned photo frame with a little girl on it.
3 The woman is sitting in her car with her head down.
3 The contents of an empty bottle in a box.
4 An old painting of a man in uniform.
4 The model wears an off-white sweatshirt with green panel.
4 The Statue of Liberty stands tall in front of a blue sky.
5 Cheese and crackers on a cutting board.
5 Two cufflinks with coins on them.
5 Three pieces of luggage are shown in blue.

up.0.0 0 Three wine glasses with gold and silver designs.
0 Three green wine glasses sitting next to each other.
0 New Year’s Eve with champagne, gold, and silver.
1 The birdhouse is made from wood and has a brown roof.
1 The garage is white with red shutters.
1 Two garages with one attached porch and the other on either side.
2 An elegant white lace purse with gold clasp.
2 The red handbag has gold and silver designs.
2 A pink and green floral-colored purse.
3 A magazine rack with magazines on it.
3 The year-in-review page for this digital scrap.
3 The planner sticker kit is shown with gold and black accessories.
4 A clock with numbers on the face.
4 A silver watch with roman numerals on the face.
4 An automatic watch with a silver dial.
5 Four pieces of wooden furniture with blue and white designs.
5 The green chair is in front of a white rug.
5 The wish chair with a black seat.

up.0.1 0 The wooden toy kitchen set includes bread, eggs, and flour.
0 The office chair is brown and black.
1 An aerial view of the white sand and turquoise water.
1 An aerial view of the beach and ocean.
2 The patriarch of Ukraine is shown speaking to reporters.
2 German Chancellor Merkel gestures as she speaks to the media.
3 Four pictures showing dogs wearing orange vests.
3 Two dogs are standing on the ground next to flowers.
4 A man standing in front of a wooden wall.
4 A blue mailbox sitting on top of a wooden floor.
5 The baseball players are posing for a team photo.
5 The baseball players are holding up their trophies.

(a) down.2.1 (b) mid.0 (c) up.0.0 (d) up.0.1

Figure 12. We visualize last 6 features for down.2.1 (a), mid.0 (b), up.0.0, and up.0.1. We use three columns for each transformer
block and three rows for each feature. For down.2.1 and up.0.1 we visualize two samples from the top 5% quantile of activating
dataset examples (middle) together a feature ablation (left) and a feature enhancement (right), and, activate the feature on the empty
prompt with ε = 0.5, 1, 2 from left to right. For mid.0 and up.0.0 we display three samples with ablation and enhancement. Captions
are in Table 6.

Table 6. Prompts for the top 5 % quantile examples in Fig. 12

Block Feature Prompt

down.2.1 5114 Black and white Converse sneakers with the word black star.
5114 Black and white Converse sneakers with the word Chuck.
5115 A woman holding up a photo of herself.
5115 A man holding up a tennis ball in the air.
5116 The Nike Women’s U.S. Soccer Team DRI-Fit 1/4 Zip Top.
5116 The women’s gray and orange half-zip sweatshirt.
5117 A large group of people sitting in front of a basketball court.
5117 Hockey players are playing in an arena with spectators.
5118 The black and white plaid shirt is shown.
5118 The different colors and sizes of t-shirts.
5119 A ball of yarn on a white background.
5119 Two balls of colored wool are on the white surface.

mid.0 5114 People holding signs in front of a building.
5114 Two men dressed in suits and ties are holding up signs.
5114 A large group of people holding flags and signs.
5115 A kitchen with white cabinets and a blue stove.
5115 The kitchen is clean and ready for us to use.
5115 A kitchen with white cabinets and stainless steel appliances.
5116 The steering wheel and dashboard in a car.
5116 The interior of a car with dashboard controls.
5116 The dashboard and steering wheel in a car.
5117 Three men are celebrating a goal on the field.
5117 Two men in Red Bull racing gear standing next to each other.
5117 Two men are posing for the camera at an event.
5118 Someone is holding up their nail polish with pink and black designs.
5118 The nail is very cute and looks great with marble.
5118 White stily nails with gold and diamonds.
5119 The Mighty Thor comic book.
5119 The camera is showing its flash drive.
5119 A truck with bikes on the back parked next to a camper.

up.0.0 5114 The Acer laptop is open and ready to use.
5114 The Lenovo S13 laptop is open and has an image of a person jumping off the keyboard.
5114 A laptop with the words Hosting Event on it.
5115 A horse with a black nose and brown mane.
5115 The horse leather oil is being used to protect horses.
5115 An oil painting on a canvas of a horse.
5116 The sun is shining brightly over Saturn.
5116 A football player throws the ball to another team.
5116 Car door light logo sticker for Hyundai.
5117 An artistic black and silver sculpture with speakers.
5117 The pink brushes are sitting on top of each other.
5117 Four kings playing cards in the hand.
5118 A man is fixing an air conditioner.
5118 The black Land Rover is parked in front of a large window.
5118 A flat screen TV mounted on the wall above a fireplace.
5119 A table with many different tools on it.
5119 A camera with many different items including flash cards, lenses, and other accessories.
5119 The contents of an open suitcase and some clothes.

up.0.1 5114 An old Navajo rug with multicolored designs.
5114 The pillow is made from an old kilim.
5115 An image of noni juice with some fruits.
5115 A bottle and glass on the counter with green juice.
5116 Someone cleaning the shower with a sponge.
5116 A man on a skateboard climbing a wall with ropes.
5117 A man taking a selfie in front of some camera equipment.
5117 A person holding up a business card with the words cycle transportation.
5118 Two photos are placed on top of an open book.
5118 An open book with pictures of children and their parents.
5119 An engagement ring with diamonds on top.
5119 An oval ruby and diamond ring.

(a) down.2.1 (b) up.0.1

Figure 13. We visualize 6 features for down.2.1 (a) and up.0.1 (b). For each feature, we use 5 columns showing ablations (left),
activating examples (middle), enhancements (right) and 3 rows with different samples from the top 5% quantile of activating examples.
Captions are in Table 7.

(a) down.2.1 (b) up.0.1

Figure 14. We turn on the features from Fig. 13 on three unrelated prompts “a photo of a colorful model”, “a cinematic shot of a dog
playing with a ball”, and “a cinematic shot of a classroom with excited students”.

Table 7. Prompts for the top 5% quantile examples in Fig. 13

Block Feature Prompt

down.2.1 4998 A cartoon bee wearing a hat and holding something.
4998 Two cartoon pictures of the same man with his hands in his pockets.
4998 A cartoon bear with a purple shirt and yellow shorts.
4074 An anime character with cat ears and a dress.
4074 Two anime characters, one with white hair and the other with red eyes.
4074 An anime book with two women in blue dresses.
2301 A man with white hair and red eyes holding a chain.
2301 An animated man with white hair and a beard.
2301 The character is standing with horns on his head.
56 Two men in uniforms riding horses with swords.
56 A woman riding on the back of a brown horse.
56 Two jockeys on horses racing down the track.
59 A red jar with floral designs on it.
59 An old black vase with some design on it.
59 A vase with birds and flowers on it.
89 StarCraft 2 is coming to the Nintendo Wii.
89 Overwatch is coming to Xbox and PS3.
89 The hero in Overwatch is holding his weapon.

up.0.1 4955 An African wild dog laying in the grass.
4955 The woman is posing for a photo in her leopard print top.
4955 An animal print cube ottoman with brown and white fur.
4977 A white tiger with blue eyes standing in the snow.
4977 A bottle and tiger are shown next to each other.
4977 A mural on the side of a building with a tiger.
3718 Giraffes are standing in the grass near a vehicle.
3718 Two giraffes standing next to each other in the grass.
3718 A giraffe standing next to an ironing board.
90 A lion is roaring its teeth in the snow.
90 A lion sitting in the grass looking off into the distance.
90 Two lions with flowers on their backs.
1093 The sun is shining over mountains and trees.
1093 Bride and groom in front of a lake with sun flare.
1093 The milky sun is shining brightly over the trees.
2165 The silhouette of a person riding a bike at sunset.
2165 The Dark Knight rises from his cave in Batman’s poster.
2165 A yellow sign with black design depicting a tractor.

(a) Transformer Block 6 (b) Transformer Block 9 (c) Transformer Block 25

(d) Transformer Block 6 (e) Transformer Block 9 (f) Transformer Block 25

Figure 15. Activation maps of SAEs trained on Pixart-LCM XL transformer blocks. The top row corresponds to the prompt: ”A cinematic
shot of a sloth wearing a tuxedo at a BBQ party.” The bottom row corresponds to the prompt: ”A dog playing with a ball.”

	Introduction
	Background
	Sparse Autoencoders
	Few-Step Diffusion Models: SDXL Turbo

	Sparse Autoencoders for SDXL Turbo
	Qualitative Analysis
	Feature Visualization Techniques
	Top Features Activated by a Prompt

	Quantitative Evaluation
	Annotation Pipeline
	Experimental Details

	Related Work
	Conclusion and Discussion
	Finding Causally Influential Transformer Blocks
	Case Study: Most Active Features on a Prompt
	Case Study: Random Features
	Interventions on a Few-Step Generation Process
	Sparse Autoencoders and Superposition
	SAE Training Results
	Annotation Pipeline Details
	Textual Prompt Template
	Example of Prompt Images
	Examples of Generated Captions

	SAE Features on Pixart-LCM XL

