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Abstract

The framework of multi-agent learning explores the dynamics of how an agent’s
strategies evolve in response to the evolving strategies of other agents. Of particular
interest is whether or not agent strategies converge to well-known solution con-
cepts such as Nash Equilibrium (NE). In “higher-order” learning, agent dynamics
include auxiliary states that can capture phenomena such as path dependencies. We
introduce higher-order gradient play dynamics that resemble projected gradient
ascent with auxiliary states. The dynamics are “payoff-based” and “uncoupled” in
that each agent’s dynamics depend on its own evolving payoff and has no explicit
dependence on the utilities of other agents. We first show that for any polymatrix
game with an isolated completely mixed-strategy NE, there exist higher-order
gradient play dynamics that lead (locally) to that NE, both for the specific game
and nearby games with perturbed utility functions. Conversely, we show that for
any higher-order gradient play dynamics, there exists a game with a unique isolated
completely mixed-strategy NE for which the dynamics do not lead to NE. Finally,
we show that convergence to the mixed-strategy equilibrium in coordination games
can come at the expense of the dynamics being inherently internally unstable.

1 Introduction

The field of learning in games explores how game-theoretic solution concepts emerge as the outcome
of dynamic processes where agents adapt their strategies in response to the evolving strategies of other
agents (1; 2; 3; 4). There is a multitude of specific cases of learning dynamics/game combinations that
result in a range of outcomes, including convergence, limit cycles, chaotic behavior, and stochastic
stability (5; 6; 7; 8; 9; 10; 11; 12; 13). The emphasis in the literature is on simple adaptive procedures,
called "natural" dynamics in (14), that can result in various solution concepts (e.g., Nash equilibrium,
correlated equilibrium, and coarse correlated equilibrium). (A separate concern is the complexity
associated with such computations (e.g. (15; 16)).)

One “natural” restriction for learning is that the dynamics of one agent should not depend explicitly
on the utility functions of other agents. This restriction was referred to as “uncoupled” dynamics in
(17), where the authors constructed a specific anti-coordination matrix game for which no uncoupled
learning dynamics could converge to the unique mixed-strategy NE. The dynamics considered in
that setting were of fixed order, i.e., the order of the learning dynamics was restricted to match the
dimension of the strategy space. More recent work showed that specific instances of fixed order
uncoupled learning dynamics can never lead to mixed-strategy NE (18). Furthermore, there exist
games for which any fixed order learning dynamics are bound to have an initial condition starting
from which the dynamics do not converge to NE (19).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



The restriction on the order of the learning dynamics in learning mixed-strategy NE turns out to
be essential. In particular, by introducing additional auxiliary states, (20) showed that higher-order
learning could overcome the obstacle of convergence to NE in the same anti-coordination game
considered in (17) while remaining uncoupled.

Higher-order learning in games can be seen as a parallel to higher-order optimization algorithms, such
as momentum-based or optimistic gradient algorithms (e.g., (21; 22)). Such algorithms utilize history
to update the underlying search parameter. In this way, there is a path dependency on the trajectory
of information. An early utilization of higher-order learning is in (23), in which a player’s strategy
update uses two stages of history of an opponent’s strategies in a zero-sum setting to eliminate
oscillations. Similar ideas were used in (24). Reference (25) modified gradient-based algorithms
through the introduction of a cumulative (integral) term. In (20), higher-order dynamics were used
to create a myopic forecast of the action of other agents. Authors in (26) introduce a version of
higher-order replicator dynamics and show that, unlike fixed order replicator dynamics, weakly
dominated strategies become extinct. Reference (27) utilizes the system theoretic notion of passivity
to analyze a family of higher-order dynamics.

In this paper, we further explore the implications of learning dynamics that are uncoupled. We address
“payoff based” dynamics, in which the learning dynamics depend on the evolution of a payoff vector
that is viewed as an externality. When players are engaged in a game, then the payoff stream of one
agent depends on the actions of other agents. However, the learning dynamics themselves do not
change based on the source of the payoff streams.

First, we show that for any polymatrix game with a mixed-strategy NE, there exist payoff-based
dynamics that converge locally to that NE. This result is established by making a connection between
convergence to NE and the existence of decentralized stabilizing control (28; 29). A consequence of
the payoff-based structure is that the dynamics also converge to the NE of nearby perturbations of the
original game. The form of higher-order learning used for this stability result is higher-order gradient
play, which generalizes gradient ascent. Next, we show that for any such dynamics, there exists
a game with a unique mixed-strategy NE that is unstable under given dynamics. The tool utilized
is a classical analysis method in feedback control systems known as root-locus (e.g., (30), (31)),
which characterizes the locations of the eigenvalues of a matrix as a function of a scalar parameter.
A combination of the above results suggests the lack of universality on the side of both learning
dynamics and games. While any mixed-strategy NE can be stabilized by suitable higher-order gradient
dynamics, any such dynamics can be destabilized by a suitable anti-coordination game. Finally, we
examine the implications of higher-order dynamics being able to converge to the mixed-strategy NE
of a 2 × 2 coordination game, which has two pure NE and one mixed-strategy NE. We show that
such higher-order gradient play dynamics must have an inherent internal instability, which makes
them unsuitable, if not irrational, as a model of learning.

2 Payoff-based learning dynamics

2.1 Finite polymatrix games

We consider finite (normal form) games over mixed-strategies. There are n players. The strategy space
of player i ∈ {1, 2, ..., n} is the probability simplex, ∆(ki), where ki is a positive integer and ∆(·) is
defined as ∆(κ) =

{
s ∈ Rκ

∣∣∣ sj ≥ 0, j = 1, ..., κ, &
∑κ

j=1 sj = 1
}
. The utility function of player

i is a function ui : ∆(k1)× ...×∆(kn) → R. We sometimes will write ui(x1, ..., xn) = ui(xi, x−i),
for xi ∈ ∆(ki) and x−i ∈ X−i, where X−i = ∆(k1)× ...×∆(ki−1)×∆(ki+1)× ...×∆(kn).

For convenience, we will restrict our discussion to pairwise interactions, also called polymatrix games.
That is, the utility function of player i is defined as

ui(x1, ..., xn) = xT
i

n∑
j=1
j ̸=i

Mijxj , (1)

for matrices, Mij , j = 1, . . . , n, j ̸= i. We can write the utility function of player i as the inner
product ui(x1, ..., xn) = xT

i Pi(x−i) where Pi(x−i) =
∑n

j=1
j ̸=i

Mijxj ∈ Rki . Accordingly, each

element of Pi(x−i) can be viewed as a payoff that is associated with a component of player i’s
strategy vector, xi.
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Figure 1: Payoff-based learning dynamics (LDi) in feedback with game matrices (Mij).

A Nash equilibrium (NE) is a tuple (x∗
1, ..., x

∗
n) ∈ X such that for all i = 1, ..., n,

ui(x
∗
i , x

∗
−i) ≥ ui(xi, x

∗
−i), ∀xi ∈ ∆(ki).

A completely mixed-strategy NE is such that each x∗
i is in the interior of the simplex.

2.2 Fixed order learning

Our model of learning is a dynamical system that relates trajectories of a payoff vector, pi(t), to
trajectories of the strategy, xi(t). In particular, learning dynamics for player i are specified by a
function fi : ∆(ki)× Rki → Rki according to

ẋi(t) = fi(xi(t), pi(t)),

where xi(t) ∈ ∆(ki) and pi : R+ → Rki . We assume implicitly that fi and pi are such that there
exists a unique solution whenever xi(0) ∈ ∆(ki). We further assume that the dynamics satisfy the
invariance property that

xi(0) ∈ ∆(ki) ⇒ xi(t) ∈ ∆(ki), ∀t ≥ 0. (2)

Note that we define learning dynamics without specifying the source of the payoff vector, pi(t),
hence the terminology “payoff-based”. Only once a player is coupled with other players in a game
through their own (possibly heterogeneous) learning dynamics is when we make the connection
pi(t) = Pi(x−i(t)).

This formulation is illustrated in Figure 1, where the LDi denote payoff-based learning dynamics that
are interconnected through the game matrices, Mij . Note that such learning dynamics are uncoupled
by construction since each player can only access its own payoff vector. There is no dependence on
the payoff stream of other players. Indeed, there is no dependence on the parameters of one’s own
utility function.

2.3 Higher-order learning

The learning dynamics described in the previous section have a fixed order associated with the
dimension of the strategy space. Higher-order learning dynamics allow for the introduction of
auxiliary states as follows. For any fixed order learning dynamics, fi, we can define a higher-order
version as

ẋi(t) = fi(xi(t), pi(t) + ϕi(pi(t), zi(t))) (3a)
żi(t) = gi(pi(t), zi(t)). (3b)

As before, xi(t) ∈ ∆(ki) and pi : R+ → Rki . The new variable zi ∈ Rℓi represents ℓi dimensional
auxiliary states that evolve according to the pi-dependent dynamics, gi. These enter into the original
fixed order dynamics through ϕi. Accordingly, we can view pi(t) + ϕi(pi(t), zi(t)) as a modified
payoff stream that captures path dependencies in pi, and the original learning dynamics react to this
modified payoff stream.

As with the fixed order counterparts, there is no specification of game parameters in higher-order
learning dynamics. In order to enforce that the auxiliary states have no effect on the equilibria of
games, we make the following assumption.
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Assumption 2.1. If p∗i and z∗i are an equilibrium of the higher-order dynamics, i.e.,

0 = gi(p
∗
i , z

∗
i )

then
ϕi(p

∗
i , z

∗
i ) = 0.

This assumption assures that the auxiliary states represent purely transient phenomena that disappear
at equilibrium.
Example 1 (Anticipatory higher-order dynamics). A special case of higher-order dynamics is

żi = λ(pi − zi)

ϕi = γλ(pi − zi),

where the the higher-order modification is the linear system (see Appendix A.1)(
−λI λI
−γλI γλI

)
,

and γ, λ ∈ R+. Intuition behind the connection to anticipation can be seen by viewing λ(pi − zi)
as an approximation of ṗi, and so pi(t) + γλ(pi(t) − zi(t)) ≈ pi(t + γ). Similar higher-order
dynamics were used in reference (20) for smooth fictitious play to overcome the lack of convergence
of uncoupled dynamics to NE in the anti-coordination game analyzed by (17). See also reference (32)
for an analysis with replicator dynamics.

Anticipatory higher-order dynamics can also be linked to optimistic optimization algorithms (e.g.,
(22)). An Euler discretization of step size, h, results in

z+i = zi + hλ(pi − zi),

with a modified payoff stream of

pi + ϕi = pi + γλ(pi − zi).

Setting h = 1/λ and γ = 1/λ results in

pi + ϕi = pi + (pi − zi)

= pi + (pi − p−i ),

where the superscripts ‘+’ and ‘−’ indicate the next and previous discrete time steps, respectively.
There are also optimistic variants of discrete-time no-regret learning algorithms (33; 34; 35) that
guarantee faster convergence rates to coarse correlated equilibria compared to the standard versions.

3 Gradient play

The main results of the paper will examine the behavior of gradient play and higher-order gradient
play, which are the focus of this section.

3.1 Fixed order gradient play

In gradient play dynamics, a player adjusts its strategy in the direction of the payoff stream, i.e.,

ẋi = Π∆[xi + pi]− xi, (4)

where Π∆[x] : Rn → ∆(n) is the projection of x into the simplex, i.e., Π∆(x) =
argmins∈∆(n) ∥x− s∥ .
The terminology “gradient play” stems from the gradient of an agent’s utility function in (1) with
respect to its own strategy, xi, namely ∇xi

ui(xi, x−i) = Pi(x−i) =
∑n

j=1
j ̸=i

Mijxj . As was done

in the description of payoff-based learning, we replace Pi(x−i) with the payoff stream pi without
regard to the game matrices Mij .

Our primary concern will be studying these dynamics near a completely mixed-strategy NE. To this
end, let x∗ = (x∗

1, . . . , x
∗
n) be an isolated completely mixed-strategy NE. The strategy vector xi
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Figure 2: Cascade representation of linear higher-order dynamics for gradient play.

evolves on the simplex, which is a subset of dimension ki − 1. Hence, the local behavior of the
dynamics around x∗

i is characterized by evolution on a lower-dimensional subset. Thus, we can write

xi = x∗
i +Niwi (5)

where
1TNi = 0 & NT

i Ni = I. (6)

Therefore, wi ∈ R(ki−1) represents deviations from x∗
i and satisfies wi(t) = NT

i (xi(t)− x∗
i ). When

all players utilize fixed order gradient play, the collective dynamics near a completely mixed-strategy
NE take the form

ẇ = Mw, (7)

where

M = NT


0 M12 M13 . . . M1n

M21 0 M23 . . . M2n

M31 M32 0 ... M3n

...
...

...
. . .

...
Mn1 Mn2 Mn3 . . . 0

N , N =

N1

. . .
Nn

 . (8)

Given the zero trace of M, standard gradient play is always unstable at a completely mixed-strategy
NE (see Appendix A.3 for stability conditions). Also, for this equilibrium to be isolated, M must be
non-singular. Otherwise, M has a non-trivial null space leading to an equilibrium subspace.

3.2 Higher-order gradient play

We will be interested in a specific form of higher-order gradient play that uses the following linear
structure of higher-order dynamics:

ẋi = −xi +Π∆

[
xi + pi +Ni(Giξi +Hi(N

T
i pi − vi))

]
ξ̇i = Eiξi + Fi(N

T
i pi − vi)

v̇i = NT
i pi − vi,

for some matrices Ei, Fi, Gi and Hi. Here, the auxiliary states are zi = (vi, ξi), which enter into the
dynamics through ϕi(pi, ξi, vi) = Ni(Giξi +Hi(N

T
i pi − vi)), where Ni is defined as in (6).

The motivation behind this structure, illustrated in Figure 2, assures the enforcement of Assump-
tion 2.1. The payoff stream is first preprocessed by a specific linear system to produce yi and then by
a general linear system Ki to produce ui. The matrices (Ei, Fi, Gi, Hi) create the dynamical system

Ki ∼
(

Ei Fi

Gi Hi

)
(9)

that maps yi = NT
i pi − vi to ui = Giξi +Hiyi via ξ̇i = Eiξi + Fiyi. The preprocessing system

has the property (see “washout filters” in Appendix A.2) that if pi(t) converges to a constant, then
yi(t) converges to zero. Accordingly, when Ei is non-singular, the preprocessing system guarantees
Nash stationarity, i.e., if

lim
t→∞

(xi(t), ξi(t), vi(t)) = (x∗
i , ξ

∗
i , v

∗
i ) ∀i

then x∗ = (x∗
1, . . . , x

∗
n) is a NE. To conclude, the linear system Ki is the central entity that performs

the payoff modification, and the preprocessing system ensures compliance with Assumption 2.1.
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3.3 Local stability analysis

As before, we can analyze the behavior near a completely mixed-strategy NE x∗ through the variable
wi defined as in (5). Using the fact that NT

i

∑
j ̸=i Mijx

∗
j = 0, we can write the local dynamics of a

player as

ẇi = NT
i

∑
j ̸=i

MijNjwj +Giξi +Hi

(
NT

i

∑
j ̸=i

MijNjwj − vi

)
ξ̇i = Eiξi + Fi

(
NT

i

∑
j ̸=i

MijNjwj − vi

)
v̇i = NT

i

∑
j ̸=i

MijNjwj − vi.

The collective dynamics near a mixed-strategy NE can be written asẇ

ξ̇
v̇

 =

(
(I +H)M G −H

FM E −F
M 0 −I

)(
w
ξ
v

)
, (10)

where E,F ,G, and H are block diagonal matrcies with appropriate dimensions and M is defined in
(8). Local stability of a completely mixed NE is determined by whether the above collective dynamics
are stable, i.e., the dynamics matrix in (10) is a stability matrix.

4 Uncoupled dynamics that lead to mixed-strategy NE

4.1 Decentralized control formulation

The stability of a mixed-strategy equilibrium is tied to the existence of K1, K2, ..., Kn so that the
linear system in (10) is stable. When the Ki have yet to be determined, we can rewrite (10) as(

ẇ
v̇

)
=

(
M 0
M −I

)(
w
v

)
+

(
I
0

)
u, (11a)

y = (M −I)

(
w
v

)
, (11b)

where u =

u1

...
un

 , y =

y1
...
yn

 , and the yi and ui are to be related through Ki.

4.2 Decentralized stabilization

Let

P ∼
(

A B
C 0

)
with

A =

(
M 0
M −I

)
, B =

(
I
0

)
, C = (M −I) . (12)

We first establish that P can be stabilized by verifying the conditions for stabilizability and detectabil-
ity (see Appendix A.3). The assumption that M is non-singular stems from our interest in isolated
NE.
Proposition 4.1. For M non-singular, the pair (A,B) is stabilizable, and the pair (A, C) is de-
tectable.

While Proposition 4.1 establishes that P can be stabilized, that property alone is inadequate for our
purposes. In particular, for the learning dynamics to be uncoupled, we seek to establish decentralized
stabilization (see Appendix A.4) according to the partition(

ẇ
v̇

)
= A

(
w
v

)
+

n∑
i=1

Biui, yi = Ci
(
w
v

)
, (13)
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where

A =

(
M 0
M −I

)
, Bi =

(
Ei
0

)
, Ci =

(
Mi• −ET

i

)
. (14)

Here, Mi• denotes the ith block row of M, i.e.,

Mi• =
(
NT

i Mi1N1 ... NT
i Mi(i−1)Ni−1 0 NT

i Mi(i+1)Ni+1 ... NT
i MinNn

)
and

ET
i =

(
0 ... 0 I︸︷︷︸

ith position

0 ... 0
)
,

where I has a dimension (suppressed in the notation) of ki − 1.
Theorem 4.1. For any isolated (i.e., M is non-singular) completely mixed-strategy NE, there exist
uncoupled higher-order gradient play dynamics such that (10) is stable.

The proof of Theorem 4.1 relies on the conditions of Theorem A.1 and is presented in Appendix B.1.

Theorem 4.1 should be viewed as a statement regarding whether uncoupled learning in itself is
a barrier to learning dynamics leading to NE. The theorem makes no claim that the higher-order
learning dynamics are interpretable (e.g., as in anticipatory learning). Nor does the theorem offer
guidance on how agents may construct the matrices of higher-order learning that lead to convergence.
In the next section, we will see that, while the structure is universal, any specific set of parameters is
not universal in that one can construct a game for which they do not lead to NE. Despite the lack of
universality, there is an inherent robustness that is a consequence of stability. The following follows
from standard arguments on linear systems.
Proposition 4.2. Let the Ki and Mij , i = 1, ..., n and j = 1, ..., n, be such that (10) is stable.
Then there exists a δ > 0 such that (10) is stable with the Mij replaced by any M̃ij as long as∥∥∥M̃ij −Mij

∥∥∥ < δ for all i = 1, ..., n and j = 1, ..., n.

In words, this proposition guarantees that learning dynamics that lead to NE for a specific game
continue to do so for nearby games.

4.3 Stabilization through a single higher-order player

The previous section’s analysis allowed all players to utilize higher-order learning. In some cases,
it may not be necessary for all players to utilize higher-order learning. In this section, we present
sufficient conditions under which a single player using higher-order gradient play with the remainder
utilizing fixed order gradient play can still lead to NE.
Assumption 4.1.

A. Let (w, λ) be a left eigenvalue pair of M, i.e.,

wTM = λwT,

with Re[λ] ≥ 0 and wT =
(
wT

1 ... wT
n

)
partitioned consistently with (8). Then wi ̸= 0

for all i.

B. Let (v, λ) be a right eigenvalue pair of M, i.e.,

Mv = λv,

with Re[λ] ≥ 0 and v =
(
vT1 ... vTn

)T
partitioned consistently with (8). Then vi ̸= 0

for all i.

Recall the definitions of A, Bi, and Ci from (14).
Proposition 4.3. Let M be non-singular and satisfy Assumption 4.1. Then for any i, the pair (A,Bi)
is stabilizable and the pair (A, Ci) is detectable.

As a consequence of Proposition 4.3, it is possible for a completely mixed-strategy NE to be stabilized
where a single player utilizes higher-order gradient play with the remaining players utilizing fixed
order gradient play.
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5 Non-convergence to NE in higher-order gradient play

We now show that linear higher-order gradient play dynamics need not lead to NE. Given any such
dynamics, we construct a game with a unique NE that is unstable under given dynamics.

5.1 The Jordan anti-coordination game

The Jordan anti-coordination game, introduced in (36), was used in (17) to prove that fixed order
uncoupled learning dynamics do not lead to NE. The game consists of three players with

u1(x1, x2) = xT
1

(
0 1
1 0

)
x2, u2(x2, x3) = xT

2

(
0 1
1 0

)
x3, u3(x3, x1) = xT

3

(
0 1
1 0

)
x1,

and a unique mixed-strategy NE at x∗
1 = x∗

2 = x∗
3 =

(
1
2

1
2

)T
. We will let Γ(µ) denote the

Jordan anti-coordination game but with the utility function of player 1 modified to u1(x1, x2) =
xT
1 (µM12)x2, where µ ∈ R+. Since scaling payoffs does not change the nature of the game, Γ(µ)

has the same unique NE as Γ(1).

5.2 Destabilization using rescaled anti-coordination

Suppose all three players use variants of linear higher-order gradient play in Γ(µ). As before, we
denote the higher-order dynamics of player i as the linear dynamical system (9). To study the local
behavior of the dynamics around the unique mixed-strategy NE of Γ(µ), we define w1(t), w2(t), and
w3(t) as in (5). Then, we analyze the local stability of the mixed-strategy NE through (10).

The following lemma will be essential in proving our main result.
Lemma 5.1. Let A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. If CB = CAB = 0, and CAmB ̸= 0 for
some m ≥ 2. Then for sufficiently large µ > 0, A− µBC is not a stability matrix.

The proof of Lemma 5.1 is presented in Appendix B.2 and it uses root-locus arguments (see references
(31; 30)).
Proposition 5.1. If linear higher-order gradient play dynamics are locally exponentially stable at
the unique NE of Γ(1), then there exists µ > 0 such that the unique NE of Γ(µ) is unstable under
such dynamics.

The proof of Proposition 5.1 is presented in Appendix B.3. The main idea of the proof is to write the
local dynamics matrix in the form A− µBC, and then use Lemma 5.1. We also provide a similar
proof for sufficiently small µ in Appendix C.

The results might be puzzling because, for all µ > 0, all games Γ(µ) are strategically equivalent.
Convergence guarantees for learning dynamics are usually established amongst classes of games.
Thus, it is generally expected that dynamics will behave similarly for all games in a particular class.
In this case, we design linear learning dynamics that are affected by simple rescaling of the payoff
matrices.

6 Strong stabilization of mixed-strategy NE

Results from Section 4 imply that the mixed-strategy NE in a two-player 2× 2 (identical-interest)
coordination game can be stabilized. Here, we argue why dynamics that stabilize this mixed-strategy
equilibrium are not reasonable. Specifically, we show that such dynamics must be inherently unstable
as an open system, i.e., as dynamics that respond to an exogenous payoff stream, and this instability
is problematic with respect to such payoffs.

First, we inspect which type of mixed-strategy NE requires unstable learning dynamics for stabiliza-
tion. For this purpose, consider the system in (12) for n = k1 = k2 = 2:

A =

 0 m12 0 0
m21 0 0 0
0 m12 −1 0

m21 0 0 −1

 B =

1 0
0 1
0 0
0 0

 C =

(
0 m12 −1 0

m21 0 0 −1

)
. (15)
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Figure 3: Single-player stabilization of the Jordan game.

Around an isolated mixed-strategy NE, the matrix A above should be non-singular. Accordingly,
it must be that m12 ̸= 0 and m21 ̸= 0. The ability to stabilize a system via another stable system
is referred to as strong stabilization (see Appendix A.3). The next proposition gives a sufficient
condition under which an isolated mixed-strategy NE is not strongly stabilizable.

Proposition 6.1. If m12m21 > 0, then (15) is not strongly stabilizable.

The proof of Proposition 6.1 uses the “parity interlacing principle” (see reference (37)) and is
presented in Appendix B.4.

The nature of the game can be inferred from the scalars m12 and m21. For example in zero-sum
games we have M12 = −MT

21, which gives

m12 = NTM12N = NTMT
12N = −NTM21N = −m21.

In coordination games, we have M12 = M21, which gives

m12 = NTM12N = NTM21N = m21.

Therefore, the mixed-strategy NE in a coordination game is not strongly stabilizable.

Now let us examine the implications of inherently unstable learning dynamics. A reasonable
expectation of learning dynamics is that in the case of a constant payoff vector, i.e., pi(t) ≡ p∗, we
expect

lim
t→∞

xi(t) = β(p∗),

where β(p∗) is a best response to p∗, i.e.,

β(p∗) = argmax
xi∈∆(ki)

xT
i p

∗.

For any higher-order gradient play dynamics, if Ei is a stability matrix, then whenever pi(t) ≡ p∗ for
some constant vector p∗, one can show ξi(t) → 0, which implies that xi(t) is generated by standard
gradient play dynamics in the limit. However, if pi(t) ≡ p∗ and the dynamics are inherently unstable,
the term NiGiξi(t) need not vanish. Indeed, one can construct p∗ such that xi(t) does not converge
to the best response of p∗ (see the example in Section 7.2). The inability of learning dynamics to
converge to the best response of a constant payoff vector does not reflect “natural” behavior.

7 Numerical experiments

7.1 Jordan anti-coordination game: Stabilization through a single player

The payoff matrices of the Jordan anti-coordination game, introduced in Section 5.1, satisfy As-
sumption 4.1. Therefore, we can stabilize its mixed-strategy NE, allowing only one player to use
higher-order learning while others continue to use standard gradient play. For this purpose, let ξ1 ∈ R
and choose H1 = γλ, G1 = −γλ, F1 = λ and E1 = −λ, where λ = 50 and γ = 5. Such dynamics
resemble anticipatory gradient play but on the filtered low-dimensional payoff. Figure 3 illustrates
convergence of the players’ strategies to NE.

9



(a) Stabilization of the mixed-
strategy NE.

(b) Inherently unstable dynamics
do not converge to best response
of p∗ =

(
0 1

)T.

Figure 4: Stabilizing the mixed-strategy equilibrium of a coordination game and its consequences.

7.2 Stabilization of mixed-strategy NE in coordination games

Consider the (identical interest) coordination game:

u1(x1, x2) = xT
1

(
1 0
0 1

)
x2, u2(x2, x1) = xT

2

(
1 0
0 1

)
x1.

The game has two pure strategy NE and one completely mixed-strategy NE at x∗ =
(
1
2

1
2

)T
.

Consider the following set of parameters for higher-order gradient play: E1 = λ, F1 = −2λ,
G1 = γλ, H1 = −γλ, E2 = −λ2, F2 = λ2, G2 = −γ2λ2, and H2 = γ2λ2. The numerical values
are λ = 0.5, γ = 20, λ2 = 50, and γ2 = 1. Figure 4a illustrates convergence to the mixed-strategy
NE of this coordination game. Suppose we break the feedback loop and use p∗ = (0 1)

T as the
input to the first player dynamics. The response to such input is illustrated in Figure 4b. We see
that E1 > 0 is a scalar, and so ξ1 grows without bound. The strategy x1, which is projected to the
simplex, converges to (1 0)

T, which is not a best response to the input p∗.

8 Concluding remarks

To recap, we studied the role of higher-order gradient play with linear higher-order dynamics. We
showed that for any game with an isolated completely mixed-strategy NE, there exist higher-order
gradient play dynamics that lead to that NE, both for the original game and for nearby games. On the
other hand, we showed that for any higher-order gradient play dynamics, the dynamics do not lead to
NE for a suitably rescaled anti-coordination game. We also provided an argument against dynamics
that lead to the mixed-strategy NE in a coordination game, showing they are not reasonable.

Regarding the higher-order gradient play dynamics that lead to NE, the interpretation of the results
herein should not be that these dynamics are either a descriptive model of learning or a prescriptive
recommendation for computation. Rather, the results are a contribution towards delineating what
is possible or impossible in multi-agent learning. In that sense, they may be seen as a complement
to the contributions in (17). Namely, dynamics being uncoupled is not a barrier to converging to
mixed-strategy NE when allowing higher-order learning.

More generally, the present results open new questions related to the discussion in (14) on what
constitutes “natural” learning dynamics. In the case of anticipatory higher-order learning, there is a
clear interpretation of the effect of higher-order terms. However, it is unclear how to interpret general
higher-order dynamics. Furthermore, the results herein regarding inherent instability of higher-order
dynamics that converge to the mixed-strategy NE of a coordination game suggests that higher-order
learning can be “unnatural”. Possible restrictions on dynamics, in addition to being uncoupled, could
include having no asymptotic regret; maintaining qualitative behavior in the face of strategically
equivalent games (cf., Section 5.2); or having an interpretable relationship between payoff streams
and strategic evolutions such as “passivity”, which generalizes and extends the notion of contractive
games to contractive learning dynamics (e.g., (38; 39; 40)).

In terms of limitations, the current paper only addresses the payoff vector setup and does not address
the setup where players only have access to instantaneous scalar payoffs. Furthermore, results in
Sections 5 and 6 are limited to certain setups and require further generalization.
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Appendices

In Appendix A, we review some relevant topics from linear systems theory. In Appendix B, we
provide proofs of theorems, lemmas, and propositions that were presented in the paper. In Appendix C,
we provide an alternative destabilization proof for sufficiently small gain µ.

A Background on linear systems

Here, we review some standard background material for linear dynamics systems. There are several
references (e.g., (41; 42)) with more detailed exposition.

A.1 Notation

The partitioned matrix (
A B
C D

)
represents a general linear dynamical system

ẋ(t) = Ax(t) +Bu(t), x(0) = xo (16a)
y(t) = Cx(t) +Du(t) (16b)

whose solution is

y(t) = CeAtxo +

∫ t

0

CeA(t−τ)Bu(τ) dτ +Du(t).

The variables x ∈ Rn, u ∈ Rm, and y ∈ Rp here are used temporarily as generic placeholders (and

will play a different role in the ensuing discussion). The notation P ∼
(

A B
C D

)
assigns the label

P to the dynamics (16).

A.2 Washout filters

In the special case of

P ∼
(

−I I
−I I

)
where

ẋ(t) = −x(t) + u(t), x(0) = xo

y(t) = −x(t) + u(t)

and x, u, y ∈ Rn, it is straightforward to show that if

lim
t→∞

u(t) = u∗,

then
lim
t→∞

y(t) = 0.

Linear systems with this property are known as “washout filters”. For an extended discussion, see
reference (43).

A.3 Stability and stabilization

A matrix, M , is a stability matrix if, for every eigenvalue, λ, of M , Re[λ] < 0.

The linear system, P ∼
(

A B
C D

)
is stable if A is a stability matrix.
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The linear system K ∼
(

E F
G H

)
stabilizes P if the combined linear dynamics

ẋ = Ax+Bu

ξ̇ = Eξ + Fy

u = Gξ +Hy

y = Cx

or (
ẋ

ξ̇

)
=

(
A+BHC BG

FC E

)
︸ ︷︷ ︸

M

(
x
ξ

)

are stable, i.e., M is a stability matrix.

The following conditions are necessary and sufficient for the existence of such a K. For all complex
λ with Re[λ] ≥ 0:

• The pair (A,B) is stabilizable: (A− λI B) = n has full row rank.

• The pair (A,C) is detectable:
(

C
A− λI

)
= n has full column rank.

The linear system K strongly stabilizes P if (i) K stabilizes P and (ii) E is a stability matrix.
Necessary and sufficient conditions for the existence of a strongly stabilizing K are presented in
reference (37).

A.4 Decentralized stabilization

Let P ∼
(

A B
C 0

)
, with A having dimensions n× n, have the structure

B = (B1 ... Bk) & C =

C1

...
Ck


for some integer k. Suppose there exist linear systems

K1 ∼
(

E1 F1

G1 H1

)
, ...,Kk ∼

(
Ek Fk

Gk Hk

)
such that the combined linear dynamics

ẋ = Ax+ (B1 ... Bk)

u1

...
uk


ξ̇1 = E1ξ1 + F1y1

...

ξ̇k = Ekξk + Fkyk
u1 = G1ξ1 +H1y1

...
uk = Gkξk +Hkyk
y1 = C1x

...
yk = Ckx
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are stable. Then the (K1, ...,Kk) achieve decentralized stabilization of P . The previous conditions of
(A,B) stabilizable and (A,C) detectable are necessary, but not sufficient, conditions for decentralized
stabilization.

The following theorem from reference (29) provides necessary and sufficient conditions for decen-
tralized stabilization. First, for any partition Q ∪R = {1, 2, ..., k} define B|Q as the matrix formed
by extracting the block columns of B = (B1 ... Bk) with indices in Q, i.e.,

B|Q =
(
Bq1 ... Bq|Q|

)
with

{
q1, ..., q|Q|

}
= Q. Likewise, define C|R as the matrix formed from the block rows of

C =

C1

...
Ck

, i.e.,

C|R =

 Cr1
...

Cr|R|


with

{
r1, ..., r|R|

}
= R.

Theorem A.1 ((29), Theorem 3). There exist (K1, ...,Kk) that achieve decentralized stabilization of
P if and only if

rank

(
A− λI B|Q
C|R 0

)
= n

for all complex λ with Re[λ] ≥ 0 and all partitions, Q ∪R = {1, 2, ..., k}.

The above rank condition must hold for all partitions Q ∪ R = {1, ..., k}. If R = ∅, one recovers
the rank condition for (centralized) stabilizability. Likewise, Q = ∅ results in the rank condition for
detectability.

B Proofs

B.1 Proof of Theorem 4.1

We will examine the conditions of Theorem A.1 on the system (13)–(14). We need to inspect the
rank of (

A− λI B|Q
C|R 0

)
for all partitions Q ∪R = {1, 2, ..., n}. Note that the partitions of either Q = ∅ or R = ∅ are already
covered by Proposition 4.1.

First, note that(
A− λI B|Q
C|R 0

)
=

M− λI 0
(
Eq1 ... Eq|Q|

)
M −(λ+ 1)I 0
M|R −I|R 0

 .

Let M be an ℓ× ℓ matrix. Then

ℓ =

n∑
i=1

(ki − 1).

We need the rank of the above matrix to be 2ℓ for all λ with Re[λ] ≥ 0. Because of the presence of
A − λI , loss of rank below 2ℓ is only possible at eigenvalues of A. Since we are only concerned
with Re[λ] ≥ 0, we focus on eigenvalues of M (which excludes λ = 0 by hypothesis, since M is
non-singular).

Without affecting the rank, we can multiply the bottom block row by −(λ+ 1) and add the middle
block rows corresponding R to the rescaled bottom block row to get

rank

(
A− λI B|Q
C|R 0

)
= rank

M− λI 0
(
Eq1 ... Eq|Q|

)
M −(λ+ 1)I 0

−λM|R 0 0

 .
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Switching the top and bottom block rows results in−λM|R 0 0
M −(λ+ 1)I 0

M− λI 0
(
Eq1 ... Eq|Q|

)
 .

We can now exploit the block triangular structure. The bottom block row provides a row rank of∑
q∈Q

(kq − 1),

The middle block row provides a row rank of ℓ. Finally, the top block row provides a row rank of∑
r∈R

(kr − 1).

The last assertion is because M is non-singular, by hypothesis, and therefore it has linearly indepen-
dent rows. Since Q ∪R = {1, ...n}, we have the desired row rank of 2ℓ.

B.2 Proof of Lemma 5.1

Define
H(s) = C(sI −A)−1B.

Since H(s) is a rational function, we can write it as

H(s) =
p(s)

q(s)
,

for polynomials p and q that have no common roots. The assumption that CAmB ̸= 0 for some m
assures that H(s) is not identically equal to zero.

Suppose that for some µ and s′ that is not an eigenvalue of A,

q(s′) + µp(s′) = 0.

Then s′ is an eigenvalue of A− µBC, since

det [s′I − (A− µBC)] = det [s′I −A]det
[
I + µ(s′I −A)−1BC

]
= det [s′I −A] (1 + µC(s′I −A)−1B)

= det [s′I −A] (q(s′) + µp(s′))
1

q(s′)
.

Note that the roots of q(s) are a subset of the roots of det [sI −A]. For sufficiently large |s|, we can
rewrite H(s) as

H(s) =
1

s
C(I − 1

s
A)−1B

=
1

s
C
( ∞∑

k=0

1

sk
Ak
)
B.

By assumption, CB = 0 and CAB = 0, which implies that the first two terms of the series equal
zero. Accordingly,

lim sup
|s|→∞

|s|3|H(s)| < ∞.

The main implication here is that the degree of q(s) is at least 3 more than the degree of p(s).
Root-locus arguments in references (30) and (31) (asymptote rule) imply that

q(s) + µp(s)

has roots with positive real parts for large µ.
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B.3 Proof of Proposition 5.1

The local dynamics matrix in the game Γ(µ) can be written in the form A− µBC with

A =



0 0 0 G1 −H1 0 0 0 0
−(1 +H3) 0 0 0 0 G3 −H3 0 0

0 −(1 +H2) 0 0 0 0 0 G2 −H2

0 0 0 E1 −F1 0 0 0 0
0 0 0 0 −1 0 0 0 0

−F3 0 0 0 0 E3 −F3 0 0
−1 0 0 0 0 0 −1 0 0
0 −F2 0 0 0 0 0 E2 −F2

0 −1 0 0 0 0 0 0 −1


B =



H1 + 1
0
0
F1

1
0
0
0
0


(17a)

C = (0 0 1 0 0 0 0 0 0) , (17b)

where we reordered the variables according to (w1, w3, w2, ξ1, v1, ξ3, v3, ξ2, v2) for convenience.
Following the same arguments in proving Lemma 5.1, if CAmB = 0 for all m, then eigenvalues of
A−BC are the same as the eigenvalues of A. Writing A in block matrix form yields

A =

(
A11 A12

A21 A22

)
,

where A11 is 3 × 3. Notice that A11 is strictly lower triangular, and A21 is strictly block lower
triangular. Now examine

det [sI −A] = det [sI −A11]det
[
(sI −A22)−A21(sI −A11)

−1A12

]
.

One can show that A21(sI − A11)
−1A12 is strictly block lower triangular. Therefore, we have

det [sI −A] = det [sI −A11]det [sI −A22] . Thus, A has eigenvalues at 0 with multiplicity 3 or
more because of A11. By exponential stability, there exists m ≥ 2 such that CAmB ̸= 0. Since
CB = 0, and CAB = 0, we can now apply Lemma 5.1.

B.4 Proof of Proposition 6.1

Reference (37) presents a necessary and sufficient condition for strong stabilizability. First, we
compute

T (s) = C(sI −A)−1B =
s

s+ 1
M(sI −M)−1.

There is blocking zero (i.e., T (s) = 0) at s = 0 and |s| → ∞. According to reference (37), a
necessary and sufficient condition for strong stabilizability is that there should be an even number of
eigenvalues in between such pairs of real zeros. This property is known as the “parity interlacing
principle”. The eigenvalues of A are −1,−1,±√

m12m21, and so there is a single (and hence, an
odd number) of real eigenvalue in between two real zeros of T (s).

C Destabilization with a sufficiently small µ

The proof in Section 5 can be modified to consider non-convergence over bounded games, e.g.,

∥Mij∥α < 1 ∀i, j.
Consider first the following lemma.
Lemma C.1. Let A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. Assume that A has eigenvalues at 0 with
multiplicity 3 or more. Then for sufficiently small µ > 0, A− µBC is not a stability matrix.

Proof. As in the proof of Lemma 5.1, we have

det [sI − (A− µBC)] = det [sI −A] (q(s) + µp(s))
1

q(s)
.

Recall that the roots of q(s) are a subset of the roots of det [sI −A]. If q(s) does not have at least 3
roots at zero, then A− µBC is not a stability matrix. Otherwise, root-locus arguments in references
(30), and (31) (angle of departure rule) imply there exist roots of q(s)+µp(s) with positive real parts
for small µ. ■
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Using the structure of the local dynamics and the fact that A in (17a) has eigenvalues at 0 with
multiplicity 3 or more, one can directly use Lemma C.1 to show the existence of a sufficiently small
offending µ.
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