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Abstract—This paper addresses the approximation of real and
complex Grassmannian frames, namely sets of unit-norm vectors
with minimum mutual coherence. We recast this problem as
a collection of feasibility problems aiming to design frames
with given target coherence, that evolves during the execution
of the algorithm. The feasibility problems are solved by an
accelerated alternating projection algorithm, leveraging a Gram
matrix representation of the frames. Numerical experiments
indicate that our proposed Targeted coherence with Accelerated
Alternating Projection (TAAP) algorithm outperforms state-of-
the-art methods regarding the mutual coherence vs computa-
tional cost criterion, exhibiting the largest improvement over
existing methods when the frame dimension is comparable to
the dimension of the ambient space.

Index Terms—Mutual Coherence, Grassmannian frame, line
packing, Gram matrix, Accelerated Alternating Projections

I. INTRODUCTION

The mutual coherence of a frame captures the largest
similarity between the frame’s elements. We represent a frame
of n elements in a field Fm (with F the set of real numbers
R or complex numbers C) by a matrix F ∈ Fm×n. We
focus on finite overcomplete unit frames, i.e., we assume that
2 ⩽ m < n < ∞ and ∥fi∥ = 1 for all 1 ⩽ i ⩽ n, where ∥ · ∥
is the Euclidean norm induced by the Euclidean inner product
⟨·, ·⟩ and fi the ith column of F . The mutual coherence of a
unit frame F ∈ Fm×n [1] is given by

µ : Fm×n → [0, 1] : F 7→ max
1⩽i ̸=j⩽n

|⟨fi, fj⟩| .

Grassmannian frames are minimizers of the mutual coher-
ence for a given dimensions-field triplet (m,n,F), i.e., solve
the Minimal Mutual Coherence (MMC) problem [2]:

µF
m,n = min

F∈Fm×n
µ(F ) s.t. ∥fi∥ = 1, 1 ⩽ i ⩽ n. (MMC)

MMC, also known as Grassmannian packing, line packing
or projective packing, has gained much attention in recent
years due to its large number of applications. For example, a
celebrated result in compressive sensing guarantees that sparse
signals can be exactly reconstructed when the sparsity level
does not exceed a threshold related to the mutual coherence
of the dictionary [3], [4]. Grassmannian frames also allow
building codes that are optimally robust to erasures in in-
formation and coding theory [1], [5] and provide appealing
measurements in quantum state tomography [6]–[8].

The study of Grassmannian frames has drawn much atten-
tion over the years. Several works derive uniform lower bounds

on the minimal mutual coherence for a given dimensions-
field triplet (m,n,F) and manage for some triplets to con-
struct frames matching these bounds; see [5], [9]–[11] for
an overview. A celebrated example is the set of equiangular
tight frames that attain the Welch bound [12], [13]. How-
ever, geometric, combinatorial and graph theoretic arguments
demonstrate that the optimal value µF

m,n strictly exceeds
known lower bounds for some specific triplets, see [14]–[16].

Alternatively, a wide variety of works address the (MMC)
problem numerically, for example by smoothing the objective
function [17]–[19], convexifying the problem [20]–[22], or
lifting constraints as penalty terms, turning it into an un-
constrained problem [23], [24]. In particular, the very recent
IDB method achieves state-of-the-art results for real frames
by combining a penalized unconstrained objective minimized
through gradient descent with a bisection-based coherence
targeting scheme [23]. Some works leverage Riemannian
Optimization to solve (MMC) on the Grassmannian manifold
(hence the name Grassmannian packing) [18], [25], while
other take inspiration from physical phenomena such as elec-
tric repulsion [26] or sphere collisions [2].

Another line of research proposed by Tropp et al. relies
on the reformulation of (MMC) in terms of Gram matrices,
and addresses it using Alternating Projections (AP) [27]–
[31]. While this representation may lead to a computational
overhead due to the increased number of variables, we show
here that it becomes very competitive when combined with an
acceleration technique and a well-chosen coherence targeting
scheme. Our proposed Targeted coherence with Accelerated
Alternating Projections (TAAP) method matches or outper-
forms existing methods for real and complex frames of various
dimensions in terms of achieved coherence.

II. METHOD

We rely here on the Gram matrix formulation of (MMC)
introduced by Tropp et al. [27]–[29]. Let G ∈ Fn×n be the
Gram matrix associated with the unit frame F ∈ Fm×n, i.e.,
Gij = ⟨fi, fj⟩ for all (i, j) such that 1 ⩽ i, j ⩽ n. Without
loss of generality, we assume that F = C so that

G = F ∗F, (1)

where F ∗ is the Hermitian conjugate of F . It is readily
checked that the Gram matrix G associated with a unit frame
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F ∈ Fm×n has unit diagonal and belongs to the set of positive-
semidefinite matrices of size n with rank at most m

S+m,n = {M ∈ Hn : M ≽ 0, rank(M) ⩽ m},

where Hn represents the set of n × n Hermitian matrices.
Conversely, for any G ∈ S+m,n with unit diagonal, a unit frame
F ∈ Fm×n satisfying (1) can be retrieved using the operator

F : S+m,n → Cm×n : G 7→
(
diag(λ1, · · · , λm)

1
2 0

)
V ∗,

where G = V diag(λ1, · · · , λm, 0, · · · , 0)V ∗ is an eigenvalue
decomposition with λ1 ⩾ · · · ⩾ λm ⩾ 0. Note that the mutual
coherence µ(F ) can be computed from the Gram matrix G by
the function

µ̃ : S+m,n → [0, 1] : G 7→ max
1⩽i ̸=j⩽n

|Gij |.

These observations are used in [27] to reformulate (MMC)
as an optimization problem over the set S+m,n:

µF
m,n = min

G∈S+m,n

µ̃(G) s.t. Gii = 1, 1 ⩽ i ⩽ n.

This minimax objective can be replaced by introducing a new
variable t ⩾ 0 such that |Gij | ⩽ t for all off-diagonal entries,
i.e., these entries belong to the complex unit disk of radius t.
These new constraints on G can be written jointly with the
unit diagonal constraint as G ∈ Cn(t), with

Cn(t) = {M ∈ Hn : Mii = 1, ∀i ; |Mij | ⩽ t, ∀i ̸= j}.

The (MMC) problem is thus equivalent to

µF
m,n = min

G∈Hn,t⩾0
t s.t. G ∈ S+m,n, G ∈ Cn(t). (GMMC)

This formulation calls for a bi-level optimization framework
where t is the smallest value for which the inner problem

Find G ∈ Hn s.t. G ∈ S+m,n ∩ Cn(t), (I-t)

is feasible. As t represents a mutual coherence, its search
interval can be reduced to [µF

m,n
, 1], where µF

m,n
is the

largest known lower bound on the mutual coherence for the
dimensions-field triplet (m,n,F).

Our Targeted coherence for Accelerated Alternating Pro-
jections (TAAP) algorithm is described in Algorithm 1. The
feasibility problem I-t is solved by Alternating Projections
(AP), similarly to [27]–[29], [32] . For k ⩾ 1, the AP iteration
reads

Gk = PS+m,n

(
PCn(t)(Gk−1)

)
, (2)

with PS+m,n
and PCn(t) orthogonal projections on S+m,n and

Cn(t) respectively, whose expressions are recalled in the two
next lemmas.

Lemma II.1 (Projection on S+m,n). Let M ∈ Hn

have an eigendecomposition M = V ΛV ∗, where Λ =
diag(λ1, · · · , λn), with λ1 ⩾ · · · ⩾ λn. Then,

PS+m,n
(M) = V diag ((λ1)+, · · · , (λm)+, 0, · · · , 0)V ∗

is an orthogonal projection of M on S+m,n, where x+ =
max{x, 0}. This projection is unique iff λm > λm+1.

Proof. This is an immediate consequence of the KKT condi-
tions; see the proof of [27, Proposition 2.3], omitting the trace
constraint

∑n
i=1 λi = n.

Lemma II.2 (Projection on Cn(t)). [27, Proposition 3.1] Let
M ∈ Hn and t ⩾ 0. The projection of M on Cn(t) is unique
and given by:

(
PCn(t)(M)

)
ij
=

{
1 if i = j,

min
{
1, t

|Mij |

}
Mij if i ̸= j.

Building on the analogy between AP and proximal gradient
descent (PGD) [33], we define a proximal reformulation of
(I-t), with IS the indicator function of a set S:

min
G∈Hn

1

2

∥∥G− PCn(t)(G)
∥∥2
F
+ IS+m,n

(G), (pI-t)

which we address using Accelerated Alternating Projections
(AAP), incorporating a momentum-based acceleration mech-
anism proposed by Beck and Teboulle [34], leading to the
update rules

ck =
1

2

√
4c2k−1 + 1 +

1

2
, (3)

Yk = Gk−1 +
ck−1 − 1

ck
(Gk−1 −Gk−2), (4)

Gk = PS+m,n

(
PCn(t)(Yk)

)
. (5)

Despite the nonconvexity of (pI-t) (it is readily checked that
the set S+m,n is nonconvex), we demonstrate in Section III
that this accelerated scheme leads to major computational
improvements in practice. The objective can also be shown
to satisfy central properties for the convergence of first-order
proximal methods [35]–[37]. On the one hand, it verifies the
Kurdyka-Łojasiewicz (KL) property since the sets S+m,n and Cn
are semi-algebraic [38]. On the other hand, the differentiable
part is provably convex and has 1-Lipschitz gradient [33].
Finally, Cn(t) and a subset of S+m,n are known to satisfy
conditions sufficient for the convergence of AP [32]. This
motivated our choice to resort on AP (and AAP) in this work,
though to our knowledge no existing convergence analysis
directly applies to our setting.

We then present our coherence targeting scheme to pro-
gressively update the parameter t in (GMMC). This scheme
exploits the lower bound µF

m,n
on the mutual coherence. We

write l the search interval length, i.e., the gap between the best
coherence found by the algorithm so far (written µbest) and the
current target coherence t. In case the feasibility problem (I-t)
is solved successfully, i.e., the AAP algorithm returns a Gram
matrix having mutual coherence (written µAAP) within a given
relative tolerance of the target t, l is increased by a factor
β > 1, so that the new target coherence becomes

t = max
{
µF
m,n

, µAAP − βl
}
, (6)



where the max operator ensures that the target remains larger
than µF

m,n
, and µbest is reduced to µAAP. In case of failure, the

interval l is shrunk to try more conservative target values:

t = max

{
µF
m,n

, µAAP −
l

β

}
. (7)

Failure of AAP means that no improvement in terms of
mutual coherence larger than εpl was made over the last
Np iterations. We will show in Section III that tuning Np,
a.k.a. the perseverance hyperparameter, allows to balance the
computational cost against the final coherence of the frame.

Let us finally mention that a post-processing step is required
to normalize the Gram matrix GAAP ∈ S+m,n to Gbest in line
22 of Algorithm 1. The following similarity transformation is
thus applied on GAAP, where Diag(G) denotes the matrix G
with off-diagonal entries put at zero:

N : S+m,n → S+m,n : G 7→ Diag(G)−
1
2GDiag(G)−

1
2 ,

which ensures that Gbest ∈ S+m,n by Sylvester’s law of inertia
and that Gbest has unit diagonal. The operation is equivalent to
normalizing the columns of the frame associated with GAAP.

Algorithm 1 TAAP for Grassmannian frame computation

Input: triplet (m,n,F), initial unit frame F0 ∈ Fm×n, hyper-
parameters β, Nbudg, τ , Np, εp, εs

Output: best unit frame Fbest ∈ Fm×n with coherence µbest
1: Ntot = 0
2: Gbest = F ∗

0 F0, µbest = µ(F0)
3: t = µF

m,n
, l = µbest − t

4: while not (l < τ or Ntot > Nbudg) do
5: */ Start Accelerated Alternating Projections (AAP) */
6: GAAP = Gbest, µAAP = µbest, kAAP = 0
7: c0 = 1, G−1 = GAAP, G0 = GAAP, k = 1
8: while not (µAAP − t < εsl or k − kAAP > Np) do
9: Compute ck, Yk, Gk by (3), (4), (5)

10: µk = µ̃(N (Gk))
11: if µAAP − µk > εpl then
12: GAAP = Gk, µAAP = µk, kAAP = k
13: end if
14: k = k + 1, Ntot = Ntot + 1
15: end while
16: */ End AAP */
17: if µAAP − t < εsl then
18: Compute t according to (6)
19: else if k − kAAP > Np then
20: Compute t according to (7)
21: end if
22: Gbest = N (GAAP), µbest = µAAP, l = µbest − t
23: end while
24: Fbest = F(Gbest)

III. NUMERICAL RESULTS

Figure 1 shows a typical run of our TAAP algorithm. First,
the coherence decreases quickly while targeting the lower

bound µF
m,n

. When AAP fails to solve (I-t) for the current
target coherence, the target starts increasing due to (7) and
the improvements reactivate but at a slower pace. We clearly
observe the nested loop structure: the outer loop adjusts the
target and the inner loop tries to reach this value with AAP.

Fig. 1: Evolution of the mutual coherence during a run of
TAAP, for the dimensions-field triplet (30, 1000,C).

We compare our TAAP algorithm with IDB [23], TELET [4]
and CPM [24], which are state-of-the-art methods respectively
in the real and complex settings. Table I provides the final
coherence achieved by these three algorithms for different
frame dimensions and shapes. The values provided in Table
I for TAAP correspond to the best frame over 3 runs when
n < 1000 and 1 run when n ⩾ 1000. The values for the
other methods come from their respective original papers [4],
[23], [24]. Each TAAP run is initialized with a frame with
Gaussian entries, normalized columnwise. The perseverance
hyperparameter was set to Np = 100 to approximately match
the computation budget of IDB reported in its paper [23]. Note
that lower coherence can be achieved with higher Np. Other
hyperparameters were chosen as εp = 10−3, εs = 10−1, β =
2, τ = 10−6 and Nbudg = 105. Experiments were conducted on
a laptop with i7 processor (10 cores, 1.7GHz) and 16GB RAM.
Codes can be found here: https://github.com/bastmas6/taap.

Table II compares TAAP with the best packings obtained
on the reference leaderboards of the community for small-
dimensional frames: [39] for real frames and [40] for complex
frames. The table presents, for each field, the number of
dimensions (m,n) considered in the leaderboards (column
“Total”). Among them, we report the number of cases for
which the coherence obtained by our algorithm outperforms
the best algorithm of the leaderboard (column “Better”), is
equal to the best value on the leaderboard (column “Equal”)
within a tolerance of 10−6, or reaches the best lower bound
known on the mutual coherence for the corresponding triplet
(“optimal”, numbers in brackets) within this tolerance.

Tables I and II show that our TAAP algorithm often achieves
lower coherence than existing methods, especially for weakly
overcomplete (when m is close to n) and complex frames.
They also illustrate the gap between lower bounds and the
lowest mutual coherence found numerically; this difference is

https://github.com/bastmas6/taap


m n µR
m,n

IDB TAAP µC
m,n

Other TAAP

25 800 0.2871 0.3654 0.3646 0.2171 0.3143 0.2807
25 1000 0.2972 0.3829 0.3829 0.2308 0.3292 0.2981
30 1000 0.2564 0.3315 0.3319 0.1886 0.2962 0.2563
50 1000 0.1379 0.2224 0.2195 0.1379 0.2229 0.1782
40 1200 0.1985 0.2747 0.2740 0.1555 0.2745 0.2171
20 5000 0.3645 0.5500 0.5576 0.3027 0.6124 0.4415

64 128 0.0887 0.0962 0.0957 0.0887 0.0888 0.0887
64 256 0.1085 0.1295 0.1279 0.1084 0.1118 0.1110
64 640 0.1187 0.1675 0.1670 0.1187 0.1395 0.1377
64 960 0.1208 0.1843 0.1838 0.1208 0.1521 0.1493
64 1600 0.1225 0.2064 0.2042 0.1225 0.1742 0.1655
64 2880 0.1541 0.2325 0.2322 0.1236 0.1963 0.1837
64 4096 0.1740 0.2488 0.2491 0.1240 0.2098 0.1935

50 60 0.0585 0.0626 0.0623 0.0582 - 0.0586
90 100 0.0343 0.0374 0.0371 0.0335 - 0.0341
200 210 0.0160 0.0176 0.0175 0.0157 - 0.0160
500 550 0.0135 0.0151 0.0150 0.0135 - 0.0138
700 710 0.0047 0.0053 0.0053 0.0046 - 0.0047
900 1100 0.0142 0.0155 0.0154 0.0142 - 0.0144
2000 2500 0.0100 0.0109 0.0107 0.0100 - 0.0101

TABLE I: Mutual coherence for real and complex frames,
following tables from [23], [4] and [24]. “Other” stands for
TELET for the first block and CPM for the second (no
previous results exist for the third block).

more pronounced for real frames and for frames with m ≪ n,
which suggests that tighter bounds can be found and/or that
numerical methods can be improved in these regimes.

Field Better (optimal) Equal (optimal) Total

R 29 (0) 212 (81) 615
C 76 (0) 112 (41) 267

TABLE II: Comparison with mutual coherence leaderboards.

Figure 2 compares TAAP with IDB (re-implemented in
Python for fair comparison) for weakly and strongly over-
complete frames. In both scenarios, TAAP outperforms IDB
in terms of final coherence and computation time. The co-
herence targeting scheme of TAAP likely contributes to the
improvement over IDB and its bisection-based scheme. While
IDB restarts from scratch when the target is updated, TAAP
continues from the previous best frame, thus leveraging the
past work. Figure 2 also illustrates the benefits of performance
of the acceleration scheme integrated into the alternating
projections: TAAP improves on TAP (Targeted coherence with
Alternating Projections) for coherence, while stopping earlier.
Note that TAP denotes the non-accelerated version of our
algorithm (line 9 of Algorithm 1 is replaced with the classical
Alternating projections (2)).

Finally, Figure 2 shows the role of the perseverance hy-
perparameter Np, which represents the number of iterations
allowed without improvement before the termination of AAP.
A more perseverent algorithm, i.e., with large Np, will try
for a longer period to get past bad feasible regions such as
saddle points, local minima or plateaus, which are caused by
the nonconvexity of the problem. Therefore, Np acts as a trade-
off parameter between runtime and frame quality: small values

(a) Strongly overcomplete frame (20, 230,R)

(b) Weakly overcomplete frame (120, 130,R)

Fig. 2: Mutual coherence-runtime graph for different frame
dimensions. The displayed values correspond to the best of 5
runs per method and per Np value.

of Np (≈ 10) enforce quick termination of the algorithm with
modest coherence quality, while large values of Np (≈ 1000)
permit to achieve high-quality frames, beating state-of-the-art
low-coherence results almost any time, at the cost of (much)
longer runtimes, as demonstrated on Figure 2. Our experiments
indicate that Np ≈ 100 is a good trade-off.

IV. DISCUSSION

We propose a novel algorithm to solve (MMC) for any
dimensions in real and complex settings. Arguably the main
limitation of TAAP is the cost of the projection on S+m,n,
due to the eigendecomposition of the n × n Gram matrix
G, whose cost scales as O(n3). In comparison, frame-based
methods typically show O(mn2) complexity [24]. This dif-
ference hinders the competitiveness of TAAP for strongly
overcomplete dimensions (m ≪ n), but our method excels in
the weakly overcomplete regime, i.e., when m ≈ n, regarding
runtime as well as coherence. Our implementation mitigates
this bottleneck by using a truncated eigendecomposition of G
[41], [42] since, by Lemma II.1, the projection only requires
the m dominant eigenvalues and eigenvectors. Two other
avenues worth exploring are randomized eigenvalue algorithms
[43] and an extension of our method to apply projections
directly on the frame, without any work on the Gram matrix.
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