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Zero-Shot Controllable Image-to-Video Animation via Motion
Decomposition
Anonymous Authors

ABSTRACT

In this paper, we introduce a new challenging task called Zero-shot
Controllable Image-to-Video Animation, where the goal is to an-
imate an image based on motion trajectories defined by the user,
without fine-tuning the base model. Primary challenges include
maintaining consistency of background, consistency of object in
motion, faithfulness to the user-defined trajectory, and quality of
motion animation. We also introduce a novel approach for this task,
leveraging diffusionmodels called Img2VidAnim-Zero (IVA0). IVA0

tackles our controllable Image-to-Video (I2V) task by decomposing
it into two subtasks: ‘out-of-place’ and ‘in-place’ motion animation.
Due to this decomposition, IVA0 can leverage existing work on
layout-conditioned image generation for out-of-place motion gen-
eration, and existing text-conditioned video generation methods for
in-place motion animation, thus facilitating zero-shot generation.
Our model also addresses key challenges for controllable anima-
tion, such as Layout Conditioning via Spatio-Temporal Masking
to incorporate user guidance and Motion Afterimage Suppression
(MAS) scheme to reduce object ghosting during out-of-place an-
imation. Finally, we design a novel controllable I2V benchmark
featuring diverse local- and global-level metrics. Results show IVA0

as a new state-of-the-art, establishing a new standard for the zero-
shot controllable I2V task. Our method highlights the simplicity
and effectiveness of task decomposition and modularization for this
novel task for future studies.

CCS CONCEPTS

• Computing methodologies→ Computer vision tasks.

KEYWORDS

Image-to-Video Animation, Controllable Video Generation

1 INTRODUCTION

The rising demand for controllable video generation underscores
the desire of users to create videos for an increasing list of appli-
cations, such as personalized advertisement, educational content
generation, visualization of imagination through user-generated
content in social media, and entertainment content such as a short
movie, where precise control of motion may be desired. While
recent developments have made commendable strides in video
generation from text prompts [14, 16, 18, 55, 61, 85], most works

Unpublished working draft. Not for distribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

❄ Text2Image Model

Condition Image Control Layouts

Object of 
Interest

Generated Video
Time

❄Control Module

❄Motion Module

Out-of-Place Motion

In-Place Motion 

Task Decomposition Img2VidAnim-Zero

User 
Dragging

User Input

Figure 1: Img2VidAnim-Zero for zero-shot image-to-video

animation based on motion trajectories from the user. We

decompose controllable Image-to-Video generation as two

subtasks: (1) out-of-place motion generation, and (2) in-place

motion animation which can be solved by leveraging existing

modules pre-trained on other task-specific data.

do not allow users to control the finer-grained details easily and
interactively (e.g.by drawing trajectories or defining layouts).

Current developments in controllable video generation focus on
the Image-to-Video generation task (I2V) [4, 21, 35, 63, 70, 74, 83].
I2V starts from a given condition image, eliminating the ambi-
guity often encountered with Text-to-Video (T2V) generation, en-
abling more diverse video animation based on additional conditions
(e.g.text [70], trajectory [4, 74], or reference video [83]). As a result,
I2V blends precision, versatility, and a more user-friendly set-up,
positioning itself as a promising direction for controllable video
generation. Recent I2V methods have utilized models trained on
massive data with pre-extracted motion features [35, 63, 70, 74, 83].
However, ensuing challenges arise on: i) Computational resources:
Even with efficient schemes like parameter-efficient fine-tuning
[20], training models to understand new control conditions (e.g.,
motion vectors, trajectories) remain resource intensive. ii) Data
collection: Acquiring data with meticulously annotated conditions
can be expensive. Given these escalating costs, a pressing question
is: Can we devise a more cost-effective but still controllable I2V model?

In this paper, we present Img2VidAnim-Zero (IVA0) for Zero-
shot Controllable Image-to-Video Animation without any I2V train-
ing data. The input set consists of the condition image and mo-
tion trajectories for objects of interest, represented by sequences
of bounding box layouts. Our approach, as illustrated in Fig. 1 is
to simplify the controllable I2V task by decomposing it into two
atomic tasks. (1) Out-of-place Motion Generation focuses on
determining the coarse layout of objects’ obvious displacement
throughout the video frames and (2) In-place Motion Animation

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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ensures consistency while facilitating plausible, smooth motion
(pixel-level changes) for user-dragged in-box objects across the
frames. We have identified that each atomic task can be tackled
with pre-existing modules from the Latent Diffusion [50] family,
leading to our goal of Zero-shot Controllable I2V Animation.

As shown in Fig. 1, our IVA0 is based on 3 core components: (1) a
pre-trained text-to-image model [50], (2) the Control Module (CM),
and (3) Motion Module (MM). Out-of-place motion generation is
formulated as a layout-to-image generation task, achieved by in-
serting Gated Self-Attention Layers [34] as a layout control module,
leveraging bounding box layouts for precise object placements. We
refer to this as the Control Module (CM). In-place motion anima-
tion is achieved by adopting Temporal Attention Layers [16], from
the text-to-video generation task. We refer to this as the Motion
Module (MM). It maintains the consistency of the selected objects
by applying self-attention across frames, leading to a realistic and
smooth transition of objects from one frame to the next. Notably,
CM andMM are pre-trained on corresponding task-aligned datasets
without any I2V-specific training. We further propose an efficient
Motion Afterimage Suppression (MAS) scheme that generates frames
via alternating different inpainting operations to reduce afterimage1

hallucination objects that could be left trailing behind the motion
trajectory, while maintaining a reasonable background.

Lastly, the proposed novel task requires a corresponding bench-
mark dataset for evaluation. While prior work [21] evaluates con-
trollable I2V on synthetic datasets [13, 30] with limited quantitative
metrics, we construct a new test bed with diverse objects, annotated
control layouts, and more concrete metrics. We assess controllable
I2V across local object aspects (including control accuracy, appear-
ance and motion consistency, and object residual), global scene
aspects (including scene consistency, and video quality), and hu-
man evaluation.We compare our IVA0 with other strong I2Vmodels
[63, 70] that are end-to-end trained with massive data on the I2V
task. This comprehensive evaluation reveals our zero-shot IVA0 to
be superior across 9 metrics, setting a new state-of-the-art on the
proposed I2V benchmark. In summary, our main contributions are:
• Novel task of Zero-shot I2V Animation based on user-defined
layout trajectories, along with novel approach Img2VidAnim-
Zero (IVA0)

• Novel controllable I2V benchmark, enriched with diverse visual
content and annotated control layouts (will be released), evalu-
ated models across diverse dimensions.

• The Img2VidAnim-Zero achieves competing results on the zero-
shot I2V task. Our quantitative and qualitative results highlight
the effectiveness and potential of ourmodular task decomposition
idea for future controllable I2V studies.

2 RELATEDWORKS

Video Generation. As a generative task with promising prospects,
video generation has been a popular research topic. Early efforts [51,
58, 60, 77] focus on unconditional generation that is based on the
vector initialized from a pre-defined probability space (e.g.Gaussian
distribution). Recent works introduce various generation conditions
and can be roughly categorized into: i) Text-to-Video generation
(T2V) [1, 14, 16, 18, 23, 28, 36, 37, 55, 64, 85]: where descriptive text
1https://en.wikipedia.org/wiki/Afterimage

is used as input to guide the generation process, ii) Video-to-Video
generation (V2V) [8, 22, 40, 47, 67, 68, 73]: wherein a reference
video informs the structure of the generated video, and iii) Image-
to-Video generation (I2V) [4, 21, 27, 35, 44, 63, 70, 74, 79, 82, 86]:
which uses a single or a series of images as the basis to produce
a continuous frame sequence. We focus on the I2V formulation,
which provides a clear visual starting point compared with T2V
and gives more flexibility compared with V2V. Our work aims to
inject layout-based controllability into the I2V.
Controllability in I2V Generation. Controllable video genera-
tion has become increasingly popular. Many efforts centered around
encoding images and motion trajectories, mainly for human move-
ment [2, 4, 5, 15, 69], editing a reference video through fine-grained
control (e.g. dragging, depth/edge/pose maps) [12, 41, 54, 57]. Re-
cent advancements include [74], which allows fine-grained ob-
ject motion through user-defined trajectories, leveraging extensive
video data, extra motion feature extraction, and multi-scale fusion
modules. [63] is adept at synthesizing videos based on various com-
binations of appearance and motion patterns, given its training
with varied spatio-temporal conditions. [35] introduces a neural
stochastic motion texture for still images, ideal for objects with lim-
ited motion. Latest developments like [24, 36, 37] incorporate LLM
layout planning into generation (and the former also introduces
consistency in long-video generation) but these works focus on
T2V generation. Very recent studies [9, 11, 25, 49, 62, 65, 66, 68, 72]
make great progress in fine-tuning the model to be aware of di-
verse control conditions (e.g. detailed textual prompts, trajectories,
boxes, and reference video) to animate an image. Furthermore, some
other recent works adopt the efficient zero-shot setting, but they
are suffering from controllability [75], focusing on T2V with extra
LLM planning [56], or conducting extra DDIM operation [6]. Our
method is not text-based or fine-tuned for the task, but an image-
based zero-shot generation without any I2V-specific training or
DDIM inversion. In addition, our method can also combine with
these LLM planners to generate layout trajectory/sequence based
on text for a more diverse control condition input.

3 METHOD

In this section, we introduce our IVA0 model in detail. We first
discuss the formulation of inpainting based on latent diffusion [50],
which serves as the foundation of our model (Sec. 3.1). We then
present howwe build up IVA0 by decomposing controllable I2V into
sub-tasks, which can be addressed with out-of-place and in-place
motion modules in the Latent Diffusion family (Sec. 3.2).2 Finally,
we elaborate on our Motion Afterimage Suppression (MAS) schema
to eliminate object afterimage hallucination (Sec. 3.3).

3.1 Preliminary: Latent Diffusion for Inpainting

Our objective is to animate a static object, facilitating its transition
from an initial to the subsequent position based on any user-defined
layout trajectory. We frame it as an inpainting task for controlling
such object movement, which involves: (1) replacing the original
object location with the background, while (2) inpainting the object
based on layout. To accomplish this, our IVA0 is constructed on the

2In our implementation, we adopt Stable Diffusion which is an improved variance of
the Latent Diffusion Model: https://github.com/Stability-AI/StableDiffusion.

https://en.wikipedia.org/wiki/Afterimage
https://github.com/Stability-AI/StableDiffusion
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Figure 2: Left: Our spatio-temporal inpainting masks cover the starting position of objects and their target locations in each

frame. Middle: To handle various atomic tasks in controllable I2V, we integrate different task-specific modules. We apply gated

self-attention layers as the control module for generating out-of-place motion, while using temporal-attention layers as the

motion module for in-place motion animation. Right: We introduce Motion Afterimage Suppression (MAS), which uses object

size and IoU to decide whether to inpaint the background with additional grounding tokens. This approach aims for enhanced

inpainting quality with reduced afterimage hallucination.

inpainting version of Latent Diffusion [50], a publicly available pre-
trained text-to-image model. The Latent Diffusion model comprises
three key components: (1) Autoencoder that maps the image from
pixel space to latent embedding, based on which the Diffusion
module operates; then projects the embedding after denoising steps
back to pixel space; (2) Text encoder that encodes a prompt into
embedding for Text-to-Image conditioning; (3) U-Net for noise
diffusion, which iteratively conducts denoising in the latent space,
guided by timestamps and prompt embedding.

The inpainting task leverages the Latent Diffusion model to
modify a masked image region based on the given textual con-
ditions. This mask is represented as a 1-channel binary mask as
additional input together with the condition image. The latter deliv-
ers essential context for the un-inpainted sections and is derived by
processing a condition image 𝑥𝑐𝑜𝑛 through the encoder. To adapt to
these extra inpainting conditions, the diffusion U-Net incorporates
five extra channels in its initial convolution layer. Given a condition
image 𝑥𝑐𝑜𝑛 , a text prompt 𝑝 , and a binary mask𝑚, the inpainting
model generates an image. In the following sections, as depicted
in Fig. 2, we delineate the integration of control conditions and how
we handle basic atomic tasks with this text-to-image inpainting
model to achieve controllable I2V.

3.2 Zero-Shot Layout-Conditioned I2V

In IVA0, we introduce a controllable Image-to-Video generation
model that leverages user-provided spatio-temporal object layouts.

Given an initial frame 𝑥1 as condition image 𝑥𝑐𝑜𝑛 , users can ani-
mate specific objects by providing a trajectory of the object. This
trajectory, in our method, is represented as a sequence of bounding
boxes: (𝑏1 · · ·𝑏𝑡 ), where 𝑡 refers to the number of frames. Each box
𝑏𝑖 is a 4-dimensional vector indicating the top-left and bottom-right
coordinates of the box. For simplicity, we focus on animating only a
single object at a time. But, IVA0 is versatile and can be extended to
multiple objects simultaneously when provided with corresponding
layouts. The detailed model pipeline is elaborated as follows:
LayoutCondition via Spatio-temporalMasking:A future frame
𝑥𝑖 is generated based on the initial frame 𝑥1 (𝑥𝑐𝑜𝑛) and layout boxes
via the T2I model. When transitioning the object from its position
𝑏1 to 𝑏𝑖 , we expect the object to move to the desired location with
smoothly interpolated motion and consistent appearance for both
the foreground object and background context. This necessitates in-
painting 𝑥𝑖 in two regions: (1) eliminate the object from the original
region at 𝑏1 as part of the background, and (2) add the object to the
new region 𝑏𝑖 . So we create an inpainting mask for each frame by si-
multaneously masking out both starting region 𝑏1 and target region
𝑏𝑖 . As illustrated in the left of Fig. 2, from the spatio-temporal lay-
out sequence (𝑏1 . . . 𝑏𝑡 ), we construct the spatio-temporal masking
sequence M = (𝑚1 . . .𝑚𝑡 ), with each𝑚𝑖 = 𝑏1 ∪ 𝑏𝑖 .
Out-of-Place Motion Generation: An important task of our
model is to generate out-of-place motion, given the spatio-temporal
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masks M. This can be formulated as a layout-conditioned gener-
ation similar to [10, 34, 81, 84], which requires generating an im-
age following a layout condition. Thus, we adopt the design of
gated self-attention proposed in GLIGEN [34], a layout-to-image
generation model. GLIGEN encodes object box coordinates into
special grounding tokens and fuses grounding information with vi-
sual tokens via extra gated self-attention that is added before each
cross-attention layer in the text-to-image model. Specifically, as
shown in the middle of Fig. 2, we insert Gated Self-Attention layers
inherited from [34] with copied weights, as our Control Module.
The control module then utilizes grounding tokens that encapsulate
both the appearance of the object and its box coordinates, enabling
precise placement of the object in the desired location. We stream-
line the process by using the same CLIP model [48] as an image
encoder to extract regional image features of the cropped object.
The box coordinates 𝑏𝑖 are projected into continuous embedding
with Fourier transform function as in [42], controlling the spatial
location. Thus, for the frame at time 𝑖 , layout tokens ℎ𝑖 are derived
by integrating these conditions via a linear projection layer. These
tokens then interact with the visual tokens of the same frame using
gated self-attention, ensuring accurate and contextually relevant
out-of-place motion generation, such that3:

ℎ𝑖 = MLP (CLIP img (crop(𝑥1, 𝑏1)), Fourier (𝑏𝑖 )) (1)

𝑣𝑖 = SelfAtt (concat (ℎ𝑖 , 𝑣𝑖 )) (2)

In-Place Motion Animation: Based on our observation, relying
solely on the out-of-place inpainting strategy only produces a rudi-
mentary “copy-paste" animation for objects (see Fig. 6), causing
noticeable inconsistencies in their motions across frames. In order
to pursue a smoother and authentic object-moving motion and
ensure sustained visual coherence, we adopt an in-place motion
animation module. Previous works [14, 28, 61, 63] show different
inter-frame attention mechanism that helps this goal, but unani-
mously require large-scale pre-training from video data. We resort
to a pre-trained motion engine [14], as illustrated in the middle
of Fig. 2, and incorporate its Temporal Attention layers [14] with
weights copied from the original Text-to-Video generation task, but
for our controllable I2V task. This motion module enables better
temporal consistency for both object appearance and motion via
self-attention across frames. Specifically, given the sequential frame
visual features V = (𝑣1 . . . 𝑣𝑡 ), where V ∈ 𝑅 (𝑡,ℎ∗𝑤,𝑐 ) , we reshape
the feature axes and apply self-attention to the temporal dimension,
where𝑤 , ℎ, and 𝑐 refer to width, height, and feature channel.

V = Reshape(SelfAtt (Reshape(V))) (3)

Both the control and motion modules are pre-trained on different
task-specific data. They integrate capabilities from their original
Layout-Conditioned Image Generation and Text-to-Video tasks. We
incorporate these established foundations for our generation to
avoid further re-training. Thus, our IVA0 can controllably animate
objects in an image without any Controllable I2V-specific fine-
tuning. Sec. 4.2 contains more training details of these modules.

3Here the concatenation is for one attention block. Details in [34].

Condition Image Inpaint background with 
grounding token

Inpaint background w/o 
grounding token

Figure 3: Comparison of background inpainting with or

without grounding tokens. The token-based method can

eliminate the afterimage object hallucination issue (middle-

bottom red box) but is weaker in handling larger regions

(right-top red box) compared with the token-free one.

3.3 Motion Afterimage Suppression

As our IVA0 model is built upon the Text-to-Image inpaintingmodel,
we initially prompt the model with a fixed background-filling text
prompt (shown in Fig. 2 middle) for background generation. How-
ever, as illustrated in Fig. 3 bottom-middle, we observed this ap-
proach sometimes results in an afterimage, a ghost-like residual
hallucination after the object has moved (bottom row of Fig. 3). We
further find out that this issue is linked to the motion module in
our model. As evidenced in Fig. 6 (rows 2 and 3), these hallucina-
tions occur when the motion module is used in the model. This
is because most current motion modules [7, 16, 70] only generate
limited-range, in-place motion. For this reason, when an object
moves significantly from its original 𝑏1, the temporal attention
fails to maintain appearance consistency. Inversely, the temporal
attention often wrongly produces an afterimage at 𝑏1 in 𝑥𝑡 .

To suppress such a motion afterimage, we experimented with
using extra grounding tokens for the background generation. As
illustrated in Fig. 2 middle, we set grounding tokens that encode
both the bounding box and the word ‘background’ (via CLIP text
embedding). In this case, we force the control module to generate
a background at 𝑏1 in frame 𝑥𝑡 . This method successfully avoids
afterimage hallucinations for small objects but struggles with large
areas (see Fig. 3 top-right). This limitation likely stems from the
control module’s training on background reconstruction, which
cannot handle large-region in-painting with a single token. To over-
come this, we integrated two background generation approaches
based on object size and Intersection over Union (IoU). Objects are
first categorized by size (small, medium, large) with pre-defined
area thresholds. Small objects use extra grounding tokens for back-
ground in-painting, whereas large objects do not. For medium-sized
objects, as shown in Fig. 2 (right), we first calculate the IoU 𝑆 be-
tween 𝑏1 and 𝑏𝑡 , if 𝑆 > 0, indicating overlap, the non-overlapping
background areas are first divided into grids iteratively. The model
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then in-paints each grid with background class tokens. Experiments
show that our proposed MAS resolves the afterimage object hallu-
cination while maintaining high-quality background generation.

4 EXPERIMENTS

Our experimental setup is detailed in this section, including pro-
posed metrics & benchmark for quantitative evaluation (Sec. 4.1),
implementation details (Sec. 4.2), results analysis (Sec. 4.3), and lim-
itation discussion (Sec. 4.4). Details of benchmark data collection,
human evaluation, and baseline implementation are in Appendix.

4.1 Evaluation

To comprehensively assess the performance of our model under
controlled experimental conditions, we evaluate its effectiveness
across various metrics. This evaluation encompasses both the local
level (concentrating on objects achieving smooth motion, maintain-
ing a consistent appearance, and following layout conditions), and
the global level (focusing on generated video scenes matching the
given condition image).
• vIoU@R: This evaluates the correctness of layout conditioning.
We adopt this metric from action detection [71, 80], which cal-
culates the spatio-temporal overlap between ground truth and
GroundingDINO [39] detected boxes: i.e., if vIoU exceeds thresh-
old 𝑅, then we consider the prediction to be a match, namely
vIoU@R. In our experiment, we report results with 𝑅 = 0.3, 0.5.

• Smoothness: We propose the “Smoothness" metric, which eval-
uates the smoothness of object transformations across video
frames. We compare object similarity in consecutive frames us-
ing GroundingDINO for object detection and CLIP ViT-B/32 for
image embeddings. Smoothness is calculated by averaging the
similarity of these embeddings across all frames, with a higher
score indicating smoother changes in appearance in the video.

• Hallucination: We propose the “Hallucination" metric, captur-
ing the wrong afterimage generations. We first detect the target
object class in each frame with GroundingDiNO. Then, we cal-
culate the difference in object count between the generated and
the condition image and sum normalized results over multiple
frames for a video-level metric. This metric reflects the unex-
pected generation (e.g., extra object) or removal of an object.

• SSIM & LPIPS: These measure the structural similarity of gener-
ated frames with the condition image. As we are only interested
in animating the object in the image while maintaining other
regions, the higher structural similarity between the condition
image and the generated frames means that the model can keep
the background scene or non-interested regions unchanged. We
adopt both non-parametric SSIM [19] and parametric LPIPS [78]
to represent structural similarity.

• FID & FVD: These standard reference-based metrics ([17], [59])
quantify the visual appeal by comparing the sets of ground truth
and generated videos. To compute FVD, we repeat and stack
initial frames as pseudo-video for distribution gap computation.

• Human Evaluation: Automated metrics are not perfect. Hence,
we include human evaluation as well. Annotators are asked to
conduct a majority voting for the best-quality video considering
appearance consistency of object/background, motion faithful-
ness and motion quality.

Controllable I2V Benchmark: Since our controllable I2V task
focuses on the animation of objects, we evaluate the model on a
testbed that contains ground-truth videos without camera motion,
involves diverse objects, permits reasonable motion ranges, and
includes controlled layouts. For this:
• We collect 100 images as initial frames, a mix of generated ones
using Stable Diffusion [50], and real images from a public dataset
[46]. These images feature diverse objects for animation.

• For each image, we manually annotate the start and end boxes
for an object and interpolate them with intermediate boxes using
a non-linear function as a trajectory.

• We also annotate each sample with a textual prompt, describing
the desired motion of the object. In total, our testing set comprises
200 object control layouts & captions, paired with 100 images.

Baseline Models:We compare our method against two competing
image-to-video generation baselines: 1) VideoComposer [63], a com-
positional video synthesis model that offers motion controllability
conditioned on motion vector. It is pre-trained onWebVid10M [3]
and LAION-400M [52]. It is based on the Video Latent Diffusion
Model (VLDM) [61] that incorporates both 3D convolution and
temporal attention. In the evaluation, we adapt our layouts into
motion vector format for compatibility. 2) DynamiCrafter [70], a re-
cent emerging image animation model that has been pre-trained on
WebVid10M dataset [3]. It is also built on the VLDM. Since Dynam-
iCrafter is unable to be conditioned by trajectory, we circumvent
this by providing an extremely detailed prompt as the condition.

4.2 Implementation Details

Model Implementation: We choose Stable Diffusion-v1.4 as our
base model, which is pre-trained on LAION-400M [52]. Our con-
trol module is derived from GLIGEN [34], pre-trained on vari-
ous grounding datasets, including COCO2014D, COCO2014CD, and
COCO2014G. Our motion module, derived from AnimateDiff [14],
is pre-trained on WebVid10M [3]. The guidance scale was set to 7.5
and 25 steps were used for denoising with DDIM noise scheduler.
16-frame videos were generated for both our method and baseline
methods. The resolution was set at 512×512 for generated videos. 5
random seeds were used for each layout trajectory; We categorize
objects based on their area relative to the image: small objects oc-
cupy no more than 1/16, medium ones range between 1/16 and 1/5,
and large ones exceed 1/5 of the image area. We use 5 random seeds
(1, 2, 3, 42, 126) to get five unique generations for each image-box
pair. Our noise scheduler adopts 0.00075 beta start, 0.012 beta end,
and “scaled_linear” beta schedule. The negative prompt used for
the generation was: “worst quality, deformed, extra object, extra hu-
man, distorted, disfigured, bad anatomy, disconnected limbs, wrong
body proportions, low quality, illustration, oversaturated, cartoons,
blurry, cropped, text.”
Baseline Implementation: For DynamiCrafter [70], which does
not support conditioning with layout trajectories, we prompt the
model with the detailed motion-related text (see Appendix). For
VideoComposer [63], which can use hand-crafted motion vectors
as extra conditions, we first generate motion vectors from layout
sequences and then use the vectors to generate video.
Data Collection: We collect both 20 real-world images from public
tracking/segmentation datasets [46] and 80 generated images by
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Figure 4: Qualitative comparison of our method and baseline approaches. The sample on the left is based on initialization with

a generated image, while the sample on the right was initialized with a real image. Best viewed in color and zoomed in for

more details.
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Figure 5: Sample results of the proposed IVA
0
. The green boxes in the generated frames represent input control layouts. Best

viewed in color and zoomed in for the best visualization. We provide more qualitative results in the Appendix.

StableDiffusion-2.0 [50]. We manually write text prompts for the
StableDiffusion model to generate images. We collect images con-
taining single/multiple objects and with an empty area that allows
for obvious out-of-place object motion.

DataAnnotation: To reduce the labeling burden, we onlymanually
annotate key layout boxes for each image, and interpolate those
key boxes to imitate user dragging and obtain layout sequence
during inference. We also write detailed motion-related captions
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Table 1: Quantitative comparison with evaluated baselines on the proposed controllable I2V benchmark. Smooth.: object

smoothness across frames. Hallu.: object hallucination in generated videos.

Methods 0-Shot

Local Object Global Scene HumanEval

vIoU@0.3 ↑ vIoU@0.5 ↑ Smooth. ↑ Hallu. ↓ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓ Win Rate↑
VideoComposer [63] N 50.0 25.3 85.8 42.4 36.4 45.2 151.4 1790 31%
DynamiCrafter [70] N 21.4 5.4 89.2 42.5 25.9 56.0 132.1 1460 27%

IVA0 (ours) Y 88.7 78.1 90.2 13.6 61.9 28.0 132.7 1352 42%

for each image-layout pair to prompt baseline models [70] that
cannot take layout input. We provide data visualization (image, key
boxes, caption) in Appendix.
Grounding Model Implementation: We use GroundingDINO-B
[39] with Swin-B backbone and pre-trained on COCO [38], O365
[53], GoldG [26], Cap4M [32], OpenImage [29], ODinW-35 [31],
RefCOCO [76] for grounding detection in the evaluation pipeline.
The box threshold was set to 0.35, and the text threshold was 0.25.
HumanEvaluation: As discussed in Sec. 4.1, we designed a pipeline
for human evaluation. Specifically, we first generate 100 exam-
ple sets, where each example set contains 1 condition image and
3 videos generated by different methods (our IVA0 and 2 base-
line methods, in a shuffled order). Then, we ask 5 raters to rank
among these 3 generated videos from the following aspects: 1)
Controllability: Which method follows the object layout the best
(We only consider whether the object is present in the given lay-
out)? 2) Background Consistency: which method best maintains the
background shown in the condition image? 3) Motion faithfulness:
which method demonstrates the most plausible object out-of-place
motion & object consistency? For each question, the raters are
asked to select the best video. Our goal is to calculate the win rates
of models along these 3 questions.

4.3 Results

Qualitative Results: Fig. 4 shows two examples of generation
with our method compared with baselines. In practice, we find
it challenging to leverage DynamiCrafter to animate the object
strictly following user instructions by purely prompting; e.g., the
Lepidoptera and car can barely follow the box condition. Though
VideoComposer shows good layout conditioning, it suffers from
the hallucination of new objects or sometimes the removal of the
target object; e.g., an extra Lepidoptera was not successfully elimi-
nated in the original region. We find our IVA0 follows the layout
condition better than the baselines and also generates smooth mo-
tion with a more consistent object appearance. We also provide
more samples generated by our IVA0 in Fig. 5 with various ani-
mation conditions, including single/multiple objects, small/large
objects, real/generated images, and simple/complex motion trajec-
tories. We observe consistent conclusions across all combinations.
However, we do observe all methods performing less satisfactorily
for maintaining consistent object appearance across frames; e.g.,
in Fig. 5, appearance of children and vehicles is altered in the gen-
erated frames. We conjecture for these reasons: 1. It still remains
challenging for the T2I model to produce customized & consistent
objects without any weight optimization; 2. CLIP embedding does
not capture information about the object comprehensively.

Quantitative Results Analysis: Tab. 1 contains quantitative re-
sults. Our IVA0 shows leading results on local-object metrics, i.e.,
vIoU, Smoothness, and Hallucination. Specifically, IVA0 largely sur-
passes VideoComposer and DynamiCrafter: 88.7 vs. 50.0 and 21.4
when 𝑅=0.3. This verifies that our IVA0 possesses the capability of
precise layout control. In addition, we notice that IVA0 has a higher
Smoothness score: 90.2 vs. 89.2 by DynamiCrafter, indicating that
our IVA0 produces objects with smoother changes across frames.
Noticeably, the obvious lead in the Hallucination metric score (13.6
vs. 42.5) also consolidates this conclusion. When evaluated at the
scene level, we observe very aligned results. IVA0 leads the base-
lines on SSIM, LPIPS, and FVD, while showing a close gap with
DynamiCrafter on FID: 132.7 vs. 132.1. We note that both FID and
FVD compute the distribution gap. Since our evaluation is just based
on a single initial frame, the slight gap here just indicates that the
distribution of the produced video frames is not evidently deviating
from the initial frame. Furthermore, our human evaluation study
shows the superiority of the animation produced by our method:
42% win rate versus 31% and 27% for both baselines. Details on
human studies can be found in the Section 4.2.
Ablation Study. We now assess the effectiveness of each module
and the Motion Afterimage Suppression strategy. As illustrated
in Fig. 6, we observe that CM largely improves the control ability
of IVA0 on vIoU@0.3: 26.7 vs. 88.7. Adopting a motion module
explicitly improves motion smoothness, which is reflected in the
Smoothness and FVD metrics. We observe that the motion module
has negative impacts on FID, LPIPS metrics, which aligns with our
expectations as it is interpolating frames with diverse motion, in-
evitably diverging it from the initial frame used as ground truth
on these metrics. The MAS module largely improves the baseline
performances on a series of local object metrics: 88.7 vs. 87.3 on
vIoU@0.3 and 13.6 vs. 21.2 on the Hallucination metric. It should be
noted that while integrating the motion module improves tempo-
ral video metrics like Smoothness and FVD, it also diminishes the
grounding capability (measured by VIoU) facilitated by the control
module. It is a trade-off for such a zero-shot model without extra
alignment for injected modules. The full model achieves a syner-
gistic balance between these capabilities across modules, leading
to better overall quality. Fig. 6 further showcases more examples of
generated images with each module.

4.4 Limitations & Discussion

Despite of the generated video, our zero-shot model IVA0 still faces
several challenges, as shown in Fig. 7, as following:
(1) Inconsistent & Missing Object: IVA0 struggles to maintain
appearance consistency of object appearance w.r.t. target object
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MM CM MAS

Local Object Global Scene

vIoU@0.3 ↑ vIoU@0.5 ↑ Smooth. ↑ Hallu. ↓ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓
- ✓ ✓ 90.2 85.7 88.4 14.4 63.2 25.9 118.4 1440
✓ - ✓ 26.7 21.6 70.1 43.5 58.4 32.8 182.0 1388
✓ ✓ - 87.3 77.5 89.5 21.2 62.4 27.4 133.6 1369
✓ ✓ ✓ 88.7 78.1 90.2 13.6 61.9 28.0 132.7 1352
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in the initial frame, and it tends to overlook secondary objects
when multiple objects are present in a single box (e.g.woman on
the horse). This discrepancy arises possibly because CLIP image
embedding adeptly captures mainly high-level features but neglects
the finer low-level features (i.e., texture, color, and shape). Such
difference is further amplifiedwhenwe apply IVA0 to the real-world
images due to the potential domain gap present in the pre-training
text-to-image model [43]. To quantify this, we computed the SSIM↑
between ground-truth objects and the reconstructed images. The
results indicate that inpainted objects share only 22% SSIM↑ score
with the GT, highlighting an unavoidable loss of low-level details.
(2) Distorted background: it inaccurately generates backgrounds
(e.g.gray patch behind the man on bike), especially for real images
with complex scenes. We attribute those to a lack of extra train-
ing/alignment with the pre-trained motion and control modules
for the base T2I model. It weakens the base model’s inpainting
and generation ability. This mismatch is further exacerbated when
applied to real-world images due to a potential domain gap in pre-
trained models [33, 43]. Besides, our model is currently limited to
animating foreground objects, and cannot modify the background
in case users want to animate the background too or incorporate
camera motion.

However, we note that the spatio-temporal consistency across
scenes and objects still remains an open challenge for all existing
T2V/I2Vmodels, which rely on large-scale pre-training as a possible
solution [45]. Our efforts focus on building an efficient zero-shot
T2V model without any tuning. As part of future directions, we
suspect (1) integration with a text-to-video backbone that applies
temporal modules, e.g., 3D convolution, (2) fine-tuning with I2V
data will further enhance consistency, (3) integration with more
control conditions, e.g., segmentation masks. We also attempt to
mitigate those bad generations with recent popular one/few-shot
tuning ideas in text-to-video generation work (e.g., [67, 68]) (see
more details in Appendix) and give more insights. In all, addressing
these challenges remains an open topic for future research.

5 CONCLUSION

In this paper, we introduced Img2VidAnim-Zero (IVA0), a Zero-shot
Image-to-Video (I2V) method without task-specific I2V training. By
harnessing existing text-to-image Diffusion modules and integrat-
ing Gated and Temporal Attention layers, IVA0 facilitates accurate
and seamless video generation from the specified motion trajectory
based on bounding boxes. Our novel I2V benchmark underscores
IVA0’s leading performance, showcasing its potential for future
video generation applications.
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