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ABSTRACT

One of the fundamental skills required for an agent acting in an environment to
complete tasks is the ability to understand what actions are plausible at any given
point. This work explores a novel use of code representations to reason about
action preconditions for sequential decision making tasks. Code representations
offer the flexibility to model procedural activities and associated constraints as
well as the ability to execute and verify constraint satisfaction. Leveraging code
representations, we decompose the problem of learning an agent policy for se-
quential decision making tasks into the sub-problems of precondition inference
and action prediction. We show that these sub-problems can be formulated as
code-completion problems and exploit pre-trained code understanding models to
tackle them. We demonstrate that the proposed code representation coupled with
our novel precondition-aware action prediction strategy outperforms prior policy
learning approaches in a few-shot learning setting across task-oriented dialog and
embodied textworld benchmarks.

1 INTRODUCTION

Sequential decision making agents are tasked with choosing an optimal action given a sequence of
observations. A key capability for learning an optimal agent policy is understanding the plausibility
of different actions. For instance, a dialog agent recommending restaurants needs to have basic
information like location and type of food in order to look up its database for potential options.
Understanding the necessary conditions for performing an action (e.g., location and type of food
are necessary for the database lookup action) is referred to as precondition inference or affordance
learning in the literature (Ahn et al., 2022; Sohn et al., 2020).

Policy learning approaches that treat the policy as a black box regression model that maps input
observations to optimal actions offer limited transparency to the decision making process of the agent.
For instance, few-shot prompted large language models have demonstrated strong capabilities for
policy learning (Logeswaran et al., 2022; Huang et al., 2022a; Micheli & Fleuret, 2021; Ahn et al.,
2022). Although some approaches have been proposed to improve the interpretability of these models
by producing on-the-fly rationales for their predictions (e.g., in the form of chain-of-thought) (Huang
et al., 2022b; Yao et al., 2022), it is non-trivial to verify whether these rationales are adequate as
they are dynamically generated during action prediction. As a result, it is difficult to guarantee with
certainty that model predictions are consistent with the rationales.

In this work we propose to use code as a representation to reason about preconditions. Code rep-
resentations offers many advantages. Programs are a natural formalism to model event sequences
and offer the flexibility to express dependency constraints between events, such as in the form of
assertions (Liang et al., 2022; Singh et al., 2022). Verifying that a program meets the specifications
dictated by the assertions amounts to simply executing the program and verifying that the program
ran successfully. The ability to execute and verify constraint satisfaction is a key benefit of code
representations compared to alternative representations such as natural language. Representing pre-
conditions in the form of procedural statements in code further provides transparency, controllability
and better generalization to unseen scenarios compared to alternative representations of affordance
such as neural network functions. Finally, this also enables us to exploit strong priors captured by
code understanding models for policy learning problems.
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def FindRestaurants(self):
    assert self.user.informed[‘city’]
    assert self.user.informed[‘cuisine’]

Action Preconditions

Program Specification

Next action = 
FindRestaurants()

def demonstration1():
    user.INFORM(‘city’)
    system.REQUEST(‘cuisine’)
    user.INFORM(‘cuisine’)
    system.FindRestaurants()
           ...
def demonstration2():
    system.REQUEST(‘city’)
    system.REQUEST(‘cuisine’)
    user.INFORM(’cuisine’)
  ...

Demonstration Trajectories

Precondition 
Inference

def test():
    system.REQUEST(‘city’)
    user.INFORM(‘city’)
    system.REQUEST(‘cuisine’)
    user.INFORM(‘cuisine’)
    system._________

Partial Test Trajectory

Precondition-Aware 
Action Prediction

class USER:
  def __init__(self):
    self.informed = []
  def INFORM(self, slot):
    self.informed[slot] = True

class SYSTEM:
  def __init__(self, user):
    self.user = user
  def FindRestaurants(self):
    assert _________

Figure 1: Approach Overview: We propose to use programs as a representation of the agent’s
trajectory to construct a policy. We decompose the policy learning problem into precondition inference
and action prediction sub-problems and tackle them by formulating them as code-completion problems
and leveraging pre-trained code models. We first infer action preconditions from demonstration
programs. We then use inferred preconditions to predict the next action given a partial test program.

Armed with the code representation, we decompose the policy learning problem into precondition
inference and action prediction sub-problems and formulate these sub-problems as code completion
problems. We then leverage pre-trained code models to address these sub-problems. We propose a
pipeline to generate precondition candidates from expert demonstrations. We also propose an action
prediction mechanism that ensures predicted actions are consistent with the inferred preconditions.
We present extensive analysis and ablations that show the impact of different components of our
approach.

In summary, we make the following contributions in this work.

• We propose to use programs as a representation to reason about action preconditions.
• We show that pre-trained code generation models are capable of inferring action preconditions

from expert demonstrations alone in a zero-shot manner.
• Combining action preconditions with a novel precondition-aware action prediction strategy, we

demonstrate that the proposed framework leads to better agent policies compared to baselines on
task-oriented dialog and embodied textworld benchmarks.

2 PROBLEM SETTING

We consider a sequential decision making setting where the agent receives a sequence of observa-
tions oi ∈ O and performs an action ai ∈ A, where we assume discrete observation and action
spaces O,A. The agent’s trajectory can be represented as a sequence of observations and actions
τ = (o1, a1, o2, a2, . . . , on, an). We consider a few-shot learning setting where we are given demon-
strations D = {τ1, . . . , τn} and we want to estimate a policy π(at|τ<t,D) that predicts the next
action given the history of observations and actions τ<t = (o1:t, a1:t−1). The goal of learning is to
generalize to a set of test trajectories Dtest: maximize Eτ∈Dtest [log π(at|τ<t,D)].

3 APPROACH

We first discuss the code representation in Section 3.1. We then describe our approach to precondition
inference and action prediction problems in Sections 3.2 and 3.3, respectively. See Figure 1 for an
overview of our approach.
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3.1 REPRESENTING AGENT TRAJECTORIES AS PROGRAMS

We represent the agent’s interaction with the environment as a program. We represent every action
and observation as one or more function calls that modify the state of a predefined set of variables v
that capture a summary of the agent’s experience (e.g., observations o1:t and actions a1:t−1).1 Such a
representation exists since we assume discrete observation and action spaces (for instance, we can
define a separate function for each string in O,A). Variables v capture information about the state of
the environment and are useful for reasoning about the plausibility of performing an action at any
given point. Assume we have defined a set of functions FO,FA corresponding to observations O
and actions A respectively. Given this representation of observations and actions, a trajectory τ can
be viewed as a program which consists of a sequence of function calls.2 We present an example
program in Figure 1 and further examples in the Appendix.

3.2 PRECONDITION INFERENCE

The precondition ga of an action a is a function ga(τ<t) ∈ {0, 1} that informs whether the action
is plausible in a given context τ<t (i.e., ga(τ<t) = 0 represents the action is implausible and
ga(τ<t) = 1 represents the action is plausible). Equivalently, for the corresponding function in the
program representation fa ∈ FA, we seek to identify assertion statements in terms of variables v
(which represent a summary of τ<t) and the function arguments of fa. (For example in Figure 1,
the precondition for the action FindRestaurants is identified as assert user.informed[‘city’] and
user.informed[‘cuisine’]).

We predict the preconditions for each action independently of other actions and the process described
below is repeated for each action a ∈ A.3 Our approach to precondition inference consists of
the following steps: candidate generation, validation and ranking. We detail these steps next (See
Appendix D for an illustration).

Candidate Generation. Given demonstration trajectories D we first generate candidate precondi-
tions by prompting a pre-trained code generation model. The prompt consists of (i) a demonstration
τ ∈ D (ii) definitions of functions FO and (iii) definition of function fa with the assert keyword
in its body. The assert prefix forces the model to generate assertion statements (as opposed to
arbitrary code). We vary the demonstration program and sample multiple precondition candidates for
each demonstration to come up with a pool of plausible candidates Hinitial

a . The pre-trained model is
expected to understand what are appropriate contexts in which a function can be used and use this
understanding to come up with assertion statements.

Although pretrained models have strong priors about appropriate assert statements, the above process
has some limitations. First, generated statements may not be meaningful due to syntax errors or other
deficiencies in the generated expressions. Second, the candidates are obtained based on static analysis
of the program alone and the model has to implicitly reason about execution and program state in
order to predict accurate preconditions.

Candidate Validation. One of the key advantages of a program representation as opposed to
alternative representations such as natural language is the ability to execute. We augment the above
candidate generation approach with a verification approach where each candidate is vetted for
validity and consistency with the data. Given a candidate assertion, we verify whether each of the
demonstration programs can run successfully (e.g,. replacing the function body with a candidate
assertion and executing a demonstration program). Candidates which led to execution failures are
discarded. The remaining candidates Hvalid

a are thus valid and consistent with the data.

Many of the assertions generated will not be useful in practice. For example, trivial assertions such as
‘assert True’ do not convey any useful information about instances where the function is applicable.
Although all the candidate assertions at this point are valid, they may be sub-optimal for the purpose

1For instance, the variable informed captures whether a slot preference was indicated by the user in Figure 1.
2We interchangeably refer to actions/observations as functions and trajectories as programs in the rest of the

paper.
3Jointly reasoning about preconditions for all functions in FA can be interesting and is left to future work.
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of constructing a policy. We seek assertions that help discriminate situations where the function is
applicable. We propose a ranking mechanism to identify the most discriminative assertions.

Candidate Ranking. We seek to identify a small set of precondition/assertion candidates from
Hvalid useful for constructing an agent policy. We begin with the observation that if candidates h1, h2

are such that h2 is satisfied whenever h1 is satisfied (i.e., h1 ⇒ h2), h1 is more desirable as it is more
discriminative of the contexts where action a is applicable (and hence leads to a better policy). As we
discuss in the experiments, this assumption leads to high precision solutions and compromises recall.
We leave alternate ranking criteria to future work.

However, verifying the above property (h1 ⇒ h2) for given precondition candidates is generally
intractable. We thus consider an approximation where we examine if the property is satisfied in
scenarios that appear in the demonstration trajectories. Consider the precondition function ga( · ;h)
which assumes h to be the precondition of action a. Define Ch

a = {(i, j)|ga(τ i<j ;h) = 1, τ i ∈ D}
to be the set of instances (i, j) where precondition h is satisfied at time-step j of demonstration
trajectory τ i. We use Ch1

a ⊆ Ch2
a as a proxy to determine whether h1 ⇒ h2.

We define the optimal set of assertion statements as in Equation (1). When multiple equivalent
candidates exist, we choose one random representative to retain in set Hopt

a . Note that the conjunction
of assertions in Hopt

a is equivalent to that of Hvalid
a . However, identifying a small set of assertion

statements is beneficial both for interpretability and for providing as a prompt for models which have
limited context lengths.

Hopt
a = {h ∈ Hvalid

a | ∄h′ ∈ Hvalid
a s.t. Ch′

a ⊂ Ch
a } (1)

3.3 PRECONDITION-AWARE ACTION PREDICTION

We pose action prediction as a code completion problem where given a partial agent trajectory, a
code model is tasked with suggesting possible next actions (as functions from FA, with appropriate
arguments). We address this learning problem with few-shot prompting where the agent is provided
demonstration trajectories as part of its prompt. In addition, we also provide information about
preconditions as part of the prompt consisting of functions in FO,FA. Functions fa ∈ FA consist of
assertion statements Hopt

a (predicted using the process described in the previous section) in the body
representing the preconditions for that action. In summary, the prompt for the code model, denoted
by query, consists of (i) one or more demonstrations τ ∈ D, (ii) definitions of functions FO, FA
and (iii) query program consisting of past observations and actions (See Figure 1 for an illustration).

As with precondition inference, reasoning about the next action based on static analysis of the
preconditions alone is not ideal. We thus augment the action generation approach above with a
validation process where predicted action candidates are verified using execution. Next action
candidates are sampled from the model until an action consistent with the preconditions is found or a
maximum number of attempts is exceeded. The first attempt uses greedy sampling and subsequent
attempts resort to random sampling. If random sampling does not yield an action consistent with
preconditions, we default to the greedy action. We sample an action by generating tokens until a
newline token is encountered. See Algorithm 1 of the Appendix for a pseudocode description of the
algorithm.

4 EXPERIMENTS

We attempt to answer the following key questions in our evaluation: (i) Is it possible to extract
information about action preconditions from demonstrations of agent behavior? (ii) Is such inferred
precondition information useful for building better agent policies? (iii) Do program representations
enable us to perform these tasks better compared to natural language representation?

We use the python programming language as the code representation in our experiments due to it’s
simplicity and popularity, as well as the recent release of code models that primarily focus on python.
We use the CodeGen 2B (Nijkamp et al., 2022) and StarCoder 16B (Li et al., 2023) open-source
pre-trained code models in our experiments. Specifically, we use the versions of these models which
were further pre-trained on python code after initial pre-training on many programming languages.
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Action Ground-truth precondition Predicted precondition Prec Rec F1F1F1

INFORM(slot) user.requested_slot[slot] slot in user.requested_slot 1 1 1
REQUEST(slot) not user.informed_slot[slot] user.informed_slot[slot] == False 1 1 1
GOODBYE() user.no_more user.no_more 1 1 1
OFFER(slot) query_success query_success == True 1 1 1
INFORM_COUNT() query_success query_success == True 1 1 1
OFFER_INTENT(intent) user.selected query_success == True 0.49 1 0.66

CONFIRM(slot)

user.informed_slot[‘to_location’]
user.informed_slot[‘from_location’]
user.informed_slot[‘leaving_date’]
user.informed_slot[‘travelers’]

user.selected
slot != ‘travelers’ or

user.informed_slot[slot]
0.96 0.7 0.81

NOTIFY_SUCCESS() query_success
user.selected
not user.no_more

1 0.44 0.62

REQ_MORE() user.selected or user.no_more user.selected 1 1 1

FindBus()
user.informed_slot[‘to_location’]
user.informed_slot[‘from_location’]
user.informed_slot[‘leaving_date’]

not user.no_more
user.informed_intent[‘FindBus’]
user.informed_slot[‘leaving_date’]
user.informed_slot[‘from_location’]

0.99 0.89 0.94

BuyBusTicket() user.affirmed user.affirmed 1 1 1

Table 1: Ground-truth and predicted preconditions for actions in the Buses domain of the SGD
benchmark. Precision, Recall and F-score metrics for the predictions are shown in the last three
columns. The ‘self’ prefix is omitted from variables for brevity.

4.1 BENCHMARKS

Task Oriented Dialog Benchmark. The decision making component of a task-oriented dialog
system is a dialog manager which takes as input a sequence of utterances represented as dialog
acts and predicts the next action. In this setting, a user and a system (agent) take turns to speak
and user utterances constitute the agent’s observations. We use the SGD dataset (Rastogi et al.,
2020) in our experiments. There are 11 user acts and 11 system acts defined in the dataset, each
of which takes either no argument, a single slot argument or a single intent argument. We define
analogous functions FO and FA corresponding to each of these acts. We take an object-oriented
approach and group these functions respectively under a user class and a system class. We define
variables v corresponding to each user action that records whether the action was performed (e.g.,
informed_slot[], requested_slot[] in Figure 1). We experiment with 10 domains (schemas)
from the SGD dataset. 10 instances are used as demonstrations and 50 instances for testing. We
manually define the ground-truth preconditions for each system action based on prior knowledge
about the dialog acts. Note that these are only used for evaluation and no supervision is provided to
the model about ground-truth preconditions.

Embodied Textworld. We experiment with the ALFworld embodied textworld benchmark (Shrid-
har et al., 2020) which involves an agent interacting with an environment to perform object interaction
tasks. The observations and actions are natural language statements and the agent is expected to
perform a task specified using a natural language instruction (e.g., move the keys to the table). There
are 9 types of actions which include interaction and navigation actions. Each of these action types
take an object argument and/or a receptacle argument and we define analogous functions FA. In
addition, we define auxiliary functions FO for adding/removing an object from the agent’s inventory
and updating the set of objects visible to the agent. We define three variables v that summarize
the agent’s experience: the set of visible objects, the agent’s inventory and states of objects in the
environment (e.g., open/closed). The dataset has 6 task types. We use 2 instances from each task type
as demonstrations and the standard test set of the benchmark for testing. The benchmark provides
ground-truth preconditions for the actions in a PDDL (Planning Domain Definition Language) repre-
sentation, which we convert to python assertions for evaluation. We provide the complete program
specification for these benchmarks in Appendix A.

4.2 PRECONDITION INFERENCE

Metrics. Recall that a precondition ga(τ<t) ∈ {0, 1} informs whether an action a ∈ A is plausible
given context τ<t = (o1:t, a1:t−1). Define Ca = {(i, j)|ga(τ i<j) = 1, τ i ∈ Dtest} to be the set
of instances (i, j) where the precondition of action a is satisfied at time-step j of test trajectory
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Model SGD Alfworld

Prec Rec F1 Prec Rec F1

Prompt.(2B) 0.73 0.75 0.74 0.59 0.89 0.71
Prompt.(16B) 0.73 0.77 0.75 0.69 0.68 0.68

Ours(2B) 0.91 0.69 0.78 1.0 0.85 0.92
Ours(16B) 0.92 0.78 0.84 1.0 0.81 0.90

Table 2: Precondition Inference performance on the SGD and Alfworld benchmarks. Metrics are
precision, recall and F1 score (All metrics higher ↑ the better). The simple prompting baseline and
our approach are both evaluated with the CodeGen 2B model and StarCoder 16B model.

τ i ∈ Dtest. We define precision and recall metrics for a particular action a as in Equation (2), where
Cpred

a , Cgt
a respectively correspond to the predicted and ground-truth preconditions. The F1 score is

defined as the harmonic mean of precision and recall. These metrics are macro-averaged across all
actions a ∈ A to obtain the final metrics.

Prec =
|Cpred

a ∩ Cgt
a |

|Cpred
a |

,Rec =
|Cpred

a ∩ Cgt
a |

|Cgt
a |

(2)

Baseline. We consider a simple prompting baseline where a code model is prompted with a partial
program specification and predicts assertion statements with greedy decoding.

Results. Table 2 shows the precondition inference performance of code generation models. The
precision for our models are high since the ranking criteria we adopted encourages high preci-
sion solutions. For example, the ground truth precondition for the INFORM(slot) action in ?? is
requested_slot[slot].4 However, the predicted precondition is (requested_slot[slot] and
query_success==True). The models pick up the fact that query_success==True in all instances
the INFORM(slot) action appeared in the demonstration trajectories. In this case precision is 1.0
since the ground truth precondition will be satisfied whenever the predicted precondition is satisfied.
However, the recall is lower (0.57) since the predicted and ground-truth preconditions do not agree
whenever query_success! =True.

Table 1 presents qualitative prediction results for all action types in the Buses domain of the SGD
benchmarks. Note that our models receive no supervision about preconditions and predict these
candidates by only observing expert demonstrations. We present qualitative prediction results for the
Alfworld benchmark in Appendix C. Next, we analyze how these inferred action precondition can
help build better agent policies.

4.3 PRECONDITION-AWARE AGENT POLICY

Metrics. In the SGD benchmark, we evaluate policy performance against actions in the demon-
strations. Since the agent needs to predict multiple actions in a turn, we compute F1 score treating
demonstration actions as ground-truth. For the embodied textworld task, a simulation environment is
available, and we define the success rate (SR) metric which measures how often the agent success-
fully completed the given task. We also define precondition compatibility, which measures how
often the predicted action is compatible with (i.e., does not violate) the ground-truth preconditions.

Baselines. We consider the following baseline policy approaches. First, we consider a few-shot
prompting baselines that imitates the demonstration trajectories to predict the next action. Second,
we consider a prompting baseline which is provided the ground-truth preconditions in addition to
the demonstration trajectories. We call this the precondition prompting baseline. We compare our
approach (ours) which uses predicted preconditions along with the proposed precondition-aware
action prediction strategy against these baselines.

4‘self’ and ‘user’ omitted for brevity
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Backbone Language guidance Approach SGD Alfworld

F1 Cmp. SR Cmp.

LLAMA 13B No
Few-shot prompting 0.77 0.88 0.06 0.10
Precondition Prompting 0.78 0.78 0.06 0.27
Ours 0.80 0.96 0.10 0.50

StarCoder 16B No
Few-shot prompting 0.84 0.92 0.06 0.56
Precondition Prompting 0.84 0.94 0.15 0.62
Ours 0.85 0.97 0.23 0.96

StarCoder 16B React Prompts Few-shot prompting - - 0.44 0.81
Ours - - 0.48 0.96

Table 3: Policy performance on SGD and Alfworld benchmarks. The performance metrics are F1

score, task success rate (SR) and precondition compatibility (Cmp.) (All metrics higher ↑ the better).

In addition to the regular prompting strategy, we also consider the effect of adding chain-of-thought
natural language guidance inspired by React prompts (Yao et al., 2022). We design ‘think’ prompts
similar to the original work and insert them as code comments. Before each action, the agent generates
an optional code comment (‘think’ step) and predicts an action.

We use both LLM and CodeLM models for the experiments. LLAMA-13B (Touvron et al., 2023)
is used as the LLM in our experiments.5 The StarCoder 16B model is used as the CodeLM unless
specified otherwise. We use preconditions predicted by the StarCoder 16B model in all experiments.

Results. We present the main results in Table 3. For fair comparison, we limit the number of
demonstrations to 4 for the SGD benchmark, which is the maximum number of demonstrations
the LLM baseline (LLAMA-13B) can accommodate. First, we observe that code models generally
perform better than LLMs. LLMs particularly struggle on Alfworld (6% success rate). Our proposed
approach which combines few-shot prompting with knowledge about preconditions performs better
than both LLM and code baselines on both benchmarks, with a significant improvement on Alfworld
(6% to 23%). In particular, we observe that the proposed precondition-based reasoning approach
helps both LLMs and code models generate actions that are more accurate and consistent with
preconditions.

We observe that the React code comments significantly help improve policy performance. Our
approach improves the success rate of the React agent from 44% to 48% and its precondition
compatibility from 81% to 96%. This shows the synergistic potential of our approach and recent
advances in prompting for policy learning problems such as generating natural language rationales
before predicting actions.

These results shows that explicitly reasoning about preconditions helps build better policies. Although
few-shot prompting enables language/code models to perform tasks with limited supervision, they
are generally limited by the number of demonstrations that can fit in the context window. Condensing
the information in multiple trajectories in a small set of rules (e.g., preconditions) can help overcome
this limitation, and this idea may further be applicable to other tasks in general.

4.4 ABLATIONS AND ANALYSIS

We perform a series of ablations to understand the impact of different components in our pipeline.

How to incorporate precondition information? In Figure 2 we analyze the impact of (i) in-
cluding precondition information in the prompt and (ii) the precondition-aware action sampling
strategy. Overall, while that inclusion of precondition information in the model prompt generally
helps, our proposed precondition-aware action prediction strategy yields more consistent and sig-
nificant improvements (e.g., 0.64 to 0.68 with predicted preconditions and 0.73 with ground-truth

5LLAMA performed best across the open-source LLMs we tried.
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Model
size

Prec.
prompt

Prec.
sample

1-shot 10-shot

F1 ↑ Cmp.↑ F1 ↑ Cmp.↑

2B ✗ ✗ 0.51 0.73 - -
2B ✓ ✗ 0.52 0.75 - -
2B ✓ ✓ 0.58 0.92 - -

16B ✗ ✗ 0.64 0.78 0.89 0.97
16B ✓ ✗ 0.65 0.77 0.90 0.97
16B ✓ ✓ 0.68 0.90 0.91 0.99

Figure 2: Ablation to study the effect of (a) provid-
ing preconditions as part of the prompt (column
2) and (b) precondition-aware action prediction
strategy (column 3) in the SGD benchmark. The
2B model can only accommodate upto 4 demon-
strations and hence is not evaluated in the 10-shot
setting. The performance metrics are F1 score and
precondition compatibility (Cmp.).

2 4 6 8 10

0.6

0.8

Number of demonstrations

F1 score

No precond. (16B)
Pred precond. (16B)
GT precond. (16B)
No precond. (2B)

Pred precond. (2B)
GT precond. (2B)

Figure 3: Ablation showing policy perfor-
mance (F1 score) in the SGD benchmark
when varying (a) the number of demonstra-
tions (from 1 to 10), (b) model scale (Code-
Gen 2B vs StarCoder 16B) and (c) precondi-
tion information available to the policy model
(None/Predicted/Ground-truth).

preconditions in the 1-shot setting). In addition, it helps predict actions that are more consistent with
their preconditions (e.g., precondition compatibility improves to > 0.9 for both 2B and 16B models).

Amount of Supervision. Figure 3 shows model performance for varying amounts of supervision.
Due to it’s maximum context size of 2048 tokens, the CodeGen 2B model can only accommodate
upto 4 demonstrations. Knowledge about preconditions is particularly helpful when the number of
demonstrations is small. Even as we increase the number of demonstrations, models continue to
benefit from explicitly reasoning about preconditions. Furthermore, performance with ground-truth
preconditions shows that improvements in quality of preconditions lead to improvements in policy
performance.

Model scale. We observe that the small model benefits more from precondition knowledge com-
pared to the big model regardless of the amount of supervision. Enhancing the reasoning capabilities
of small models is important as big models demand higher costs and computation. Leveraging
precondition information and execution-based verification is a promising strategy to enhance small
models.

5 RELATED WORK

Programs as Policies. There exist prior work that advocate viewing robot policies as code/programs
(Liang et al., 2022; Singh et al., 2022). This is in contrast to most prior work that reason about plans
almost entirely in natural language. Similar to natural language based prompting, LLMs are prompted
with examples of programs corresponding to example tasks and are required to generate programs
for a query task. The programs can be rich and composed of functions supported by the target robot
API or third party library functions. Code comments help break down high-level task into subtasks
and assertions are used to take environment feedback into account and provide an error recovery
mechanism. These prior work assume that precondition information is specified as part of the prompt.
In contrast, our work attempts to discover such information from action trajectories.

Reasoning with Verification. Prior work has attempted to augment capabilities of language models
with programs and execution. Liu et al. (2022) combine LLMs with a physics simulator to answer
physics questions. Given a query, a text-to-code model trained with supervised learning generates
a program in order to perform a simulation. The simulator performs the simulation and produces
an output, which is fed as additional information to the LLM to generate a response. Gao et al.
(2022) interleave natural language chain-of-thought statements with program statements to perform
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calculations for arithmetic reasoning problems. Analogous to these work, we find that the ability to
verify via execution improves the performance of LMs, particularly small models.

Reasoning via Prompting. Chain-of-thought prompting (Wei et al., 2022) has emerged as a
powerful technique for getting language models to perform step-by-step reasoning. These ideas have
also been applied to planning problems (Huang et al., 2022b; Yao et al., 2022) where agents are
taught how to come up with rationales for predicted actions with few-shot demonstrations. Compared
to chain-of-thought rationales, which are dynamically generated on the fly and are problem-specific,
we seek to identify a set of rules that capture action preconditions. This provides more controllability
over the action generation process and the rules can also be vetted/edited to achieve desired behavior.

Structured Prediction with Programs. Programs have been used as a representation for structured
prediction tasks in NLP (Wang et al., 2022; Madaan et al., 2022; Zhang et al., 2023). Code models
have been used by these work for modeling procedural real-world activities, also called the script
generation problem. They find that code models have strong capability to reason about event
sequences with minimal supervision compared to language models.

Subtask Graph Framework. Subtask Graphs are a modeling framework proposed by Sohn et al.
(2018; 2020) to learn subtask preconditions from demonstrations. Preconditions are modeled as
boolean expressions involving a pre-defined set of boolean subtask variables which represent whether
a subtask has been completed or not. An Inductive Logic Programming (ILP) algorithm is used to
identify the optimal boolean expression. This framework was further extended to model real-world
procedural activities in Jang et al. (2023); Logeswaran et al. (2023). In contrast to the use of boolean
expressions as the class of functions to model preconditions, the program representation we consider
has the flexibility to represent a broader set of scenarios. We draw inspiration from these works to
formulate and evaluate the precondition inference component in our approach.

6 CONCLUSION

This work presented a novel approach to reason about action preconditions using programs for
learning agent policies in a sequential decision making setting. We proposed to use programs as
a representation of the agent’s observations and actions and showed that precondition inference
and action prediction can be formulated as code-completion problems. By leveraging the strong
priors of pre-trained code models, we proposed a novel approach to infer action preconditions from
demonstration trajectories without any additional supervision. With the predicted preconditions, our
precondition-aware action prediction strategy enables the agent to predict actions that are consistent
with the preconditions and lead to better task completion compared to baselines. Our study opens an
exciting new direction to reason about action preconditions by leveraging code models.

LIMITATIONS

One of the limitations of our work is that coming up with a program specification requires domain
knowledge. For instance, we define variables such as the agent’s inventory and set of visible objects
in the embodied textworld benchmark and variables that capture which slots were requested/informed
in the dialog benchmark. It would be interesting to generalize our approach to broader scenarios
by identifying the key variables of interest with less manual intervention. It would be interesting to
further explore the use of preconditions to more actively direct the agent towards task completion.
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A PROGRAM SPECIFICATION

We present the program specification for the Restaurants domain in the SGD benchmark in Figure 4
and the Alfworld benchmark in Figure 5.

from collections import defaultdict

class USER:

def __init__(self):
self.informed_intent = defaultdict(lambda:
False)
self.informed_slot = defaultdict(lambda:
False)
self.requested_slot = defaultdict(lambda:
False)

self.no_more = False
self.selected = False
self.affirmed = False
self.affirm_intent = False
self.negate_intent = False
self.request_alternatives = False

def INFORM_INTENT(self , intent):
self.informed_intent[intent] = True

def NEGATE_INTENT(self):
self.negate_intent = True

def AFFIRM_INTENT(self):
self.affirm_intent = True

def REQUEST_ALTS(self):
self.request_alternatives = True

def INFORM(self , slot):
self.informed_slot[slot] = True

def REQUEST(self , slot):
self.requested_slot[slot] = True

def GOODBYE(self):
self.no_more = True

def THANK_YOU(self):
self.no_more = True

def SELECT(self):
self.selected = True

def AFFIRM(self):
self.affirmed = True

def NEGATE(self):
self.affirmed = False

class SYSTEM:

def __init__(self , user):
self.user = user
self.query_success = None

def INFORM(self , slot):
assert self.user.requested_slot[slot]

def REQUEST(self , slot):
assert not self.user.informed_slot[slot]

def GOODBYE(self):
assert self.user.no_more

def FindRestaurants(self):
assert self.user.informed_slot['city']
assert self.user.informed_slot['cuisine ']
assert self.user.informed_intent['
FindRestaurants ']

def ReserveRestaurant(self):
assert self.user.selected or self.user.
affirmed

def OFFER(self , slot):
assert self.query_success or self.user.
affirmed

def INFORM_COUNT(self):
assert self.query_success

def OFFER_INTENT(self , intent):
assert self.user.selected

def CONFIRM(self , slot):
assert self.user.informed_slot['time']
assert self.user.informed_slot['city']
assert self.user.selected or self.user.
informed_slot['restaurant_name ']

def NOTIFY_SUCCESS(self):
assert self.query_success

def NOTIFY_FAILURE(self):
assert not self.query_success

def REQ_MORE(self):
assert self.user.selected or self.user.
no_more or not self.query_success

def set_query_status(self , status):
self.query_success = status

Figure 4: Program specification of the Restaurants domain in the SGD benchmark. Note that the
assertion statements are assumed to be unknown and only used for evaluation.
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from collections import defaultdict

class Environment:

def __init__(self):
self.object_states = defaultdict(lambda: False)

def set_property(self , obj , property , value):
self.object_states [(obj , property)] = value

def get_property(self , obj , property):
return self.object_states [(obj , property)]

class Agent:

def __init__(self , env):
self.env = env
self.inventory = None
self.visible_objects = set()

def add_inventory(self , obj):
self.inventory = obj

def remove_inventory(self , obj):
self.inventory = None

def update_visible_objects(self , *args):
self.visible_objects.update(list(args))

def is_visible(self , obj):
return obj in self.visible_objects

def goto(self , recep):
assert self.is_visible(recep)

def open(self , recep):
assert self.is_visible(recep)
assert self.env.get_property(recep , 'open') == False

def close(self , recep):
assert self.is_visible(recep)
assert self.env.get_property(recep , 'open') == True

def take(self , obj , recep):
assert self.is_visible(obj)
assert self.is_visible(recep)
assert self.inventory == None , 'Can only hold one object at a time'

def put(self , obj , recep):
assert self.inventory == obj , 'Need to be holding the object '
assert self.is_visible(recep)

def clean(self , obj , recep):
assert self.is_visible(recep)
assert self.inventory == obj , 'Need to be holding the object '
assert 'sink' in recep

def heat(self , obj , recep):
assert self.is_visible(recep)
assert self.inventory == obj , 'Need to be holding the object '
assert 'microwave ' in recep

def cool(self , obj , recep):
assert self.is_visible(recep)
assert self.inventory == obj , 'Need to be holding the object '
assert 'fridge ' in recep

def toggle(self , obj):
assert self.is_visible(obj)

Figure 5: Program specification of the Alfworld benchmark. Note that the assertion statements are
assumed to be unknown and only used for evaluation.

13



Submitted to NeurIPS 2023 Foundation Models for Decision Making Workshop

B EXAMPLE TRAJECTORIES

Figure 6 shows an example trajectory from the Restaurants domain in the SGD benchmark and the
corresponding program representation. Figures 7 and 8 show an example trajectory from the pick
and place task of the Alfworld benchmark in its original text representation and the corresponding
program representation.

USER: (INFORM_INTENT , FindRestaurants)
SYSTEM: (REQUEST , city)
USER: (INFORM , city)
SYSTEM: (REQUEST , cuisine)
USER: (INFORM , cuisine)
SYSTEM: (FindRestaurants)

(Query successful)
(OFFER , restaurant_name)
(OFFER , city)
(INFORM_COUNT)

USER: (REQUEST_ALTS)
SYSTEM: (OFFER , restaurant_name)

(OFFER , city)
USER: (REQUEST , has_live_music)
SYSTEM: (INFORM , has_live_music)
USER: (INFORM_INTENT , ReserveRestaurant)

(SELECT)
SYSTEM: (REQUEST , time)
USER: (INFORM , time)
SYSTEM: (CONFIRM , restaurant_name)

(CONFIRM , city)
(CONFIRM , time)
(CONFIRM , party_size)
(CONFIRM , date)

USER: (INFORM , date)
(NEGATE)

SYSTEM: (CONFIRM , time)
(CONFIRM , date)

USER: (INFORM , time)
(NEGATE)

SYSTEM: (CONFIRM , time)
(CONFIRM , date)

USER: (AFFIRM)
SYSTEM: (ReserveRestaurant)

(Query successful)
(NOTIFY_SUCCESS)

USER: (REQUEST , serves_alcohol)
SYSTEM: (INFORM , serves_alcohol)
USER: (THANK_YOU)

(GOODBYE)
SYSTEM: (GOODBYE)

user.INFORM_INTENT('FindRestaurants ')
system.REQUEST('city')
user.INFORM('city')
system.REQUEST('cuisine ')
user.INFORM('cuisine ')
system.FindRestaurants ()
system.set_query_status(True)
system.OFFER('restaurant_name ')
system.OFFER('city')
system.INFORM_COUNT ()
user.REQUEST_ALTS ()
system.OFFER('restaurant_name ')
system.OFFER('city')
user.REQUEST('has_live_music ')
system.INFORM('has_live_music ')
user.INFORM_INTENT('ReserveRestaurant ')
user.SELECT ()
system.REQUEST('time')
user.INFORM('time')
system.CONFIRM('restaurant_name ')
system.CONFIRM('city')
system.CONFIRM('time')
system.CONFIRM('party_size ')
system.CONFIRM('date')
user.INFORM('date')
user.NEGATE ()
system.CONFIRM('time')
system.CONFIRM('date')
user.INFORM('time')
user.NEGATE ()
system.CONFIRM('time')
system.CONFIRM('date')
user.AFFIRM ()
system.ReserveRestaurant ()
system.set_query_status(True)
system.NOTIFY_SUCCESS ()
user.REQUEST('serves_alcohol ')
system.INFORM('serves_alcohol ')
user.THANK_YOU ()
user.GOODBYE ()
system.GOODBYE ()

Figure 6: Example trajectory from the Restaurants domain of the SGD benchmark. The original data
representation is shown on the left and the corresponding program representation is shown on the
right.
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You are in the middle of a room. Looking quickly around you , you see a countertop 1, a drawer
1, a drawer 2, a drawer 3, a drawer 4, a drawer 5, a drawer 6, a garbagecan 1, a
handtowelholder 1, a handtowelholder 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger 1,
a towelholder 1, and a towelholder 2.

Your task is to: put some spraybottle on garbagecan
> go to drawer 4
The drawer 4 is closed.
> open drawer 4
You open the drawer 4. The drawer 4 is open. In it, you see nothing.
> close drawer 4
You close the drawer 4.
> go to drawer 2
The drawer 2 is closed.
> open drawer 2
You open the drawer 2. The drawer 2 is open. In it, you see nothing.
> close drawer 2
You close the drawer 2.
> go to garbagecan 1
On the garbagecan 1, you see nothing.
> go to drawer 3
The drawer 3 is closed.
> open drawer 3
You open the drawer 3. The drawer 3 is open. In it, you see nothing.
> close drawer 3
You close the drawer 3.
> go to countertop 1
On the countertop 1, you see a sink 1, a soapbottle 1, and a toiletpaper 1.
> go to toilet 1
On the toilet 1, you see a cloth 1, and a spraybottle 1.
> take spraybottle 1 from toilet 1
You pick up the spraybottle 1 from the toilet 1.
> go to garbagecan 1
On the garbagecan 1, you see nothing.
> put spraybottle 1 in/on garbagecan 1
You put the spraybottle 1 in/on the garbagecan 1.

Figure 7: Example trajectory from the pick and place task of the Alfworld benchmark in its original
text representation.
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def put_some_spraybottle_on_garbagecan ():
# put some spraybottle on garbagecan.
env = Environment ()
agent = Agent(env)
agent.update_visible_objects('countertop 1', 'drawer 1', 'drawer 2', 'drawer 3', 'drawer 4
', 'drawer 5', 'drawer 6', 'garbagecan 1', 'handtowelholder 1', 'handtowelholder 2', '
sinkbasin 1', 'toilet 1', 'toiletpaperhanger 1', 'towelholder 1', 'towelholder 2')
agent.goto('drawer 4')
env.set_property('drawer 4', 'open', False)
agent.open('drawer 4')
env.set_property('drawer 4', 'open', True)
agent.close('drawer 4')
env.set_property('drawer 4', 'open', False)
agent.goto('drawer 2')
env.set_property('drawer 2', 'open', False)
agent.open('drawer 2')
env.set_property('drawer 2', 'open', True)
agent.close('drawer 2')
env.set_property('drawer 2', 'open', False)
agent.goto('garbagecan 1')
agent.update_visible_objects('garbagecan 1')
agent.goto('drawer 3')
env.set_property('drawer 3', 'open', False)
agent.open('drawer 3')
env.set_property('drawer 3', 'open', True)
agent.close('drawer 3')
env.set_property('drawer 3', 'open', False)
agent.goto('countertop 1')
agent.update_visible_objects('countertop 1', 'sink 1', 'soapbottle 1', 'toiletpaper 1')
agent.goto('toilet 1')
agent.update_visible_objects('toilet 1', 'cloth 1', 'spraybottle 1')
agent.take('spraybottle 1', 'toilet 1')
agent.add_inventory('spraybottle 1')
agent.goto('garbagecan 1')
agent.update_visible_objects('garbagecan 1')
agent.put('spraybottle 1', 'garbagecan 1')
agent.remove_inventory('spraybottle 1')

Figure 8: Example trajectory from the pick and place task of the Alfworld benchmark in our program
representation.
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C QUALITATIVE PREDICTION RESULTS FOR ALFWORLD

Table 4 shows precondition prediction results for the Alfworld benchmark.

Action Prediction Ground-truth

goto(recep) is_visible(recep) is_visible(recep)

open(recep)
recep in visible_objects
env.get_property(recep, ‘open’) is False

is_visible(recep)
env.get_property(recep, ‘open’) == False

close(recep) env.get_property(recep, ‘open’)
is_visible(recep)
env.get_property(recep, ‘open’) == True

take(obj, recep)
is_visible(obj)
inventory is None

is_visible(obj)
is_visible(recep)
inventory == None

put(obj, recep) obj in inventory
inventory == obj
is_visible(recep)

clean(obj, recep) obj in inventory
is_visible(recep)
inventory == obj
‘sink’ in recep

heat(obj, recep)
inventory != None
env.get_property(obj, ‘heat’) == False

is_visible(recep)
inventory == obj
‘microwave’ in recep

cool(obj, recep)
obj in inventory
env.get_property(obj, ‘cool’) == False

is_visible(recep)
inventory == obj
‘fridge’ in recep

toggle(obj)
is_visible(obj)
inventory is not None

is_visible(obj)

Table 4: Ground-truth and predicted preconditions for actions in the Alfworld benchmark.
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D PRECONDITION INFERENCE

Figure 9 illustrates the pipeline for action precondition generation.

⁃ isinstance(slot, str)
⁃ self.db_status in DB_STATUS
⁃ (len(slot) > 0)
⁃ not self.db_status == DB_STATUS.NONE
⁃ self.user.requested_slot[slot]
...

def demonstration():..
class USER:..
class SYSTEM:..
  def INFORM(self, slot):
    assert isinstance(slot, str)
demonstration()

Candidate RankingValidate with ExecutionGenerate candidate preconditions

def demonstration():..
class USER:..
class SYSTEM:..
  def INFORM(self, slot):
    assert self.user.informed_slot[slot]
demonstration()

def demonstration():..
class USER:..
class SYSTEM:..
  def INFORM(self, slot):
    assert 

isinstance(slot, str)
self.db_status in DB_STATUS
(len(slot) > 0)
not self.user.informed_intent[slot]

Code 
model

self.user.informed_slot[slot] == False

(self.user.no_more == False)
not self.user.no_more"

>

>

Figure 9: Precondition Inference Overview: We first generate multiple precondition candidates by
prompting a code model with demonstration programs. We then validate these candidates based on
the demonstrations via execution, and rank them to identify the most promising candidates.

E PRECONDITION-AWARE ACTION PREDICTION

Algorithm 1 presents the pseudocode for our precondition-aware action sampling strategy.

Algorithm 1 Sample Next Action with Verification
Inputs: query, max_attempts
verified← False
attempts← 0
prediction← GREEDYSAMPLE(query)
while not verified and attempts < max_attempts do

if attempts > 0 then
prediction← RANDOMSAMPLE(query)

program← query+ prediction
verified← VERIFYPROGRAM(program)
attempts← attempts+ 1

if not verified then
prediction← GREEDYSAMPLE(query)

Outputs: prediction, verified
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F PRECONDITION INFERENCE EXAMPLE

Below we present an example showing the intermediate outputs of the precondition inference pipeline
for action INFORM in the Restaurants domain of the SGD benchmark. The INFORM action takes a slot
argument and the function syntax is INFORM(self, slot) (See the full program specification in
Appendix A).

• Generate candidate preconditions Hinitial
a by prompting a code model with demonstrations

not self.user.requested_slot[slot], 'Requested slot'
self.query_success != None
(self.query_success == True)
(self.query_success)
self.query_success is not None
(self.user.informed_slot[slot])
self.query_success is None
(slot in self.user.informed_slot)
slot not in self.user.requested_slot.keys()
self.user.affirmed == True
self.user.affirmed
(hasattr(slot , '__name__ '))
isinstance(slot , str)
slot!= 'date'
self.query_success in (True , False)
slot!='serves_alcohol '
self.user.requested_slot[slot]

• Identify valid candidates Hvalid
a based on execution against the demonstration programs

self.query_success != None
(self.query_success == True)
(self.query_success)
self.query_success is not None
isinstance(slot , str)
slot!= 'date'
self.query_success in (True , False)
self.user.requested_slot[slot]

• Identify candidates that are functionally equivalent
# Cluster 0
self.query_success != None
self.query_success is not None
self.query_success in (True , False)
# Cluster 1
(self.query_success == True)
(self.query_success)
# Cluster 2
isinstance(slot , str)
slot!= 'date'
# Cluster 3
self.user.requested_slot[slot]

• Identify the precondition clusters that satisfy Equation (1)
# Cluster 1 (subsumes both cluster 0 and 2)
(self.query_success == True)
(self.query_success)
# Cluster 3
self.user.requested_slot[slot]

• Choose single representative (randomly) from each cluster to construct Hopt
a

(self.query_success == True)
self.user.requested_slot[slot]
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