

INTRINSIC ENTROPY OF CONTEXT LENGTH SCALING IN LLMS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
190

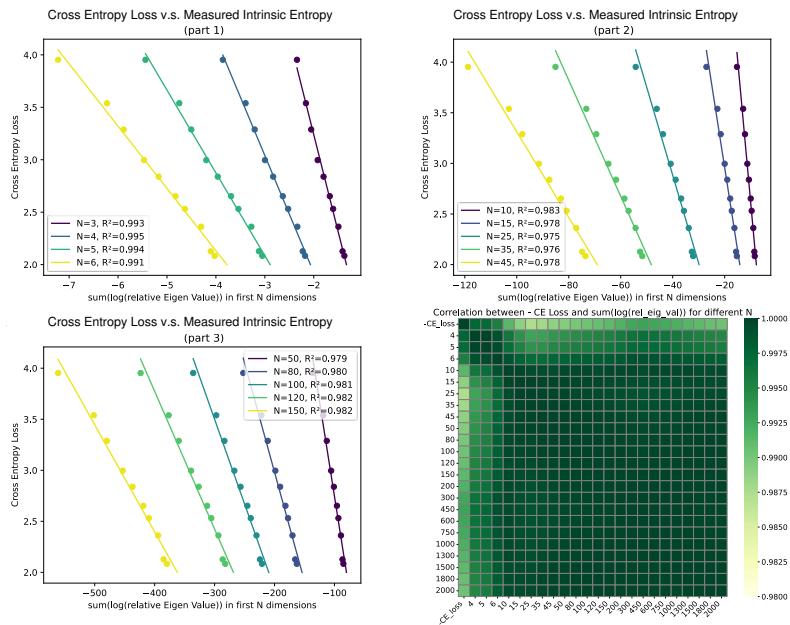


Figure 1: Upper-left, Upper-right, Bottom-left: **Cross Entropy Loss vs. measured Intrinsic Entropy** with N first Eigen Values: $\sum_{i \leq N} \log \text{rel_eig_val}$; Bottom-right: correlation between minus CE loss and $\sum_{i \leq N} \log \text{rel_eig_val}$. All experiments are for LLaMa-3.1-8B on a subset of OpenWebText. From the first three figure, we see CE loss is linear with the Entropy of certain subspaces. From the bottom-right figure, we see that Entropy measured in different subspaces are highly correlated ($\text{corr} > 0.97$), which are also highly correlated with the CE loss for Next Token Prediction. [More details about experiment settings can be found in Section 2.2.2.](#)

- 2. We conduct experiments on real and synthetic data, validating our theoretical assumptions and deductions.

The theoretical framework upon Intrinsic Entropy (with **formal definitions** in **Appendix D**) can predict or explain certain phenomena. For example, it shows that for a certain amount of training data, as the context length increases, the neural network would first behave more similarly to the Bayes model (thus the loss decreases); while beyond a certain optimal context length, the gap between the trained model and Bayes Model would increase, hence validation loss would increase: this is experimentally verified in Figure 4 of this work, and also related to certain observations in previous work.

We hope our work may inspire future work when it comes to explaining context impact and/or designing new long context Language Models.

2 ASSUMPTIONS, DEDUCTIONS AND OBSERVATIONS FOR LANGUAGE MODELING

2.1 PRELIMINARIES

2.1.1 PRELIMINARY: LOSS DECOMPOSITION

It is common in ML studies to decompose the loss into **Bayes Risk** (the minimum loss possible, achieved by the theoretically optimal Bayesian Model), and **Approximation Loss** (the loss measuring the ability of a trained model actually to approximate the Bayesian Model). Specifically for Cross-Entropy loss H , we have (please refer to **Appendix B.1** for **formal definitions** and **deriva-**

108 **tion details):**

$$\begin{aligned} H(P, Q_l) &= R_{Bayes} + L_{Approx} \\ &= H(P, P_l) + D_{KL}(P_l, Q_l) \end{aligned} \tag{1}$$

112 Where $P = p(x_0|x_{-\infty:0})$ is the distribution of Natural Language (or our experimented dataset),
 113 $P_l = p(x_0|x_{-l:0})$ is the Bayesian Model for context length l and $Q_l = q(x_0|x_{-l:0})$ is the
 114 learned Language Model of context length l . $R_{Bayes} = H(P, P_l)$ is the **Bayes Risk** of opti-
 115 mal model (the assumed ‘limit’ when we have infinite data points and model parameters) and
 116 $L_{Approx} = D_{KL}(P_l, Q_l)$ is the **Approximation Loss**, which can be affected by dataset size D ,
 117 etc. The Bayes Risk is model or data agnostic, only related to natural language itself and is limited
 118 only by visible context length.

119 2.1.2 PRELIMINARY: INTRINSIC SPACE

121 In previous work (Bahri et al., 2024; Cheng et al., 2023), as a common practice, the ‘Data Manifold’
 122 is often **defined** as the middle feature representation of well-trained neural networks, and **assump-**
 123 **tions** are made on this kind of mid-representation, with experiments to **validate** these assumptions.
 124 (Intrinsic Space is defined as the space where the Data Manifold lies.) We follow such practice in
 125 main paper for clarity.

126 Meanwhile, the Data Manifold can be more formally defined by a mapping from input data to some
 127 Intrinsic Space which satisfies a certain set of properties, and mid-representation of well-trained
 128 neural networks are assumed to have such properties, which can be experimentally validated. This
 129 is an equivalent yet more formal perspective. In Appendix D, we formally define the Intrinsic Space
 130 and derive related results in our work with such perspective for completeness.

132 2.1.3 PRELIMINARY: OUTLINES

133 In **Section 2.2** we propose the definition of Intrinsic Entropy, and discuss how to bridge **Bayes Risk**
 134 with it, thus explaining how context length impacts Bayes Risk.

136 Approximation Loss, or how well the trained model learns Bayesian Model, is related to Intrinsic
 137 Dimension in previous work of Scaling Laws (Sharma & Kaplan, 2022; Shi et al., 2024). In
 138 **Section 2.3** we discuss more about how the context length impacts **Approximation Loss** from this
 139 perspective.

140 We further derive that the balance between **Bayes Risk** and **Approximation Loss** would lead to
 141 an optimal context length which increases with the size of the training dataset. Our theoretical
 142 deduction and experiments on language are presented in **Section 3**.

144 2.2 BAYES RISK WITH CONTEXT LENGTH: AN INTRINSIC ENTROPY PERSPECTIVE

145 In this section we discuss to bridge context length and Bayes Risk with the concept of Intrinsic
 146 Entropy.

148 2.2.1 BAYES RISK AND ENTROPY IN INTRINSIC SPACE: DERIVED FROM FIRST PRINCIPLES

150 ‘Information Entropy’ is defined as the amount of information carried in the Intrinsic Space. Here
 151 are detailed assumptions⁴ as definitions:⁵

- 153 • **Assumption 1.** Information Entropy of Intrinsic Space for Bayes Model $\lim_{l \rightarrow \infty} S(P_l) = S(P_\infty)$ is finite, which is the Information Entropy of next token prediction of language
 154 itself.
- 156 • **Assumption 2.** $\forall l_1, l_2$ such that $l_1 < l_2$, $S(P_{l_1}) < S(P_{l_2})$. This is because a longer
 157 context contains more information.
- 158 • **Assumption 3. Linear Entropy Relationship:** The Information Entropy w.r.t. Next Token
 159 Prediction, defined as $S_{ntp}(P_l) = H(P_0) - H(P_l)$, is linear with the Entropy in the Intrinsic

161 ⁴Appendix D defines Intrinsic Entropy from a more formal perspective.

⁵To avoid confusion, we use ‘H’ for ‘Cross Entropy Loss’, and ‘S’ for ‘Information Entropy’.

162 Space of the Bayes Model, i.e., $S_{ntp}(P_l) = k * S(P_l) + b$, and $0 < k < 1$. A **formal**
 163 **definition can be found in Appendix D.**

164 S_{ntp} is smaller than S since the Intrinsic Space contains important information on previous
 165 tokens that are important for the prediction of future tokens, while S_{ntp} is related only to the
 166 next token. The hidden state in RNNs contain more information than only the next token
 167 to predict. For example, consider a character-level RNN that predicts the sentence ‘1 + 2
 168 equal_’, the next character to predict is ‘s’, but the hidden state should contain information
 169 about answer ‘3’ for the latter tokens.

170 With these assumptions, we can derive that the Bayes Risk is linear with respect to the Intrinsic
 171 Entropy:
 172

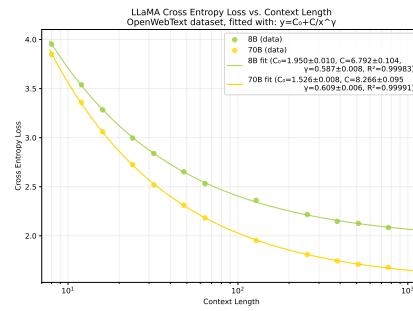
$$173 \quad R_{Bayes} = H(P, P_l) \\ 174 \quad = -k * S(P_l) + Const \quad (2)$$

175 This **linear relationship** is observed in experiments for LMs in **Section 2.2.2**, and for synthetic data
 176 in **Section 4.3**.

177 Note that by Assumptions 1 and 2 we derive: ⁶ $\frac{\partial R_{Bayes}}{\partial l} < 0$, and $\lim_{l \rightarrow \infty} \frac{\partial R_{Bayes}}{\partial l} = 0$.

178 2.2.2 BAYES RISK AND INTRINSIC ENTROPY: EXPERIMENT MEASUREMENT

179 We use well-trained Large Language Models to conduct experiments for approximating the Bayes
 180 Risk $H(P_l)$ on certain text corpora.



181 Figure 2: **Bayes Risk vs. Context Length**: Bayes Risk is approximated by Cross Entropy loss
 182 measured with LLaMa-3.1 series on OpenWebText, for different context length.

183 We find that:

$$184 \quad H(P, P_l) \approx C_0 + C/l^\gamma \quad (3)$$

185 approximates the experimented behavior on OpenWebText well. Please see Figure 2 for the result.
 186 Moreover, we further conduct experiments on a dataset that is sure not to be included in LLaMa
 187 3.1 8B’s pretraining dataset. Please see further information in Appendix E.

188 **Experimentally measure Intrinsic Entropy S using Eigen Values as proxy** To establish a relation-
 189 ship between Cross Entropy and Intrinsic Space, we run LLaMa-3-8b on a subset of the Open-
 190 webtext dataset and obtain the feature of the last token as the feature representation, or Intrinsic
 191 Space of the approximated Bayes Model. **For certain context length, we gather the feature repre-
 192 sentation of multiple (≥ 10000) samples, and conduct PCA analysis on these samples to obtain**

193 ⁶Generally speaking, the context length l is an integer. Here, following previous work (Kaplan et al.,
 194 2020; Tao et al., 2024), we assume R_{Bayes} admits a differentiable extension \tilde{R}_{Bayes} to real-valued l and use
 195 $\partial R_{Bayes}/\partial l$ to denote $\partial \tilde{R}_{Bayes}(l)/\partial l$ evaluated at integer l . In this sense, the derivative serves as a continuous
 196 approximation to the discrete difference $R_{Bayes}(l+1) - R_{Bayes}(l)$. We use the same convention for expressions
 197 of the form $df(l)/dl$ throughout this work.

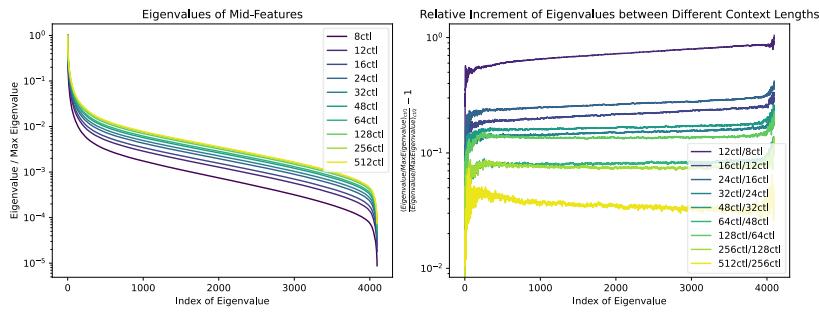
216
217
218
219
220
221
222
223
224
225
226
227

Figure 3: **Left:** **Relative Eigen Value** Measured for the last token, for LLaMa-3.1-8B on a subset of OpenWebText. **Right:** relative increment of relative eigenvalues (for different context lengths measured). We can see that the relative eigenvalues approximately increase at a same scale.

231

eigenvalues for the specific context length, results are presented in Figure 1. We see that the model with larger context length tends to have larger relative eigenvalues in intrinsic space, thus containing more information.

235
236
237

According to Statistical Physics, entropy of a system can be defined as $S = \log \Omega$ where Ω is the possible number of states of the system (Landau & Lifshitz, 1980). Similarly, we use the sum of logarithm of eigen values as proxy for measuring Information Entropy:⁷

238
239
240
241
242
243
244
245

$$\begin{aligned} S &= \log \Omega \\ &= \log V/h^{\dim(V)} \text{ where } V \text{ is the volume in intrinsic space} \\ &= \sum_i \log \text{rel_eigval}_i/h \\ &= \sum_i \log \text{rel_eigval}_i + \text{Const} \end{aligned}$$

246
247
248
249

Here h is the ‘plank constant’, meaning that one state corresponds to a unit hyper-volume of h^{\dim} in the Intrinsic Space. A different value of h would only add a constant to S and would not affect change in Entropy. Thus, we use $\sum_i \log \text{rel_eigval}_i$ as Entropy in Intrinsic Space.

250
251
252
253
254
255
256

Experimentally measure next-token-prediction Information Entropy S_{ntp} Experiments show that, no matter what subspace we use, the Cross Entropy Loss usually follows a linear relationship with the Entropy we measured in the subspace, supporting the claim that the next token prediction task likely lies in some subspace of the Intrinsic Space, or (statistically) its Entropy should be some weighted average of Entropy of several subspaces of similar dimension.. This also suggests that H_{ntp} is approximately linear with H_{IS} , which validates our previous assumptions and claims.

257
258
259

We observe a fairly linear relationship between CE Loss and Entropy measured (supporting our theory), validating our theoretical assumptions:

260

$$R_{Bayes} \approx -k * S(P_l) + \text{Const},$$

261
262
263

which aligns well with **Equation 2**, thus validating our entropy-based deduction.

264
265

2.3 APPROXIMATION LOSS WITH CONTEXT LENGTH: AN INTRINSIC DIMENSION PERSPECTIVE

266
267
268
269

Previous work experimentally summarizes the Scaling Laws (Kaplan et al., 2020; Hoffmann et al., 2022) as: $L_{Approx}(D) = C_0 + A/D^\alpha$ for different dataset size D . Previous work has succeeded

⁷Similar estimation can also be derived from the assumption of Gaussian differential entropy with homogeneous reference measure.

270 in explaining this from an intrinsic space perspective, represented by (Bahri et al., 2024; Sharma &
 271 Kaplan, 2022) as: $\alpha \approx c/dim$, and dim is the dimension of the data manifold of the data and the
 272 model, where a uniform distribution in Intrinsic Space is assumed. **We derive this rigorously from
 273 weaker assumptions in Theorem 1,2 in Appendix D.2.**

274 As assumed in Section 2.2.1, the Intrinsic Dimension should increase with l . Combined with previous
 275 results on $\alpha = c/dim(l)$, we have,
 276

$$277 \quad L_{Approx} = C_0 + A(l)/D^{\alpha(l)}, \\ 278 \quad \frac{\partial \alpha}{\partial l} < 0. \quad (4)$$

281 This shows longer context length would make it harder for the model to learn to approximate the
 282 Bayes Model.
 283

284 3 DEDUCTION: OPTIMAL CONTEXT LENGTH AND TRAINING DATASET SIZE

287 In this section, we show a deduction of our theory presented in Section 2. We study the problem
 288 about a certain model trained on certain amount of training dataset D with context length l , and
 289 validated on the validation set with the same context length l , where we want to know the impact of
 290 l on validation loss.

291 As shown in Section 2.2, we can write Loss as:

$$292 \quad H(P, Q_l) = C_0 + \frac{C}{l^\gamma} + \frac{A(l)}{D^{\alpha(l)}}, \quad (5)$$

295 In previous sections, we did not specifically discuss the relationship between A and l . We consider
 296 l where $\partial_l L_{CE} = 0$ would give us an optimal l with respect to D :

$$297 \quad \partial_l A = -A \ln D(-\partial_l \alpha) + \gamma C \frac{D^\alpha}{l^{\gamma+1}} = f(D, l). \quad (6)$$

300 As shown, $\lim_{D \rightarrow 0} f = -\infty$ and $\lim_{D \rightarrow \infty} f = \infty$. This shows that for fixed l , no matter what $\partial_l A$
 301 is, there exists some D s.t. $\partial_l L_{CE} = 0$.

303 Bayes Risk decreases with l , while Approximation Loss increases with l but decreases with D ; the
 304 balance between these two losses results in an optimal l that increases with the optimal D .

305 We conduct experiments on a subset of OpenWebText with a sufficiently long context length. We
 306 trained GPT-2 on different context lengths with different amounts of training data, until the valida-
 307 tion loss increases. We show our results in **Figure 4** and **Figure 14**. Details for our experiment
 308 settings are presented in the Appendix H.

309 As shown both theoretically and experimentally, there does exist an optimal context length, **beyond
 310 which even relevant long context would increase validation loss** of pretraining Language Models.
 311 Such optimal context length would increase with training dataset size.
 312

313 4 PROOF OF CONCEPT WITH SYNTHETIC DATA

314 4.1 LIST OF POINTS TO PROVE

317 In this section, we conduct experiments on a synthetic dataset, explaining the Bayes Risk and re-
 318 lated theories we proposed in Section 2.2. With this synthetic dataset, we would like to prove the
 319 following,
 320

- 321 • **Point 1. Cross Entropy** Loss is approximately linear with **Intrinsic Entropy** (Assumption 3 in
 322 Section 2.2.1). Shown in **Section 4.3**.
- 323 • **Point 2.** By measuring **Entropy** in **Intrinsic Space** of well-trained models, one could obtain a **valid
 324 measurement that is linear with Cross Entropy Loss** (Section 2.2.2). Shown in **Section 4.4**.

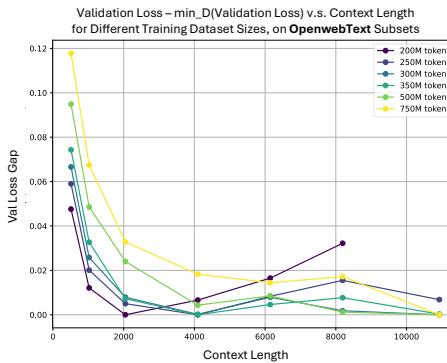


Figure 4: Validation Loss Gap (Val Loss - $\min_D(\text{Val Loss})$) v.s. Context Length, measured on subsets of OpenWebText dataset, where we subtract the minimum loss grouped by context length from each curve (please refer to Figure 14 for the original figure). For each training dataset size, there exists an optimal context length that minimizes pretraining validation loss, which increases with the dataset size (More details can be found in [Section 3](#)). [We also provide similar experiments to prove an optimal context length exists on a synthetic dataset, as shown in Appendix F.](#)

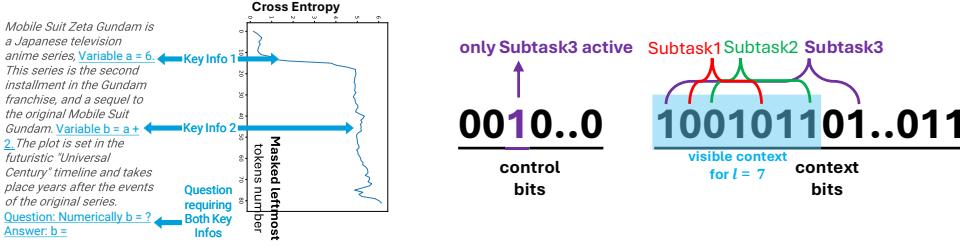


Figure 5: **Left:** An example of the ‘two needles in a haystack’ task, similar to those in (Levy et al., 2024). The text part is the input to the Language Model, with key information and question visualized in blue; the figure part shows perplexity of the answer token (8) of LLaMa-3.1-8B (horizontal) vs. number of masked leftmost tokens (vertical). Although seeing both pieces of information are necessary to answer the question, perplexity rises dramatically only when the first piece of information is masked. **Right:** An example of our synthetic data. [Each sub-task corresponds to 2 context bits of fixed position. At each time, exactly one sub-task is active, and the ground truth output is calculated by taking XOR over the 2 context bits of the activate task.](#) As shown in the example, the answer for Subtask 1,2,3 is $0 \oplus 0 = 0$, $0 \oplus 1 = 1$ and $1 \oplus 1 = 0$ respectively, but since the third bit is 1 for control bits, only Subtask 3 is activated and the final answer is 0. However, for a model of context length 7, it cannot see the 9th bit required by subtask 3, making it unable to predict the answer correctly.

4.2 CONSTRUCTION OF SYNTHETIC DATA: THE ‘POSITION WEIGHTED MULTITASK SPARSE PARITY’ DATASET

In previous work, a common practice is to mask the leftmost tokens and leave l tokens before the token-to-predict visible to Language Models, as shown in Figure 5. Although this may not show the impact of important tokens to final answer perplexity (e.g., it fails to show the importance of the second key info in Figure 5), this method aligns well with our setting of increasing context length.

Although the next token to predict might depend on several pieces of key information, we see from Figure 5 that the first key token would raise model perplexity.

Inspired by this concept in Figure 5 and the ‘multitask sparse parity dataset previously studied in (Michaud et al., 2024; Barak et al., 2022), we propose the ‘position-weighted multitask sparse parity dataset. In detail, each input consists of L ‘context bits, each bit lies in $\{0, 1\}$. Each subtask takes

378 xor on two certain bits in the context bits, and the answer to some sample is the answer of the
 379 only activated subtask, as shown in Figure 5. We use 60 context bits and 200 tasks. From 11th to
 380 the 60th bit, each bit corresponds to the max bit of two tasks: $\#Task|_{max(bit_1,bit_2)=i} = 2, \forall i \in$
 381 $\{11, 12, \dots, 60\}$.

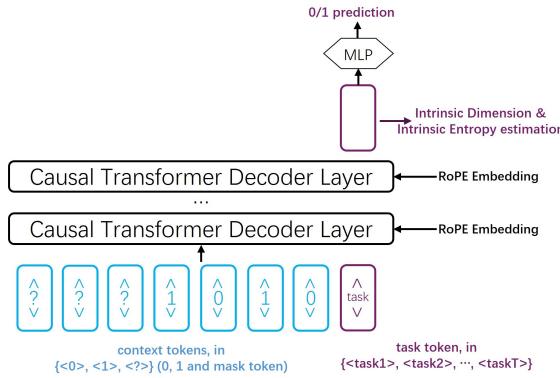
382 We assign different frequencies to different tasks, approximating the real-world situation where tasks
 383 requiring nearer bits are more often. In all, Bayes Risk, or the minimum Cross Entropy Loss, is:
 384

$$\begin{aligned}
 385 \quad & R_{Bayes}(ctl) \\
 386 \quad & = \text{MinCELoss}(ctl) \\
 387 \quad & = \left(\sum_{\substack{\text{task s.t.} \\ \text{max}(bit_1,bit_2) > ctl}} \text{freq(task)} \log 2 \right) / \sum_{\text{task}} \text{freq(task)} \\
 388 \quad & \approx A + B / (ctl + C)^\alpha
 \end{aligned}$$

392 More details are shown in Table 1.
 393

394 4.3 TRANSFORMER-BASED SYNTHETIC MODEL WITH ENTROPY MEASUREMENTS

396 We use a 3-layer causal Transformer, with embedding dimension 208 and FFN dimension 832, RoPE
 397 embedding with base frequency 4000; input sequence length is always 60+1, with 60 context tokens
 398 (either 0, 1 or ?) and 1 task tokens (chosen from task tokens of vocab size 200).
 399



413 Figure 6: Transformer and Rope-based model for the synthetic task. Here, we use one task token to
 414 encode the task information.
 415

416 We use 100 tasks and 60 task bits. From 11th to the 60th bit, each bit corresponds to the max bit of
 417 two tasks: that is, $\#Task|_{max(bit_1,bit_2)=i} = 2, \forall i \in \{11, 12, \dots, 60\}$.
 418

419 During training, 50% of the samples are unmasked, while for the other 50% samples, we mask the
 420 last X task bits to be 0.5, where X is a random int from 60 – 10 to 60 – 60. This ensures our model
 421 to be able to handle mask bits, and also ensures it can learn uncommon tasks (relying on context bits
 422 that are at the end of the context bits) well. We train the model on large enough dataset so that it
 423 approximates the Bayes Model well (please refer to Table 1 in Appendix for more details).

424 After the model has been trained, we measure its eigen values, as shown in Figure 7. It is shown that:
 425 (1) Larger context length contains more information, hence eigen values in Intrinsic Space degrades
 426 slower (left figure); (2) the model approximates the theoretical Bayes Model well (as the green
 427 points in the middle figure is very close to the orange ones) (middle figure); (3) CE Loss follows a
 428 very good linear relationship with sum of log eigenvalues of the first N dimensions for $N \geq 70$ in
 429 the Intrinsic Space (right figure), where the case $N = 200$ (all eigen values) are also shown in the
 430 middle figure.

431 This validates **Point 1**: Cross Entropy Loss is approximately linear with Intrinsic Entropy as mea-
 432 sured by the sum of log eigenvalues.

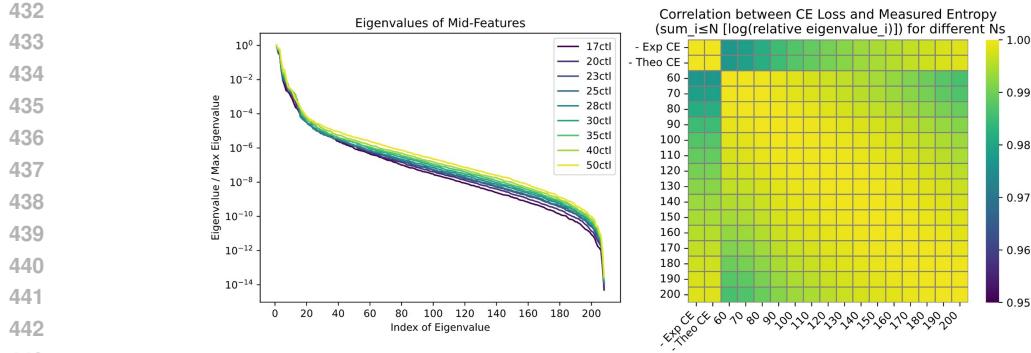


Figure 7: Eigen value and CE results measured on trained model for Synthetic Dataset in this section. **Left:** Eigen Value v.s. Index of Eigen Value; **Right:** Correlation between Cross Entropy Loss and Measured Entropy. We see good linear relationship between CE Losses and Measured Intrinsic Entropy from Lower figures.

4.4 ENTROPY IN INTRINSIC SPACE: SYNTHETIC DATASET VALIDATION

Figure 7 shows the measured results of Intrinsic Entropy on the synthetic dataset, which follows a linear relationship with the Cross Entropy Calculated (Theo CE) and Cross Entropy loss measured (Exp CE).

This provides evidence for **Point 2** in Section 4.1: we can measure entropy in the intrinsic space using eigenvalue-based methods or density-based methods, and both show linear relationships with Cross Entropy Loss, validating our entropy-based theoretical framework.

5 CONCLUSION AND DISCUSSIONS

5.1 CONCLUSION

In this work, we discuss the impact of context length on language modeling, especially Bayes risk and approximate loss, from both a theoretical and experimental perspective.

In Section 2, we propose assumptions related to the relationship between **CE Loss**, **intrinsic entropy** and **context length**. We derive a linear relation between CE loss and Intrinsic Entropy, and study the impact of context length to intrinsic entropy. We further investigate the relationship between intrinsic entropy, context length, and Intrinsic Dimension in **Appendix J** from an **Intrinsic Dimension perspective**. We provide **formal definitions of assumptions and derivations of important theorems** in **Appendix D**.

We also conduct experiments with real data (Section 2, Section 3) and synthetic data (Section 4), on measuring Intrinsic Entropy and on the relationship between Cross Entropy Loss (Bayes Risk and Approximation Loss), Context Length and Intrinsic Entropy.

As a correlation of our theory, there exists an optimal context length that increases with dataset size in pretraining process. This is validated in Section 3. [For downstream task such as document QA for long documents, we conduct experiment and also observe an optimal context length which increases with tasks' typical context length for a certain model. This is shown in Appendix A.](#) We hope our work may provide insight for future work about long context Language Models, or about Physics for Language Models.

5.2 LIMITATIONS AND FUTURE WORK

Our theory starting from Intrinsic Entropy only holds with assumptions in Section 2; and in Appendix J we use the perspective of Intrinsic Dimension to (partially) explain our assumptions and measurements w.r.t. Intrinsic Entropy. We hope future work may try to propose even more fundamental theories to explain our Intrinsic Entropy measurements.

In our work, similar to several previous work (Bahri et al., 2024; Aghajanyan et al., 2021), we explain the impact of context length scaling from the perspective of Intrinsic Space (or Data Manifold), which is related not only to data, but also potentially to the neural network (that maps the data into such Intrinsic Space) and the prediction task (Bahri et al., 2024). Our explanation leans toward how the model represents the data in its intrinsic space and is hence more related to real language models, meanwhile other types of more model-agnostic explanations might also be proposed.

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the effectiveness of language model fine-tuning, 2020. URL <https://arxiv.org/abs/2012.13255>.

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the effectiveness of language model fine-tuning. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 7319–7328, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.568. URL <https://aclanthology.org/2021.acl-long.568/>.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural scaling laws. *Proceedings of the National Academy of Sciences*, 121(27), June 2024. ISSN 1091-6490. doi: 10.1073/pnas.2311878121. URL <http://dx.doi.org/10.1073/pnas.2311878121>.

Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, eran malach, and Cyril Zhang. Hidden progress in deep learning: SGD learns parities near the computational limit. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=8XWP2ewX-im>.

Emily Cheng, Corentin Kervadec, and Marco Baroni. Bridging information-theoretic and geometric compression in language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 12397–12420, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.762. URL <https://aclanthology.org/2023.emnlp-main.762/>.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying

540 Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
 541 Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
 542 Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
 543 Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
 544 Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
 545 Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 546 Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2024. URL
 547 <https://arxiv.org/abs/2412.19437>.

548 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 549 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 550 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 551 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 552 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 553 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 554 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 555 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 556 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 557 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 558 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 559 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 560 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 561 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 562 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 563 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 564 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
 565 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 566 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren
 567 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 568 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 569 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 570 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 571 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 572 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 573 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 574 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 575 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 576 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 577 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 578 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
 579 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 580 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 581 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 582 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 583 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei
 584 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 585 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 586 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 587 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 588 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 589 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 590 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 591 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 592 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 593 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mont-
 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia

594 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 595 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 596 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 597 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
 598 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 599 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 600 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 601 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 602 son Rudolph, Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 603 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 604 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 605 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 606 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 607 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 608 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 609 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 610 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 611 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 612 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 613 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 614 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 615 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 616 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 617 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 618 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 619 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 620 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 621 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 622 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 623 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 624 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 625 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 626 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 627 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 628 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 629 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 630 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 631 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihaiescu, Vladimir Ivanov,
 632 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 633 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 634 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 635 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 636 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 637 <https://arxiv.org/abs/2407.21783>.

638 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
 639 URL <https://arxiv.org/abs/2312.00752>.

640 Alexander Havrilla and Wenjing Liao. Understanding scaling laws with statistical and approxima-
 641 tion theory for transformer neural networks on intrinsically low-dimensional data. In *The Thirty-
 642 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=N2wYPMpifA>.

643 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 644 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
 645 nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
 646 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
 647 Training compute-optimal large language models, 2022. URL <https://arxiv.org/abs/2203.15556>.

648 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
 649 Boris Ginsburg. RULER: What's the real context size of your long-context language models? In
 650 *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=kIoBbc76Sy>.

652 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 653 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 654 models, 2020. URL <https://arxiv.org/abs/2001.08361>.

656 Andrej Karpathy. NanoGPT. <https://github.com/karpathy/nanoGPT>, 2022.

657 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 658 rnns: Fast autoregressive transformers with linear attention, 2020. URL <https://arxiv.org/abs/2006.16236>.

660 L.D. Landau and E.M. Lifshitz. *Statistical Physics*, volume 5 of *Course of Theoretical Physics*.
 661 Butterworth-Heinemann, Oxford, 3 edition, 1980. ISBN 978-0-7506-3372-7.

663 Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length
 664 on the reasoning performance of large language models, 2024. URL <https://arxiv.org/abs/2402.14848>.

666 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL <https://arxiv.org/abs/1711.05101>.

668 Eric J. Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural
 669 scaling, 2024. URL <https://arxiv.org/abs/2303.13506>.

671 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
 672 Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen
 673 Hou, Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartłomiej Koptyra, Hayden
 674 Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang,
 675 Bolun Wang, Johan S. Wind, Stanislaw Wozniak, Ruchong Zhang, Zhenyuan Zhang, Qihang
 676 Zhao, Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. Rwkv: Reinventing rnns for the
 677 transformer era, 2023. URL <https://arxiv.org/abs/2305.13048>.

678 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 679 models are unsupervised multitask learners. 2019.

680 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 681 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 682 transformer, 2023. URL <https://arxiv.org/abs/1910.10683>.

684 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
 685 for machine comprehension of text, 2016. URL <https://arxiv.org/abs/1606.05250>.

686 Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold,
 687 2020. URL <https://arxiv.org/abs/2004.10802>.

689 Utkarsh Sharma and Jared Kaplan. Scaling laws from the data manifold dimension. *Journal of
 690 Machine Learning Research*, 23(9):1–34, 2022. URL <http://jmlr.org/papers/v23/20-1111.html>.

692 Jingzhe Shi, Qinwei Ma, Huan Ma, and Lei Li. Scaling law for time series forecasting. In *The Thirty-
 693 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=Cr2jEHJB9q>.

695 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
 696 hanced transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>.

698 Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
 699 Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
 700 (learn at test time): Rnns with expressive hidden states, 2024. URL <https://arxiv.org/abs/2407.04620>.

702 Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang.
 703 Razorattention: Efficient kv cache compression through retrieval heads, 2024. URL <https://arxiv.org/abs/2407.15891>.
 704

705 Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muennighoff, Zhongwei Wan, Ping Luo, Min Lin,
 706 and Ngai Wong. Scaling laws with vocabulary: Larger models deserve larger vocabularies, 2024.
 707 URL <https://arxiv.org/abs/2407.13623>.
 708

709 Wenzheng Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Mar-
 710 tin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madiyan Khabsa, Han Fang,
 711 Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov,
 712 Mike Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling of foundation mod-
 713 els. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Confer-
 714 ence of the North American Chapter of the Association for Computational Linguistics: Human
 715 Language Technologies (Volume 1: Long Papers)*, pp. 4643–4663, Mexico City, Mexico, June
 716 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.260. URL
 717 <https://aclanthology.org/2024.naacl-long.260>.
 718

718 Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian,
 719 Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long context
 720 large language models, 2024. URL <https://arxiv.org/abs/2310.03025>.
 721

722 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 723 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 724 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 725 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 726 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 727 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 728 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 729 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 730 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

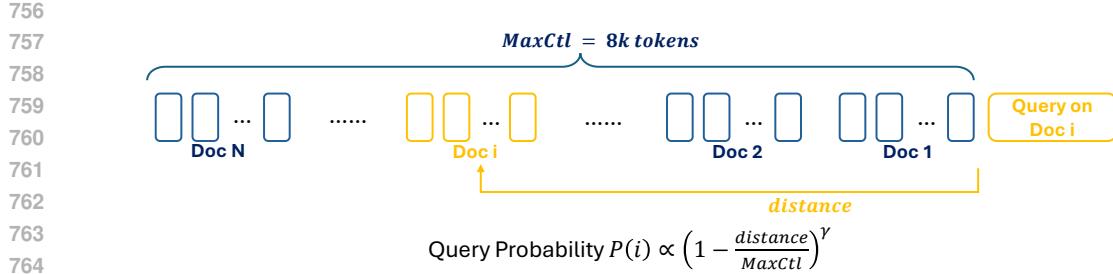


Figure 8: Our modified Position-Weighted Ruler-QA1 (Hsieh et al., 2024) dataset. Multiple paragraphs are concatenated together with context length close to $MaxCtl$, and a question queries the ‘golden paragraph’ (i.e. the doc paragraph with answer to that query). In the original Ruler-QA1 dataset each doc has equal probability of being queried (i.e. $\gamma = 0$); while in our experiments shown in Figure 9, we measure LLM performance on a set of tasks with different hyper-parameter γ , each with different probability of querying far-away contexts.

A DOWNSTREAM TASK

In the main paper, we experimentally discover and theoretically analyze how context length impact Cross Entropy loss for next token prediction. Previous studies (Hsieh et al., 2024) show that Cross Entropy Loss might not be highly correlated with important downstream tasks.

In this section, we study the impact of context length on downstream document QA tasks, similar to those proposed in Ruler-QA1 (Hsieh et al., 2024). The conclusions we observe in this section are:

- 1. For downstream tasks studied (i.e. similar to Ruler-QA document QA tasks), optimal context length still exists, and this phenomena can be analyzed from the perspective of Bayes Risk and Approximation Loss.
- 2. For these tasks, Intrinsic Entropy can still act as a proxy of information learned, and when Language Model is not deviating from Bayes Model by a large margin, is still positively-correlated with QA accuracy.

A.1 OPTIMAL CONTEXT LENGTH ON RULER-QA: A CASE STUDY

Ruler-QA1 (Hsieh et al., 2024) is representative among a series of doc-QA tasks in the sense that (1) it is composed of real-world documents and QA pairs from Doc-QA tasks like SQuAD (Rajpurkar et al., 2016); (2) its samples are generated by inserting a ‘golden paragraph’ (i.e. the paragraph containing answer to a specific question in SQuAD) into other paragraphs sampled also from SQuAD, hence one can control the total length of tested samples. This provides us with a great testbed for experimenting the impact of visible context length to models, and to test the Intrinsic Entropy. The task shown in Figure 8 (with $\gamma = 0$ setting) aligns with the Ruler-QA1 dataset.

We study the performance of Llama-3.1-8B. For the original Ruler-QA1 dataset, the ‘golden paragraph’ is inserted randomly and uniformly across the sample. We first generate samples with $max_ctl = 16k$, i.e. each sample has length close to 16k tokens and is composed of multiple paragraphs sampled from SQuAD, and we test the Language Model to answer a question related to some certain paragraph uniformly distributed across the context. During test, we only allow the Language Model to see the closest ‘ctl’ tokens (and hence it cannot see previous paragraphs), and measure accuracy varying this ‘ctl’. The result is shown in the line labeled as ‘uniform distributed’ in Figure 9. As shown, though the accuracy first increases when increasing context length, but the context length drops after $ctl = 6k$. This proves the existence of an optimal context length, for Llama-3.1-8B on Ruler-QA1.

To further study how this optimal context length depends on the property of tasks, we propose the Position-Weighted Ruler-OA1 dataset. We test the Language Model to answer a question related

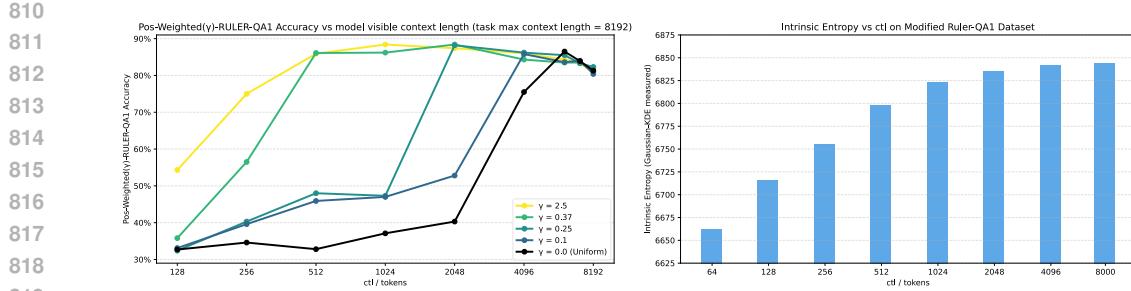


Figure 9: **Measured results on Position-Weighted Ruler-QA1 dataset.** **Left:** QA accuracy v.s. number of tokens input to the Language Model, for different tasks with different γ values. We observe that: (1) each curve shows a trend to increase and then decrease with context length; and (2) the critic point corresponds to a smaller optimal context length for tasks with larger γ (i.e. tasks requiring less long context abilities). **Right:** Intrinsic Entropy measured on samples truncated to certain context lengths. The Intrinsic Entropy shows increment of intrinsic information when increasing context length, and resembles acc-ctl curves for larger γ .

to a certain paragraph sampled by: $P(x) \propto (1 - x/L)^\gamma$, where x is the distance of the paragraph to end of input (in tokens), L is the maximum context length (i.e. $8k$), and γ is a hyper-parameter, fixed for certain task. $\gamma = 0$ degrades to uniform distribution (i.e. the standard Ruler-QA1 task), while a larger γ means the task focuses less on far-away tokens. Similarly, for a fixed γ , we adjust the number of tokens visible to Language Models ('ctl') and measure its accuracy; results are also shown in Figure 9. From the figure, we have two observations: (1) an optimal context length exists for each γ ; and (2) a smaller γ (i.e. task requires more long context) typically leads to a larger optimal context length.

This result can also be analyzed from the Bayes Risk and Approximation Loss decomposition perspective. Intuitively, some tasks require larger context lengths to solve (i.e. the Bayes Risk of that metric decreases slower with context length compared to other tasks like Cross Entropy loss for next token prediction), thus they need more contexts. However, since the model's performance would decrease for long contexts after all (i.e. the Approximation Loss still increases with context length), the balance of these two terms still leads to an optimal context length. In main paper, we fixed task, vary training set size, and show optimal context length increases with training budget and dataset size; in this appendix section, we fix the model (so we fix training budget and dataset as well), and show optimal context length increases with (downstream) tasks' typical context length.

A.2 INTRINSIC ENTROPY: A PROXY OF INFORMATION LEARNED BY LANGAUGE MODEL

We measure Intrinsic Entropy of different context length on the Doc paragraphs samples we construct. In our experiment, we take the closest ctl tokens of the concatenated samples as input to Language Model (Llama-3.1-8B), and take the hidden state of the final layer of a close-to-the-end token. After obtaining N such vectors, we conduct Gaussian-KDE to measure the Intrinsic Entropy. The result is shown in the right figure of Figure 9.

We observe from Figure 9 that, the Intrinsic Entropy still increases as the input context length increases. Moreover, though measured Intrinsic Entropy does not always follow a linear relationship with QA accuracy (notice that the Intrinsic Entropy calculated does **not** depends on γ , while QA accuracy is related to the task setting γ), we still see a positive correlation between Intrinsic Entropy and QA accuracy when context length is not very long.

In principal, a drop in accuracy when increasing context length actually implies that the model is no longer a good approximation of Bayes Model for certain task at that context length. For relatively larger γ tasks (i.e. tasks focusing more on nearer tokens), we see a more aligned trend in increment of QA accuracy and Intrinsic Entropy; while for smaller γ tasks (those focusing on farther tokens), the QA accuracy might increase a lot when Intrinsic Entropy increases a little. This potentially implies that Language Models are memorizing and keeping only the information likely to be useful from farther-away tokens, and these pieces of information are sufficient for the QA task.

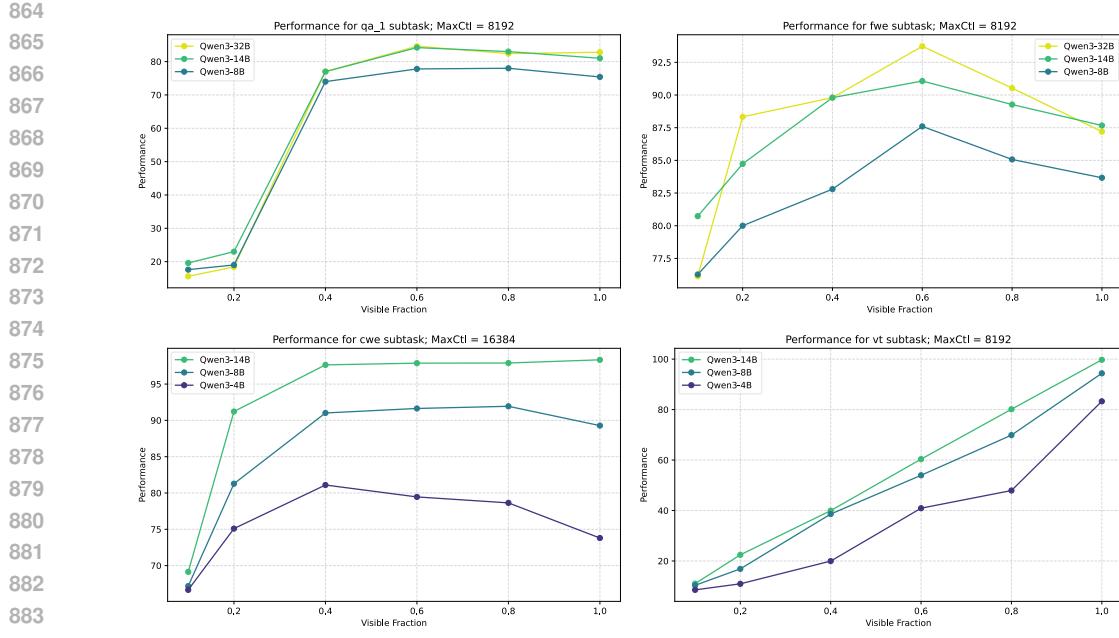


Figure A.3-1. Acc v.s. Visible Context Length of Qwen-3 series models (non-thinking chat models) on 4 representative subsets of the RULER dataset: qa_1 (**document qa, upper-left**), fwe (**frequent word extraction, upper-right**), cwe (**common words extraction, lower-left**), and vt (**variable tracking, lower-right**), for a fixed max context length and a varying visible fraction of the input context. Most models show an optimal context length for qa_1, fwe and cwe subtask, while the vt subtask shows increased performance with respect to context length. Moreover, larger model tends to perform better and have a larger optimal context length, represented by the performance comparison between Qwen3-4B and Qwen3-8B on cwe subtask (lower-left).

A.3 MORE EXPERIMENTS ON RULER BENCHMARK

To see how different tasks might have different behaviors with respect to context length, we further conduct experiments on three RULER subtasks: the qa1 subtask (document qa), the cwe subtask (i.e. common words extraction), the vt subtask (i.e. variable tracking), and the fwe subtask (i.e. frequent words extraction). Other subtasks like single-needle-in-haystack are too simple for sota LLMs hence we did not perform experiments on them.

To study the impact of model size, we utilize the Qwen3 series models. We use the non-thinking mode of the chat models of Qwen3 series Yang et al. (2025), including Qwen3-4B, Qwen3-8B, QWen3-14B and Qwen3-32B for experiments. We use codebase modified from RULER Hsieh et al. (2024). The maximum context length is set to 16k for cwe and 8k for other subtasks. These results are shown in Figure A.3-1.

As shown in Figure A.3-1, (1) for subtasks resembling fwe, document qa, variable tracing, etc., there exists an optimal context length for most models tested; and (2) for vt (variable tracking), in the experiment we conducted models' performance improve with respect to visible context fraction. This could be caused by the fact that variable tracking is relatively easy for current LLMs, thus their approximation loss is low; while given its distribution of variables the Bayes Risk would constantly decrease with more context length, thus it shows a trend of improving even for long visible fraction.

Comparing the results of Qwen3-4B, Qwen3-8B and Qwen3-14B on the cwe subtask in Figure A.3-1, we see that: (1) **optimal context length is larger and harder to observe for larger models**, this can be attributed to larger models lead to less Approximation Loss; comparing results of the same cwe subtask on different max context lengths in Figure A.3-2, we see that: (2) **optimal context length is easier to observe for longer task**, which can also be attributed to a larger Approximation Loss (i.e. language models fall short to deal with longer contexts).

918

919

920

921

922

923

924

925

926

927

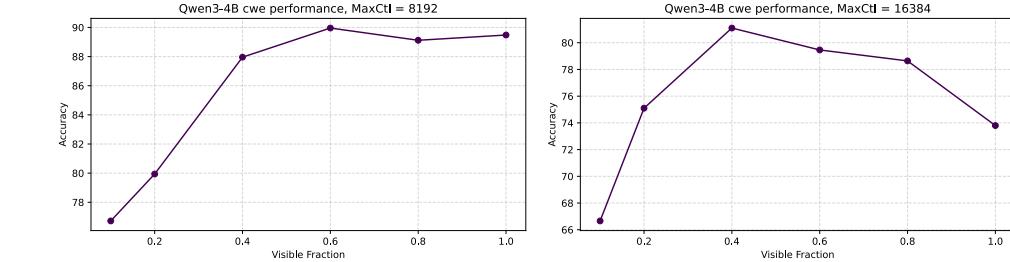


Figure A.3-2. Acc v.s. Visible Context Length of Qwen-3 4B, on cwe (common words extraction) subtask, with different Max context length (**left**: $MaxCtl = 8k$, **right**: $MaxCtl = 16k$). As shown, though optimal context length is hard to observe for the task requiring $8k$ as max context length, it is easy to observe for that requiring $16k$ as max context length.

These results could potentially argue that the subtasks defined in RULER are of different difficulty for current LLMs. That is, if one can observe an optimal context length, this proves that the model **gets distracted** by more context beyond the optimal context length, and hence performance gets worse even if these context contains more information. **Potentially, our work provides a new perspective:** Consider a case where some specific LM achieves 95% accuracy on certain subtask with 0.8 visible context fraction and 90% accuracy on it with 1.0 visible context fraction. Even though the absolute accuracy numbers are high, the existence of optimal context length and degraded performance also implies an ineffectiveness of the language model when handling long contexts with respect to that specific task.

B DEFINITION AND PROPERTIES OF CROSS ENTROPY LOSS

B.1 DEFINITION OF CROSS ENTROPY LOSS DISCUSSED IN THIS WORK

It is well-known that the original definition of Cross Entropy between two sequential distributions P and Q : $H_{org}(P, Q)$ should be:

$$\begin{aligned}
 H_{org}(P, Q) &= \sum_x -P(x) \log Q(x) \\
 &= \sum_x -P(x_{-\infty:0}) P(x_0|x_{-\infty:0}) \\
 &\quad * \log\{Q(x_0|x_{-\infty:0})Q(x_{-\infty:0})\},
 \end{aligned}$$

where $x_{a:b}$ denotes $x_a, x_{a+1}, \dots, x_{b-1}$; it is common practice to calculate perplexity of Language Models with its input as GT labels (e.g. in technical report of LLaMa-3(Grattafiori et al., 2024)), in other words, the experimentally measured Cross Entropy $H_{exp}(P, Q)$ is actually:

$$\begin{aligned}
 H_{exp}(P, Q) &= \sum_x -P(x_{-\infty:1}) \log \{Q(x_0|x_{-\infty:0})\mathbf{P}(\mathbf{x}_{-\infty:0})\} \\
 &= \text{Const} + E_{x_{-\infty:0}} \sum_{x_0} -P(x_0|x_{-\infty:0}) \log Q(x_0|x_{-\infty:0}).
 \end{aligned}$$

Therefore, in this work we use:

$$\begin{aligned}
 &H(P, Q) \\
 &= H_{exp}(P, Q) \\
 &= E_{x_{-\infty:0}} \left[\sum_{x_0} -P(x_0|x_{-\infty:0}) \log Q(x_0|x_{-\infty:0}) \right]
 \end{aligned} \tag{7}$$

972 as the definition of Cross-Entropy loss, and $P(x_0|x_{-\infty:0})$, $Q(x_0|x_{-\infty:0})$ as the definition of Nature
 973 Language distribution and Language Model distribution, respectively.
 974

975 B.2 CROSS ENTROPY LOSS FOR LANGUAGE MODEL WITH CONTEXT LENGTH l

977 In Equation B.1, if $Q_l(x_0|x_{-\infty:0})$ is a language model with limited context length l :
 978 $Q_l(x_0|x_{-\infty:0}) = Q_l(x_0|x_{-l:0})$, we have:
 979

$$\begin{aligned}
 & H(P, Q_l) \\
 &= E_{x_{-\infty:0}} \left[\sum_{x_0} -P(x_0|x_{-\infty:0}) \log Q_l(x_0|x_{-l:0}) \right] \\
 &= - \sum_{x_{-\infty:1}} P(x_{-\infty:1}) \log Q_l(x_0|x_{-l:0}) \\
 &= - \sum_{x_{-\infty:-l}} \sum_{x_{-l:1}} P(x_{-\infty:-l}, x_{-l:1}) \log Q_l(x_0|x_{-l:0}) \\
 &= - \sum_{x_{-l:1}} P(x_{-l:1}) \log Q_l(x_0|x_{-l:0}) \\
 &= E_{x_{-l:0}} \left[\sum_{x_0} -P(x_0|x_{-l:0}) \log Q_l(x_0|x_{-l:0}) \right] \\
 &= H(P_l, Q_l).
 \end{aligned}$$

996 Note that $P(x_0|x_{-l:0})$ is exactly the Bayes Model with context length l . Hence, we have:
 997

$$\begin{aligned}
 D_{KL}(P, Q_l) &= -H(P) + H(P, Q_l) \\
 &= -H(P) + H(P_l, Q_l) \\
 &= -H(P) + H(P_l) + D_{KL}(P_l, Q_l).
 \end{aligned}$$

1003 Specially, if we are calculating the KL Divergence between Nature Language and Bayes Model with
 1004 context length l , thus $Q_l = P_l$, we have:
 1005

$$D_{KL}(P, P_l) = -H(P) + H(P_l, P_l) = -H(P) + H(P_l). \quad (8)$$

1009 C EXPERIMENTALLY MEASURE NEXT-TOKEN-PREDICTION INFORMATION 1010 ENTROPY S_{ntp}

1013 C.1 PCA-BASED INFORMATION ENTROPY ESTIMATION

1015 Though related, Entropy in Intrinsic Space does not equal to Entropy in the next token prediction
 1016 task. From the probability perspective, let $dec(x)$ be the next decoded token for some point x in the
 1017 intrinsic space, we have: $S = \sum_{x \in IS} -P(x) \log P(x)$, while $S_{ntp} = -\sum_{v \in vocab} P(v) \log P(v)$
 1018 where $P(v) = \sum_{x \in IS, dec(x)=v} P(x)$. S_{ntp} is a coarse-grained Entropy compared to S . S contains
 1019 important information on previous tokens that are important for the prediction of future tokens, while
 1020 S_{ntp} is related only to the next token.

1021 Experiments in Figure ?? show that, no matter what subspace we use, the Cross Entropy Loss
 1022 usually follows a linear relationship with the Entropy we measured in the subspace, **supporting the**
 1023 **claim that the next token prediction task likely lies in some subspace of the Intrinsic Space, or**
 1024 **(statistically) its Entropy should be some weighted average of Entropy of several subspaces of**
 1025 **similar dimension.** This also suggests that H_{ntp} is approximately linear with H_{IS} , which validates
 our previous assumptions and claims.

1026
1027

C.2 GAUSSIAN-KDE BASED INFORMATION ENTROPY ESTIMATION

1028
1029
1030
1031

In this sub-subsection we use another method for Information Entropy Estimation. As shown in Figure 10, this estimation also aligns well with PCA-based estimation; moreover, such estimated entropy is also linear with respect to Intrinsic Dimension and Cross Entropy Loss.

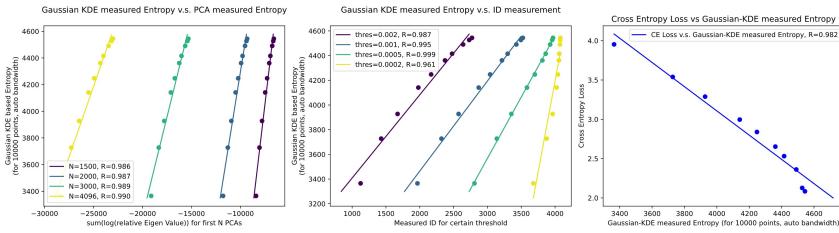
1032
1033
1034
1035
1036
1037
1038
10391040
1041
1042
1043
1044

Figure 10: Gaussian-KDE measured Entropy (10000 samples, auto bandwidth = 0.997756) v.s. PCA-measured Entropy (left), Measured ID (middle) and Cross Entropy Loss (right).

1045
1046

C.3 SYNTHETIC DATASET: ENTROPY IN INTRINSIC SPACE, AND ENTROPY FOR OUTPUT LAYER

1047
1048
1049
1050
1051

For our synthetic dataset, if we view the **Context Feature Vector** shown in **Figure 16** as the feature in the Intrinsic Space, then the best strategy for the context encoder is to generate the answer for all subtasks (it can see) in the Intrinsic Space (since it cannot see the task bits). This would lead to an Entropy of $S = T \log 2$ in the Intrinsic Space.

1052
1053
1054
1055
1056

The entropy of the output layer is, however, $S_{output} = \log 2$ since the answer bits 0, 1 have the same probability. In this way, the answer of the output layer actually corresponds to one dimension in the Intrinsic Space, which should be the exact dimension at which the answer of the current task is stored. Therefore, $S_{output} = 1/T * S_{IS}$, which explains why the Entropy for output logits is linear to the Entropy for Intrinsic Space.

1057

C.4 DETAILS FOR SYNTHETIC DATA

1058

Here we present details for synthetic dataset and model training.

1059
1060
1061
1062
1063

We use 100 tasks and 60 task bits. From 11th to the 60th bit, each bit corresponds to the max bit of two tasks: that is, $\#\text{Task}|_{\max(\text{bit}_1, \text{bit}_2)=i} = 2, \forall i \in \{11, 12, \dots, 60\}$.

1064
1065
1066
1067
1068
1069

During training, 50% of the samples are unmasked, while for the other 50% samples, we mask the last X task bits to be 0.5, where X is a random int from 60 – 10 to 60 – 60. This ensures our model to be able to handle mask bits, and also ensures it can learn uncommon tasks (relying on context bits that are at the end of the context bits) well. We train the model on a training set of 10000000 and a validation set of size 1000000, for 125 epochs (and an early stopping setting of 25 epochs, though the training process did not trigger early stopping).

1070
1071
1072
1073
1074
1075

To make sure that the trained model can be used to approximate the Bayes Model, we compare the model’s loss on validation set with context ctl with the calculated minimum possible CE Loss for the task. As shown in Table 1 that the model is not too different from the Bayes Model: the BCE Loss only differs by around 0.001. **Thus, we can use the middle-representation (shown as context feature in Figure 6) as the feature in Intrinsic Space to approximate the Bayes Model for $17 \leq ctl \leq 50$.**

1076
1077
1078
1079

$$\text{MinCELoss}(ctl) = \left(\sum_{\text{task s.t. } \max(\text{bit}_1, \text{bit}_2) > ctl} \text{freq}(\text{task}) * \log 2 \right) / \sum_{\text{task}} \text{freq}(\text{task})$$

1080	Context Length	Model CE Loss	Minimum CE Loss Calculated
1081	17	0.4648	0.4643
1082	20	0.3988	0.3988
1083	23	0.3438	0.3437
1084	25	0.3119	0.3116
1085	28	0.2687	0.2686
1086	30	0.2429	0.2429
1087	35	0.1867	0.1864
1088	40	0.1390	0.1387
1089	50	0.0613	0.0612

1091
1092 Table 1: Comparison between trained model and Bayes Model (minimum CE Loss) for Synthetic
1093 Data

1094 D DEFINITIONS OF INTRINSIC SPACE AND DERIVED PROPERTIES

1097 As mentioned in Section 2.1.2, in previous work (Bahri et al., 2024; Cheng et al., 2023), as a common
1098 practice, the ‘Data Manifold’ is often **defined** as the middle feature representation of well-trained
1099 neural networks, and **assumptions** are made on this kind of mid-representation, with experiments to
1100 **validate** these assumptions. (Intrinsic Space is defined as the space where the Data Manifold lies.)

1101 Meanwhile, the Data Manifold can be more formally **defined** by a mapping from input data to some
1102 Intrinsic Space which satisfies a certain set of **properties**, and mid-representation of well-trained
1103 neural networks are **assumed to have such properties**, which can be experimentally **validated**.
1104 These two perspectives are actually equivalent to each other:

- 1105 • **Perspective 1:** Experiments show mid-representations of neural networks have certain
1106 properties → Data Manifold in Intrinsic Space satisfies such properties.
- 1107 • **Perspective 2:** Experiments show mid-representations of neural networks have certain
1108 properties → such mid-representation can be viewed as Data Manifold of Intrinsic Space
1109 that is defined to have such properties.

1111 These two perspectives are equivalent to each other, and Perspective 1 is used in some previous
1112 work (Bahri et al., 2024; Sharma & Kaplan, 2022).

1113 In this section, we formally define the Intrinsic Space and formally derive related results, following
1114 **Perspective 2**.

1116 D.1 FORMAL DEFINITIONS OF INTRINSIC SPACE

1118 We define an *intrinsic space* to formalize the latent structure underlying natural language sequences.
1119 This space is independent of surface forms and aims to capture the semantic and syntactic essence
1120 of language contexts across different sequence lengths.

1122 **Setup.** Let \mathcal{V} be a finite vocabulary and $\mathcal{X} = \mathcal{V}^*$ the set of all finite sequences over \mathcal{V} . Let $\mathcal{M} \subset \mathcal{X}$
1123 denote the *original data manifold* of natural language, i.e., the support of the data distribution $p(x)$.

1125 **Definition.** An **intrinsic space** \mathcal{Z} is a latent representation space defined by a mapping

$$1126 \Phi : \mathcal{X}_{\leq t} \rightarrow \mathcal{Z}, \quad (9)$$

1127 where $\mathcal{X}_{\leq t} = \bigcup_{k=0}^t \mathcal{V}^k$ is the set of all language contexts of length t . The image of the *original*
1128 *data manifold* under this map is denoted $\mathcal{M}_{\mathcal{Z}} = \Phi(\mathcal{M}_{\leq t}) \subset \mathcal{Z}$, or the *data manifold* (in Intrinsic
1129 Space). We require the following properties:

- 1131 • **Predictive Consistency:** There exists a decoder $\pi : \mathcal{Z} \rightarrow \Delta(\mathcal{V})$ such that

$$1132 \pi(\Phi(x_{\leq t})) = p(x_t | x_{\leq t}), \quad (10)$$

1133 i.e., the intrinsic representation enables accurate next-token prediction.

1134 Moreover, there are some other properties assumed (separately) in our work, for which we give a
 1135 formal definition here.
 1136

- **Uniform Information Gain:** This assumption assumes the following linear relationship between predictive divergence and intrinsic dimension $\dim(l)$:

$$D_{KL}(P, P_l) = s \cdot (\dim(\infty) - \dim(l)) \quad (11)$$

1140 for some constant $s > 0$, which we interpret as the average number of bits of predictive
 1141 information contributed by each intrinsic dimension. This is empirically observed in ex-
 1142 periments.
 1143

- **Linear Entropy Relationship** This assumption assumes that there exists constant $0 < s < 1$, b and a sequence of tolerances $\{\varepsilon_t\}_{t \geq 0}$ with $\varepsilon_t \rightarrow 0$ such that for every context length t ,

$$| -s H[q_t(Z)] + b - H[p(\cdot | x_{<t})] | \leq \varepsilon_t. \quad (12)$$

1146 Where $q_t(\cdot)$ denotes probability density function. Equivalently, in the idealized zero-
 1147 tolerance limit:

$$-s H[q_t(Z)] + b = H[p(x_t | x_{<t})] \quad \forall t. \quad (13)$$

1148 It is worth mentioning that, we can easily derive the linear entropy relationship from the
 1149 uniform information gain assumption, but not vice versa. Hence, linear entropy relationship
 1150 is a *weaker* assumption compared to uniform information gain.
 1151

- **Lipschitz Differentiable Density** This assumption assumes the density of data distribution is smooth in the intrinsic space:

$$\|\nabla q(z)\| \leq L \quad (14)$$

1152 for some constant $L > 0$
 1153

- **Finite ϵ -negative moment:** This assumption means the integral of the ϵ -negative moment of the data distribution is finite:

$$\int_{\mathcal{Z}} q(z)^{1-\epsilon} dz := C_\epsilon < \infty. \quad (15)$$

1154 Remark. When \mathcal{Z} is bounded ($\int_{\mathcal{Z}} q(z) dz = V_{\mathcal{Z}} < \infty$), and if there exists a constant
 1155 $q_{min} > 0$ s.t. $q(z) \geq q_{min} > 0$, then this assumption is satisfied. Hence this is a weaker
 1156 assumption compared to boundedness and non-zero density, which is even weaker than
 1157 uniform distribution assumption.
 1158

	Key Properties Assumed	Derived Results
(Bahri et al., 2024) Theorem 2	Bounded, Uniform Distribution, Lipschitz Differentiable	Data Scaling for Approx. Loss
Theorem 1, 2 in Appendix D.2 (corr. to Section 2.3)	(Bounded,) Finite Negative Moment, Lipschitz Differentiable	Data Scaling for Approx. Loss
Theorem 3 in Appendix D.3 (corr. to Section 2.2.1)	Predictive Consistency, Uniform Information Gain	Bayes Risk for Ntp of varied Ctl (Intrinsic Dimension perspective)
Theorem 4 in Appendix D.4 (corr. to Section 2.2.1)	Predictive Consistency, Linear Entropy Relationship	Bayes Risk for Ntp of varied Ctl (Information Entropy perspective)

1159 **Table 2: In this Section (Appendix D) we formulate results from previous sections with The-
 1160orems derived with defined assumptions and properties of intrinsic space in this section.** Ntp
 1161 refers to Next-token-prediction, Ctl refers to Context Length. We derive data scaling for approxima-
 1162 tion loss with weaker assumptions compared to (Bahri et al., 2024), please refer to Theorem 1, 2 in
 1163 Appendix D.2 for more details.
 1164

1165 To conclude: if some space satisfies these properties, then the data representation is referred to as
 1166 ‘Data Manifold’ in this space, and such properties would lead to further derivations in these work
 1167 (including this work). In experiments, Middle-representation of neural networks are assumed (and
 1168 shown) to have these kind of properties, hence explain some of the scaling behaviors they have.
 1169

1188
1189

D.2 DERIVATION FOR DATA SCALING FOR APPROXIMATION LOSS

1190
1191
1192

Theorem 1 (Expected capped nearest-neighbour distance). *Let $\mathcal{Z} \subseteq \mathbb{R}^d$ ($d \geq 1$) and there exists a non-empty open set $U \in \mathbb{R}^d$ such that $U \subseteq \mathcal{Z}$ (i.e., \mathcal{Z} is a d -dimensional region). Let $q : \mathcal{Z} \rightarrow [0, \infty)$ be a probability density satisfying*

1193
1194
1195
1196
1197

1. **Lipschitz Differentiable:** $\|\nabla q(z)\| \leq L$ for all $z \in \mathcal{Z}$;

2. **Finite ϵ -negative moment:** for some fixed $\epsilon > 1/d$, $\int_{\mathcal{Z}} q(z)^{1-\epsilon} dz := C_{\epsilon} < \infty$.

1198

Draw i.i.d. samples $\mathcal{Z}_D = \{Z_1, \dots, Z_D\} \sim q^{\otimes D}$ and define the capped nearest-neighbour distance

1199
1200

$$R_M(Z_i) = \min\{M, \min_{j \neq i} \|Z_i - Z_j\|\}, \quad M > 0. \quad (16)$$

1201
1202
1203

Then, there exists constant $C = C(d, L, \epsilon, M, C_{\epsilon})$ and $D_0 = D_0(d, L, \epsilon, M, C_{\epsilon})$ such that $\forall D > D_0$:

1204
1205
1206
1207

$$\mathbb{E}_{\mathcal{Z}_D}[R_M(Z_1)] \leq \begin{cases} C (\log D)^{\epsilon/(d+1)} D^{-\epsilon/(d+1)}, & \text{if } \epsilon < \frac{d+1}{d}, \\ C D^{-1/d}, & \text{if } \epsilon \geq \frac{d+1}{d}. \end{cases} \quad (17)$$

1208

Thus, there exists constant $c = c(L, \epsilon, M, C_{\epsilon})$, such that:

1209
1210

$$\mathbb{E}_{\mathcal{Z}_D}[R_M(Z_1)] \leq C D^{-c/d}. \quad (18)$$

1211
1212
1213
1214

Proof. We write Z_1 for the distinguished point and $R(Z_1) = \min_{j \neq 1} \|Z_1 - Z_j\|$ for its exact nearest-neighbour distance, always capping by M at the very end. Throughout the proof the expectation $\mathbb{E}[\cdot]$ is taken over the whole sample $\mathcal{Z}_D = (Z_1, \dots, Z_D) \sim q^{\otimes D}$.

1215
1216

Step 0. Notation.

1217
1218
1219

$$v_d := \text{vol}(B_1(0)), \quad c_d := \frac{v_d}{2}, \quad r_0(z) := \frac{q(z)}{2L}.$$

1220
1221

v_d is the volume of a unit ball. Moreover, since $\|\nabla q\| \leq L$, whenever $r \leq r_0(z)$ one has $q(u) \geq \frac{1}{2}q(z)$ for every $u \in B_r(z)$.

1222

Step 1. Exponential hole probability inside the Lipschitz ball.

1224
1225

Fix z and $r \leq r_0(z)$. The *mass* of q inside $B_r(z)$ satisfies

1226
1227

$$\mu_r(z) := \int_{B_r(z)} q(u) du \geq \frac{1}{2} q(z) v_d r^d = c_d q(z) r^d.$$

1228
1229
1230

Conditioned on $Z_1 = z$, the $(D-1)$ other points are i.i.d. q , so the conditional probability that all other points are sampled outside the ball $B_r(z)$ is:

1231
1232

$$\Pr(R(z) > r \mid Z_1 = z) = (1 - \mu_r(z))^{D-1} \leq \exp[-c_d(D-1)q(z)r^d]. \quad (19)$$

1233

Step 2. Density threshold and spatial split.

1234
1235
1236

Define a data-dependent threshold

1237
1238

$$\lambda_D := \left(\frac{2^{d+1} L^d d \log D}{c_d D} \right)^{\frac{1}{d+1}} \quad (D \geq 2), \quad \mathcal{H}_D := \{z : q(z) \geq \lambda_D\}, \quad \mathcal{L}_D := \mathbb{R}^d \setminus \mathcal{H}_D.$$

1239
1240
1241

(The power $1/(d+1)$ is tuned to balance two error terms below.)

Step 3.1. Distribution in \mathcal{H}_D (moderate or high density region).

1242 For every $z \in \mathcal{H}_D$ set

$$1243 \quad 1244 \quad 1245 \quad \rho(z, D) := \left(\frac{2d \log D}{c_d D q(z)} \right)^{1/d}.$$

1246 *Bound on ρ .* Since $q(z) \geq \lambda_D$, $\rho(z, D) \leq r_0(z)$ and therefore equation 19 is valid for all $0 < r \leq$
1247 $\rho(z, D)$.

1248 *Tail probability at ρ .* With $r = \rho(z, D)$,

$$1249 \quad 1250 \quad \Pr(R(z) > \rho(z, D) \mid Z_1 = z) \leq \exp[-2d \log D] = D^{-2d}.$$

1251 Because $R_M(Z_1) = \min(R(Z_1), M) \leq M$,

$$1252 \quad 1253 \quad \mathbb{E}[R_M(Z_1) \mathbf{1}_{\{R > \rho\}} \mid Z_1 = z] \leq M D^{-2d}. \quad (20)$$

1254

1255 *Integral of R up to ρ .* Using equation 19,

$$1256 \quad 1257 \quad \mathbb{E}[R(Z_1) \wedge \rho(z, D) \mid Z_1 = z] = \int_0^\rho \Pr(R > r \mid Z_1 = z) dr \\ 1258 \quad 1259 \quad \leq \int_0^\rho \exp[-c_d(D-1)q(z)r^d] dr.$$

1260 Make the change of variable $t := c_d(D-1)q(z)r^d$; then $r = (t/c_d(D-1)q(z))^{1/d}$ and $dr =$
1261 $\frac{1}{d}r dt/t$. The upper limit $r = \rho$ maps to $t = 2d \log D$. Hence

$$1262 \quad 1263 \quad \int_0^\rho \exp[-c_d(D-1)q(z)r^d] dr = \frac{\Gamma(1+1/d)}{d^{1/d} c_d^{1/d}} (Dq(z))^{-1/d}.$$

1264 Absorbing constants:

$$1265 \quad 1266 \quad \mathbb{E}[R(Z_1) \wedge \rho(z, D) \mid Z_1 = z] \leq C_{d,L} (Dq(z))^{-1/d}. \quad (21)$$

1267 *Average over $z \in \mathcal{H}_D$.* Taking expectation over Z_1 first restricted to \mathcal{H}_D and then combining
1268 equation 21 with equation 20,

$$1269 \quad 1270 \quad \mathbb{E}[R_M(Z_1) \mathbf{1}_{\mathcal{H}_D}(Z_1)] \leq C_1 D^{-1/d} + M D^{-2d}, \quad C_1 := C_{d,L} (\mathbb{E}[q(Z)^{-1/d}])^{1/d} < \infty. \quad (22)$$

1271 Step 3.2. Distribution in \mathcal{L}_D (ultra-low density region).

1272 On \mathcal{L}_D one has $q(z)^\epsilon \leq \lambda_D^\epsilon$, so by Hölder's inequality

$$1273 \quad 1274 \quad \Pr(Z \in \mathcal{L}_D) = \int_{q < \lambda_D} q(z) dz \leq \lambda_D^\epsilon \int_{\mathbb{R}^d} q(z)^{1-\epsilon} dz = C_\epsilon \lambda_D^\epsilon.$$

1275 Since $R_M \leq M$,

$$1276 \quad 1277 \quad \mathbb{E}[R_M(Z_1) \mathbf{1}_{\mathcal{L}_D}(Z_1)] \leq M C_\epsilon \lambda_D^\epsilon = M C_\epsilon (\log D)^{\epsilon/(d+1)} D^{-\epsilon/(d+1)}. \quad (23)$$

1278

1279 Step 4. Global bound.

1280 Adding equation 22 and equation 23. For large enough D , the term $M D^{-2d}$ is higher-order small
1281 quantity compared to $D^{-1/d}$ or $D^{-\epsilon/(d+1)}$. Therefore,

$$1282 \quad 1283 \quad \mathbb{E}[R_M(Z_1)] \leq C_1 D^{-1/d} + M C_\epsilon (\log D)^{\epsilon/(d+1)} D^{-\epsilon/(d+1)} + o(\min(D^{-1/d}, D^{-\epsilon/(d+1)})).$$

1284 Finally, compare the two powers of D . If $\epsilon < \frac{d+1}{d}$ then $\epsilon/(d+1) < 1/d$ and the second term
1285 dominates; otherwise the first dominates. This yields the two-case estimate claimed. \square

1296 **How large can ϵ be, for unbounded and bounded \mathcal{Z} ?**
1297

1298 • **It is usually assumed (Bahri et al., 2024; Sharma & Kaplan, 2022) that \mathcal{Z} is bounded:**
1299 this assumption makes sense since in usual cases we approximate Intrinsic Space with mid-
1300 dle feature representation of neural networks, which can indeed be bounded. For bounded
1301 \mathcal{Z} , it is possible for ϵ to be larger than $1 + 1/d$. We would like to mention that in (Bahri
1302 et al., 2024), a constant distribution $q(z) = \text{Const}$ is assumed, where ϵ can be arbit-
1303 rarily large and dominant rate $D^{-1/d}$ is derived: this is a much stronger assumption
1304 compared to Finite ϵ -negative moment we assumed in our work.

1305 • **If \mathcal{Z} is bounded and $\exists q_{min} > 0$ such that $\forall z, q(z) \geq q_{min} > 0$, then $\forall z > 1$,**
1306 $\int_{\mathcal{Z}} q(z)^{1-\epsilon} dz \leq \int_{\mathcal{Z}} q_{min}^{1-\epsilon} dz = q_{min}^{1-\epsilon} \int_{\mathcal{Z}} dz$, and the final term is finite for any ϵ . That
1307 is, in this case ϵ can be arbitrarily large.

1308 • For unbounded \mathcal{Z} , $\epsilon < 1$ is the usual case; at $\epsilon = 1$ the condition becomes $\int q^0 =$
1309 $\text{Leb}(\text{supp } q) < \infty$, i.e. *compact support of finite measure*. For most unbounded densi-
1310 ties (Gaussians, sub-exponential, power-law) one only has $\epsilon < 1$.

1311 • The comparison threshold $\frac{d+1}{d}$ is always > 1 when $d \geq 1$; hence the dominant rate is

$$\begin{cases} D^{-\epsilon/(d+1)} & \text{for every admissible } 1/d < \epsilon < 1, \\ D^{-1/d} & \text{only if the support is compact and } \epsilon > 1 + 1/d. \end{cases} \quad (24)$$

1315 Thus ϵ can never “reach” the critical value $\frac{d+1}{d}$ unless q is essentially bounded below on
1316 its support.

1317
1318 **From Nearest-Neighbour Distance to Approximation Loss**
1319

1320 • Capped nearest-neighbour distance can be derived naturally if one assume the maximum
1321 distance of neighboring points to be bounded by constant, or if one assume the Intrinsic
1322 Space \mathcal{Z} is bounded.

1323 • **Restate of Theorem 2 in (Bahri et al., 2024):** Assuming $l(f), f, F$ be Lipschitz with
1324 constants K_L, K_f, K_F and $l(F) = 0$, D be training dataset of size D sampled i.i.d from
1325 M_d . Let $f(x) = F(x) \forall x \in D$. Then, for each training point x , let \hat{x} be the nearest
1326 neighboring training data point, we have $L(D) \leq K_L(K_f + K_F)\mathbb{E}_{D,x}[\|x - \hat{x}\|]$.

1327 • Combining **Theorem 2 in (Bahri et al., 2024)** and previous results (nearest neighbour
1328 distance in this Appendix D.2), since Approximation loss of context length l is $D_{KL}(P_l, Q)$
1329 which can be 0 when $Q = P_l$, thus satisfying the assumption of **Theorem 2 in (Bahri et al.,**
1330 **2024)**. Thus, $L_{\text{Approx}} = C_0 + A(l)/D^{c/dim} = C_0 + A(l)/D^{\alpha(l)}$.

1331 Therefore, we have:

1332 **Theorem 2** (Data Scaling for Approximation Loss). *Let $\mathcal{Z} \subseteq \mathbb{R}^d$ ($d > 1$) be a d -dimensional
1333 region (exists non-empty open set $U \in \mathbb{R}^d$ such that $U \subseteq \mathcal{Z}$). $q : \mathcal{Z} \rightarrow [0, \infty)$ be probability
1334 density function satisfying **Lipschitz Differentiable** and **Finite ϵ -negative moment**. Let $g : \mathcal{Z} \rightarrow P_V$
1335 be a decoding mapping from intrinsic space \mathcal{Z} to a distribution of tokens in vocabulary V , and
1336 $l(P_{V1}, P_{V2})$ be KL divergence loss function (thus l is zero for identical distributions). Assume
1337 $l(g(z_1), g(z_2))$ is differentiable and Lipschitz smooth for z_1 and z_2 with Lipschitz coefficient L_l .*

1338 *Then, draw i.i.d. samples $\mathcal{Z}_D = \{Z_1, \dots, Z_D\} \sim q^{\otimes D}$, if $\min_{j \neq i} \|Z_i - Z_j\|$ is bounded by
1339 M , then there exists constant $C = C(d, L, \epsilon, M, C_\epsilon, L_l)$ and $c = c(L, \epsilon, M, C_\epsilon)$ such that for
1340 $D > D_0(d, L, \epsilon, M, C_\epsilon)$:*

$$\min_{j \neq i} l(g(Z_i), g(Z_j)) \leq C D^{-c/d}. \quad (25)$$

1345 *Proof.*

$$\begin{aligned} 1346 \min_{j \neq i} l(g(Z_i), g(Z_j)) &\leq \min_{j \neq i} L_l \cdot \|Z_i - Z_j\| \\ 1347 &= L_l \cdot \min\{M, \min_{j \neq i} \|Z_i - Z_j\|\} \\ 1348 &= L_l \cdot R_M(Z_i) \text{ by the definition of } R_M(Z_i) \text{ in Theorem 1} \end{aligned} \quad (26)$$

1350 By applying Theorem 1 we have:
 1351

$$\mathbb{E}_{\mathcal{Z}_D} [\min_{j \neq i} l(g(Z_i), g(Z_j))] \leq L_l C D^{-c/d} \quad (27)$$

1354 for constant $C = C(d, L, \epsilon, M, C_\epsilon)$, $c = c(L, \epsilon, M, C_\epsilon)$ and large enough $D > D_0(d, L, \epsilon, M, C_\epsilon)$,
 1355 thus completing the proof. \square
 1356

1357 **Meaning of a finite ϵ -negative moment**

1359 • **Lebesgue–measure view**

1360 Write $E_t := \{z : q(z) \leq t\}$. Chebyshev gives
 1361

$$\text{Leb}(E_t) \leq t^{-\epsilon} \int q^{1-\epsilon} = C_\epsilon t^{-\epsilon}. \quad (28)$$

1362 Hence Assumption (A2) controls how *large* the very–low–density region can be; the
 1363 smaller ϵ , the larger that region may grow.
 1364

1365 • **Rényi entropy view**

1366 For order $\alpha > 0$, the Rényi entropy is
 1367

$$H_\alpha(q) = -\frac{1}{\alpha-1} \log \int q^\alpha. \quad (29)$$

1368 Setting $\alpha = 1 - \epsilon \in (0, 1)$ (the *Tsallis* regime) and re-arranging,
 1369

$$\int q^{1-\epsilon} = e^{-(1-\epsilon)H_{1-\epsilon}(q)}, \quad (30)$$

1370 so finiteness of the ϵ -negative moment is equivalent to *finite sub-Rényi entropy of order*
 1371 < 1 . Smaller ϵ (order closer to 1) corresponds to heavier low-density tails, which precisely
 1372 slows the nearest-neighbour rate as captured in Theorem 1.
 1373

1374 D.3 DERIVATION FOR BAYES RISK WITH INTRINSIC DIMENSION ASSUMPTION
 1375

1376 **Theorem 3** (Bayes Risk and Context Length with Intrinsic Dimension Assumption). *Let \mathcal{Z} be an*
 1377 *intrinsic space satisfying **Predictive Consistency** and **Uniform Information Gain**, then the Bayes*
 1378 *Risk $H(P, P_l)$ of context length l is **Linear** with respect to Intrinsic Dimension $\dim(l)$. That is,*
 1379

$$H(P, P_l) = -s \cdot \dim(l) + \text{Const} \quad (31)$$

1380 *Proof.*

$$\begin{aligned} H(P, P_l) &= H(P) + D_{KL}(P, P_l) \\ &= H(P) + s \cdot (\dim(\infty) - \dim(l)) \\ &= -s \cdot \dim(l) + \text{Const} \end{aligned} \quad (32)$$

1381 \square

1382 **An intuitive example for the ‘s-bits per dimension’ assumption:** assuming that the vocab is
 1383 an integer from 0 to $2^{\dim(\infty)*s} - 1$. assuming $P(x_0|x_{-\infty:0}) = \delta_{x_0,y}$, that is, the next token
 1384 given $x_{-\infty:0}$ is sure to be y . y . For $P_l(x_0|x_{-\infty:0})$, the first $\dim(l) * s$ digits of the integer
 1385 (in binary representation) are known, but the remaining $(\dim(\infty) - \dim(l)) * s$ digits are un-
 1386 known, making a guess in these numbers yield $P_l(x_0|x_{-\infty:0}) = 1/2^{s*(\dim(\infty)-\dim(l))}$. Thus,
 1387 $D_{KL,x_0}(P(x_0|x_{-\infty,0}), P_l(x_0|x_{-\infty,0})) = 1 * \log 1/(1/2^{s*(\dim(\infty)-\dim(l))}) = s * (\dim(\infty) -$
 1388 $\dim(l))$.
 1389

1404 D.4 DERIVATION FOR BAYES RISK WITH INFORMATION ENTROPY ASSUMPTION
1405

1406 **Theorem 4** (Bayes Risk and Context Length with Information Entropy Assumption). *Let \mathcal{Z} be
1407 an intrinsic space satisfying **Predictive Consistency** and **Linear Entropy Relationship** of zero-
1408 tolerance limit, then the Bayes Risk $H(P, P_l)$ of context length l is **Linear** with respect to Intrinsic
1409 Entropy $H[q_t(\mathcal{Z})]$ where $q_t(\cdot)$ denotes probability density function. That is,*

$$1410 H(P, P_l) = -s \cdot H[q_t(\mathcal{Z})] + \text{Const} \quad (33)$$

1411 *Proof.*

$$\begin{aligned} 1413 H(P, P_l) &= H(P_l) \text{ (from Appendix B.2)} \\ 1414 &= H[p(x_t | x < t)] \\ 1415 &= -s \cdot H[q_t(\mathcal{Z})] + b \\ 1416 &= -s \cdot H[q_t(\mathcal{Z})] + \text{Const} \end{aligned} \quad (34)$$

1417 \square

1419 E MORE EXPERIMENTS OF LLaMA ON ANOTHER DATASET
1420

1421 According to the technical report of LLaMa 3.1(Grattafiori et al., 2024), the text corpora with number of ‘dirty words’ beyond certain threshold would be filtered out, as proposed in (Raffel et al.,
1422 2023). We collect some text corpora online which include forbidden words defined in (Raffel et al.,
1423 2023), as text corpora unseen by LLaMa 3.1. By conducting experiments on it we obtain results
1424 similar to Openwebtext subset.
1425

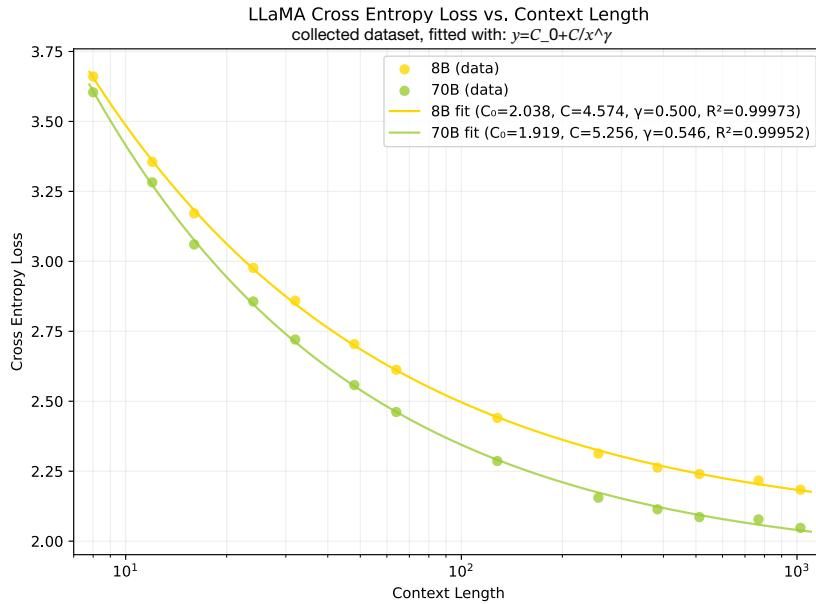


Figure 11: Cross Entropy Loss vs. Context Length, with log scale. We see that $y = C_0 + C/x^\gamma$ fits this curve well.

According to Figure 11, we see that $CE = C_0 + C/l^\gamma$ approximates well for text corpora that are sure not to be seen by the model.

F OPTIMAL CONTEXT LENGTH FOR TWO-NEEDLE-IN-HAYSTACK
TRAINING: STUDY ON SYNTHETIC DATASET

Here, we utilize our proposed synthetic dataset as a proxy to study the two-needle-in-haystack experiment (as we mentioned in Figure 5.)

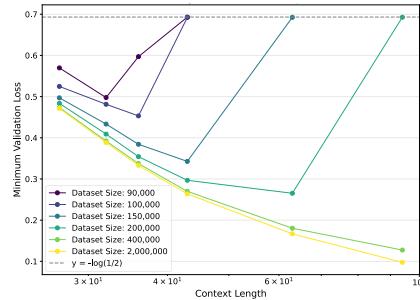


Figure 12: Validation set Cross Entropy Loss of the output token (resembling the ‘answer’ token of two-needle-in-haystack tasks) v.s. context length, for MLPs trained with different training dataset sizes.

As mentioned in previous studies, the Cross Entropy loss of key tokens (e.g. the perplexity of the Answer token for Needles in Haystacks (NIH)) is highly correlated with downstream task accuracy (that is, the NIH tasks). Here, we use the Cross Entropy loss of the output bit of our synthetic task (shown in Figure 5) as a metric for our synthetic ‘two-needles-in-haystack’ task.

Here, we use a synthetic dataset similar to that mentioned in the main paper, except that it has more than 500 context bits (though most tasks require only first 100 context bits). In this section, we fix the size of the training data, train multiple iterations till overfitting, and take the best validation loss as the validation loss of that (training dataset size, context length) pair. Results are shown in Figure 12. From the result, we make such observation:

There exists an optimal context length for most training dataset size used, and such optimal context length increases with the amount of available training data.

This proves the concept that, when training dataset is limited, optimal context length smaller than the task length could potentially exists for tasks resembling the two-needle-in-haystacks tasks, and larger training dataset leads to larger optimal context length.

G EXPERIMENTS ON OTHER LANGUAGE MODELS

In our main paper, we mainly conduct experiments on the Llama-3 series on Nature Language and neural networks on synthetic datasets. Here, we further experiment on the relationship between Intrinsic Entropy and Cross Entropy Loss, for OpenWebText dataset for other two language models: the Qwen3-8B-Base and the RecurrentGemma-9B.

As shown in Figure 13, for Qwen3-8B-Base, the linear relationship between Intrinsic Entropy and Cross Entropy loss holds quite well. For RecurrentGemma-9B, we observe that its Cross Entropy loss is significantly higher than Llama-3.1-8B and Qwen3-8B-Base for small context length (the 3 high points drawn on the figure), while other points show similar cross entropy loss. Therefore, we conclude that **RecurrentGemma-9B is not a good approximation for Bayes Model for these outlier points (i.e. it can’t model low-context quite well with Cross Entropy loss > 5**, potentially because of its architecture or training pipeline), and we use the rest points where it is closer to Llama-3.1-8B and Qwen3-8B-Base as Bayes Model for regression.

Experiment in this section proves that, (1) our proposed Intrinsic Entropy and Cross Entropy loss relationship **holds across different series of Language Models with different architectures** when they are well-trained and can represent Bayes Models; and (2) the discovered relationship **only holds when the measured Language Model approximates Bayes Model well**.



Figure 13: Validation set Cross Entropy Loss of the output token (resembling the ‘answer’ token of two-needle-in-haystack tasks) v.s. context length, for MLPs trained with different training dataset sizes.

H EXPERIMENT SETTINGS

H.1 NATURAL LANGUAGE DATA

H.1.1 OPTIMAL CONTEXT LENGTH EXPERIMENTS

We use nanogpt (Karpathy, 2022) and train a model with GPT-2(Radford et al., 2019) architecture on a subset of OpenwebText dataset. Our model is the same with GPT-2-124M (12-head transformers, 768-dim feature vector) except that it uses half the transformers layer size (12 \rightarrow 6) to reduce GPU memory for long contexts. For training, we use the AdamW (Loshchilov & Hutter, 2019) optimizer, learning rate of $6e-4$, weight decay of $1e-1$, 1000 warm-up iterations. For given token number, all models with different context length are trained with same number of iterations, where iteration number equals roughly to $token_number/(0.1M)$.

We train the model on a subset of OpenWebText. To be specific, we first select text corpora with context length beyond specific limits larger than the maximum training context length from OpenWebText, then split into Training set and Validation Set. The training set we used to train the models have 200M, 250M, 300M, 350M, 500M, 750M tokens respectively, and the validation set has 134M tokens.

Experiments presented in Figure 4 and Figure 14 took around 300 gpu hours on 8 AMD MI-250X GPUs (which are similar in performance to Nvidia A100 gpus).

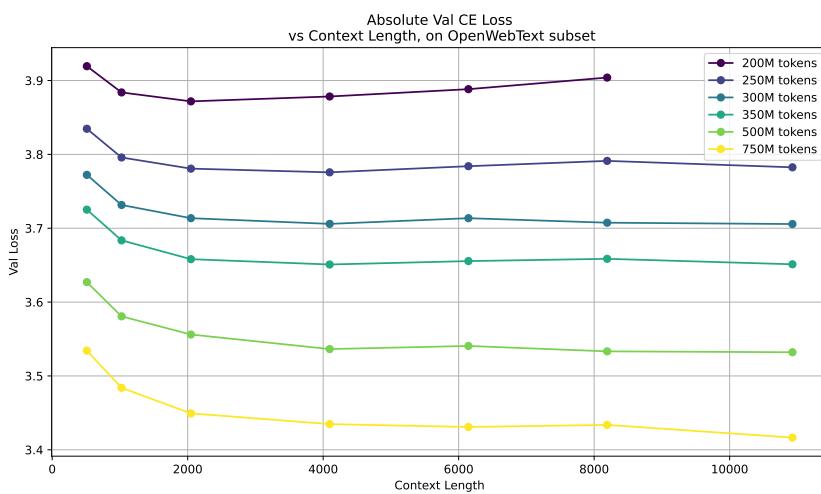


Figure 14: Openwebtext subset, Validation Loss vs. Context Length, for different dataset sizes. Different curves represent different amount of training data used. A more readable figure can be found in Figure 4, where the minimum validation loss reachable for each training dataset size is subtracted.

1566
1567

H.1.2 INTRINSIC DIMENSION EXPERIMENTS

1568
1569
1570
1571

We select long enough text corpora from the Openwebtext dataset. Then, following previous practice (Cheng et al., 2023), we conduct experiments with LLaMa-3.1-8b on 10000 samples of this subset. We extract the feature representation of the last token in the last layer, as the Intrinsic Representation of samples.

1572
1573

Conducting all intrinsic dimension measurements cost up to around 100 gpu hours for MI-250X gpus.

1574
1575
1576

I RELATED WORK

1577
1578

I.1 ENLARGING CONTEXT LENGTH FOR LMs

1579
1580
1581
1582

Previous work has made attempts to enlarge the context length of Language Models. Work represented by RoPE (Su et al., 2023) uses rotary positional embedding to support generalizing LMs to longer context in inference compared to the training process. These work uses modified positional embeddings to model the relative position dependency in attention mechanism.

1583
1584
1585
1586

There is also work about enhancing long context understanding and exploring Scaling Laws for context length (Xiong et al., 2024). These work utilize an adjusted pretraining and instruction-finetuning process with more long-context data to enhance the models' ability on long contexts.

1587
1588
1589
1590

Other work modifying architectures has also been proposed to enhance long context modeling or to simplify deployment of long context LLMs. For example, (Tang et al., 2024) proposes a training-free RazorAttention algorithm to largely compress the KV cache while maintaining performance unchanged.

1591
1592
1593
1594
1595

Architectures and inference methods have been proposed to reduce inference time and memory cost for Language Models, represented by a series of linear transformer or RNN-based methods (Katharopoulos et al., 2020; Gu & Dao, 2024; Sun et al., 2024). These methods, largely reducing the computational cost and memory usage for long input contexts, have displayed margin ahead of traditional attention-based langauge models for long context inference.

1596
1597
1598

Currently a common practice to train very large Language Models supporting long context is to use pretrain the model with shorter contexts, then finetune them with longer contexts, as presented in tech reports of LLaMa-3 (Grattafiori et al., 2024) and DeepSeek-v3 (DeepSeek-AI et al., 2024).

1599

I.2 IRRELEVANT LONG CONTEXT HURTS PERFORMANCE OF LMs

1600
1601
1602
1603
1604
1605
1606
1607

Besides context length scaling with relevant contexts, previous researches have studied how LLMs perform for long irrelevant contexts. As an example, (Levy et al., 2024) studies the performance of current LLMs on an adjusted version of ‘needle in a haystack task, where two pieces of key information are embedded into a long text corpora and a question related to both is asked, similar to that presented in Figure 5. The conclusion of these work is that LLMs would perform worse when there is too much irrelevant information.

1608
1609

I.3 LONG CONTEXT IN ANOTHER FIELD: TIME SERIES FORECASTING

1610
1611
1612
1613
1614
1615
1616

Context length, representing the length of input context, is not unique to Nature Language. For time series forecasting, where machine learning plays an important row, there is also work discussing the impact of context length, represented by (Shi et al., 2024). These investigations find that there exists an optimal look-back horizon, which increases with dataset size. However, time series datasets are relatively small compared to NLP datasets, and thus whether this conclusion holds on NLP remains an open problem for this work to study.

1617
1618
1619

Since the discovery of Scaling Laws for Large Language Models (Kaplan et al., 2020) or even earlier, there has been theoretical work trying to explain why model performance could benefit from

more data points and more model parameters. For example, (Sharma & Kaplan, 2022) studies the dataset and model scaling from the data manifold perspective.

Specially for Language Models, there is also previous work proposing all kinds of theoretical models. For example, (Michaud et al., 2024) proposes a feature-quant based theory; (Aghajanyan et al., 2020) views the effect of fine-tuning from the intrinsic dimension perspective; (Havrilla & Liao, 2024) proposes to understand scaling with intrinsic dimensions.

J INTRINSIC DIMENSION PERSPECTIVE: MEASUREMENTS IN INTRINSIC SPACE

J.1 BAYES RISK FROM AN INTRINSIC DIMENSION PERSPECTIVE: ASSUMPTIONS

Here we derive similar results as in Section 2.2, but from an Intrinsic Dimension perspective rather than an Information Entropy perspective.

We propose a simple theory model to relate $H(P, P_l)$ with the intrinsic dimension $\dim(l)$ of the intrinsic space space_l of the text corpora of length l (for the next-token prediction task).

We assume these assumptions hold for Intrinsic Space (please see formal definitions of Intrinsic Space in Appendix D),

- Assumption 1. Intrinsic Dimension of the Bayes Model $\lim_{l \rightarrow \infty} \dim(l) = \dim(\infty)$ is finite, which is the Intrinsic Dimension of next token prediction of language itself.
- Assumption 2. $\forall l_1, l_2$ such that $l_1 < l_2$, $\dim(l_1) < \dim(l_2)$. This is because a longer context contains more information about the next possible token.

To simplify deduction, we further assume that,

- Assumption 3. **Uniform Information Gain** (s -bits for next token prediction per Intrinsic Dimension): Each intrinsic dimension would add s bits of information to the next-token prediction task, so there are $\dim(l) * s$ bits of information that can be represented in space_l for the next-token prediction. This means the KL-divergence for the Bayes Model of context length l , P_l , with Bayes Model of infinite context length, $P = P_\infty$, is: $D_{KL}(P, P_l) = s * (\dim(\infty) - \dim(l))$. **Note this does not mean these are the only information in the Intrinsic Space, hence s can be small, or even smaller than 1.**

With these assumptions, we can derive $H(P, P_l)$ with $\dim(l)$:

$$\begin{aligned} R_{Bayes} &= H(P, P_l) \\ &= -s * \dim(l) + Const \end{aligned} \tag{35}$$

This **linear relationship** can be observed in experiments for LMs and synthetic data, providing an alternative explanation to the entropy-based approach in the main paper.

J.2 EXPERIMENTALLY MEASURE INTRINSIC DIMENSION USING PCA

We further use PCA as a metric to measure the Intrinsic Dimension of Dataset with respect to context length. We provide the relative degradation of the eigenvalue in the feature space of LLaMa-3.1-8B, for the last token. We see that larger input length would indeed provide feature with lower degradation in the intrinsic space. Notably, when $5 < \text{idx} < 1500$ the curves is similar to Zip-f distribution ($\log \text{eig} = C_0 - C * \log \text{idx}$), and for $500 < \text{idx} < 4000$ it resembles exponential degradation ($\log \text{eig} = C_0 - C * \text{idx}$).

Instead, following previous practice, here we use some **threshold** to decide the transformation index of these two states as Intrinsic Dimension: $\max_{\text{idx}} \text{rela_eig}(\text{idx}) \geq \text{threshold}$ is used as the measured **Intrinsic Dimension**. Notably, the threshold here is a hyperparameter which is set to constants in previous work(e.g.1/20 in (Aghajanyan et al., 2020)), but we observe here that many thresholds would validate the linear correspondence of Cross Entropy vs. Intrinsic Dimension, which further enhance the robustness of our result. We use thresholds from 0.002 to 0.25.

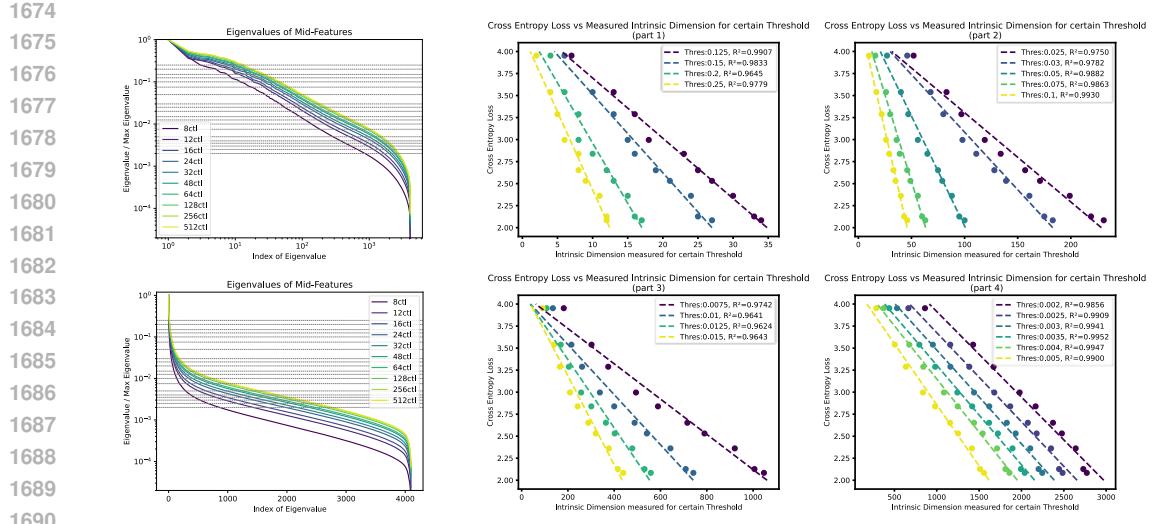


Figure 15: **Left figures: Relative Eigen Value** for LLaMa-3.1-8B on a subset of OpenWebText, presented in different x-axis scales, with different context length visible to Language Model. Gray lines represent different **thresholds** we take to measure the intrinsic dimension of the current model. **Right figures: Cross Entropy Loss vs. Measured Intrinsic Dimension.** Each line represents a certain threshold used to measure ID in the intrinsic space of the used LLM. Different Measurements would give ID values that are linear w.r.t. each other, and they are all linear w.r.t. CE loss.

For a certain threshold, we conduct experiments on several context lengths, and measure CE Loss on certain text corpora with these context lengths. We observe a fairly linear relationship between CE Loss and ID measured (supporting our theory), as shown in Figure 15. We see that, no matter what threshold we use, the Cross Entropy Loss usually follows a linear relationship with the Intrinsic Dimension we measured, showing the robustness of the PCA evaluation method, and validating our theoretical assumptions:

$$R_{Bayes} \approx -s * \dim(l) + Const,$$

which aligns well with **Equation 35**, thus validating our intrinsic dimension-based deduction.

J.3 MLP-BASED SYNTHETIC DATASET: INTRINSIC DIMENSION EXPERIMENTS

We train a large enough MLP on data generated on the synthetic tasks, and evaluate our model on the validation dataset. We train until overfitting the training dataset. We assume 1 dimension in Intrinsic Space can store information about 1 subtask, hence we take $ID(l) = t(l)$ as its theoretical value here.

Let $f(x, C, C_0, \gamma) = C_0 - C/x^\gamma$ and $g(x, k, b) = k * x + b$.

The fitted results are:

- ID & CL: $ID \approx f(CL, C, C_0, \gamma), C_0 = 51.1 \pm 1.0, C = 1.7 * 10^3 \pm 0.3 * 10^3, \gamma = 1.18 \pm 0.06, R^2 = 0.9997$.
- CE & CL: $CE \approx f(CL, C, C_0, \gamma), C_0 = -0.015 \pm 0.013, C = -23.8 \pm 4.3, \gamma = 1.18 \pm 0.06, R^2 = 0.9997$.
- CE & ID: $CE \approx g(ID, k, b), k = -0.693 \pm 1 * 10^{-5}, b \approx 0.0139 \pm 4 * 10^{-7}, R^2 = 1 - 7 * 10^{-9}$.

As shown, we construct synthetic data such that $ID(l) = ID_0 - C'/l^\gamma$, and our measurements show $CE = C + C'/l^\gamma$. More importantly, **for the synthetic data example, Cross Entropy loss is almost perfectly linear with the Intrinsic Dimension as we defined previously.** This validates the linear relationship between Cross Entropy Loss and Intrinsic Dimension; and we have also provided a construction to match the measured relationship $CE(l) \approx C_0 + C/l^\gamma$.

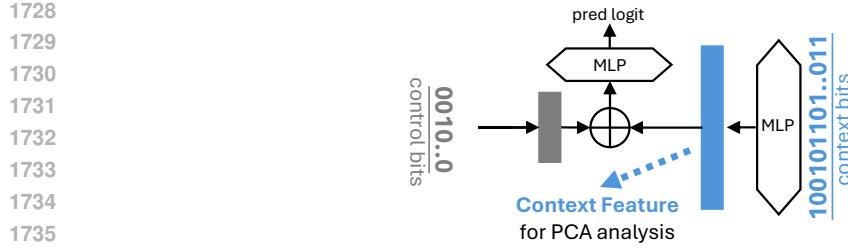


Figure 16: Model trained on the proposed synthetic dataset; \oplus represents feature concatenation. Only the first l bits are used as input to context MLP when the context length is set to l . We conduct PCA on Context Feature to analyze the intrinsic dimension of input context bits for various context lengths.

We train a model with a specialized architecture, allowing us to use the feature representation of a middle layer as a feature vector for input context bits, as shown in **Figure 16**. After training the model on data with different context length, we conduct PCA on the obtain context feature representation to study the Intrinsic Space of this model.

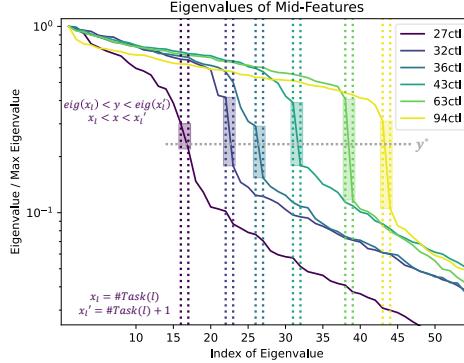


Figure 17: Relative eigen value vs. index, for models trained on different context length. Vertical lines: $x_l = ID(l)$ and $x'_l = ID(l + 1)$. For example, a context length 27 has 16 subtasks visible, corresponding to 16 bits in Intrinsic Space. Assuming 1 dimension in Intrinsic Space represents 1 bit, the leftmost purple rectangle drawn means a range of $y_{threshold}$ that would provide an accurate estimation of $ID(27) = 16$ for context length 27. There exists y^* that would provide an estimation of ID for all context lengths, as shown in the figure.

We find that: (1) the neural network would indeed learn the key information in the context bits. For models with different input context lengths, although their inner dimensions are the same (80), the representation of inputs in this inner space mainly lies in the first ID dimensions, and the eigen values corresponding to other dimensions are very small; and (2) there exists such threshold y^* that would estimate ID for all context lengths accurately. We can take some threshold y^* to estimate the intrinsic dimension, by obtaining the maximum index of the relative eigen value such that the relative eigen value is larger than y^* , which would give accurate and consistent estimates.

J.4 BRIDGING THE GAP BETWEEN INTRINSIC DIMENSION EXPLANATION AND INTRINSIC ENTROPY EXPLANATION

Here, starting from previous assumptions and measurements w.r.t. Entropy in Intrinsic Space, we explain why CE is linear w.r.t. Intrinsic Dimension measured in Section 2.2, for $idx > 500$. We see in Figure 3 that for $idx > 500$, the relative eigenvalues mainly follow an exponential decay:

$$releigval_{l, idx} = releigval_{l, 0} * \exp\{-\alpha_l * idx\}, \text{ for certain context length}$$

1782 where l is the context length, idx is the index of some certain eigen value, and α_l is the exponential
 1783 decay coefficient for this certain context length l .

1784 We also see from the previous results (**Figure 3**) that for different context lengths, the relative
 1785 eigenvalues increase almost in the same proportion, especially for $idx > 1000$. That is, $\alpha_l \approx \alpha$. We
 1786 define $\gamma(l) = \text{releigval}_{l,0}/\text{releigval}_{\infty,0}$ and thus we have: $\text{releigval}_{l,0} = \text{releigval}_{\infty,0} * \gamma(l) * \exp(-\alpha * idx)$.

1787
 1788 For the subspace for the next token prediction task, we denote its dimension to be m . Hence, the
 1789 entropy should be proportional to log of volume in the subspace; that is:

$$1791 \quad S_{\text{subspace}}(l) = \sum_{idx \in \{\text{dimension of subspace}\}} \log \text{releigval}_{\infty,0} \gamma(l) \exp(-\alpha * idx) \quad (36)$$

$$1792 \quad = m \log \gamma(l) + \text{Const}$$

$$1793$$

$$1794$$

1795 which is the result of the **Intrinsic Entropy Explanation**.

1796 For **Intrinsic Dimension explanation**, if we are using some certain threshold $thres$ to measure
 1797 Intrinsic Dimension, the measured dimension $\text{dim}(l, thres)$ should satisfy:

$$1800 \quad \text{releigval}_{\infty,0} * \gamma(l) * \exp\{-\alpha * \text{dim}(l, thres)\} = thres,$$

$$1801$$

1802 hence the measured dimension is $\text{dim}(l, thres) = 1/\alpha * (\log \gamma(l) + \log(\text{releigval}_{\infty,0}/thres))$.
 1803 Plugging this into Equation (36) we have:

$$1804 \quad L_{CE} = -S_{\text{subspace}}(l) + \text{Const} = -m\alpha * \text{dim}(l, thres) + \text{Const}(thres). \quad (37)$$

$$1805$$

1806 Thus, we derive our assumptions in Section 2, where $s = m\alpha$. Equation (37) can also be validated
 1807 in the lower-right part of Figure ??, where the Intrinsic Dimensions (for $idx \geq 500$) are measured in
 1808 the exponential decay area, and these lines, though measured with different threshold ($thres$), share
 1809 similar slopes w.r.t. CE Loss (that is not related with threshold, as shown in Equation 37).

1811 K DISCLOSURE OF LLM USAGE

1812 LLMs are used in this work for polishing writing only.

1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835