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ABSTRACT

Large Language Models (LLMs) are key technologies that drive intelligent sys-
tems to handle multiple tasks. To meet the demands of various tasks, an increas-
ing number of LLMs-driven experts with diverse capabilities have been devel-
oped, spreading from language to visual understanding and generalization, ac-
companied by corresponding benchmarks to evaluate their performance. This
paper proposes the Bench-CoE framework, which enables Collaboration of Ex-
perts (CoE) by effectively leveraging benchmark evaluations to achieve optimal
performance across various tasks. Bench-CoE consists of a set of specialized
expert models, a router for assigning tasks to corresponding experts, and a bench-
mark dataset for training the router. Based on this framework, we first formu-
late Query-Level Bench-CoE that is an abstraction of existing CoE methods ex-
ploiting the benchmark dataset. We further propose Subject-Level Bench-CoE, a
new method that effectively addresses the potential issues of Query-Level Bench-
CoE in poor generalization and labeling costs during training the router. Experi-
ments show that the Query-Level Bench-CoE excels in in-distribution tasks, while
the Subject-Level Bench-CoE demonstrates stronger out-of-distribution gener-
alization and cross-domain scenarios adaptability. The codes are available at:
https://anonymous.4open.science/r/BenchCoE.

1 INTRODUCTION

Large Language Models (LLMs) are capable of performing various natural language processing
(NLP) tasks through auto-regressive prediction conditioned on task prompts Radford et al. (2019);
Brown et al. (2020). The ability of LLMs to describe and unify tasks makes them key components in
current visual understanding tasks, leading to the emergence of Large Multimodal Models (LMMs)
Liu et al. (2023); Zhu et al. (2024). While these LLMs/LMMs-driven experts can handle a wide
range of visual and language tasks, they possess different areas of expertise and exhibit significant
performance variations across different tasks. As the capabilities of experts continue to improve,
benchmark evaluations have also become increasingly complex and diverse Tjong Kim Sang (2002);
Bowman et al. (2015); Rajpurkar et al. (2016). For instance, benchmark such as MMLU Wang et al.
(2024) is used to assess multi-subject reasoning abilities in language tasks, while MMMU Yue et al.
(2024) evaluates cross-domain reasoning in multimodal tasks. It is difficult for a single model to
achieve optimal performance across all tasks. Moreover, attaining comparable effectiveness often
requires an increase in model scale and inference cost, which in turn poses challenges for computa-
tional resources and practical applications.

To integrate the advantages of the model in various aspects while controlling costs, researchers
have proposed different approaches. Mixture of Experts (MoE) Jacobs et al. (1991); Shazeer et al.
(2017); Fedus et al. (2022) introduces multiple expert models and adopts a sparse activation strategy,
where only a subset of experts is activated during inference, thereby reducing computational cost.
However, the experts in MoE is just sub-modules of a model, and it is difficult in understanding the
functionality of each expert and the decision-making process in solving certain tasks. To mitigate
this issue, researchers proposed Collaboration of Experts (CoE) Zhang et al. (2022); Jiang et al.
(2023b); Ong et al. (2024); Lu et al. (2024), which integrates the advantages of different models by
routing query to specific expert model, typically implemented through an expert router. However,
these CoE methods rely on additional labeled data to train the router, and their generalization ability
is often limited when handling out-of-distribution (OOD) tasks, posing challenges for expanding the
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capabilities of CoE models. Is there a way to maintain generalization without the additional cost of
labeled data? The evaluation results of various experts across different subjects in the benchmark
shed light on the answer to the problem.

Leaderboard Subject_A

Label:  A
    Map     :  2

Subject_B ...

       Expert_1

       Expert_2

... ...

Label: B
    Map     :  1

...Subject Queries

Train
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Benchmark

Subject Labels and Expert Map

...

RouterInput Output

Subject_A
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...

Figure 1: The framework of Bench-CoE. It
consists of a set of specialized expert models,
a router for expert assignment, and a bench-
mark dataset for training the router.

We analyzed that the key to the problem lies in
obtaining reasonable labels for query assignment,
and the performance of expert models across differ-
ent subjects in benchmark tests can actually serve
as a type of label. Inspired by this, we propose
the Bench-CoE framework, which enables experts
collaboration by effectively leveraging the strengths
of different experts from benchmark evaluations, as
shown in Figure 1. Bench-CoE consists of a set of
specialized expert models, a router for expert as-
signment, and a benchmark dataset for training the
router. Based on this framework, we first formu-
late the Query-Level Bench-CoE which is an ab-
straction of previous methods, such as Shnitzer et al.
(2023); Stripelis et al. (2024). However, this ap-
proach requires re-evaluating the performance of dif-
ferent expert models for each query to create data
labels. Although the router can effectively allocate
in-distribution queries to the appropriate experts, it
is expensive in terms of labels creation and struggles
to generalize to tasks outside the data distribution.

To address this issue, we further propose Subject-
Level Bench-CoE, which effectively exploits Subject-Level label from benchmark evaluations. The
router of Subject-Level Bench-CoE includes a subject classifier and a subject-expert mapping.
Firstly, the category index of the subject is used as the category label for all queries within that
subject and is utilized to train the query subject classifier. Then, the subject-expert mapping is es-
tablished by identifying which expert excels in a specific subject from benchmark. Defining the
above subject-level labels and subject-expert mapping is effortless because some existing bench-
marks Wang et al. (2024); Yue et al. (2024) typically provide subject labels along with evaluation
results for each subject. During testing, the input query is first classified into a subject using the
subject classifier. Then, based on the expert-subject mapping, the query is assigned to the expert
which is most proficient in that subject for processing.

We conducted a series of experiments to evaluate the effectiveness and generalization ability of the
Bench-CoE framework. The experimental results show that the query-level router performs better
on in-distribution tasks, while the subject-level router demonstrates stronger generalization ability
on out-of-distribution data, showcasing better adaptability and robustness. In summary, our main
contributions are as follows:

• We propose a simple and efficient framework Bench-CoE for combining and assigning
LLM/LMM-driven experts, which achieves flexible and efficient routing without relying
on extensive labeled data and large-scale training.

• We propose Subject-Level Bench-CoE which utilizes subject-level labels from benchmark
to train a subject classifier, enabling queries to be assigned to the most proficient expert
based on an expert-subject mapping.

• Experiments demonstrate that our proposed CoE method outperforms individual models
in multi-task scenarios, enhancing cross-domain multi-task processing performance with
stronger generalization.

2 RELATED WORK

With the rapid proliferation of expert models across various domains, an increasing number of stud-
ies focus on efficiently leveraging their expertise. To this end, diverse architectural paradigms have
been proposed to balance performance and efficiency. Among them, Mixture of Experts (MoE) and
Collaboration of Experts (CoE) are two predominant paradigms, implementing expert routing at the
token level and query level, respectively.
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Figure 2: (a) MoE employs multiple experts during inference and aggregates their outputs to pre-
dict the output. (b) Multi-CoE includes Parallel-CoE and Cascade-CoE, which respectively utilize
multiple parallel experts to generate and integrate their individual outputs, or process sequentially
through serial experts until an acceptable output is obtained. (c) The Single-CoE predicts each ex-
pert’s score on a given query and selects the expert with the highest score to process the query. (d)
Bench-CoE includes Query-Level and Subject-Level Bench-CoE, with the latter using benchmark
subject-level labels and expert-subject mapping to assign query to the most proficient expert.

2.1 MIXTURE OF EXPERTS

MoE primarily employs a sparse activation mechanism, dynamically selecting sub-models (experts)
for input query, thereby enabling large-scale parameter expansion while maintaining stable com-
putational costs, as shown in Figure 2 (a). The concept of MoE was first introduced by Jacobs
et al., initially focusing on small-scale models and relying on a gating network to select the most
suitable expert Jacobs et al. (1991). As computational resources have increased, Shazeer et al.
proposed Sparsely-Gated MoE, which was the first to adopt the MoE structure in large-scale deep
learning tasks and demonstrated significant performance improvements in neural machine transla-
tion Shazeer et al. (2017). However, this method still faced challenges such as imbalanced expert
assignment. To address these issues, Lepikhin et al. introduced GShard, which alleviated token
load balancing through auxiliary loss, random routing and expert capacity constraints Lepikhin
et al. (2020) . Subsequently, Fedus et al. proposed Switch Transformer, which further optimized
the MoE routing algorithm and successfully trained trillion-parameter MoE language models Fedus
et al. (2022). More recently, Zoph et al. introduced V-MoE, incorporating MoE mechanisms into
computer vision (CV) tasks and achieving state-of-the-art results on the image classification task
Riquelme et al. (2021). However, each individual expert module is part of MoE and cannot operate
independently out of MoE, making it difficult to interpret the role of each expert.

2.2 COLLABORATION OF EXPERTS

To address these limitations, researchers have explored an alternative approach CoE which dynami-
cally assigns query to the most suitable expert model. Current methods can be categorized based on
their inference approach into two types: Multi-Inference CoE and Single-Inference CoE.

Multi-Inference CoE requires multiple models to process the input query and merge all output
results, as shown in Figure 2 (b). LLM-BLENDER Jiang et al. (2023b) utilizes multiple different
expert models to generate multiple candidate outputs, then employs the pair-ranker module to per-
form pairwise comparisons and select the top-ranked candidates, followed by the gen-fuser module
to generate a high-quality final output. Distinct from this approach, FrugalGPT Chen et al. (2023)
explores three strategies for reducing LLM inference costs: Prompt Adaptation, LLM Approxi-
mation, and LLM Cascade. It sequentially utilizes progressively more powerful expert models to
process the input task until a satisfactory response is obtained. Although this approach can achieve
satisfactory results, it incurs a high computational cost as it requires multiple expert inference.

Single-Inference CoE route query to a single most suitable expert model for processing, as shown
in Figure 2 (c). This approach requires additional datasets to generate query-level routing training
labels. The CoE method Zhang et al. (2022) employs a delegator mechanism combined with WGM
and LGM training algorithms to improve the adaptability of expert models. Additionally, CCoE
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Huang et al. (2024) utilizes a shared backbone with expert sub-networks for efficient expert inte-
gration and introduces rule-based gating mechanisms and expert planning. GraphRouter Feng et al.
(2024) and Eagle Zhao et al. (2024) leverage heterogeneous graph learning and global and local
ELO ranking mechanisms, respectively, to optimize expert model selection strategies. ZOOTER Lu
et al. (2024) and TO-Router Stripelis et al. (2024) improve expert selection by employing reward
distillation for training routing functions and an intelligent routing mechanism to precisely match
queries with expert LLMs. RouteLLM Ong et al. (2024) and Hybrid LLM Ding et al. (2024) reduce
inference costs by utilizing dynamic model selection and query difficulty prediction with dynamic
quality adjustment mechanisms, respectively. While this approach performs well within the data
distribution, its generalization ability outside the distribution is suboptimal. Moreover, it requires
collecting a large amount of data to create training labels for the router.

2.3 COE WITH BENCHMARK AND MAPPING

Some researchers have attempted to incorporate benchmarks datasets as training data during the
CoE router training process, such as LLM-Bench Shnitzer et al. (2023). LLM-Bench reconstructs
benchmark datasets to train a router model for LLM selection and demonstrates that this problem
can be transformed into a series of binary classification tasks. This approach aims to predict the
performance of expert models on inputs with unknown task attributes. However, LLM-Bench has
low efficiency in training the router, since it requires to re-evaluate the expert model for query
labels, like the single-inference CoE as shown in Figure 2 (c). Besides, the LLM-Bench router
is not flexible for extension, since the router directly maps inputs to the expert model space. To
alleviate this issue, MODULAR-CoE Jain et al. (2024) adopts a two-step routing strategy comprising
input classification and category-to-expert mapping, which achieves improved performance while
reducing computational overhead. However, MODULAR-CoE requires the additional collection of
a large amount of labeled data to train the router for input classification, and to train the category-
to-expert mapping. Under these circumstances, the router needs to be re-trained, if there are any
changes in the pool of experts.

Distinct from LLM-Bench and MODULAR-CoE, our proposed Subject-Level Bench-CoE effec-
tively exploits subject-level labels from benchmark evaluations, without requirement to re-evaluate
the queries. In addition, the routing model of our method consists of a subject classifier and a
subject-expert mapping, as shown in Figure 2 (d). Subject-expert mapping can also be directly ob-
tained from benchmark evaluations and can be updated in real time as models evolve, without the
need for retraining. The query is first classified into a subject, and then the most specialized expert
is selected through this subject-expert mapping to process the query, which makes our Subject-
Level Bench-CoE flexible and scalable. More importantly, our method has better generalization
than LLM-Bench.

3 FRAMEWORK OF BENCH-COE

In this section, we first formalize the proposed Bench-CoE framework. Then, under this framework,
we introduce the Query-Level Bench-CoE which is an abstraction of the ideas behind some existing
methods Shnitzer et al. (2023); Stripelis et al. (2024); Lu et al. (2024); Ong et al. (2024).

3.1 FORMULATION OF BENCH-COE

Bench-CoE consists of a set of expert models M, a router RN
θ (q) for query q routing, and a bench-

mark dataset B for training the router. The goal of Bench-CoE is to utilize the evaluation results
of expert models M on the benchmark dataset B as labels for training the router RN

θ (q), thereby
enabling the reasonable assignment of input query q to the appropriate expert model for processing.
The whole process can be formulated as:

o = f(M,R, q). (1)

Where o is the final output of Bench-CoE. f represents the operation of the router R assigning an
expert model of M to process the input query q.

M = {M1,M2, . . . ,MN}. (2)

Where N is the number of experts model, Mn represents the n-th expert model which can be used
to process query q, denoted as Mn : q → Mn(q).
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The router RN
θ (q) contains learnable parameters θ, and it is applied to allocate a query q to an

appropriate expert model for processing. It can be a NLP model or a multi-modal, etc.
RN

θ (q) : q → {p1, p2, . . . , pN}. (3)
Where pn represents the probability of routing the query q to expert model Mn for processing.

The benchmark dataset B may consist of K subjects and can be expressed as
B = {S1, S2, . . . , SK}. (4)

Where Sk represents the k-th subject in the benchmark dataset B. |Sk| represents the number of
queries in Sk, i.e. Sk = {q1k, q2k, . . . , q

|Sk|
k }. For example, in the MMMU benchmark validation

dataset, the Math subject consists of 30 mathematical choice questions. Based on this framework,
we first formalize the Query-Level Bench-CoE.

3.2 QUERY-LEVEL BENCH-COE

Query-Level Bench-CoE requires evaluating the performance P of different expert models on each
query in the benchmark dataset B. Here, P (Mn(q

i
k), t

i
k) represents the performance metric that

measures the similarity between the output of the expert model Mn and the ground truth label tik
for the i-th query sample qik in the k-th subject Sk of the benchmark dataset B. For example, in the
MMMU benchmark dataset, a Math subject choice question is evaluated by checking whether the
option selected by the expert model matches the standard answer.

Expert Models Selection Theoretically, to achieve the best combination results, the performance
of a sufficiently large number of models should be tested on each query. However, this is highly
costly in applications and makes it difficult to train an efficient router. We can directly choose
these specialized expert models for combination since the expert models selected based on subject
specialization from the benchmark are already the best within their respective fields. Experimental
results show that this simplified approach is effective.

Once the performance of different expert models on each query in the benchmark dataset is obtained,
the expert model with the best performance is used as the routing label for training the router in
Query-Level Bench-CoE. The query-level routing label tik for query qik is determined as follows:

tik = argmax
l

P (Ml(q
i
k), t

i
k). (5)

If multiple models answer the same query correctly, we assign the label to the model with the highest
overall score in the corresponding subject.

Query-Level Bench-CoE Inference. Given an input query q, the router RN
θ (q) of Query-Level

Bench-CoE first predicts the most suitable expert model for handling the query:
n = argmaxRN

θ (q). (6)
Where n represents the index of the most suitable expert model for handling query q. Then, the
query is fed into the selected expert model Mn, producing the final output of Bench-CoE:

oqn = Mn(q). (7)
Where oqn represents the output result of the expert model Mn when processing the query q.

The key to this approach is pre-evaluating different expert models on each query to obtain the bench-
mark data labels needed for training the router. Using benchmark datasets to generate labeled
data eliminates the labor-intensive process of manual annotation required for collecting addition-
ally methods Stripelis et al. (2024); Lu et al. (2024); Ong et al. (2024). As benchmarks continue
to expand, the advantages of this approach will become increasingly apparent. Query routing is
more accurate within the same data distribution. However, for queries out of the training data dis-
tribution, further exploration is warranted. Furthermore, some benchmarks Wang et al. (2024); Yue
et al. (2024) only provide evaluation results at the subject level rather than the query level, making
it necessary to re-evaluate expert models on the benchmark datasets to obtain training data labels.

This prompts us to consider whether there exists a routing label determination method that ensures
both better generalization and without computational cost. This leads to our proposed approach:
Subject-Level Bench-CoE.

4 SUBJECT-LEVEL BENCH-COE

5
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Figure 3: Subject-Level Bench-CoE first classi-
fies the query into a corresponding subject and
then leverages the subject-expert mapping derived
from benchmark to facilitate the selection of the
expert most proficient in handling subject task.

We analyze that the key to solve this challenge
lies in how to reasonably determine the rout-
ing labels for queries. In benchmark tests, the
performance of different expert models across
different subjects can actually serve as a type
of label. Subject-Level Bench-CoE is based on
subject-level routing labels, and an example of
Subject-Level Bench-CoE is shown in Figure 3.

The router of Subject-Level Bench-CoE con-
sists of a subject classifier and a subject-expert
mapping. The subject classifier label for the
query within a subject in the benchmark dataset
are assigned to that subject and some bench-
marks Wang et al. (2024); Yue et al. (2024) typ-
ically include the subject information of queries
automatically. The subject-expert mapping es-
tablishes a correspondence between each sub-
ject in the benchmark and the expert model that
performs best in that subject. The relationship
between the expert model index n and the sub-
ject index k is established by the mapping:

n = argmax
l

1

|Sk|

|Sk|∑
i=1

P (Ml(q
i
k), t

i
k). (8)

The retrieval of subject-expert Map almost no additional effort, as the benchmark leaderboard al-
ready provides the performance results of expert models in each subject, such as Wang et al. (2024);
Yue et al. (2024). The Map has already been completed when the leaderboard was published,
meaning we only need to select the model with the highest performance in each subject.

Map : {S1, . . . , SK} → {M1, . . . ,MN}. (9)

K ≥ N indicates that a single expert model may achieve the best performance across multiple sub-
jects. Additionally, as more expert models are developed, the models that excel in specific subjects
may change over time. To avoid retraining the router, we set the number of classification neurons
in the last layer of the router to be equal to the number of subject categories. Then, by adjusting
the mapping between subjects and expert models, we accommodate changes in subject-specialized
expert models. This simple technique enhances the flexibility of the router, allowing it to adapt
dynamically to changes in expert models’ subject specializations without the need for retraining.

Subject-Level Bench-CoE Inference. Given an input query q, the classifier CK
θ of Subject-Level

Bench-CoE first predicts the category of the most relevant subject.
k = argmax CK

θ (q). (10)
Where k represents the category of the most relevant subject for the input query q. Then, the mapping
between subjects and their corresponding specialized expert models is used to determine the index
of the most suitable expert model for processing the input.

Mn = Map(Sk). (11)
Finally, the query is fed into the selected expert model Mn, producing the final output of Subject-
Leve Bench-CoE:

oqn = Mn(q). (12)
Where oqn represents the output result of the expert model Mn when processing the query q. From
the above, it can be seen that our classifier CN

θ and mapping Map together form the subject-level
router RN

θ .

Subject-Level Bench-CoE is more likely to correctly assign queries to the appropriate expert model
compared to the Query-Level Bench-CoE. This is because, as long as the trained router can correctly
classify the query into the appropriate subject category and then allocate it to the expert model
proficient in that subject, it is more likely to be solved correctly compared to a non-specialized
expert model. For instance, assigning a question about how to travel to Mars to a physics expert is
more likely to yield a correct answer than assigning it to a literature expert.

6
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Table 1: Naive Evaluation on MMMU.

Model Accuracy
MiniCPM-V-2.6 Yao et al. (2024) 45.22%
InternVL2-8B Chen et al. (2024b) 47.67%
LLaVA-OV-7B Li et al. (2024) 46.67%
Query-Bert-Bench-CoE 62.33%
Query-TinyLLaVA-Bench-CoE 62.44%
Subject-Bert-Bench-CoE 51.78%
Subject-TinyLLaVA-Bench-CoE 52.78%

Table 2: In-distribution Evaluation on MMMU.

Model Accuracy
MiniCPM-V-2.6 Yao et al. (2024) 39.40%
InternVL2-8B Chen et al. (2024b) 44.20%
LLaVA-OV-7B Li et al. (2024) 41.30%
Query-Bert-Bench-CoE 41.40%
Query-TinyLLaVA-Bench-CoE 41.30%
Subject-Bert-Bench-CoE 44.50%
Subject-TinyLLaVA-Bench-CoE 44.70%

5 EXPERIMENTS

We conducted extensive experiments on both multimodal and language tasks to validate the effec-
tiveness of our proposed method. The experiments were designed to assess the performance of our
Bench-CoE model against individual expert models in various settings as follows.

5.1 EVALUATION SCENARIOS

Naive Evaluation. In this scenario, we use a split of the benchmark dataset Bval to obtain la-
bels for training the router and evaluate the performance of each expert model and the Bench-CoE
framework on the same split Bval.

In-distribution Evaluation. In this scenario, we use a split of the benchmark dataset Bval to
construct labels for training the router and evaluate the performance of each expert model and the
Bench-CoE framework on a different split Btest.

Out-of-distribution Evaluation. In this scenario, we utilize a split of the benchmark dataset B1
val

to define labels for training the router and evaluate the performance of the Bench-CoE framework
on a split of the other benchmark dataset B2

val. Compared to the previous two scenarios, it further
improves the model’s generalization ability evaluation.

Cross-domain Evaluation. In this scenario, we adapt our Bench-CoE framework from multi-
modal tasks to NLP tasks. We utilize a split of an NLP benchmark dataset BNLP1

val to define labels
for training the router and evaluate the performance of the Bench-CoE framework on a split of the
other NLP benchmark dataset BNLP2

val . Compared to previous scenarios, this setup validates the
domain generalization capability of our Bench-CoE framework.

5.2 NAIVE EVALUATION

To validate the effectiveness and feasibility of the Bench-CoE framework, we conducted naive evalu-
ation on multimodal tasks. Specifically, we conducted training and testing of Bench-CoE framework
on the validation split of the MMMU dataset Yue et al. (2024). We take three expert models with
distinct performance strengths as representative examples (additional models can be handled in a
similar manner), MiniCPM-V-2.6 Yao et al. (2024), InternVL2-8B Chen et al. (2024b), and LLaVA-
OV-7B Li et al. (2024), which performed well across 30 subjects. And we evaluated and compared
the performance of Bench-CoE with BERT Devlin et al. (2019) and TinyLLaVA Zhou et al. (2024)
as classifiers. The results are shown in Table 1 and Figure 4a.

It can be observed that in the naive scenario, both Query-Level Bench-CoE and Subject-Level
Bench-CoE achieve significant performance improvements compared to any individual expert
model, with respective increases of 14.66%, 14.77%, 4.11%, and 5.11%. The performance im-
provement of Query-Level Bench-CoE is more pronounced.

Additionally, although Query-Level Bench CoE performs better under this setting, its training rout-
ing requires fine-grained labels, which can not be directly obtained from the leaderboard. Thus it
requires an additional label processing step compared to Subject-Level Bench CoE. For the three
models chosen in our experiments and the MMMU validation set containing only 900 samples,
Query-Level Bench CoE takes about 20 minutes to process these labels. As the dataset size in-
creases and the number of models grows, the time required for label processing will also increase
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(a) Naive Evaluation. (b) In-distribution Evaluation.

Figure 4: (a) Performance of Naive Evaluation on MMMU. (b) Performance of In-distribution Eval-
uation on MMMU.

significantly. In contrast, Subject-Level Bench CoE can directly obtain labels from the leaderboard
without any additional time cost.

5.3 IN-DISTRIBUTION EVALUATION

To further validate the generalization capability of Subject-Level Bench-CoE and assess its effective-
ness, we conducted in-distribution experiments on the MMMU dataset. Specifically, we conducted
training and testing of Bench-CoE framework on the validation and test split of the MMMU dataset,
respectively. The results are shown in Table 2 and Figure 4b.

The results of the in-distribution experiment indicate that the performance of Query-Level Bench-
CoE on the MMMU dataset has deteriorated significantly, with response accuracy 2.80% and 2.90%
lower than that of its respective expert models. In contrast, the proposed Subject-Level Bench-CoE
maintains strong generalization in the in-distribution evaluation, achieving 0.3% and 0.5% higher
response accuracy compared to its corresponding expert models. We attribute this to the enhanced
generalization capability of the subject-level router, which is trained using subject-level labels, as
opposed to the query-level router, which relies on query-level labels.

5.4 OUT-OF-DISTRIBUTION EVALUATION.

Finally, to thoroughly validate the generalization capability of the Subject-Level Bench-CoE and
assess its effectiveness, we conducted out-of-distribution experiments on the MMMU and MMstar
Chen et al. (2024a) dataset. Specifically, we conducted training of Bench-CoE on the validation split
of the MMMU dataset and testing on the validation split of the MMstar. The results are shown in
Table 3 and Figure 5a.

It can be seen that Query-Level Bench-CoE still suffers from severe generalization deficiencies in
out-of-distribution scenarios, with response accuracy 3.22% and 3.6% lower than that of its re-
spective expert models. In contrast, the proposed Subject-Level Bench-CoE demonstrates superior
generalization, achieving 0.87% and 0.86% higher response accuracy compared to its corresponding
expert models, even on datasets with different distributions. This further validates the Subject-Level
Bench-CoE, which exhibits stronger generalization capability than the Query-Level Bench-CoE.

5.5 CROSS-DOMAIN EVALUATION

Furthermore, in addition to verifying the effectiveness of Subject-Level Bench-CoE for multimodal
models, we also conducted cross-domain model validation. Specifically, we evaluated the effective-
ness of the Bench-CoE framework on Large Language Models (LLMs) through Out-of-Distribution
(OOD) experiments on selected NLP datasets such as MMLU-Pro Wang et al. (2024) and Big-
Bench-Hard Suzgun et al. (2023). Analogous to the multimodal processing approach, we select
four expert models with complementary strengths across different domains as illustrative examples:
Qwen2-7B-InstructYang et al. (2024), Gemma-2-9b-itTeam (2024), Mathstral-7B-v0.1Jiang et al.
(2023a), and Llama-3-Smaug-8BMeta (2024). The results are shown in Table 4 and Figure 5b.
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Table 3: Performance of the Out-of-distribution
Evaluation on MMMU and MMStar val.

Model Accuracy
MiniCPM-V-2.6 Yao et al. (2024) 54.33%
InternVL2-8B Chen et al. (2024b) 59.22%
LLaVA-OV-7B Li et al. (2024) 55.86%
Query-Bert-Bench-CoE 56.00%
Query-TinyLLaVA-Bench-CoE 55.62%
Subject-Bert-Bench-CoE 60.09%
Subject-TinyLLaVA-Bench-CoE 60.08%

Table 4: Performance of the Cross-domain
Evaluation on MMLU-Pro and BBH.

Model Accuracy
Qwen2-7B-Instruct Yang et al. (2024) 59.44%
Gemma-2-9b-it Team (2024) 65.10%
Mathstral-7B-v0.1 Jiang et al. (2023a) 66.35%
Llama-3-Smaug-8B Meta (2024) 63.62%
Query-Bert-Bench-CoE 67.07%
Subject-Bert-Bench-CoE 69.91%

(a) Out-of-distribution Evaluation (b) Cross-domain Evaluation.

Figure 5: (a) Performance of Out-of-distribution Evaluation on MMstar. (b) Performance of Cross-
domain Evaluation on MMLU-Pro val and Big-Bench-Hard).

The results of the cross-domain experiment indicate that the Bench-CoE framework remains effec-
tive for LLMs in out-of-distribution scenarios, with response accuracy still 0.72% and 3.56% higher
than that of the corresponding expert models. Moreover, the improvement of the Subject-Level
Bench-CoE is particularly significant. This also validates the generalization of our framework.

6 LIMITATIONS AND FUTURE WORK

Although our proposed Bench-CoE demonstrates favorable performance in terms of generalization,
flexibility, and avoiding the need for data annotation, it still has the following limitation: Diversi-
fication of Model Capabilities. Previous experiments have demonstrated that CoE models achieve
optimal effectiveness only when each expert model exhibits distinct specialized capabilities. The
presence of a minority of models that hold significant leads across all capabilities will diminish the
effectiveness enhancement of such collaborative systems. In future research, we plan to explore
more balanced expert selection strategies and adaptive mechanisms to mitigate the impact of domi-
nant experts, thereby enhancing the robustness and scalability of Bench-CoE in broader multi-task
scenarios.

7 CONCLUSION

We propose the Bench-CoE framework, designed to facilitate effective collaboration between ex-
perts in LMMs and LLMs by leveraging benchmark evaluation results. The framework consists of
the Query-Level Bench-CoE, abstracted from existing methodologies, and the Subject-Level Bench-
CoE, which we introduce to enhance both the performance and scalability of the framework. Exten-
sive experiments on multimodal and language tasks have validated the feasibility of our framework
and demonstrated the generalization ability and efficiency of the Subject-Level Bench-CoE. We
hope that Bench-CoE can offer a paradigm for integrating diverse experts, enhancing adaptability
while reducing reliance on labeled data. It is expected to inspire the development of more robust
and scalable expert collaboration systems and their application in real-world multi-task scenarios.
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Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 26068–26084. PMLR, 2022. URL https://proceedings.mlr.
press/v162/zhang22c.html.

Zesen Zhao, Shuowei Jin, and Z Morley Mao. Eagle: Efficient training-free router for multi-llm
inference. ArXiv preprint, abs/2409.15518, 2024. URL https://arxiv.org/abs/2409.
15518.

Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and Lei Huang. Tinyllava:
A framework of small-scale large multimodal models. arXiv preprint arXiv:2402.14289, 2024.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. In ICLR. OpenReview.net,
2024.

12

https://www.kaggle.com/m/3301
https://www.kaggle.com/m/3301
https://aclanthology.org/W02-2024
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2408.01800
https://proceedings.mlr.press/v162/zhang22c.html
https://proceedings.mlr.press/v162/zhang22c.html
https://arxiv.org/abs/2409.15518
https://arxiv.org/abs/2409.15518


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A MODELS AND DATASETS

A.1 MULTIMODAL MODELS

In the evaluation of Bench-CoE on multimodal tasks, we employ TinyLLaVA and BERT as the
subject classifiers for multimodal and textual inputs, respectively. Furthermore, we used MiniCPM-
V-2.6, InternVL2-8B, and LLaVA-OV-7B as expert models.

TinyLLaVA is a multimodal model series that takes text and image inputs and outputs textual re-
sponses. In our experiments, we use TinyLLaVA-Phi-2-SigLIP-3.1B, which employs Phi-2 as the
language model and SigLIP as the image encoder. Based on this model, we add a linear layer to
enable classification.

MiniCPM-V-2.6 is a multimodal language model developed to integrate visual processing with nat-
ural language understanding. With 2.6 billion parameters, this model is a compact version of the
larger CPM series, designed to efficiently handle tasks that require the synthesis of textual and visual
data. MiniCPM-V-2.6 excels in image captioning, visual question answering, and other applications
where joint understanding of text and image is critical. Its training regimen includes diverse datasets
from both textual and visual domains, ensuring robust performance across a variety of multimodal
challenges.

InternVL2-8B is an 8 billion parameter model specifically designed for video-language tasks. De-
veloped to bridge the gap between dynamic visual content and language, InternVL2-8B can analyze
and generate descriptions for video data, making it highly suitable for applications such as auto-
mated video captioning, video content analysis, and interactive video-based learning systems. Its
architecture allows for deep understanding of temporal video sequences in conjunction with textual
descriptions, providing state-of-the-art results in video understanding tasks.

LLaVA-OV-7B, standing for Language and Vision Analysis - OmniVision, is a 7 billion parameter
language model that specializes in comprehensive visual and textual interpretation. This model in-
tegrates advanced vision capabilities with natural language processing to perform tasks like detailed
image analysis, multimodal translation, and cross-modal information retrieval. LLaVA-OV-7B is
trained on a vast array of multimodal data sources, enabling it to effectively understand and generate
content that requires the amalgamation of visual cues with textual data.

A.2 MULTIMODAL TASKS

MMMU is a comprehensive dataset designed for evaluating the performance of multimodal models
across tasks that require simultaneous understanding of text, image, and sometimes audio content.
This dataset includes challenges such as cross-modal retrieval, multimodal reasoning, and synchro-
nizing visual content with textual descriptions. MMMU aims to simulate real-world scenarios where
multiple types of data must be integrated and interpreted together.

MMStar is a multimodal dataset focused on the interplay between visual and textual data in enter-
tainment and media contexts. It includes annotated images and videos from various media sources,
coupled with descriptive texts and contextual information. The dataset is utilized for tasks such as
multimedia content summarization, sentiment analysis, and thematic classification, testing a model’s
ability to navigate and interpret complex media-rich environments.

A.3 LANGUAGE MODELS

In the cross-domain evaluation of Bench-CoE on NLP tasks, we employ BERT as the subject classi-
fier for textual inputs. Additionally, we utilize Qwen2-7B-Instruct, Gemma-2-9B-IT, Mathstral-7B-
v0.1, and Llama-3-Smaug-8B as expert models.

BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained deep learning
model based on the Transformer architecture, designed to capture bidirectional contextual represen-
tations of text. By leveraging a masked language modeling (MLM) and next sentence prediction
(NSP) pre-training strategy, BERT enables robust language understanding across various natural
language processing (NLP) tasks. It has demonstrated state-of-the-art performance in tasks such
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as text classification, named entity recognition, and question answering, making it a fundamental
model in modern NLP research and applications.

Qwen2-7B-Instruct is an instruction-focused language model developed by Qwen Technology. De-
signed to excel in various natural language understanding tasks, this model utilizes an optimized
decoding strategy to enhance performance. With 7 billion parameters, it is well-suited for complex
text comprehension and generation tasks, especially in Chinese contexts. Qwen2-7B-Instruct is par-
ticularly effective for instruction-responsive tasks such as content creation, information extraction,
and dialogue systems.

Gemma-2-9b-it is a large language model developed by Gemma Technologies with 9 billion param-
eters, tailored for the information technology (IT) sector. Its training data encompasses a vast array
of technical documents, programming guides, and texts from open-source projects. This model ex-
cels in understanding and generating highly specialized IT content, making it ideal for applications
in technical support, documentation automation, and code parsing.

Mathstral-7B-v0.1 is a language model focused on solving mathematical problems, developed by the
Mathstral team. With 7 billion parameters, its training includes extensive mathematical educational
materials and real-world problem-solving examples. Mathstral-7B-v0.1 is designed to aid in mathe-
matical education, automated problem-solving, and mathematical research, particularly effective for
complex mathematical questions and theoretical discussions.

Llama-3-Smaug-8B is the latest large language model from the Llama team, featuring 8 billion
parameters. It has been extensively pre-trained across multiple languages and domains to provide
broad knowledge coverage and deep semantic understanding. Llama-3-Smaug-8B emphasizes per-
formance in complex linguistic reasoning, long-form text generation, and multi-domain knowledge
integration, suitable for advanced natural language processing tasks such as text summarization,
language translation, and cross-domain knowledge-based question answering.

A.4 LANGUAGE TASKS

MMLU-Pro is an extension of the original MMLU dataset, designed to evaluate language models on
professional-level topics across a wide array of subjects. This dataset includes complex questions
that require not only language understanding but also domain-specific knowledge, ranging from
medicine and law to engineering and the arts. MMLU-Pro aims to test the depth and breadth of a
model’s understanding of advanced topics, making it a rigorous benchmark for language compre-
hension.

Big-Bench-Hard is a subset of the broader BIG-bench dataset specifically curated to challenge the
capabilities of language models with particularly difficult tasks. This dataset includes a variety of
language-based tasks such as analogical reasoning, complex problem-solving, and advanced com-
prehension challenges that go beyond the typical capabilities of standard language models, pushing
the limits of what AI can understand and process in textual form.

B EXPERIMENT DETAILS

B.1 MULTIMODAL EXPERIMENT

MMMU and MMStar are currently among the most comprehensive multimodal benchmarks, en-
compassing tasks such as cross-modal retrieval and multimodal reasoning. To thoroughly evaluate
the performance of Bench-CoE on multimodal tasks, we designed experiments in three phases: naive
test, in-distribution test, and out-of-distribution test.

In the naive test phase, we used the MMMU dataset for both training and testing the Bench-CoE
router. The subset of MMMU was utilized for both training and evaluation. This phase primarily
aimed to verify the basic feasibility of Bench-CoE in task allocation for multimodal tasks. By lever-
aging query-level and subject-level routing strategies, Bench-CoE significantly outperformed indi-
vidual models, demonstrating its effectiveness in task allocation. The query-level router provided
finer-grained task assignments, while the subject-level router exhibited stronger overall robustness.
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In the in-distribution test phase, the test set of the MMMU dataset was used for training, and the vali-
dation set was used for evaluation. This setup ensured a clear separation between training and testing
data while maintaining consistency in data distribution. The Bench-CoE router effectively allocated
tasks to the most suitable expert models based on the input, showcasing its strong adaptability for
tasks within the same distribution.

In the out-of-distribution test phase, the Bench-CoE router was trained on the validation set of the
MMMU dataset and tested on the MMStar dataset. The MMStar is a multimodal dataset focus on
the interplay between visual and textual data in entertainment and media contexts, presenting chal-
lenges to the model’s generalization capabilities. The experiments demonstrated that the subject-
level router remained effective in handling tasks with significant distributional differences, validat-
ing the adaptability and robustness of Bench-CoE. In contrast, the query-level router showed slightly
reduced performance on new data distributions, likely due to overfitting.

These experimental results indicate that Bench-CoE effectively integrates the strengths of differ-
ent models, achieving outstanding performance in both in-distribution and out-of-distribution tasks.
This approach provides a solid foundation for further research on collaborative mechanisms in mul-
timodal models.

B.2 LANGUAGE EXPERIMENT

Due to the current limitations in large model evaluation techniques, there is a relative scarcity of
benchmarks and datasets specifically tailored to academic disciplines. To the best of our knowledge,
only the MMLU-Pro and Big-Bench-Hard datasets include manually annotated discipline-specific
labels. This poses significant challenges to the experimental design of our Bench-CoE model. To
thoroughly evaluate the generality of Bench-CoE, we conducted this test:

In the out-of-distribution test phase, we selected datasets with strongly defined discipline-specific
features: the MMLU-Pro dataset as the training set and the Big-Bench-Hard dataset as the test set.
Specifically, we trained the Bench-CoE router on the MMLU-Pro dataset and evaluated it on the
Big-Bench-Hard dataset. By testing across different datasets with distinct data distributions, and
with both training and test sets exhibiting clear discipline-specific characteristics, this phase allowed
us to thoroughly validate the cross-domain generalization capability of the Bench-CoE model at
both the query-level and subject-level.

B.3 COMPARATIVE EVALUATION OF BENCH-COE AND LARGE-SCALE LMMS

Furthermore, to validate the performance of our Bench-CoE framework in comparison with larger
independent models, we selected models with over 10 billion parameters from the leaderboard,
which significantly exceed the 7 billion parameter expert models chosen by our Bench-CoE frame-
work at each selection step. These models were tested on the validation split of the MMMU dataset
and the result is shown in Tab. 5 and Fig. 6.

Table 5: Performance of Bench-CoE and Large-Scale LMMs on the validation split of MMMU.

Model Accuracy
Math-LLaVA-13B 38.3%
Yi-VL-34B 45.9%
Subject-Level Bench-CoE (BERT) 50.78%
Subject-Level Bench-CoE (TinyLLaVA) 52.00%

Through observation, it can be seen that the proposed Bench-CoE framework enables the collabora-
tion of multiple small-parameter models to surpass large-parameter models in terms of performance.

C SCALABILITY OF BENCH COE

In Bench-CoE, particularly in the subject-level Bench-CoE, we leverage the best-performing LLM
for each domain as the routing target. By directing as many questions as possible within a given
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Figure 6: Performance of each expert model and CoE across subjects on MMstar in the Out-of-
distribution Evaluation.

subject to the ”best” expert for inference, we enhance the overall accuracy of the model. How-
ever, with the rapid evolution of large language models, accompanied by the introduction of new
datasets, novel models, and updated evaluation methods, the leaderboard rankings of LLMs change
frequently. Under such circumstances, a fixed routing strategy in the CoE model cannot accommo-
date newly emerging models or adapt to shifting data distributions.

To address this limitation and improve the scalability of Bench-CoE, we designed a subject-expert
mapping mechanism. Instead of directly routing inputs to a fixed best-performing model in a do-
main, we first classify the given input into a specific subject type. Then we leverage the subject-
expert mapping to route the input to the most suitable model for that domain. This approach sig-
nificantly enhances the scalability of Bench-CoE, allowing it to flexibly adapt to rapidly evolving
expert models advancements by dynamically adjusting the mapping and updating routing rules.

D SCENARIOS UNSUITABLE FOR COE

Lack of Diversification in Model Capabilities In our experiments with the Bench-CoE model,
we selected a wide range of LLMs as candidate models and conducted extensive testing. Through
these tests, we identified a common challenge in the CoE field: the issue of expert capability diver-
sity. Specifically, this problem arises when a candidate expert lacks capability diversity on the given
dataset — either significantly outperforming or underperforming all other candidate expert. Such
cases negatively impact the overall performance of the CoE models, as the router is forced to route
all queries either exclusively to or completely away from this model to achieve optimal results. This
creates a significant challenge for training the router.

Looking ahead, we believe this issue can be mitigated with the development of dynamic routing
strategies and adaptive candidate LLM selection mechanisms. These advancements will enable the
CoE model to better handle capability imbalances among candidate LLMs, paving the way for more
robust and flexible routing solutions.
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