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Abstract

Combinatorial optimization (CO) is a widely-applied method for addressing a
variety of real-world optimization problems. However, due to the NP-hard nature
of these problems, complex problem-specific heuristics are often required to tackle
them at real-world scales. Neural combinatorial optimization has emerged as an
effective approach to tackle CO problems, but it often requires the pre-computed
optimal solution or a hand-designed process to ensure the model to generate a
feasible solution, which may not be available in many real-world CO problems.
We propose the hierarchical combinatorial optimizer (HCO) that does not rely
on such restrictive assumptions. HCO decomposes the given CO problem into
multiple sub-problems on different scales with smaller search spaces, where each
sub-problem can be optimized separately and their solutions can be combined to
compose the entire solution. Our experiments demonstrate that this hierarchical
decomposition facilitates more efficient learning and stronger generalization ca-
pabilities in terms of Gap, outperforming traditional heuristic and mathematical
optimization algorithms.

1 Introduction

The development of efficient algorithms for solving NP-hard problems, such as combinatorial
optimization (CO) problems, is of central interest to many industries. However, a significant challenge
in the development of CO algorithms is the requirement for in-depth domain knowledge to manually
design a heuristic algorithm specific to a given CO problem. Additionally, such algorithms often
lack scalability to other CO problems. To circumvent this challenge, supervised learning (SL)-based
models were proposed to solve complex CO problems (Vinyals et al., 2015; Joshi et al., 2019;
Gasse et al., 2019; Paulus et al., 2022) These approaches utilize neural networks to directly predict
the optimal solution given a problem instance. However, a limitation of SL-based methods is the
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requirement for the optimal solution as a learning target during training, as finding the optimal
solution for many CO problems is computationally intractable. Additionally, the supervision provided
in SL-based approaches does not take into account the quality of the solution, such as the cost
objective value. The lack of consideration for solution quality can result in a situation where, despite
a small error in the model’s predictions, the quality of the solution may be arbitrarily poor (i.e.,
suboptimal). Then, reinforcement learning (RL)-based approaches were proposed as an alternative,
since it can directly learn from the CO objective (i.e., solution cost) without requiring the optimal
solution. RL-based approaches formulate the CO problem as a sequential decision making problem.
At each step, the neural network predicts an action to update the previous partial solution and the
reward is given based on the quality of the constructed solution. However, the main limitation of
RL-based approaches is the ill-defined reward (or the solution cost) for infeasible solutions. This
limitation has been often ignored in previous works (Bello et al., 2017; Khalil et al., 2017; Kool
et al., 2019) as the feasibility of the solution is guaranteed by properly designing the action space in
certain CO problems such as the traveling salesman problem (TSP). However, many real-world CO
problems have complex constraints where action space design cannot guarantee the feasibility (e.g.,
circuit wiring (Grotschel et al., 1997), routing problem with time windows (Ma et al., 2020)). We
refer such constraints as feasibility-hard constraints and the CO problem with such constraints as
feasibility-hard CO problems in the rest of the paper.

A common approach to address the issue of ill-defined reward is assigning the lowest possible reward,
such as 0, for an entire episode when an infeasible solution is predicted. However, this approach can
lead to inefficiency and instability in RL training due to the sparse supervision, known as the sparse
reward problem.

To address this issue, we propose a hierarchical decomposition framework for tackling the feasibility-
hard CO problems. Specifically, we focus on the Steiner tree packing problem (STPP) that aims to
find a tree spanning all the ferminal nodes with minimum weights (see Figure 1 for illustration). The
proposed framework decomposes the solution search space into high-level and low-level space via
latent mapping. Intuitively, the high-level solution suggests a sub-problem (e.g., a subset of variables,
constraints, or a sub-graph) and the low-level solution is the solution to the suggested sub-problem.
We claim that the proposed decomposition provides several advantages. First, by separating the
problem into smaller sub-problems (i.e., separation of concern), the proposed framework facilitates
the learning. Second, the high-level agent partitions the graph such that low-level agent observes
sub-problem of similar size, regardless of the input problem size. This helps the model scale to larger
problems more easily, as the distribution shift is reduced. We empirically evaluate HCO against
competitive baselines on large-scale STPP instances. Our results demonstrate the effectiveness of the
proposed method in comparison to the baselines.

Contribution. We summarize our contributions:
* To our knowledge, this is the first work to solve Steiner tree packing problem utilizing an
end-to-end learning framework.

* We propose a novel decomposition approach for general CO problems that results in sub-
problems with smaller search spaces.

* We demonstrate that the proposed approach significantly improves the learning and general-
ization.

2 Preliminaries

2.1 Combinatorial Optimization as Markov Decision Process

Combinatorial optimization (CO) is a mathematical optimization over a finite set, with a discrete
feasible solution space. Formally, a combinatorial optimization problem can be written as follows.

argmin{f(x): x € F} (D
rxeX

where X is a finite support for the variable , ' C X is a set of feasible solutions?, and f: X—>R
is an objective function of the CO problem. For instance, a mixed integer linear programming (MILP)

3 F is either discrete itself or can be reduced to a discrete set.
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Figure 1: (Left) We tackle the Steiner tree packing problem that aims to find a minimum-weight tree spanning
all the terminal nodes (square boxes) for each type (color) without overlap. (Middle) We propose to decompose
the given problem into high-level and low-level sub-problems via mapping ¢ : X — Y, and solved separately.
This facilitates the learning since the search spaces are much smaller for high-level problem |Y| <« | X| and
low-level problem ¢~ (y)| < | X| compared to the original problem. (Right) In MDP formulation, high-level
agent chooses a set of nodes (shaded region) to define a sub-graph for each terminal type (color), and low-level
agent finds a tree spanning all the terminal nodes within the sub-graph.

problem with n variables and m constraints can be written in the form

argmin {c'x: Az <b, x>0} ()
@ELP xR —P

where A € R™*™ b € R™, and ¢ € R".

Most of the CO problems can be formulated as a Markov Decision Process (MDP) (Khalil et al.,
2017; Gasse et al., 2019). Formally, it makes two assumptions to the CO problem: 1) the solution
space X of the original problem (1) is a finite vector space and 2) the objective f is linear on X,
so that for any given decomposition of X into direct sum of subspaces X = X; & --- ® X,,, we
have f(z) = >, f(z;) for each &; € X;.* Then, the original problem (1) can be written as the
following sequential decision making problem:

H

H

arg min {Z JIEDE Zwt € F}. (3)
@ €Xy, Vi=1, H 7 Pt

X=X1®0Xn

The sequential decision can be thought of choosing for each timestep ¢ an action x; € X, to receive

areward R(s¢, a;) = —f(a;) and a large negative penalty ¢ < — sup, x f(z) if and only if any

future choice of action inevitably leads to an infeasible solution at the end of the horizon. The optimal

policy 7* € II for the original problem can be found upon maximizing the expected return

7" = argmax E" Zflzl R(s¢t, at) | 50] 4)
mell

We defer the rest of the details to Appendix A.1. Note that for some CO problems (e.g., TSP, MVC,
Max-Cut), carefully designing the action space can make the constraint trivially satisfied (Khalil
et al., 2017), where in this case, reinforcement learning algorithm can efficiently solve the problem.
However, when the constraint satisfaction is not guaranteed, the reinforcement learning methods often
suffer from the sparse reward problem, and does not learn efficiently. In this work, we focus on the
challenging CO problems, where designing action space cannot guarantee the constraint satisfaction
(i.e., feasibility-hard constraint): the Steiner tree packing problem.

2.2 Steiner Tree Packing Problem

A Steiner tree problem (STP) can be thought of as a generalization of a minimum spanning tree
problem, where given a weighted graph and a subset of its vertices (called terminals), one aims to
find a tree (called a Steiner tree) that spans all terminals (but not necessarily all nodes) with minimum

4All CO problems that admits MILP formulations, such as STPP, TSP, BPP, Max-Cut, etc, satisfy the above
assumptions.
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Figure 2: Illustration of the our policy model for STPP. 1) The agent observes a state consisting of a graph,
terminals (rectangular nodes), and partial solution (thick gray nodes and edges). 2) The agent first extracts the
node and edge features, and feed it to the GAT+attention module. 3) The GAT+attention module computes the
global graph embedding by aggregating the node embeddings of each type. 4) The global graph embedding is
then appended to each node feature, 5) and transformed to compute the logit score for each node. 6) Finally, the
action is sampled according to the logit score.

weights. Although minimum spanning tree problem can be solved within polynomial time, the Steiner
tree problem itself is a NP-complete combinatorial problem Karp (1972). Formally, let G = (V, E)
be an undirected weighted graph, w, for e € E'its edge weights, and T C V be the terminals. Then,
a Steiner tree S is a tree that spans 7" such that its edge weight is minimal. Hence, the optimization
problem for STP can be written as follows.

arg min{z We : & € X} %)

€2 oy

where 2F is a power set of E, and Y is a set of all Steiner trees that span 7. A more generalized
version of the above Steiner tree problem is called the Steiner tree packing problem, (STPP) where

one has a collection 7 of N disjoint non-empty sets 771, - - - , Ty of terminals called nets, that has
to be packed with disjoint Steiner trees S1, - - , Sy spanning each of the nets 77, -+ ,Tx. The
optimization problem for STPP can be written similarly, with [V variables.
arg min {Z We: Ty €X7,, Glx,] N Gle,] =0} (6)
@1, xN €28 Ty Vn,m
e€xy,

where G[x] is a subgraph of G generated by x C E.

3 Bi-level Decomposition for Combinatorial Optimization

The goal of this section is to formulate our bi-level framework for a general CO problem (1) and
the corresponding MDP, which allows us to use a hierarchical reinforcement learning policy that
efficiently learns to solve CO problems.

Let us introduce a continuous surjective latent mapping ¢ : X — Y onto a vector space Y such that
|Y| <« | X|. Then, the problem (1) admits a hierarchical solution concept:

y" = argmin{f(L(y)) : 67" (y) N F # 0} ™)
y
where, L(y):= argmin{f(z):x € F}. (8)
zed(y)

We refer to problem (7) as a high-level problem, and (8) as a low-level sub-problem induced by
the high-level action vy in (7). Note that the hierarchical solution concept still attains an optimality
guarantee of the original problem, since ¢ is a surjection and X is finite.

The advantages of such hierarchical formulation are: (i) searching for feasible solutions over Y rather
than X reduces the size of search space; (ii) learning to obtain an optimal solution can be done by
two different learnable agents, (namely the high-level agent and the low-level agent for (7) and (8),
respectively) where the task for each agent is reduced to be easier than the original problem, and (iii)
the generalization capability (with respect to the problem size) increases when using learnable agents,
since the high-level agent can be made to always provide sub-problems (for the low-level agent) with
the same size, regardless of the size of the original problem.



3.1 Hierarchical Policy for Bi-level Optimization

In this section, we provide a learning framework that efficiently solves a general CO problem
using our bi-level decomposition. In particular, we propose to employ a hierarchically structured
policy to sequentially solve bi-level optimization problems in (7) and (8), in a similar spirit to
reinforcement learning solving CO problem in Section 2.1. For any given subspace decomposition
Y =Y; & & Yy, we sequentially solve a low-level sub-problem from span(¢~!(Y;)) for each
J < N, since span(¢~'(Y;)) is a subspace of X. Hence, we are able to formulate a high-level MDP
My, by constructing Y = Y7 @ - - - @ Yy sequentially as done in Section 2.1, and the low-level MDP
M), from Equation (8). Learning can be done upon training a policy network 7y parameterized by 6,
using reinforcement learning (e.g., policy gradient methods). Theorem 3.1 shows how our bi-level
decomposmon benefits the learning in terms of sample complexity. Full illustration of the bi-level
optimization is provided in Appendix A.1.

Theorem 3.1 (Sample Complexity Reduction). Let M be a H-step MDP as in (3). For any algorithm
A that has access to M which outputs a policy g such that V™ (s) > V*(s) — e with probability
greater than 1 — § for a given state s, A must make at least Q(e 1| X|?H log(1/6)) calls of M,
whereas Qe max(|Y|,|X|/|Y])2H log(1/6)) calls of either My; or M, is sufficient when using
a bi-level decomposition described as in (7) and (8).

See Appendix A.2 for the proof of the above theorem. One added benefit of our hierarchical
framework is that we can use different approach for each hierarchy: learning-based, heuristic, or
mathematical optimization. Our choice of approach is covered in Section 3.3.

3.2 Hierarchical Decomposition for Steiner Tree Packing Problem

For CO problems defined on a weighted graph G = (V, F) with edge weights w, for each e € FE, it
is straight-forward and beneficial to choose a latent mapping ¢ : E — V from the set of edges to
the set of nodes.> Specifically, we consider a version of ¢ such that for any input * C E, u € ¢(x)
if and only if (u,v) € x for some v € V(G). Such a mapping ¢ satisfies ¢~*(y) = G[y] for any
set of vertices y C V, where we slightly overload the notation for the generated subgraph G[y]. For
example, the high-level problem of a STPP (6) can be written as follows.

arg min {Zwe (Yn) €EXT,, Yn N Ym = [Z)} ©)
Y1, YN E2Y n<N
eeL(yn)

which is now a node-selection problem, (instead of the original edge selection problem) where L(y,,)
is a solution of the low-level subproblem:

L(y,) :== argmin {Z We : T € X, } (10)
z€E(Glyn]) cea

Notice that the high-level problem (9) has a reduced size search space (from 2F t0 2V ~ 0(2\/E)) s
and the low-level subproblem corresponds to a single STP of a smaller subgraph G|y,,]. Therefore,
the original NP-hard problem (6) is decomposed into two smaller NP-hard problems. The overview
of our hierarchical decomposition method for STPP is illustrated in Figure 1.

3.3 MDP Formulation and Hierarchical Policy for Steiner Tree Packing Problem

The high-level MDP My, for STPP is based on a sequential decision making y1, - - - , yn in Equa-
tion (9). Formally, a state in the MDP is a tuple s; = (G, T, St, t), where G is a weighted graph of the
problem, 7 the collection of set of terminals, and S; C V(G) is a partial solution constructed until
the current timestep ¢ via previous actions. An action a; is to select a set of vertices y; C V/(G) \ S
which includes a tree that spans the terminals T; € T as a subgraph of G[y;]. In turn, the subgraph
G|y is forwarded to the low-level agent which solves STP on the given subgraph by choosing the
edges from E(G[y]). Then, the high-level agent receives negative of the sum of the edge weights
of the low-level solution L(y;) as a reward, and appends the solution L(y;) to the previous partial

>Since |V| ~ O(1/]E]), so that | Y| << | X| for large graphs.



solution S;.° If the low-level solution L(a;) does not exist, or when any future choice of actions
at+1, -+ ,an leads to an infeasible solution of the given STPP, the high-level agent receives a large
negative penalty C' < 0. We defer detailed settings of our MDP formulation to the Appendix A.3.

Model architecture Figure 2 shows the overview of our model. Since STPP is a CO problem
defined over a weighted graph, we a use graph neural network (GNN) to encode the state representa-
tion with the policy network 7y and the value function V™ that serves as a baseline for actor-critic
methods (Konda & Tsitsiklis, 1999).

Let G be the weighted graph with edge weights w, as an edge feature for each e € E(G). First, a
D-dimensional node feature u,, is computed for each node v € V. Please refer to Appendix A.3 for
our detailed choice of node and edge features. Then, the extracted features are encoded with graph
attention network (GAT) (Velickovic et al., 2018) and attention network (AT) (Vaswani et al., 2017).
GAT aggregates the information across the neighbors in the graph to capture the local connectivity,
but it is limited in modeling the long-range dependency Vaswani et al. (2017). We overcome the
limitation by using the attention network. The attention network captures the long-range dependency
by encoding relation between all (i.e., ignores the graph structure) pairs of nodes. Global structures
are further encoded via a graph embedding layer, which embeds particular subsets of node features
into groups based on their characteristics. Detailed GNN architecture is provided in Appendix A.4.
We use reinforcement learning to train high-level policy and the mathematical solver (i.e., MILP
solver) for solving the low-level problem (10) in our implementation’.

4 Related Works

Neural combinatorial optimization using reinforcement learning. Reinforcement learning (RL)
approaches formulate the process of sequentially predicting the CO solution as a Markov decision
process. To overcome the limitation of the supervised setting, Bello et al. (2017) proposed to train
pointer network using policy gradient method by directly optimizing the cost without employing
pre-computed solution. Subsequent works proposed to employ GNN (Khalil et al., 2017) and
attention-based models (Kool et al., 2019; Nazari et al., 2018; Deudon et al., 2018) often combined
with heuristic methods (Deudon et al., 2018) to solve other general CO problems with RL. However,
existing works only focused on the CO instances where constraint can be easily satisfied by properly
designing the action space (e.g., TSP (Bello et al., 2017)). Our work is also RL-based approach, but
overcome the limitation of RL approaches by hierarchically decomposing the problem. Intuitively,
the decomposition of policy reduces the solution search space and facilitate the learning of feasible
solution space.

Combinatorial optimization with feasibility-hard constraints. There were few attempts to
directly tackle CO problems with feasibility-hard constraints using RL. Ma et al. (2021) proposed to
learn two separate RL models where the constraint satisfaction and objective optimization problems
are respectively solved by each model. Cappart et al. (2021) manually shaped the reward to bias the
RL process toward predicting feasible solution, and combined with constraint programming methods
to guarantee the feasibility of solution. Our work indirectly tackles the feasibility-hard constraint by
decomposing the given constraint satisfaction problem into two easier sub-problems with smaller
problem size and search space so that the learning algorithm can efficiently solve each sub-problem.

5 Experiments

We evaluate our model on STPP domain and compare with baselines. We study the following research
questions:

* Does the proposed hierarchical model improves the learning efficiency? (Table 1 and
Figure 3)

* Does the proposed hierarchical model improves in generalization to unseen and larger
problems? (Figure 4)

SHere, the low-level sub-problem can again be defined by a MDP M),,, which is equivalent to the original
decision making process (3) but on a smaller problem instance span (¢~ (a:)).
"Since our decomposition keeps the size of low-level subproblem small, we can run MILP within short time.



* How does the size of the dataset affect the learning? (Figure 5)

The rest of this section is structured as follows. First, we describe our experimental setup in Section 5.1
including the dataset construction, baselines, training, and evaluation. Then we present the experiment
results in Section 5.2 for the above three questions.

5.1 Setting

Dataset We constructed a dataset consisting of various size of STPP instances. We consider the
graphs with 40, 60, 80, and 100 nodes. For each graph size, we randomly generated 50,000, 1,000,
and 100 STPP instances for training, test and validation, respectively. We used Watts Strogatz (WS)
model (Watts & Strogatz, 1998) with the mean node degree k& ~ Uniform({3,4, 5,6}) and a rewiring
probability 3 ~ Uniform(0, 1) for generating random graphs. Weights are assigned to each edge
from [0, 1] uniformly at random. Given the random graph, a subset of vertices are chosen as the
terminals (see the definition in Section 2.2) to construct the STPP instance. However, we found that
randomly choosing the terminals mostly yields the instance that is either not solvable (i.e., feasible
solution does not exist) or trivially solvable (i.e., removing constraint does not change the optimal
solution). Thus, we designed the terminal node selection algorithm to ensure that the generated
instances are solvable and non-trivial. We first partitioned the generated random graph graph into
Nyype subgraphs using Lukes algorithm (Lukes, 1974), and then chose Niemminat terminals within each
partitioned subgraph. In particular, each subgraph is partitioned in a way such that a single tree
that spans all the nodes in a subgraph exists. However, depending on the edge connectivity of the
subgraph and the choice of terminals among the nodes, the resulting net may be trivial (e.g., a net
may consist of a small fraction of the partitioned subgraph). Thus, we carefully choose Ny, and
Nierminal, and filter out the instances that are either unsolvable or trivial. For more detail, please refer
to Appendix A.6.

Baselines We compare our model with below baselines:

* MILP-t uses the mixed integer linear programming (MILP) solver to find the best solution
within given time limit £. We used OR-Tools (Perron & Furnon) in implementation.

e MILP-o0 is the MILP solver without time limit, which finds the optimal solution.

» PathFinder (McMurchie & Ebeling, 1995) is a heuristic algorithm solving STPP (see Sec-
tion 4 for more details). We used the publicly available implementation (Lee et al., 2022)
with two variations of low-level solver: shortest-path finding (PathFinder-SP) and two-
approximation (PathFinder-TA).

* Flat is a conventional (i.e., non-hierarchical) RL agent that tries to maximize reward in the
given MDP (i.e., Section 2.1)

For a fair comparison, we set ¢t=1 second for MILP-¢ to roughly match the execution time of the
compared methods.

Training For HCO, we first pre-train them using behavioral cloning (Bain & Sammut, 1995) and
then use IMPALA (Espeholt et al., 2018) for finetuning. We generate our behavioral cloning data
using a solver (OR-Tools) and use cross entropy loss for training it. And for learning framework
of RL, IMPALA of RLIib (Liang et al., 2017) is used. The hyper-parameters are chosen based on
the performance on validation set. The chosen hyper-parameters and training method details are
described in Appendices A.5 and A.7.

Evaluation We use three metrics to evaluate the algorithm’s capability to minimize the cost and
satisfy the constraint. Feasible solution ratio (FSR) is the ratio of instances where a feasible (i.e.,
constraint is satisfied) solution was found by the method. Since the solution cost can be computed
only for a feasible solution, we also introduce the metric Optimality gap (Gap) measuring average of
algorithm cost 1

the cost suboptimality in feasible solutions found: Gap=( optimal cost

). Finally, elapsed time (ET)

measures the average wall clock time taken to solve each instance in the test set. For reinforcement
learning, we report the performance averaged over four random seeds.



1.00 T 0.20 ;
IS eV W A s | 1
0.75 ™Y : 0.15 :
« 1 3
& 0.50 : & 0.10 A
. —— Flat i ©
0.25 - Flg i 0.05 -
HCO (Ours) : 1
0.00 T T 0.00 T T
oM 2M 4aM oM 2M 4aM
Episodes Episodes

Figure 3: Training performance of the HCO for problem size n = 40. We pre-trained the agents via behavioral
cloning until 5 millions episodes (i.e., vertical dotted line in the figure), and then finetuned via reinforcement
learning afterwards.

5.2 Result

Training Performance Figure 3 shows the learning curves of HCO. Overall, HCO and Flat show
similar results in terms of FSR but HCO (Ours) learn in sample efficient manner in Gap, due to
smaller search space resulting from hierarchical decomposition. The agent is first trained using
imitation learning until 500K episodes. The performance improves in terms of both FSR and Gap.
Then, agent is updated using reinforcement learning method which directly minimizes the cost while
trying to satisfy the constraint. The result shows that RL improves the performance of HCO and Flat.
We note that performing RL from scratch makes the training significantly unstable since randomly
initialized policy almost always generate an infeasible solution (i.e., sparse reward problem).

Table 1: Result table for Steiner Tree Packing problem. Gap, and FSR mean the average optimality gap, and
feasible solution ratio, respectively, and ET represents the average time taken to process a test instance.

n = 40 n = 60
Gap] FSRT ET (ms){ Gap] FSRfT ET (ms)
HCO (Ours) 0.039 0969 38 HCO (Ours) 0.031 0953 99
Flat 0.045 0957 106 Flat 0.087 0.935 252
MILP-1s 0.000 1.000 127 MILP-1s 0.000 0.982 501
PathFinder-SP  0.112 0974 5 PathFinder-SP  0.165 0.990 8
PathFinder-TA 0.116 0.966 19 PathFinder-TA 0.147 0974 48
MILP-c0 0.000 1.000 125 MILP-c0 0.000 1.000 532
n = 80 n = 100
Gap] FSR{T ET (ms){ Gap] FSRfT ET (ms)l
HCO (Ours) 0.054 0932 124 HCO (Ours) 0.056 0.892 246
Flat 0.087 0902 529 Flat 0.062 0905 679
MILP-1s 0.001 0.832 975 MILP-1s 0.000 0.035 1007
PathFinder-SP  0.150 0.976 20 PathFinder-SP  0.155 0.970 35
PathFinder-TA 0.149 0965 115 PathFinder-TA 0.150 0.954 170
MILP-c0 0.000 1.000 1648 MILP-c0 0.000 1.000 4685

Generalization to Unseen Instances Table 1 summarizes the performance of each method on
unseen instances with same graph size. The first row represents HCO. We claim that our hierarchical
framework improves the overall sample efficiency of reinforcement learning due to the reduced search
space in high-level and low-level problems. MILP-1s achieves the near-optimal performance in terms
of Gap for all the instance sizes, but the FSR quickly degrades as the instance size grows. This
indicates that satisfying the constraint is much more challenging (i.e., MILP-1s spends much more
time) for MILP-1s than minimizing the cost. HCO show mostly higher results in terms of FSR than



Flat, and higher results in terms of Gap since HCO reduce search space. Both PathFinder methods
show overall slightly worse Gap but the highest FSR compared to other methods.

We ascribe their high FSR to its iterative algorithm, negotiated-congestion avoidance, that is tailored
for finding the feasible solution in STPP. Lastly, MILP-oco can find the optimal solution using tree
search but the computation (i.e., ET) increases exponentially in terms of the problem size (n), which
is not scalable.
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Figure 4: Generalization performance of HCO. The Figure 5: Analysis on the effect of training data
agent was trained only on the small (n = 40) set size on the performance. We trained HCO on
instances and evaluated on the unseen and larger varying size of training set (x-axis) and evaluated
(n > 40) instances. on the test set in term of FSR (left) and Gap (right).

Generalization to Unseen and Larger Instances Figure 4 stress-tests how well the HCO and Flat
can extrapolate to unseen and larger instances. Specifically, we trained HCO and Flat on a small
(n = 40) instances and evaluated on a larger instances with the graph size n € {40, 60, 80, 100}. As
the graph size increases (i.e., larger distribution shift in data), the performance generally decreases,
but HCO maintains a reasonably low Gap, while Flat can’t. We attribute it to our hierarchical
decomposition framework that keeps the size of the sub-problem presented to the low-level agent
consistent even when the instance size changes. Then, low-level agent will be affected less by the
distribution shift and can generalize better.

Effect of Training Set Size We analyze the effect of training dataset size on the performance. We
randomly sub-sampled D instances from the 50,000 training instances of the size n = 40, trained
HCO on the sub-sampled data set, and evaluated on the entire test set of the size n = 40. We report
the performance after training the agent with behavioral cloning on each sub-sampled training set
for 100 epochs and RL until convergence. Figure 5 summarizes the result. Small datasets (less than
10,000 data) have poor FSR, but using more than 20,000 improves FSR and Gap score to match
results from using 50,000 data. We also observe that the performance improves when the model is
trained on larger number of instances. Particularly, training on larger data significantly improves the
FSR, achieving near 96% FSR for 50,000 instances. Unlike Flat, the HCO achieves near-optimal
performance in term of Gap even with only 1,000 training instances. We note that Gap is measured
only over the instances that the algorithm predicted a feasible solution. This indicates that HCO can
easily minimize the cost with the help of MILP solver used in low-level agent if the high-level agent
resolves the constraint properly (i.e., find the feasible solution).

6 Conclusions

In this work, we proposed a novel hierarchical approach to tackle challenging CO problems with
complex constraint. The central idea of the approach is to decompose the solution search space using
latent mapping, resulting in a more sample-efficient learning due to separation of concerns and a
smaller search space, as well as stronger generalization capability due to homogeneous problem size
for low-level policy. To this end, a general hierarchical decomposition framework is formulated, which
can be applied to any CO problem. The practical implementation of this framework is demonstrated
for the specific case of the STPP using a hierarchical policy architecture and a graph neural network.
The effectiveness of the proposed method is evaluated on large-scale STPP instances, and it is shown
that the hierarchical framework improves the sample efficiency and generalization capability of the
model, outperforming both heuristic algorithms specifically designed for STPP and mathematical
optimization methods.
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A Appendix

A.1 Combinatorial Optimization as Markov Decision Process

In this section, we provide a full illustration of a sequential optimization process for a general CO
problem. Our goal is to design a corresponding MDP for Equation (3). Intuitively, the sequential
decision making process in Equation (3) can be thought of choosing for each timestep ¢ an action

x; € X;, until we have a full solution x = Zt x:. However, note that we are constructing
Xy, -+, Xy sequentially, i.e., we do not have the subspace decomposition X = X; & --- ¢ Xy
beforehand. Hence, assume we have constructed X7, - - - , X; until the current timestep t. Let us

define W; the remaining subspace that are yet to be decomposed, i.e., X = X;®- - - & X; @ W;. Then,
the sequential decision making is equivalent to choosing for each timestep ¢ a subspace X; < W,
and consequently an action x; € X, until we have a trivial subspace W; = {0}. We illustrate this
process formally in Algorithm 1.

Algorithm 1: Sequential Optimization for Combinatorial Optimization in MDP

Input: Problem instance (1), stationary policy 7.

Result: Solution z = Y1 @;.
1 initialize Wy < X
2 initialize Ay < 0 // Set of past actions.
3fort=1,---,Hdo
4 Update state s; < (Wy_1, A¢—1)
5 Determine the action set X; < W;_1 such that dim(X;) = 1 // By policy or environment.
6 Ty ~ Mo(se) and Ay +— A1 U {x} // Sampling x; from X;.
7 Wi+ Wsuchthat X =X --- X, W
8 end

Sequential decision making process for the bi-level decomposition in Equation (7) and Equation (8)
can be formulated similarly. The key is to construct the subspace decompositionY =Y, & --- G Yy
sequentially as done in Algorithm 1, while obtaining the partial solution for the original problem
from the low-level sub-problem (8) simultaneously. Full illustration of the bi-level optimization is
provided in Algorithm 2.

Algorithm 2: Sequential Bi-level Optimization for Combinatorial Optimization in MDP

Input: Problem instance (1), stationary high-level policy 7p,; and low-level policy .
. T
Result: Solutionx = >, | x;.
1 initialize Wy < X and V) <+ Y
2 initialize Ay — 0 // Set of past actions.
jfort=1,--- Hdo
4 Update state s; < (Vi—1, Ar—1)

5 Determine the action set Y; < V;_; such that dim(Y;) =1  // By policy or environment.
6 Fi (]: N (Zt;ll T; + Wt_1)> // Local restriction of the feasible solution
! span(¢ =1 (Y2))
space.
7 Yy ~ mhi(sy) and Ay A1 U {y} // High-level problem
Xy + span(¢p—1(y:)) N Wiy /1 Search space for the low-level subproblem
9 xy < L(y;) == argmingx {f(x) : ¢ € F;} /1 Low-level solution from i, and

Algorithm 1.

10 | W; <+ W such that X = span(¢=(Y1)) @ --- @ span(¢p—1(Y;)) @ W
u | V< Vne(W,)suchthatY =Y, &--- Y,V
12 end
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A.2 Proof of Theorem 3.1

We begin with a proposition which we adopt as an important assumption of our latent mapping ¢.

Proposition A.1. Let X and Y be n and m-dimensional vector spaces over a finite field F, re-
spectively. Then there exists a surjective latent mapping ¢ : X — Y such that |span(¢p~1(y))| <
O(|X|/IY)|) forally € Y.

Proof. In fact, the above property always holds if the mapping ¢ is linear. We claim that for a
linear surjection ¢ : X — Y, dim(span(¢—*(y))) < n — m + 1, and hence |span(¢~!(y))| <
|F|"=m+ = O(|X|/|Y]). Let B = {vy,--- ,v,,} be a basis for Y. Since ¢ is a surjection, there

exists u; € X such that ¢(u;) = v, foreach j = 1,--- ,m. Let y € Y be arbitrary. Then there
exist scalars c1,- -+ , ¢, € F such that y = Z;”Zl cjv;. Then we have
oMy ={zeX p@)=yl={zcX dx)=) cuv;} (11)
j=1
:{weX:qb(w—chuj):O}ler¢+chuj (12)
j=1 j=1

where the third equality follows from the linearity of ¢. Note that since ¢ is a surjection, dim(ker ¢) =
n — m from the rank-nullity theorem. Thus, we have dim(span(¢~—!(y))) < dim(span(ker ¢ +
doi cjug)) < n—m+ 1 as desired. O

The existence of such ¢ is important, since we wish to adopt such a ¢ as our latent mapping to prove
its usefulness. Note that if we are given arbitrary ¢, then our decomposed problem is as hard as
the original problem. For instance, consider a mapping ¢ : X — Y such that |¢~!(y)| = 1 for all
y # 0and |¢~1(0)| = |X| — |Y]| + 1. In this case, the solution space of My, is either trivial or as
large as the original problem. Hence, for the remaining part of this section, we assume that our latent
mapping ¢ is well-chosen as in Proposition A.1.

Before we prove our main theorem, we demonstrate how we can train our agents in My; and M, of
our bi-level decomposition framework (Algorithm 3). Notice that we are exploiting the fact applying
the optimal solver L to a smaller subspace span(¢~!(y)) < X instead of entire X is plausible for
many problem settings. We first begin with a definition of a block MDP.

Definition A.2 (Block MDP). A block MDP is defined by the tuple (S, A, P, R, b, B, ), where S is
a set of states, A is a set of actions, P : S x A — A(S) is a transition function, R : S x A — [0, 1]
is a reward function, B is a set of blocks, induced by a surjective blocking function b : S — B, and
v € (0,1] is a discount factor.

Algorithm 3: Training high-level policy m,; and low-level policy 7, in Bi-level Framework

Input: Problem instance (1), and some constants €, > 0.
Result: Near-optimal policies 7y; and ;.

1 Initialize randomized policies 7p,; and 7.
2 Equip My, defined as in Algorithm 2 with an optimal low-level solver L(-).
3 Train 7y on the above My, to obtain deterministic near-optimal policy 7}y;. // Policy or value
iteration, etc.
4 Fix obtained high-level policy ;.
5 Replace optimal solver L(-) with 7, in Mp;.
6 fort=1,--- ,Tdo
Call My; to sample y; ~ 775 (s¢), Wi—1, and F; in Algorithm 2.
8 Obtain ./\/ll((f) from F; and X; = span(¢~t(y;)) N Wi_.
9 end
Train 7, on a block MDP defined by collecting all /\/ll(; ) to obtain e -

[
=)

Finally, an important lemma from Kakade (2003):
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Lemma A.3 (Sample complexity lower bound; Kakade (2003)). Assume that a H-step Markov
decision process with state space S and action space A is given. Fix €,d > 0 and a state s € S. Let
A be any algorithm that has access only to a generative model of the MDP, and outputs a policy
that satisfies V. (s) > V*(s) — €, with probability greater than 1 — 6. Then, the algorithm A must
make at least (e 1| S||A|H log(1/6)) calls to the generative model of the MDP.

Proof. See Theorem 2.5.2 and Theorem 8.3.4 of Kakade (2003). O

We now provide a full proof of Theorem 3.1.

Theorem 3.1 (Sample Complexity Reduction). Let M be a H-step MDP as in (3). For any algorithm
A that has access to M which outputs a policy mg such that V7 (s) > V*(s) — e with probability
greater than 1 — § for a given state s, A must make at least Q(e 1| X|?H log(1/9)) calls of M,
whereas Q(e =t max (Y], | X|/|Y])2H log(1/6)) calls of either My; or M,, is sufficient when using
a bi-level decomposition described as in (7) and (8).

Proof. Let X and Y be n and m-dimensional vector space over a finite field F', respectively. Let M
be a Markov decision process for Equation (3) as described in Algorithm 1. Since the state space
consists of all possible partial solutions for &, we have at most 2" | X| states. The action x; € X; in
Algorithm 1 for any timestep ¢ is precisely a choice x; € F'. Thus, for any given X over a finite field
F, we have |S||A| = 2"|F|"*1 = O(] X|?). This along with Lemma A.3 proves the first part of the
theorem (i.e., the lower bound for sample complexity of M).

To prove the remaining part of Theorem 3.1, let My; and M), be MDPs for high-level problem
(7) and corresponding low-level subproblem (8), respectively, where we train both My; and M,
with Algorithm 3. The state space of My, consists of all possible partial solutions in Y, and hence
there are at most 2|Y’| states. The action space is again isomorphic to the field F, so that we
have |S||A| = O(]Y|?) as in the above claim. Finally, suppose we obtained 7;; from Algorithm 3.
Note that low-level MDP M, is equivalent to a block MDP in Algorithm 1 with its sub-MDPs
collected from span(¢~1 (7} (s¢))) foreacht = 1,--- | H. Since their sizes are bounded above with
O(]X|/|Y]) by Proposition A.1, any algorithm is expected to learn on M, with sample complexity
Qe (| X|/IY])2H log(1/5)). As we are training my; and 7, independently on My; and M,
respectively, the overall sample complexity for the bi-level decomposition framework is additive.
This completes the proof. O

A.3 MDP formulation

Below we provide a full description of our MDP formulation for STPP in Section 3.3.

State The state s; of the high-level MDP My, consists of a graph G, collection of set of terminals
T, a partial solution S; C V(G) constructed until timestep ¢, (i.e., the nodes of the disjoint trees that
span terminals 77, - - - , Ty_1) and the current timestep ¢. The graph G provides a general information
of the problem instance, i.e., the connectivity of the graph via edges. In practice, the graph G can
be represented by the adjacency matrix A € RIVI*IVI where a; ; takes the edge weight w;;. The
information can be further encoded via message passing layers of GAT and AT in GNN. 7, S; and ¢
provide node features for current timestep, and are essential for generating a graph embedding. From
the state information s;, we extract the node features of the graph to encode further via GNN model.
For a node v € V, we denote the node features of the vertice v as X, := (X0, X7, Xq) € Z3. The
first node feature x, € {0, 1} denotes whether a node v is included in the current partial solution
or not. If v is selected as a partial solution, we define x, = 1, and otherwise 0. The second node
feature x, € {0,1,--- , Nyp} indicates the terminal type (i.e., X, = k if and only if v € T},), where
the indices are labeled in the order that the high-level MDP solves for. Non-terminal nodes will be
assigned a value of 0. The last feature, x4 denotes the degree of a node v € V. The edges of the
graph are also assigned with edge features. We only use the edge weights as the edge features in this
paper. Our choice of node and edge features are summarized in Tables 2 and 3.

Action The action a; of a high-level MDP M); at timestep ¢ is to select a set of vertices y; C
V(G) \ St, where S is the partial solution constructed until the previous timesteps. Intuitively, the
action a is to select a node set that includes all terminals of current type at timestep ¢. The selected
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Table 2: Node features

Notation Value Description

Xo € {0,1} Is partial solution
Xr €{0,1,2,..., Nype} Terminal type

Xd €z Node degree

Table 3: Edge feature
Notation Value Description

We eR Edge weight(=cost)

set of nodes should create a subgraph G|a;] of G generated by the nodes a;, and should correnspond
to a STP instance (with single type of terminals). The low-level agent then computes a minimum
weight tree that spans all terminals of current type from the subgraph G|a;]. In practice, we further
assist the agent by designing the MDP environment for My, in a way such that the terminal nodes of
the current type are automatically selected by the environment internally. Hence, the action a; will
result in a subgraph Gla; U V (T)] instead of Glay).

Reward Designing a reward with optimality guarantee is a non-trivial task. In particular, we wish
to construct a reward where all feasible solutions result in higher reward than those of any infeasible
solutions. Also, the feasible solutions with better solution quality (i.e.objective being closer to optimal
solution) should be assigned with higher reward. Hence, given a final solution a of a CO problem (1),
a reward with optimality guarantee can be compactly formulated as (x) = ¢- 1x(x) — f(x), where
¢ > sup,cx f(x), f is the objective function of problem (1), and 1£(-) is an indicator function.
Note that this form of reward is equivalent to what is described in Section 2.1; achieving the maximal
return will result in the same optimal policy®. Finally, recall that our objective f is linear of X; for
each partial solution x; constructed at timestep ¢, we are able to decompose our reward function as

follows.
¢
r(xy) =c-1r (Z :ck> — f(x) (13)
k=1

Transition Our transition in MDP is deterministic; the change in the partial solution alters a node
feature x,, from 0 into 1, which result in different node and graph embeddings from GNN.

Termination Our STPP environment is terminated when it is not able to generate feasible STPP
solution or when a feasible solution is found. The cases where generating a feasible STPP solution
includes (1) no possible actions remaining, (2) any choice of actions in future timestep inevitably
results in an infeasible solution, or (3) the choice of action a; in a high-level MDP Mj; results in an
unsolvable STP instance G[ay].

A.4 GNN architecture

Encoder Given a graph G, we first extract a D-dimensional node embedding p,, for each node
v € V, where D denotes the number of features provided as in Appendix A.3. Note that we use
D = 3, which consists of x, = (x,, X,,xg) respectively as in Table 2. Let p : R? — RP? be a
fixed vectorization mapping of a given node feature x,,, and let §, : RP'? — RP be a linear mapping.
Then we obtain the initial node embedding g, as follows.

Ho = ReLU(GO(p(Xv)))' (14)

Then we further encode the node embeddings M := (g1, -+, py|) € RIVI*P via graph attention

network (GAT) and attention network (AT). Formally, let ©; : R"»*P — R?P and 6; : R? — R?
fori =1,--- [ be linear mappings, where n;, denotes the number of heads of GAT. Let us slightly

8Providing incentives for & € F instead of a penalty when @ ¢ F scales all rewards to be non-negative.
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overload the notation and write ©;(M) := (©;(u1),---,0;(p)v|)) and 0; likewise. Then, we
encode the node embedding recursively as follows.

MUY = AT(0,(GAT(M~V; 3)); G) (15)
M® = g;(ReLUM D[ ME=1"y) (16)
for each i = 1,---,1, where we define M(®) = M, and write (-||-) for CONCATENATE(-,-). In

particular, we write our graph encoder function Enc briefly as follows, with some details omitted.

[ times

Enc(:;G) := (AT o GAT) o - - - o (AT o GAT)(+; G) (17)

Graph embedding, logit and probability Given the node embedding of the last layer M), we
obtain the embedding for the entire graph & (see Figure 2). Instead of simply averaging over all
the nodes, we enrich the graph embedding by grouping the nodes into three subsets based on their
characteristics: current terminal 7}, partial solution S, and non-terminal nodes V.=V \ UTGT T.
Then, the embeddings are averaged within each subset, concatenated, and projected to obtain the
graph embedding 1. Formally, the graph embedding layer Emb is written as follows.

Emb(;t) := W(., T,)[[¥(, Sy)[[¥(-, V) (18)

where U(M®), A) performs the average pooling over the set of node embeddings that belong to
A. The graph embedding p© is obtained as u& = Emb(M); ¢). Finally, the logit value (i.e., the
probability of choosing the node) for each node v € V' is computed as follows.

logit, = wy (ws(ReLU(wy (1) |[wa(u))) + p?) Vo eV (19)
py = softmax(logit,) Yv eV (20)

where wy : R3? — RP, wy : RP — RP, wg : R?? — RP, and wy : RP — R? are linear functions.

Value function The value function V™ uses a model that has a similar GNN architecture with a
simple multi layer perceptron MLP that sequentially projects (R?*? — R3? — RP — R1), and does
not share weights from policy network.

V7™ (s;) = MLP(Emb(Enc(M; G); t)). Q1)

A.5 Hyperparameters

The GNN model has a hidden dimension of p = 128, and [ = 5 for GAT and AT encoder layers.
Both GAT and AT use 8 heads, and the dropout rate is 0.5 in IL but not used in RL training. A batch
size of 64 is used, and the learning rate is initialized to 10~%, which decreases by 0.99 per epoch.
Fine-tuned value if 5 x 10~7 is used for weight decay. To prevent divergence of learning, clips the
gradient norm to 1. HCO learns 100 epochs, using 1 epoch as updating model with BC data in every
step using every episode. In RL phase, batch size of 30, learning rate of 10~%, discount factor of 0.99,
and an entropy coefficient of 0.01 are used, and the value function loss coefficient is set to 5. The
number of workers used in IMPALA is set to 30.

A.6 Dataset generation

Let n be the number of nodes of a graph instance G. To assign terminal nodes while ensuring the
existence of a feasible solution, we first set maximum number of type M = 5. And the number
of terminal types Ny is determined by (Lukes, 1974). The algorithm generates partitions of the
graph with the determined Nyp.. The partitions are guaranteed to include a spanning tree by the
algorithm, but their sizes may not be consistent, due to the randomness in Lukes algorithm. Finally,
we randomly choose for each graph partition Nieminat = max(2, |1 X ¢/Nype]) terminal nodes from
uniform distribution, to ensure that a net is formed (i.e., a feasible solution exists), where ¢ = 0.2
that follows convention from Yan et al. (2021). Through this way, it is possible to create a solution
where a feasible solution exists, but to create feasibility-hard instances, instances that is solvable by
sequential STP is excluded. Note that the number of terminal types Ny is precisely the maximal
length of the horizon of HCO MDP formulation.
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A.7 Training and evaluation

Imitation learning for HCO agent. For imitation learning, we first collect the demonstration data
using the optimal solver, MILP, as expert policy. The expert policy 7**P*" is defined as 7P (a;|-) = 1
if a; € A and 7P*"(a,|-) = 0 otherwise. The nodes that are not selected by the expert are excluded
from the loss calculation. HCO use cross-entropy loss for BC training, and 1 epoch is defined as
updating HCO for every step of every instance. During the evaluation phase, the softmax function is
applied to the logit values of each node to obtain probabilities, and nodes with probability values
exceeding 0.5 are selected as high-level actions. The training and evaluation are carried out on a
single GPU, comprising an AMD EPYC 7R32 CPU and NVIDIA A10G GPU.
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