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ABSTRACT

Domain adaptation (DA) transfers knowledge from label-rich domains to new do-
mains where labels are scarce to address the problem of generalization of deep
neural networks in new domains. Universal domain adaptation (UNDA) assumes
the label distributions of labeled and unlabeled data are different and unknowable.
In this paper, we concentrate on solving the noise problem on the UNDA problem
based on contrastive learning (CL), which includes view noise in data augmenta-
tion and label noise in the classifier training. The domain differences in UNDA
amplify the noise in the view of data augmentation, resulting in data augmenta-
tion schemes that apply to all domains being challenging to find. In addition, the
mainstream UNDA classifiers combine closed-set classifiers with open-set classi-
fiers; insufficient competition among open-set classifiers leads to overconfidence,
which results in incredible sensitivity to noise in labeled data. Therefore, we pro-
pose Noise-Resistant Soft Contrastive Learning (NSCL) addresses the above is-
sues. Firstly, we propose a soft contrast learning loss to avoid the over-response
of typical CL loss to noisy samples, thus enabling data augmentation to improve
the performance of UNDA further. Secondly, we design an all-in-one (AIO) clas-
sifier to improve the robustness of noisy labels while introducing multi-category
unknown class competition. Extensive experimental results on UNDA and open-
set DA demonstrate the advantages of NSCL over existing methods, especially in
downstream tasks such as classification and visualization. 1

1 INTRODUCTION

Domain adaptation (DA) transfers knowledge from label-rich training domains to new domains
where labels are scarce (Ben-David et al., 2010), to address the problem of generalization of deep
neural networks in new domains. Traditional unsupervised domain adaptation (UDA) assumes that
the source domain and the target domain completely share the sets of categories, i.e., closed-set DA.
But, this assumption does not often hold in practice. There are several possible situations: the target
domain contains types absent in the source (unknown categories), i.e., open-set DA (ODA) (Busto
& Gall, 2017; Saito et al., 2018); the source domain includes classes absent in the target (source pri-
vate categories); i.e., partial DA (PDA) (Cao et al., 2018); a mixture of ODA and PDA, called
open-partial DA (OPDA). Many approaches have been tailored for a specific setting, but an actual
difficulty is that we cannot know the category shift in advance. The task of UNDA is proposed (You
et al., 2019; Saito et al., 2020) to account for the uncertainty about the category shift. The assumption
is that the label distributions of labeled and unlabeled data can differ, but we cannot know the differ-
ence in advance. The UNDA is a uniform and practical setup, since estimating the label distributions
of unlabeled data is very hard in real applications.
Recently, Contrastive Learning (CL) has been used for unsupervised pre-training and has yielded
excellent results in various downstream tasks. Furthermore, several studies (Yu et al., 2022; Chen
et al., 2022a) have attempted to enhance UNDA by introducing CL. However, the widely used data
augmentation-based CL schemes have not been introduced into UNDA. It is attributed to two noise-
related factors (problems) that have limited the development of data-augmentation based CL on
UNDA.

1code of the paper: https://anonymous.4open.science/r/nscl-A543/
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Figure 1: The noise problem in UNDA and the solution proposed in this paper. (a) View-noise
problem in the backbone network pre-training by the CL. (a)-top shows the views generated by the
data augmentation in the three domains. The difference in content style of the Clipart domain causes
the regular data augmentation to produce views with vastly different semantics, producing noisy
pairs. (b) Label-noise problem in the classifier training. The dashed circle with a tick/cross means
the test samples are classified correctly/incorrectly.

View-noise problem in data augmentation for CL. Although the view-noise in CL has started to
receive attention in network pre-training (Chuang et al., 2022), we found that it causes more severe
damage due to domain differences of UNDA. As shown at the top of Fig. 1 (a), a more severe view-
noise problem occurs if the same augmentation scheme is used in different domain data. In detail,
view 1 (v1) and view 2 (v2) have similar semantics in the ‘product’ domain and ‘art’ domain, noted
as positive pairs, but they have different semantics in the ‘clipart’ domain, noted as noise pairs. The
noise pairs contradict the accurate semantic information and, therefore, generate false gradients,
which corrupt the network training.
Label-noise problem in UNDA classifier training. Recently, OVANet and its variants (Saito &
Saenko, 2021; Wang et al., 2022) have received much attention. These methods combine closed-set
classifiers and open-set classifiers to identify known and unknown classes. However, these methods
contain multiple open-set classifiers, each corresponding to a single known class. These methods
combine closed-set classifier and open-set classifiers to identify known and unknown classes. How-
ever, each of the open-set classifiers only corresponds to a single known class. As a result, inadequate
competition between open-set classifiers causes the classifier to be easier to fall into over-fitting and
over-confidence. This eventually leads to failure in target domain recognition. When label-noise is
present in the source domain, such imperfect data is almost inevitable, and the detrimental effects of
overconfidence are magnified. As shown in the top of Fig. 1 (b), even though the closed-set classifier
is not affected by label-noise, the classification boundary of the open-set classifier can become very
sharp due to label-noise and overfitting phenomenon, which eventually causes the target domain
samples to be misclassified.
To solve the above view-noise and label-noise problem, we propose the noise-resistant soft con-
trastive learning (NSCL), a new UNDA method. To solve the view-noise problem, we design a soft
contrastive learning (SCL) loss. The proposed SCL loss incorporates the idea of self-distillation,
drawing partial knowledge from the training network to counteract the detrimental effects of the
view-noise. Specifically, SCL loss includes the similarity of the latent space to define the reliability
of the view and then further constructs the CL loss function with the help of reliability. To visualize
and understand the adverse effects of noise pairs, we quantified the proportion of losses calculated
from ’noise pairs’ and ’positive pairs’ using manual labeling. As shown at the bottom of Fig. 1 (a),
the scale of the CL losses from the ’noise pairs’ is much larger than the scale of the SCL losses.
To solve the label-noise problem, we try to prevent the overconfidence problem of independent
classifiers. Therefore, an all-in-one (AIO) classifier is designed to solve the UNDA uniformly. Fur-
thermore, The AIO classifier is started from common sense. It assumes that identifying a class as
an unknown class requires determining that it does not belong to all known classes. Underlying the
above assumptions, we design a new loss function to train the AIO classifier. As shown in (b3) and
(b4) of Fig. 1 (b), with the introduction of more comprehensive competition, the AIO classifier has
smoother classification boundaries and reduces the adverse effects of label noise.
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In experiments, we extensively evaluate our method on UNDA and open-set DA benchmarks and
vary the proportion of unknown classes. As a result, the proposed NSCL outperforms various base-
lines that explicitly or implicitly employ the ratio of unknown samples.

2 RELATED WORK

Domain Adaptation (DA). Unsupervised domain adaptation (UDA) (Saenko et al., 2010) aims to
learn a classifier for a target domain given labeled source and unlabeled target data. UDA includes
closed-set domain adaptation (CDA), open-set domain adaptation (ODA), partial domain adapta-
tion (PDA), and universal domain adaptation (UNDA). For CDA, we have Ls = Lt, where Ls

and Lt is the label space of a source and a target domain (Ganin & Lempitsky, 2014; Tzeng et al.,
2017; Long et al., 2015). For ODA (Panareda Busto & Gall, 2017; Saito et al., 2018), we have
|Lt −Ls| > 0, |Lt ∩Ls| = |Ls|, the |Lt −Ls| presence of target-private classes. For PDA, we have
|Ls − Lt| > 0, |Lt ∩ Ls| = |Lt|. The |Ls − Lt| presence of source-private classes.

Universal Domain Adaptation (UNDA). UNDA, also called open-partial domain adapta-
tion (OPDA) in some former works, is proposed to handle the mixture of these settings, |Ls−Lt| >
0, |Lt − Ls| > 0. Saito et al. (2020) emphasize the importance of measuring the robustness of
a model to various category shifts since we cannot know the detail of the shifts in advance. You
et al. (2019); Fu et al. (2020); Saito et al. (2020) compute a confidence score for known classes,
and samples with a score lower than a threshold are regarded as unknown. Fu et al. (2020) seems
to validate the threshold using labeled data, which is not a realistic solution. Bucci et al. (2020) set
the mean of the confidence score as the threshold, which implicitly rejects about half of the target
data as unknown. Saito et al. (2020) sets a threshold decided by the number of classes in the source,
which does not always work well. Wang et al. (2022) reveals that exploiting such inter-sample affin-
ity can significantly improve the performance of UNDA and proposes a knowability-aware UNDA
framework based on it.

Contrastive learning based UNDA. Recently, contrastive learning (CL), a kind of self-supervised
learning paradigm (Xiao et al., 2020), has achieved impressively superior performance in many com-
puter vision tasks (Chen et al., 2020). It aims to achieve instance-level discrimination and invariance
by pushing semantically distinct samples away while pulling semantically consistent samples closer
in the feature space (Chen & He, 2020; Wang et al., 2021). Chen et al. (2022a) proposes to utilize
mutual nearest neighbors as positive pairs to achieve feature alignment between the two domains.
Chen et al. (2022b) constructs the random walk-based MNN pairs as positive anchors intra- and
inter-domains and then proposes a cross-domain subgraph-level CL objective to aggregate local
similar samples and separate different samples. No data augmentation-based CL schemes are used
to solve the UNDA problem.

3 METHODS

Notation. In UNDA, we are given a source domain dataset Ds = {(xs
i , ŷ

s
i )}

Ns

i=1 and an target domain
dataset Dt = {(xt

i)}
Nt

i=1 which contains known categories and ‘unknown’ categories. Ls and Lt

denote the label spaces of the source and target, respectively. We assume that there is unavoidable
noise and errors in the labels, so ŷsi is noted as sampling from the real label ysi . The class-conditional
random noise model is given by P (ŷsi ̸= ysi ) = ρs. We aim to label the target samples with either
one of the Ls labels or the ‘unknown’ label. We train the model on Ds ∪ Dt and evaluate on Dt.

Framework. Fig. 2 introduces the conceptual overview of NSCL. The proposed method includes a
backbone network F (·), a projection head network H(·), and an all-in-one (AIO) classifier CAIO(·).
The backbone network F (·) and projection head network H(·) map the source domain data xs

i and
the target domain data xt

i into latent space, zsi = H(ẑsi ) = H(F (xs
i )), zti = H(ẑti) = H(F (xt

i)).

3.1 VIEW-NOISE AND SOFT CONTRAST LEARNING LOSS

Data augmentation-based contrastive learning (CL) requires consideration of the relationships of
data views. Given two views v1 and v2, the CL can be interpreted as binary classification operating
over pairs of samples. If v1, v2 are sampled from the joint distribution (v1, v2) ∼ Pv1,v2 , then with
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Figure 2: Framework of NSCL. The proposed method includes a backbone network F (·), a pro-
jection head network H(·), and an all-in-one (AIO) classifier C(·). The backbone network F (·) and
projection head network H(·) map the source domain data xs and the target domain data xt into
latent space.

label Hv1,v2 = 1. If v1, v2 are sampled from the product of marginals (v1, v2) ∼ Pv1Pv2 , then with
label Hv1,v2 = 0. In practice, some negative pairs could be mislabeled as positive, and some positive
pairs (v1, v2) ∼ Pv1,v2 could be mislabeled as negative, introducing noisy labels.

Typical CL learns representations by maximizing the similarity between positive samples and mini-
mizing the similarity between negative samples. To see this more concretely, consider the InfoNCE
loss (van den Oord et al., 2018):

LCL
(
vi, vj , {vk}k∈{1,··· ,NK}

)
= − log

ez
T
i zj∑NK

k=1 e
zT
i zk

= − log
S(zi, zj)∑NK

k=1 S(zi, zk)
(1)

where (vi, vj) is positive pair and (vi, vk) is negative pair, and zi, zj , zk are embedding of vi, vj , vk,
NK is the number of the negative pair. The similarity S(zi, zj) is typically defended by cosine sim-
ilarity Sij = exp (zi · zj). The latest approach (Li et al., 2021a; Zang et al., 2022), which redefines
similarity based on long-tail kernel functions, aims to improve the discriminative performance of the
potential space. Thus the t-distribution kernel function is used to calculate the pairwise similarity.

S(zi, zj , ν) = S(dzij , ν) =
Gam

(
ν+1
2

)
√
νπGam

(
ν
2

) (1 + d2ij
ν

)− ν+1
2

, dzij = d(zi, zj) (2)

where Gam(·) is the Gamma function, dzij is the euclidean distance between zi and zi. The degrees
of freedom ν control the shape of the kernel function. A formal presentation of positive and negative
sample pairs is considered to analyze the view noise problem. The details of the transformation from
Eq. (1) to Eq. (3) are in appendix A.

LCL(xi, {xj}k∈{1,··· ,NJ}) = −
∑
j=1

{(1−Hij) log (1− S(zi, zj)) +Hij log (S(zi, zj))}, (3)

if Hij = 1 indicates (vi, vj) is positive pair, and Hij = 0 indicates (vi, vj) is negative pair. Gener-
ally speaking, the positive pairs come from stochastic data augmentation, meaning that the learning
process inevitably introduces view-noise. Further, view-noise inevitably introduces the wrong gradi-
ent, which corrupts the network’s training. In particular, data augmentation schemes suitable for all
domains are difficult to find for UNDA data with a vast amount of domain variance. We consider that
the above reasons explain why no data enhancement-based UNDA methods have been proposed.

To solve the above problem, we resort to the idea of self-distillation to obtain information from
the neural network under training to predict the confidence level of the sample to the information
provided. We propose soft contrast learning (SCL) loss,

LSCL(xi, {xj}k∈{1,··· ,NJ}) =−
∑
j=1

{(1−S̃y
ij(d

y
ij , ν

y)) log
(
1−S(dzij , ν

z)
)
+S̃y

ij(d
y
ij , ν

y) log
(
S(dzij , ν

z)
)
}

(4)
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where νy is the width of t-distribution in the latent space Ry , where νz is the width of t-distribution
in the latent space Rz . The soften similarity S̃(zi, zj , ν) is calculated by the Hij and the trustwor-
thiness estimation,

S̃(dyij , ν) =

{
S(αdyij , ν) if H(xi, xj) = 1
S(dyij , ν) otherwise , (5)

where α ∈ [0, 1] is a soften hyper-parameters. We discuss the differences between SCL and CL loss
in the appendix A.3, including that SCL is a smoother CL loss and that SCL loss can maintain a
higher signal-to-noise ratio in the noise-view.

3.2 LABEL-NOISE AND ALL IN ONE (AIO) CLASSIFIER

Current advanced UNDA (Saito & Saenko, 2021; Wang et al., 2022) combines closed-set classifier
CA, and open-set classifiers {CB

k }k∈K to identify samples belonging to an unknown class or a
specific known class, where the K is known classes set K ∈ {1, · · · , NK} and NK is the number of
the known classes. The inference process consists of two steps. Firstly, CA identifies the most likely
target class. Secondly, one of the sub-classifiers CB

k determines whether the sample is a known or
unknown class (see Fig. 1 (b) baseline method). In training a single open-set classifier CB

k , samples
with yi = k are defined as positive samples, while samples with yi ̸= k are expressed as negative
samples. As a result, the open-set classifier is over-confident due to it focusing on labels consisting
of information from single classes and ignoring the competing relationships of different known
classes (Wang et al., 2022). Above over-confidence is manifested in sharp categorical boundaries
and in failures to generalize from the source domain to the target domain. In addition, the noise in
the labels compounds the damaging effects of the overconfidence problem.

We attribute the reason to the inadequate competition of a single open-set classifier. Specifi-
cally, each open-set classifier completes only binary classification while neglecting to observe more
diverse labels. As a result, the simple learning task guides the classifier to overfit and produce ex-
ceptionally sharp classification boundaries. Another important reason is that it is inconsistent with
human common sense for open-set classifiers to consider only one known class to identify new
classes. Humans need to judge not to belong to all known classes before they can identify new
classes.

To this end, we designed the All-in-One (AIO) classifier CAIO (·). The forward propagation of
CAIO (·) is

Cxi
=
{
ckxi

, c̃kxi
|k ∈ K

}
= σ

(
CAIO (zxi

)
)
, (6)

The ckxi
and c̃kxi

are the probability of xi being identified as a known and unknown class by category
k,
∑

k

{
ckxi

+ c̃kxi

}
= 1. The σ(·) is a ‘top n softmax’ active function to ensure

∑
k∈T N {ckxi

+

c̃kxi
} = 1, T N is the top N = 20 item of Cxi

. The AIO classifier assigns two output neurons to each
known category, representing belonging to the known class and the unknown class, respectively.

We propose two principles for designing an intuitive UNDA classifier to train the AIO classifier to
solve the dilemma in the previous section.

• (a) If the classifier assigns the data xi to a known class ys, it needs to make sure that it
does not belong to other known classes cy

s

xi
> max{ckxi

}k∈K/ys , and does not belong to an
unknown class, cy

s

xi
> {c̃kxi

}k∈K.
• (b) If the classifier assigns the data xi to a unknown class, it needs to confirm that it does

not belong to all known classes, max{c̃kxi
}k∈K > max{ckxi

}k∈K.
Next, we combine the two principles to obtain the following objective. For a sample of the source
domain,

cy
s

xi
> max{c̃kxi

}k∈K > max{ckxi
}k∈K/ys (7)

Based on the above inequalities, we design the loss function as,

LAIO(x
s, ys) = −[log(cy

s

xi
) + min{log(c̃kx)}k∈K/ys + log

(
cy

s

xi
−max{c̃kxi

}k∈K

)
] (8)

The first and second terms of LAIO increase cy
s

xi
and {c̃kx}k∈K/ys , thus guarantee that them have

sufficiently positive predictions and larger than {ckxi
}k∈K/ys . Also, the third term guarantees that

cy
s

xi
> max{c̃kxi

}k∈K. Implicitly, {ckxi
}k∈K/ys is guided to have the lowest activation.
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3.3 LEARNING & INFERENCE

Learning. We combine the soft contrastive learning loss and AIO classifier to learn both open-set
and closed-set categorization. The overall training loss is computed as follows:

Lall = E(xs
i ,yi

s)∼Ds
Lsrc(x

s
i , yi

s) + λExt
i∼Dt

Lscl(x
t
i), (9)

Lsrc(x
s
i , yi

s) = Lce(x
s
i , yi

s) + βLAIO(x
s
i , yi

s). (10)

The parameters of networks are optimized to minimize the loss. Note that λ and β are the weighted
parameters. This method is much more straightforward than existing ODA and UNDA meth-
ods (Saito et al., 2020; Fu et al., 2020; Bucci et al., 2020), all of which require setting the threshold
manually and/or multiple training phases.

Inference. If the AIO classifier’s ckxi
achieves the maximum value, then the sample is identified as

a known class k. On the other hand, if any of {c̃kxi
}k∈K of the AIO classifier achieves the maximum

value, then the sample is identified as an unknown class.

4 RESULTS

We evaluate our method in UNDA settings along with ablation studies. To evaluate the robustness
of the change in the number of unknown target samples, we vary the number and compare it with
other baselines.

Datasets. We utilize popular datasets in DA: Office (Saenko et al., 2010), Office-
Home (Venkateswara et al., 2017), VisDA (Peng et al., 2017), and DomainNet (Peng et al., 2019).
Unless otherwise noted, we follow existing protocols (Saito & Saenko, 2021) to split the datasets
into source-private (|Ls − Lt|), target-private (|Lt − Ls|) and shared categories (|Ls ∩ Lt|).
Baselines. We aim to compare methods of universal domain adaptation (UNDA), which can reject
unknown samples, such as, CMU (Fu et al., 2020), DANCE (Saito et al., 2020), DCC (Li et al.,
2021b), OVANet (Saito & Saenko, 2021), TNT (Chen et al., 2022a),GATE (Chen et al., 2022b),
KUADA (Wang et al., 2022). Instead of reproducing the results of these papers, we directly used the
results reported in the papers with the same configuration. We focused on contemporaneous work,
although the results are not included in the table because these articles were not peer-reviewed.

Implementation. Following previous works, such as OVANet (Saito & Saenko, 2021) and
GATE(Chen et al., 2022b), we employ ResNet50 (He et al., 2016) pre-trained on ImageNet (Deng
et al., 2009) as our backbone network. We train our models with inverse learning rate decay schedul-
ing. The performance of the proposed NSCL in uniform settings is listed in the penultimate row of
the table. A grid search is performed for each setup, and the optimal values obtained are marked
with ⋇. The selected parameters include λ, β, and α. For all experiments, νy = 100 and νz = 10.
The network H(·) uses a two-layer MLP network with 2048 neurons. In summary, our method

Method Office (10 / 10 / 11) Avg DomainNet (150 / 50 / 145)) AvgA2D A2W D2A D2W W2D W2A P2R R2P P2S S2P R2S S2R
CMU 68.1 67.3 71.4 79.3 80.4 72.2 73.1 50.8 52.2 45.1 44.8 45.6 51.0 48.3
DANCE 78.6 71.5 79.9 91.4 87.9 72.2 80.3 21.0 47.3 37.0 27.7 46.7 21.0 33.5
DCC 88.5 78.5 70.2 79.3 88.6 75.9 80.2 56.9 50.3 43.7 44.9 43.3 56.2 49.2
ROS 71.4 71.3 81.0 94.6 95.3 79.2 82.1 — — — — — — —
USFDA 85.5 79.8 83.2 90.6 88.7 81.2 84.8 — — — — — — —
OVANet 85.8 79.4 80.1 95.4 94.3 84.0 86.5 56.0 51.7 47.1 47.4 44.9 57.2 50.7
TNT 85.7 80.4 83.8 92.0 91.2 79.1 85.4 — — — — — — —
GATE 87.7 81.6 84.2 94.8 94.1 83.4 87.6 — — — — — — —
KAUDA 88.9 83.0 81.1 94.5 98.3 85.2 88.5 59.1 52.4 47.5 48.1 45.1 58.6 51.8
NSCL 89.9 87.6 87.6 98.4 98.3 83.4 91.8 57.4 52.9 47.9 48.2 47.0 57.9 52.0
NSCL⋇ 90.4 89.9 87.8 98.9 98.3 95.6 93.5 57.8 52.9 47.9 48.4 47.2 57.9 52.1

Table 1: H-score comparison of Office and DomainNet datasets in the UNDA setting. Single
NSCL indicates that consistent settings are used, and NSCL* indicates selecting the best setting for
each setting using the grid search. Bolded means best performance, underlined means 2% better
than other methods.
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Method OfficeHome (10 / 5 / 50)
A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg

CMU 56.0 56.9 59.1 66.9 64.2 67.8 54.7 51.0 66.3 68.2 57.8 69.7 61.6
DANCE 61.0 60.4 64.9 65.7 58.8 61.8 73.1 61.2 66.6 67.7 62.4 63.7 63.9
DCC 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2
OVANet 62.8 75.6 78.6 70.7 68.8 75.0 71.3 58.6 80.5 76.1 64.1 78.9 71.8
TNT 61.9 74.6 80.2 73.5 71.4 79.6 74.2 69.5 82.7 77.3 70.1 81.2 74.7
GATE 63.8 75.9 81.4 74.0 72.1 79.8 74.7 70.3 82.7 79.1 71.5 81.7 75.6
KAUDA 63.9 79.0 83.5 70.4 72.4 77.6 71.7 61.3 83.6 78.8 64.3 83.0 73.8
NSCL 66.7 79.4 86.6 73.2 73.0 79.5 75.7 64.0 82.6 79.4 66.8 80.0 75.9
NSCL⋇ 68.2 80.6 86.7 73.4 73.0 79.8 76.5 64.9 83.3 80.1 67.1 80.1 76.1

Table 2: H-score comparison of OfficeHome datasets in the UNDA setting. Single NSCL indi-
cates that consistent settings are used, and NSCL⋇ indicates selecting the best setting for each
setting using the grid search. Bolded means best performance.

outperforms or is comparable to the baseline method in all different settings. More details of the
implementation are in the Appendix.

Method Office (10 / 0 / 11) AvgA2D A2W D2A D2W W2D W2A
CMU 52.6 55.7 76.5 75.9 64.7 65.8 73.1
DANCE 84.9 78.8 79.1 78.8 88.9 68.3 79.8
DCC 58.3 54.8 67.2 89.4 80.9 85.3 72.6
ROS 82.4 82.1 77.9 96.0 99.7 77.2 85.9
USFDA 85.5 79.8 83.2 90.6 88.7 81.2 84.8
OVANet 90.5 88.3 86.7 98.2 98.4 88.3 91.7
TNT 85.8 82.3 80.7 91.2 96.2 81.5 86.3
GATE 88.4 86.5 84.2 95.0 96.7 86.1 89.5
KAUDA 89.4 85.6 92.4 94.5 90.5 92.2 90.8
NSCL 90.5 93.5 91.7 98.9 100 92.8 94.6
NSCL⋇ 90.5 93.8 92.7 99.3 100 93.7 95.0

Table 3: H-score of Office datasets in the ODA setting.

Method VisDA VisDA
ODA UNDA

(6 / 0 / 6) (6 / 3 / 3)
CMU 54.2 34.6
DANCE 67.5 42.8
DCC 59.6 43.0
OVANet 66.1 53.1
TNT 71.6 55.3
GATE 70.8 56.4
KAUDA — 54.7
NSCL 72.0 60.1

Table 4: H-score of VisDA
datasets on UNDA and ODA
setting.

Evaluation Metric. The H-score is usually used to evaluate standard or ODA methods because it
considers the trade-off between the accuracy of known and unknown classes (Bucci et al., 2020). H-
score is the harmonic mean of the accuracy on common classes Ac and the accuracy on “unknown”
classes At, H-score = (2Ac · At)/(Ac + At). The evaluation metric is high only when both the Ac

and At are high. So, H-score can measure both accuracies of UNDA methods well. However, we
find concerns about the fairness of the Hscore when the sample sizes of the known and unknown
classes of the dataset differ significantly. For example, when the number of samples in the unknown
category is much larger than the number of the known (e.g., the Office-Home dataset), pairing one
more sample from the known category leads to a significant increase in Ac, which further leads to the
H-score increase significantly. So, to achieve a higher h-score, the model will sacrifice the unknown
category’s accuracy to exchange for the common category’s accuracy, which is unfair and impracti-
cable in the real world. Therefore, inspired by the idea of Weighted Harmonic Means (Kanas, 2017),
we propose the Balance H-score as a more equitable metric (the proof is shown in the Appendix B).
For the dataset where the number of unknown categories in the sample is θ times the number of
common, we define Balence H-score = (1+θ)Ac ·At/(θAc+At). This paper selects the Hscore as
an evaluation metric for convenient comparison with the baseline approach. Meanwhile, the Balance
H-score is used in the more profound analysis of the relative advantages of the proposed method.

Performance Comparisons on UNDA setting. From the results in Table 1, Table 2, and Table
4, NSCL achieves a new state-of-the-art (SOTA) on all four datasets in the most challenging UNDA
setting. Concerning H-score, NSCL outperforms the previous SOTA UNDA method on Office by
4.2% and on OfficeHome by 0.3%. On large-scale datasets, NSCL also gives more than 0.2% im-
provement on DomainNet and more than 3.7% on VisDA compared to all other methods in terms of
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Figure 3: Ablation study. OVANet v.s. OVANet+AIO v.s. NSCL. H-score and Balance H-score
Comparisons of Office datasets in the OPDA setting. The horizontal coordinate indicates the addition
of a specified percentage of noise to the original domain, and the vertical coordinate indicates the
performance of the different methods.

Figure 4: Feature Visualization, OVANet V.S. NSCL. (a), (b), (d), and (e) show the t-SNE visual-
ization of embeddings produced by the backbone network. In (c) and (f), error samples (concentrate
on know/unknown classification) are shown in blue. The blue circle marks a private cluster (in or-
ange) where the OVANet sub-classifier is overconfident, and NSCL handles the same case better.

H-score. In VisDA and DomainNet, the number of samples and/or classes differs greatly from those
of Office and OfficeHome.

Performance Comparisons on ODA setting. For the ODA setting, the H-score comparison re-
sults are presented in Table 3 and Table 4. Our method performs better than all the UNDA baselines
on Office and VisDA datasets, with 2.9% and 1.2% H-score improvement.

Overview of Results. Under these two scenarios with ”unknown” samples, NSCL shows a more
robust capability for separating common and private categories, which benefits from the global joint
local feature alignment paradigm and adaptive energy uncertainty calibration strategy. Compared
with GATE, a previous SOTA method tailed for the ODA setting, NSCL is also superior on all
datasets. This evidence shows that NSCL gains a better trade-off between common categories clas-
sification and private samples identification.

4.1 ANALYSIS IN UNIVERSAL DOMAIN ADAPTATION

Ablation study, the effect of SCL Loss. We designed controlled experiments to verify the necessity
of the soft contrastive learning (SCL) Loss. In Table. 5, the NSCL w/o SCL means the SCL loss
Lsrc(x

t
i, yi

t) is removed in the overall loss. The NSCL with CL means the SCL loss Lsrc(x
t
i, yi

t)
is replaced by the CL loss LINCE in Eq. (1). The control experiments on all four datasets in UNDA
settings are shown in Table 5. It indicates that the SCL Loss significantly outperforms typical CL
loss (NSCL with CL) or without CL loss (NSCL w/o. CL). We attribute the failure of CL loss to the
fact that the view noise caused by domain bias cannot be ignored to improve performance further.
And our SCL loss can better deal with the above problem, thus improving performance.

Ablation study: the effect of AIO classifier. We further designed controlled experiments to verify
the necessity of the All in one (AIO) classifier. In NSCL w/o AIO of Table. 5, the AIO classifier is
replaced by open-set and closed-set classifier. The control experiments on all four datasets indicate
that the AIO Classifier brings consistency improvements. The improvement from the AIO classifier
is not as significant as that from SCL, probably because the label noise in the dataset is not signif-
icant. We further verify this idea by manually adding some label noise, and the experiment results

8
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Method Office Avg OfficeHome Avg DomainNet Avg VisDA
(10 / 10 / 11) (10 / 5 / 50) (150 / 50 / 145) (6 / 3 / 3)

NSCLw/o. SCL & AIO (OVANet) 77.9 71.8 50.7 66.1
NSCLwith CL 78.2 73.3 50.5 69.9
NSCLw/o. SCL 78.9 73.0 50.7 69.4
NSCLw/o. AIO 90.5 74.6 51.0 70.1
NSCL 91.8 76.3 51.6 72.0

Table 5: Ablation study. H-score comparison on all four datasets in UNDA setting.

Figure 5: H-score and accuracy comparison of Office dataset in ODA. We vary the number of
unknown classes using Office (Ls ∩Lt| = 10, |Ls −Lt| = 0). The left and right parts, respectively,
show H-score and accuracy. OVANet shows stable performance across different openness, while
baselines can degrade performance in some settings.

are shown in Fig. 3. The results show that the NSCL and NSCL w/o RCL exceed the baseline more
significantly as the proportion of noise increases.

The overconfidence problem and its mitigation by NSCL. Many current approaches are based
on a combination of open-set classifiers and closed-set classifiers. We consider that they fail to
achieve further improvements because the strategy of open-set classifiers leads to overconfidence.
One direct evidence is that NSCL achieves a more significant advantage in datasets with fewer
samples (e.g., Office). To explore the adverse effects of overconfidence, we performed a visual
analysis of the A2D setting of the Office dataset in Fig. 4. We found that the open set classifier
in OVANet corresponding to the private class (the orange scatters) had very sharp classification
boundaries, as disjoint sample points are incorrectly classified to this class. We believe this is the
result of overconfidence. Contrastingly, the same class is handled well by NSCL.

The effect of the proportion of unknown samples on H-score, and the advantage of NSCL on
Balance H-score. For H-score, some fairness bias occurs if there is a large quantitative difference
between unknown and known. To explore the fairness of the H-score, we changed the number of
unknown classes in the target domain and then tested the performance of the H-score and balance
H-score (in Fig. 5). The figure shows that changing the number of unknown classes causes drastic
changes in the ordering of the H-score. Correspondingly, the Balance H-score exhibits higher sta-
bility. This indicates that the Balance H-score is a more stable metric for the proportion of unknown
class samples, and its fairness is demonstrated in the appendix. In addition, the results in Fig.3 and
Fig.5 show that the proposed NSCL has more evident advantages in both the H-score and Balance
H-score.

5 CONCLUSION

Universal domain adaptation (UNDA) aims to transfer the knowledge learned from a label-rich
source domain to a label-scarce target domain without any constraints on the label space. In this
paper, to solve the noise problem of UNDA based on Contrastive Learning (CL), we propose Noise-
Resistant Soft Contrastive Learning (NSCL). NSCL includes soft contrastive learning loss funtion to
avoid the over-response of typical CL loss to noisy samples. The SCL loss enables data augmentation
to improve the performance of UNDA. In addition, NSCL includes an all-in-one (AIO) classifier to
improve the robustness of noisy labels. Extensive experimental results on UNDA and open-set DA
demonstrate the advantages of NSCL over existing methods, especially in downstream tasks such as
classification and visualization.
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A DETAILS OF SCL LOSS

A.1 DETAILS OF THE TRANSFORMATION FROM EQ. (1) TO EQ. (3)

We start with Li,j =−[Hij log κ(d
z
ij)+(1−Hij) log(1−κ(dzij))] (Eq. (3)). Let (i, j) are positive

pair and (i, k1), · · · , (i, kN ) are negative pairs. The overall loss associated with point i is:

L =−1[Li,j+

kN∑
k=k1

[Li,k]]

=−1[log κ(dzij) + log

kN∑
k=k1

[1−κ(dzik))]]

=−1[N+log κ(dzij)−log

kN∑
k=k1

[κ(dzik)]]

=−1[N+log
κ(dzij)∑kN

k=k1
[κ(dzik)]

] ∼− log
κ(dzij)∑kN

k=k1
κ(dzik)

After neglecting the in constant N, the loss L differs from InfoNCE loss

lInfoNCE = − log
exp (sim (zi, zj) /τ)∑2N

k=1 ⊮[k ̸=i] exp (sim (zi, zk) /τ)

only in the method of measuring the similarity.

A.2 THE PROPOSED LOSS AS A SMOOTHER CL LOSS

the proposed loss is considered a smoother CL loss. We discuss the differences by comparing the
two losses to prove this point. Let gϕ(·) satisfies K-Lipschitz continuity, then dzij = k∗dyij , k

∗ ∈
[1/K,K], where k∗ is a Lipschitz constant. The difference between LSCL loss and LINCE loss is

|LINCE(xi)− LSCL(xi)| =
∑
j

{Hij−κ
(
(1+(α−1)Hij)k

∗dzij
)
log(

1

κ(dzij)
−1)}. (11)

When α > 0, the SCL loss is the soft version of the CL loss, which causes a minor collapse of local
structures. where κ(·) is a t-distribution kernel as described in Eq. (2).

Let backbone network F (·) be Lipschitz continuity mapping. dzij = k∗dyij , k
∗ ∈ [1/K,K], where

K is a Lipschitz constant. For neighborhoods points i and j, The difference between SCL loss LSCL
and contrastive learning loss LCL is

|LSCL−LCL| = −
∑{

Hij−κ
(
(1+(α−1)Hij)k

∗dzij
)
log(

1

κ(dzij)
−1)

}
, (12)

Detail. The contrastive learning loss is written as, For notational simplicity, we omit redundant
symbols:

LCL=
∑{

Hij log κ
(
dzij , ν

)
+ (1−Hij) log

(
1− κ

(
dzij , ν

))}
=−Exj ,xj

{
Hij log κ

(
dzij
)
+ (1−Hij) log

(
1− κ

(
dzij
))} (13)

where Hij = π[(xi, xj)∈E] shows weath i and j are neighborhoods in graph G(X,E). The SCL
loss is written as:

LSCL= −
∑{

κ
(
Rijd

y
ij

)
log κ

(
dzij
)
+
(
1− κ

(
Rijd

y
ij

))
log
(
1− κ

(
dzij
))}

(14)

The difference between the two loss functions is:
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LCL − LSCL

=−
∑{

Hij log κ
(
dzij
)
+ (1−Hij) log

(
1− κ

(
dzij
))}

−

−
∑{

κ
(
Rijd

y
ij

)
log κ

(
dzij
)
+
(
1− κ

(
Rijd

y
ij

))
log
(
1− κ

(
dzij
))}

=−
∑[(

Hij − κ
(
Rijd

y
ij

))
log κ

(
dzij
)
+
(
1−Hij − 1 + κ

(
Rijd

y
ij

))
log
(
1− κ

(
Rijd

z
ij

))]
=−

∑[(
Hij − κ

(
Rijd

y
ij

))
log κ

(
dzij
)
+
(
κ
(
Rijd

y
ij

)
−Hij

)
log
(
1− κ

(
dzij
))]

=−
∑[(

Hij − κ
(
Rijd

y
ij

)) (
log κ

(
dzij
)
− log

(
1− κ

(
dzij
)))]

=
∑[(

Hij − κ
(
Rijd

y
ij

))
log

(
1

κ
(
dzij
) − 1

)]

(15)

Substituting the relationship between Hij and Rij , Rij = 1 + (α− 1)Hij , we have

LCL − LSCL =
∑[(

Hij − κ
(
(1 + (α− 1)Hij)d

y
ij

))
log

(
1

κ
(
dzij
) − 1

)]
(16)

We assume that network gϕ(·) to be a Lipschitz continuity function, then

1

K
gϕ(d

y
ij) ≤ dyij ≤ Kgϕ(d

y
ij) ∀i, j ∈ {1, 2, · · · , N}

1

K
dzij ≤ dyij ≤ Kdzij ∀i, j ∈ {1, 2, · · · , N}

(17)

We construct the inverse mapping of gϕ(·) : g−1
ϕ (·)

1

K
dzij ≤ dyij ≤ Kdzij ∀i, j ∈ {1, 2, · · · , N} (18)

then exit k∗, let:
dyij = k∗dzij k∗ ∈ [1/K,K] ∀i, j ∈ {1, 2, · · · , N} (19)

Substituting the Eq.(19) into Eq.(16).

LCL − LSCL =
∑[(

Hij − κ
(
(1 + (α− 1)Hij)k

∗dzij
))

log

(
1

κ
(
dzij
) − 1

)]
(20)

if Hij = 1, we have:

LCL − LSCL |Hij=1 =
∑[(

1− κ
(
αk∗dzij

))
log

(
1

κ
(
dzij
) − 1

)]
(21)

then:

lim
α→0

LCL − LSCL |Hij=1

=
∑[(

1− κ
(
αk∗dzij

))
log

(
1

κ
(
dzij
) − 1

)]
=0

(22)
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Based on Eq.(22), we find that if i, j is neighbor and α → 0, there is no difference between the
two loss functions LCL and LSCL. When α ↛ 0, the difference between the loss functions will be
the function of dzij . Because the contrastive learning loss LCL only minimizes the distance between
adjacent nodes and does not maintain any structural information. We believe that the loss of SCL
will better preserve the structural information based on contrastive loss.

A.3 SCL IS BETTER THAN CL IN VIEW-NOISE

To demonstrate that compared to contrast learning, the proposed SCL Loss has better results, we
first define the signal-to-noise ratio (SNR) as an evaluation metric.

SNR =
PL

NL
(23)

where PL means the expectation of positive pair loss, NL means the expectation of noisy pair loss.
This metric indicates the noise-robust of the model, and obviously, the bigger this metric is, the
better.
In order to prove the soft contrast learning’s SNR is larger than contrast learning’s, we should prove:

PLcl

NLcl
<

PLscl

NLscl
(24)

Obviously, when it is the positive pair case, S (zi, zj) is large if H (xi, xj) = 1 and small if
H (xi, xj) = 0. Anyway, when it is the noisy pair case, S (zi, zj) is small if H (xi, xj) = 1 and
large if H (xi, xj) = 0.
First, we organize the PLscl and PLcl into 2 cases, H (xi, xj) = 1 and H (xi, xj) = 0, for writing
convenience, we write S (zi, zj) as S and S′, respectively.

PLscl = −M {(1− S′) log (1− S′) + S′ logS′} − {(1− eαS) log(1− S) + eαS logS} (25)

PLcl = −M log (1− S′)− logS (26)
M is the ratio of the number of occurrences of H=1 to H=0. So, we could get:

PLscl − PLcl

= −M {(1− S′ − 1) log (1− S′) + S′ logS′} − {(1− eαS) log(1− S) + (eαS − 1) logS}
= −M {S′ (logS′ − log (1− S′))} − {(eαS − 1) (logS − log(1− S))}

= −M

{
S′log

S′

(1− S′)

}
−
{
(eαS − 1)log

S

(1− S)

}
(27)

In the case of positive pair, S converges to 1 and S’ converges to 0.
Because we have bounded that eαS <= 1, so we could easily get:

(eαS − 1)log
S

(1− S)
<= 0 (28)

Also, we could get:

−M

{
S′log

S′

(1− S′)

}
> 0 (29)

So we get:
PLscl − PLcl > 0 (30)

And for the case of noise pair, the values of S and S′ are of opposite magnitude, so obviously, there
is NLscl −NLcl < 0.
So the formula Eq. (24) has been proved.
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B DETAILS OF BALANCE HSCORE

Inspired by the idea of Weighted Harmonic Means, the proposed Balance Hscore is,

Balance Hscore = B =
1 + θ
1
Ac

+ θ
At

=
AtAc

At + θAc
(1 + θ) (31)

where θ is the ratio of unknown and known samples, The Ac is the accuracy of known classes, and
At is the accuracy of unknown classes.

Why Balance Hscore is balance for known classes and unknown classes. To avoid sacrificing a
category’s accuracy in exchange for another category’s accuracy, we assume that the change in the
number of the correct categories and the number of the unknown categories has the same impact on
the evaluation metric.

Let M be the number of the samples of known classes, and Nc be the number of the correct samples
of known classes, with Ac = Nc/M . The impact of Balance Hscore from the known class is,

∂B

∂Nc
=

∂B

∂Ac
· ∂Ac

∂Nc

= At(1 + θ) · θAc +At − θAc

(θAc +At)2
· 1

M

=
(1 + θ)A2

t

M(θAc +At)2

(32)

Let Mt be the number of the samples of known classes, and Nt be the number of the correct samples
of known classes, with At = Nt/Mt = Nt/θM . The impact of a Balance Hscore from the unknown
class is,

∂B

∂Nt
=

∂B

∂At
· ∂At

∂Nt

= Ac(1 + θ) · (θAc +At)−At

(θAc +At)2
· 1

θM
=

(1 + θ)A2
c

M(θAc +At)2

(33)

So if Ac = At, we have
∂B

∂Nc
=

∂B

∂Nt
,

it indicates that the metric gets the same influence as the correct classification. Thus the Balance
Hscore is balance for known and unknown classes.

Why Hscore is unbalance for known classes and unknown classes. However, for the
Hscore = (2 ·Ac ·At)/(Ac +At).

The impact of the Hscore by the known class is
∂H

∂Nc
=

∂H

∂Ac
· ∂Ac

∂Nc

= 2At ·
At +Ac −Ac

(Ac +At)2
· 1

M

=
2A2

t

M(Ac +At)2

(34)

The impact of the Hscore by the unknown class is
∂H

∂Nt
=

∂H

∂At
· ∂At

∂Nt

= 2Ac ·
Ac +At −At

(Ac +At)2
· 1

θM

=
2A2

c

θM(ActAt)2

(35)

So when Ac = At, we could get ∂B
∂Nc

̸= ∂B
∂Nt

, we think it’s not balance.
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C EXPERIMENTAL SETUPS

C.1 BASELINE METHODS

We aim to compare methods of universal domain adaptation (UNDA), which can reject un-
known samples, such as, CMU (Fu et al., 2020), DANCE (Saito et al., 2020), DCC (Li et al.,
2021b), OVANet (Saito & Saenko, 2021), TNT (Chen et al., 2022a),GATE (Chen et al., 2022b),
KUADA (Wang et al., 2022). Instead of reproducing the results of these papers, we directly used the
results reported in the papers with the same configuration. We focused on contemporaneous work,
although the results are not included in the table because these articles were not peer-reviewed.

C.2 DATASETS

We utilize popular datasets in DA: Office (Saenko et al., 2010), OfficeHome (Venkateswara et al.,
2017), VisDA (Peng et al., 2017), and DomainNet (Peng et al., 2019). Unless otherwise noted, we
follow existing protocols (Saito & Saenko, 2021) to split the datasets into source-private (|Ls−Lt|),
target-private (|Lt − Ls|) and shared categories (|Ls ∩ Lt|).

Table 6: The division on label sets in each setting

Tasks Datasets |Ls ∩ Lt| |Ls − Lt| |Lt − Ls|

ODA

Office-31 10 0 11
Office-Home 25 0 40
VisDA 6 0 6

UNDA

Office-31 10 10 11
Office-Home 10 5 50
VisDA 6 3 3
DomainNet 150 50 145

C.3 HYPERPARAMETERS

Following previous works, such as OVANet (Saito & Saenko, 2021) and GATE(Chen et al., 2022b),
we employ ResNet50 (He et al., 2016) pre-trained on ImageNet (Deng et al., 2009) as our backbone
network. We train our models with inverse learning rate decay scheduling. We use a grid search to
select the optimal model parameters; the selected parameters include λ and β. The performance of
the proposed NSCL in uniform settings is listed in the penultimate row of the table. At the same
time, a grid search is performed for each setup, and the optimal values obtained are marked with a
⋇. The grid search illustrates the proposed method without optimizing the hyperparameters for each
setup. In summary, our method outperforms or is comparable to the baseline method in all different
settings. For all experiments, νy = 100 and νz = 10. The H-network uses a two-layer MLP network
with 2048 neurons.

We use the grid search method to determine the best super parameters. The super parameters adjusted
in the grid search method are as follows.

Table 7: Hyperparameter search space

Hyperparameters Search Space
α [0.01, 0.02, 0.05, 0.1, 0.2]
λ [0.1, 0.2, 0.3]
β [0.1, 0.2, 0.3]
learning rate [1e-2, 2e-2, 5e-2]
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