
# #

2025 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

3D Visual Grounding with Reasoning LLM

Anonymous submission

Paper ID

LLM Reasoning at Inference Time

3D Scene and Visual Grounding Data Generation Post-Training on Reasoning Data 

Query: The chair closest to the bed.
Llama-3.1-8B

Generated 3D Scene and 
Visual Grounding Query

Structured Reasoning 
Response

Reasoning

Post-Training

<Related Object Selection> The objects identified as “monitor” are: obj_0: (3.8, 1.5, 1.0),
obj_1: (3.5, 2.0, 1.0), … And the door is located at (1.1, 4.6, 1.1)…

<Situation Estimation> The situation is not provided, I will assume the observer is
positioned at the center of the room, which is (0.3,0.2)

<Reasoning> The door is located at (1.1, 4.6, 1.1). Calculate the Euclidean distance of each
monitor from the door: Distance(obj_0) = sqrt((3.8 - 1.1)^2 + (1.5 - 4.6)^2 + (1.0 - 1.1)^2) =
sqrt(7.29 + 9.61 + 0.01) ≈ 4.27. Distance(obj_1) = sqrt((3.5 - 1.1)^2…

The monitor furthest from the door is obj_0 with a distance of ≈ 4.27.

<Conclusion> obj_0
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Query: The monitor furthest from the door.
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Figure 1. Overview. We propose a data generation pipeline that can generate visual grounding queries and reasoning responses. We use
our collected data to conduct post-training, resulting in an LLM that can conduct structured reasoning in 3D visual grounding tasks.

Abstract

The recent development of Large Language Models (LLMs)001
with strong reasoning ability has driven research in various002
domains such as mathematics, coding, and scientific rea-003
soning. Meanwhile, 3D visual grounding, as an important004
task in the 3D understanding area, still remains challeng-005
ing due to the limited reasoning ability of recent 3D visual006
grounding models. Most of the current methods incorpo-007
rate a text encoder and visual feature encoder to generate008
cross-modal fuse features and predict the referring object.009
These models often require supervised training on extensive010

3D annotation data. Meanwhile, recent zero-shot visual 011
grounding methods require access to proprietary LLM dur- 012
ing test time, which leads to large inference costs. To over- 013
come these limitations, we propose a 3D visual grounding 014
data generation pipeline capable of synthesizing 3D scenes 015
along with corresponding target queries and ground truth 016
answers for training visual grounding models. Additionally, 017
we leverage the generated visual grounding data and con- 018
duct post-training on Llama-3.1-8B-Instruct, resulting in a 019
strong 3D visual grounding LLM that outperforms existing 020
SoTA zero-shot methods, demonstrating its effectiveness. 021
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1. Introduction022

3D Visual Grounding (3DVG) is a crucial task in 3D un-023
derstanding, aiming to identify a target object within a024
3D scene based on a given textual query. Recent mod-025
els [19, 26, 31, 32, 34, 41] typically integrate a text en-026
coder and a visual encoder to generate cross-modal fea-027
tures for target object prediction. While these methods028
achieve strong performance, they rely on large-scale an-029
notated 3D visual grounding datasets for supervised train-030
ing. To mitigate this, recent research has explored zero-031
shot approaches, leveraging proprietary LLMs like GPT-032
4 [3] as agents to generate grounding predictions using vi-033
sual grounding tools [36] or in-context examples and pro-034
grams [40]. However, these approaches heavily depend on035
proprietary LLMs, increasing inference costs. In this work,036
we aim to explore using an 8B LLM to solve the challeng-037
ing visual grounding task under zero-shot setting, by lever-038
aging LLM’s reasoning ability, we hope to provide a solu-039
tion with strong visual grounding performance with existing040
zero-shot methods while being more cost-effective.041

Recently, LLMs with reasoning ability [12, 18, 27, 35]042
have achieved great success in various domains including043
mathematics, coding, and scientific reasoning. DeepSeek-044
R1 [12] leverages reinforcement learning to achieve strong045
thinking ability and SoTA performance on various challeng-046
ing benchmarks. However, despite the success of these rea-047
soning models, they mainly focus on the text and image un-048
derstanding domain, while solving the 3D visual grounding049
or understanding tasks by leveraging LLM’s strong reason-050
ing ability remains under-explored, with most of the current051
SoTA 3D visual grounding methods [19, 31] incorporates a052
text encoder to encode the given query and conduct direct053
prediction based on the cross-modal fused feature from var-054
ious input modalities. In the 3D visual grounding task, the055
given query can contain sophisticated spatial relationships,056
and leveraging LLM to comprehend the input query is an-057
other potential solution that is not fully explored.058

In this work, we aim to solve the 3D visual grounding059
task using a reasoning approach, we present an overview060
of our work in Fig. 1. Given the query of the target object061
in a 3D scene, we developed an LLM that can conduct a062
rigorous reasoning process before making the final predic-063
tion. To train such LLM, we design a 3D visual ground-064
ing reasoning data collection pipeline, that aims to address065
the current methods’ dependency on 3D visual grounding066
data. We use our collected data and conduct post-training067
on the base model Llama-3.1-8B-Instruct [8], resulting in068
a 3D visual grounding LLM with strong reasoning abil-069
ity, which achieves higher performance than existing SoTA070
zero-shot method on multiple 3D visual grounding bench-071
marks. Moreover, we discover the spatial hallucination072
phenomenon of proprietary LLM on spatial understanding073
tasks during our data collection process, we further design074

a prompt that can boost the accuracy of the response from 075
LLM by a large margin in our data collection pipeline. We 076
summarize our contribution as follows: 077

• We propose a novel 3D visual grounding reasoning data 078
collection pipeline, which serves as a post-training dataset 079
for our reasoning LLM on zero-shot 3D visual grounding. 080

• We discover the spatial hallucination of current SoTA 081
LLM and design an effective prompt to reduce the spa- 082
tial hallucination, enabling more accurate reasoning and 083
response during data collection. 084

• We conduct post-training on our collected data and intro- 085
duce 3DVG-LLM, an LLM for 3D visual grounding task 086
that achieves SoTA performance on 3D visual grounding 087
benchmarks including NR3D and SR3D. 088

• To our best knowledge, this is the first successful attempt 089
using synthetic 3D data to train a 3D understanding LLM 090
with reasoning ability, we hope this work serves as a cor- 091
nerstone for future 3D-LLM development with stronger 092
reasoning and spatial understanding ability. 093

2. Related Work 094

2.1. 3D Visual Grounding 095

3D visual grounding is an important 3D understanding task 096
that aims to predict the target object in the 3D scene based 097
on a given language query of the target. Most of the re- 098
cent 3D visual grounding methods [16, 19, 21, 34] adopt 099
separate encoders for each input modality such as text and 100
point cloud to generate cross-modal features and conduct 101
prediction. Some end-to-end methods like SAT [38], Lan- 102
guageRefer [29], and UniT3D [6] utilized a unified multi- 103
modal transformer to conduct 3D visual grounding. Re- 104
cently, COT3DREF [1] and ReGround3D [42] proposed to 105
leverage chain-of-thoughts to retrieve objects related to a 106
given query, however, they did not leverage the language 107
models to conduct reasoning for better spatial understand- 108
ing. Furthermore, these methods utilize supervised train- 109
ing, which requires extensive annotations on the 3D data. 110
Besides the supervised method, recent works also focus on 111
the zero-shot approaches [36, 40]. These methods lever- 112
age LLM to generate code and solve the 3D visual ground- 113
ing task, which achieves some success in zero-shot 3D vi- 114
sual grounding. However, these methods rely on in-context 115
examples and proprietary LLMs [3, 24] during test time, 116
which introduce more inference costs. In this work, we ex- 117
plore using an 8B open-source LLM to solve the 3D vi- 118
sual grounding task through inference time reasoning un- 119
der zero-shot setting. Our method does not require pro- 120
prietary LLM nor 3D data that requires extensive annota- 121
tion, while achieving better performance compared with the 122
SoTA zero-shot methods, showcasing the potential of open- 123
source LLM for zero-shot 3D visual grounding, and paving 124
the way for a more cost-effective solution in the field. 125
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Step 1. Set up an empty scene Step 3. Place object and distractors Step 5. Place random objects to enrich scene
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Target: Chair
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Figure 2. An illustration of our 3D scene layout generation pipeline, which contains 5 steps: 1) Set up an empty 3D scene with certain
dimension. 2) Choose a spatial relationship and decide the anchor and distractor objects as well as their dimension and location. 3) Place
them in the 3D scene. 4) Determine the target object from the distractors and parse query. 5) Generate more random objects to enrich scene
diversity. Note that some spatial relationships do not have anchor object and only have distractors, such as Largest/Smallest. Note that
the furniture in the figure are for visualization purpose only, our data pipeline does not include generating the appearance of the furniture.
Please refer to our attached scene generation code for more technical detail on the implementations.

2.2. LLM with Reasoning Ability126

Recent advancements in LLMs have significantly enhanced127
their reasoning capabilities, enabling them to tackle com-128
plex problems across various domains such as mathematics,129
coding, and scientific reasoning. Models like DeepSeek-130
R1 [12] incorporate reinforcement learning during train-131
ing and achieve SoTA performance across multiple bench-132
marks. Similarly, LLaVA-CoT [35] and VisualCoT [30] in-133
troduce explicit reasoning processes to improve VLM on134
visual question-answering task. Prism [27] proposed to de-135
couple the perception and reasoning stages to enhance VLM136
performance. While these models have demonstrated re-137
markable success in text and image understanding, lever-138
aging reasoning LLMs for zero-shot 3D understanding re-139
mains largely unexplored, with most existing 3D visual140
grounding methods still require supervised training from141
the extensive annotated 3D data. To address this gap, we142
present a pioneering work that integrates reasoning LLM143
to tackle the challenging 3D visual grounding task. We144
hope this work serves as a strong baseline for reasoning-145
enabled LLMs in the 3D scene understanding domain and146
inspires further research at the intersection of reasoning-147
driven LLMs and 3D scene comprehension.148

3. 3D Visual Grounding Data Collection 149

3.1. Overview 150

In this work, we design a novel 3DVG data collection 151
framework for 3D reasoning visual grounding LLM train- 152
ing. In this section, we introduce our program-based 3D 153
scene generation pipeline in Sec. 3.2, reasoning stages in 154
Sec. 3.3, and the reasoning data collection in Sec. 3.4. 155

3.2. 3D Scene Generation 156

The collection of 3D visual grounding data requires a huge 157
amount of effort including extensive human annotations and 158
indoor 3D RGB-D scan collection. Unlike previous super- 159
vised methods that leverage human-annotated 3D data, we 160
propose to generate synthetic 3D scene data for model train- 161
ing and zero-shot 3D visual grounding on real-world 3D 162
scenes. There are many existing methods for 3D scene gen- 163
eration [10, 22, 37], however, they mostly focus on gen- 164
erating scene layout with realistic object arrangements or 165
following the specified room style from users’ generation 166
prompt, while our goal is to collect object-centric 3D scene 167
that focuses on objects’ spatial arrangements as well as the 168
target object’s corresponding grounding query, which is an 169
important component of 3D visual grounding data. 170
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In this work, we design a program-based 3D scene lay-171
out generation pipeline that can generate an object-centric172
3D scene following several common spatial relationships173
between objects. These common spatial relationships in-174
clude: closest/farthest, largest/smallest, left/right, and be-175
side. These common spatial relationships and correspond-176
ing scene layouts can be generated by our code program.177
Here, we provide a generation example of a 3D scene lay-178
out in Fig. 2, which contains the 3D scene layout following179
query ”The Chair that is closest to the Table.” with n dis-180
tractor chairs in the scene:181

1. Define a 3D scene size with a certain dimension H×W .182
2. Randomly generate n chairs and one table in the 3D183

scene.184
3. Calculate the Euclidean distance between each chair and185

table to find the closest chair to the table; this chair will186
be the target object of the 3D visual grounding query.187

4. Generate more objects (but not chairs or tables) to further188
enrich the 3D scene diversity.189

Following this procedure, we collect a wide range of 3D190
scene layouts that follow our specified common spatial re-191
lationship and are not confined by the limited number of192
3D scene layouts in the real-world available 3D scans. For193
each spatial relationship, we design multiple templates from194
which we can parse the target’s object class to generate the195
final target object query. We prompt GPT-4o [17] to gen-196
erate some indoor scene objects as well as their common197
dimension. When placing objects, we randomly select ob-198
ject classes and apply a random variation on their size to199
enhance diversity. We attached our 3D scene layout gener-200
ation code in the appendix for reference.201

Note that because our base model LLM already has very202
strong reasoning ability, we do not focus on designing com-203
plicated spatial relationships to strengthen its reasoning and204
spatial understanding ability, but only use several common205
relationships with reasoning data to encourage the LLM to206
think step-by-step. Our experiment results demonstrate that207
our LLM can still adapt to a 3D visual grounding query that208
has an unseen spatial relationship after post-training on our209
collected data. Furthermore, because our goal is to generate210
3D scene data that follow our specified spatial relationship211
between objects, during the random object placements, we212
only refrain the object from being placed overlapping and213
do not focus on placing the object in a way that is realistic214
in real-world scenarios. Given our goal is to guide LLM’s215
reasoning process, we believe the rationality of object ar-216
rangement will not affect LLM’s reasoning process.217

3.3. 3D Visual Grounding with Reasoning Stages218

Recent advanced LLMs with reasoning ability adopt special219
tokens or tags [12, 35] to separate the reasoning and conclu-220
sion stage, which enables a more structured and organized221
thinking process of the LLM. In the 3D visual grounding222

Grounding Data Generator 
(Fig.2)

Obj_1 Chair : [-0.5, 1.5, 0.4, 0.3, 0.3,0.7]
Obj_2 Bed : [1.1, 1.7, 0.3, 1.2, 2.5, 1.2]
Obj_3 Table : [-0.5, -0.4, 0.5, 0.4, 0.4, 0.7]
Obj_4 Desk : [-0.7, 1.5, 0.5, 0.6, 1.7, 1.0]
…

Scene

Reasoning Response 
Collection

Query: The closest chair to the bed. 

Answer: Obj_1 

Query

Scene and Query

Related Object Selection

Situation Estimation

Reasoning

Conclusion

3D Visual Grounding Reasoning Data

Scene and Query Reasoning Response

Correct Response

Figure 3. An overview of the reasoning data collection pipeline,
after the grounding data generator produce the 3D scene and query,
we use GPT-4o to generate structured reasoning response. Only
the response with correct answer and format will be stored in our
3D visual grounding and reasoning data for later training.

domain, we believe it is also important to think step-by-step 223
before generating the final prediction given the difficulty 224
of interpreting the spatial relationship of the target query. 225
Here, we proposed four different reasoning stages, which 226
encourage the LLM to generate a more structured thinking 227
process. The four reasoning stages include: 228

• Related Object Selection. Given all the objects in the 229
3D scene, the LLM listed the objects that might be rel- 230
evant to the given query. Each listed object will include 231
information such as its object ID, class name, location, 232
and dimension. 233

• Situation Estimation. If a 3D situation (viewer’s loca- 234
tion) is provided, the LLM will estimate its possible co- 235
ordinate in the 3D scene. Otherwise, the LLM will just 236
assume it is standing in the middle of the 3D scene (which 237
is usually the case). 238

• Reasoning. This is the main stage for LLM to conduct 239
reasoning based on the previously given information. The 240
LLM will conduct necessary math calculations and logi- 241
cal reasoning to derive the final answer. 242

• Conclusion. In this stage, the model outputs the final pre- 243
diction in a structured format, which enables easier pars- 244
ing and understanding for the user. 245
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Input Prompt to GPT-4o
I have a 3D scene represents in a dictionary, each key is their object ID and the value contains the object name and 3D bounding box in center x, center y, center z, width, height, length. I will provide you a caption of an
object which you will need to return the object ID of this object. I need you to strictly follow the format with four specific sections: SELECTION, SITUATION, REASONING, and CONCLUSION. It is crucial that you
adhere to this structure exactly as outlined and that the final answer in the CONCLUSION matches the provided format precisely.
...
In SITUATION, if the situation information is not provided, if the situation information is not provided, assume your current location is in the middle of the floor. In REASONING, outline a step-by-step thought process
you would use to solve the problem based on the 3D scene.
If you need to determine which object between obj_A and obj_B is on the left or right side, please calculate the cross product between your position O to obj_A vector OA and your position O to obj_B vector OB, if the 
cross product C between OA and OB is positve then obj_A is right and obj_B is left, if the cross product C is negative, obj_A is left and obj_B is right. Please put the smaller obj_ID as A and larger obj_ID as B.
…
3D scene: {"obj_0":… “obj_8”: {"object_name": ”cabinet", "box": [5.92, -4.87, 0.94, 0.83, 0.65, 1.89]}…"obj_20": {"object_name": " cabinet ", "box": [-2.88, -4.8, 1.0, 0.81, 0.72, 2.01]},…}

Caption: "The cabinet located on the left side."

GPT-40 response with Extra Prompt
<SELECTION>
The objects identified as cabinet in the scene are:
- obj_8: Located at (5.92, -4.87, 0.94) with dimensions (0.83, 0.65,
1.89).
- obj_20: Located at (-2.88, -4.8, 1.0) with dimensions (0.81, 0.72,
2.01).
</SELECTION>

<SITUATION>
The floor is given as obj_40 with center coordinates at (1.09, 4.65).
Thus, assume the current location is at (1.09, 4.65).
</SITUATION>

<REASONING>
Define vectors from our assumed position O (1.09, 4.65) to each
cabinet:
OA (obj_8) = (5.92 - 1.09, -4.87 - 4.65) = (4.83, -9.52)
OB (obj_20) = (-2.88 - 1.09, -4.8 - 4.65) = (-3.97, -9.45)

Compute the cross product:
C = (4.83 \times -9.45) - (-3.97 \times -9.52)
C = -45.6435 - 37.7744
C = -83.4179

Since C is negative, obj_8 is to the left and obj_20 is to the 
right. The caption specifies "The cabinet located on the left side," so
the correct object is obj_8.
</REASONING>

<CONCLUSION>
obj_8
</CONCLUSION>

GPT-4o response
<SELECTION>
The objects identified as cabinet in the scene are:
- obj_8: (5.92, -4.87, 0.94), dimensions (0.83, 0.65, 1.89)
- obj_20: (-2.88, -4.8, 1.0), dimensions (0.81, 0.72, 2.01)
</SELECTION>

<SITUATION>
Assuming I am in the middle of the floor, which is approximately at 
(1.09, 4.65). I am facing the cabinets. The average coordinate of the
cabinets is:

\left(\frac{5.92 + (-2.88)}{2}, \frac{-4.87 + (-4.8)}{2}\right) =
\left(\frac{3.04}{2}, \frac{-9.67}{2}\right) = (1.52, -4.835)

Since I am at (1.09, 4.65) and facing towards (1.52, -4.835), I am 
primarily facing in the negative y-direction.
</SITUATION>

<REASONING>
1. The caption states "The cabinet located on the left side."
2. Since I am facing in the negative y-direction, my left side 
corresponds to the negative x-direction.
3. The cabinet at obj_8 is at (5.92, -4.87), while the cabinet at
obj_20 is at (-2.88, -4.8).
4. Comparing their x-coordinates, obj_20 (-2.88, -4.8) is more to
the left than obj_8 (5.92, -4.87)
5. Therefore, the correct cabinet according to the caption is obj_20
</REASONING>

<CONCLUSION>
obj_20
</CONCLUSION>

Scene Visualization

Egocentric View

Object_8 and Object_20 in the 3D scene.
x,y,z axis in Cartesian coordinate system 

correspond to Red, Green, Blue.

Figure 4. A comparison of GPT-4o response with and without extra prompt. We highlight extra prompt in yellow. The correct reasoning
from GPT-4o in green , and the error reasoning in red . The accuracy gain with extra prompt can be found in ablation study.

3.4. Reasoning Data Collection246

To collect detailed reasoning data aligned with our four247
reasoning stages, we leverage the SoTA proprietary LLM248
GPT-4o [17] to generate structured reasoning responses,249
as illustrated in Fig. 3. We design a specialized prompt to250
guide GPT-4o in adhering to our four-stage reasoning pro-251
cess. The full prompt is provided in the appendix. Approx-252
imately 10% of responses that deviate from the specified253
format or contain incorrect predictions are automatically254
filtered. The remaining detailed visual grounding reason-255
ing responses are incorporated into our final training data,256
which consists of 3.2K samples. Each sample includes a257
unique 3D scene layout with over 50 objects, a target ob-258
ject’s language query, its corresponding object ID, and the259
reasoning response from GPT-4o. Note that since the pri-260
mary goal of post-training is to enhance the LLM’s reason-261
ing capabilities, we only utilize a small-scale dataset for262
data efficient post-training, and leave the scale-up training263
using our data collection framework as a future direction.264

3.5. Reducing The Spatial Hallucination265

During the reasoning data collection, we found that despite266
the strong reasoning ability of the SoTA language model267

like GPT-4o, it still suffers from spatial hallucination and 268
generates wrong predictions sometimes, especially when 269
the given query is related to the left/right spatial relation- 270
ship. This is likely caused by LLM’s weak spatial under- 271
standing ability, leading to errors in recognizing left/right 272
direction. For example, we found that GPT-4o often erro- 273
neously thinks ”when facing the negative Y direction, the 274
left-hand side is negative X.” This leads to a lower accuracy 275
when predicting target object related to left/right spatial re- 276
lationship. To address this issue and ensure a more effi- 277
cient data collection process, we modify the input prompt 278
and encourage GPT-4o to determine the left/right object 279
relationship by calculating the cross product between the 280
location coordinate vectors toward two objects, in other 281
words, we prompt GPT-4o to calculate the cross product 282
between viewer’s coordinate (which is estimated in the Situ- 283
ation Estimation Stage) and two objects’ coordinate. Based 284
on the cross product’s value, LLM can determine two ob- 285
jects’ left/right spatial relationship. We make a comparison 286
of the GPT-4o response with and without our extra prompt 287
in Fig. 4, and also conduct analysis in our ablation study and 288
found out the extra prompt largely boosted the response ac- 289
curacy, suggesting the effectiveness of our designed prompt. 290
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Table 1. Performance comparison with existing methods on ScanRefer validation set. We follow previous work [40] and report the
grounding accuracy under different IoU threshold, and also report the accuracy of “Unique” (scenes with a single target object) and
“Multiple” (scenes with distractors of the same class) subsets, along with overall performance.

Method Source Supervision LLM Unique Multiple Overall
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer [5] ECCV’20 Fully - 67.6 46.2 32.1 21.3 39.0 26.1
InstanceRefer [39] ICCV’21 Fully - 77.5 66.8 31.3 24.8 40.2 32.9
3DVG-Transformer [41] ICCV’21 Fully - 77.2 58.5 38.4 28.7 45.9 34.5
BUTD-DETR [19] ECCV’22 Fully - 84.2 66.3 46.6 35.1 52.2 39.8
EDA [34] CVPR’23 Fully - 85.8 68.6 49.1 37.6 54.6 42.3
3D-VisTA [43] ICCV’23 Fully - 81.6 75.1 43.7 39.1 50.6 45.8
G3-LQ [32] CVPR’24 Fully - 88.6 73.3 50.2 39.7 56.0 44.7
MCLN [26] ECCV’24 Fully - 86.9 72.7 52.0 40.8 57.2 45.7
ConcreteNet [31] ECCV’24 Fully - 86.4 82.1 42.4 38.4 50.6 46.5

WS-3DVG [33] ICCV’23 Weakly - - - - - 27.4 22.0

LERF [20] ICCV’23 Zero-Shot CLIP [28] - - - - 4.8 0.9
OpenScene [25] CVPR’23 Zero-Shot CLIP [28] 20.1 13.1 11.1 4.4 13.2 6.5
LLM-Grounder [36] ICRA’24 Zero-Shot GPT-3.5 [24] - - - - 14.3 4.7
LLM-Grounder [36] ICRA’24 Zero-Shot GPT-4 [23] - - - - 17.1 5.3
ZSVG3D [40] CVPR’24 Zero-Shot GPT-4 [23] 63.8 58.4 27.7 24.6 36.4 32.7

3DVG-LLM Ours Zero-Shot Llama-3.1-8B [8] 76.6 69.5 31.1 27.3 38.7 34.4

4. Experiments291

4.1. Implementation Details292

We use Llama-3.1-8B-Instruct [8] as our base model. We293
conduct post-training on Llama-3.1-8B-Instruct using our294
collected 3D visual grounding reasoning dataset, which295
consists of 3.2K 3D scenes, target queries, and structured296
reasoning processes. More details on training and imple-297
mentation setup can be found in the appendix.298

4.2. Benchmarks299

We adopt two large-scale 3D visual grounding bench-300
marks in our experiments, including ScanRefer [5] and301
NR3D [4]. Both benchmarks leveraged 3D scenes collected302
from ScanNet [7]. We follow the previous zero-shot method303
ZSVG3D [40] and utilize the same object proposal gener-304
ation procedure to obtain the 3D bounding boxes and their305
class label for consistent evaluation and fair comparison.306

ScanRefer. ScanRefer provides 51,500 natural language307
descriptions from 800 different 3D scenes. We follow pre-308
vious works [19, 36, 40] and adopt the validation set of309
ScanRefer for evaluation, which contains 9,508 language310
queries. We report ScanRefer’s standard evaluation met-311
rics: Accuracy@0.25 and Accuracy@0.5, where 0.25 and312
0.5 are different IoU thresholds of 3D bounding boxes.313

NR3D. NR3D contains 41.5K natural, free-form lan-314
guage captions collected from humans through a referring315
game, featuring multiple spatial relationships. Unlike Scan-316
Refer, NR3D provides the GT 3D bounding boxes in the317
scene along with their corresponding object IDs. Given a318
language query, the visual grounding model is required to319

predict the target’s object ID that the given query refers 320
to. We adhere to the original NR3D benchmark’s setup, 321
categorizing text queries into ”Easy” (scenarios with only 322
one same-class distractor) and ”Hard” (scenarios with mul- 323
tiple same-class distractors). Additionally, queries are also 324
classified as ”View-Dependent” or ”View-Independent,” de- 325
pending on whether specific viewpoints are necessary for 326
correctly identifying the target object. 327

4.3. Performance 328

We compare the performance of our 3DVG-LLM with vari- 329
ous recent and SoTA visual grounding methods on ScanRe- 330
fer in Table. 1. And the performance comparison on NR3D 331
in Table. 2. We categorize the existing methods into fully 332
supervised, weakly supervised, and zero-shot depending on 333
their training strategies. Note that we categorize our method 334
as zero-shot because our model is not trained on ScanRefer, 335
NR3D, or any other real-world 3D visual grounding data. 336

On ScanRefer, our model outperforms the SoTA zero- 337
shot method ZSVG3D [40], while using a smaller open- 338
source LLM Llama-3.1-8B. Notably, unlike ZSVG3D, 339
which requires multiple in-context examples during infer- 340
ence, our model conducts reasoning and prediction with- 341
out any in-context example at test time. However, a per- 342
formance gap remains between our model and SoTA fully 343
supervised methods. We attribute this gap to the advantages 344
of SoTA supervised methods, which either leverage RGB 345
visual features [19] or benefit from supervised training to 346
generate more accurate object proposals [26, 34]—both of 347
which are critical for optimal grounding performance. 348

On NR3D, our model also outperforms the zero-shot 349
SoTA method ZSVG3D. Moreover, we also tested the per- 350
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Table 2. Performance on NR3D benchmark. Queries are labeled as “Easy” (one distractor) or “Hard” (multiple distractors), and as
“View-Dependent” or “View-Independent” based on viewpoint requirements for grounding. ✝ denotes the use of the oracle class label. We
utilize oracle class label to estimate the upper bound performance of our model.

Method Source Supervision LLM Easy Hard Dep. Indep. Overall

ReferIt3DNet [4] ECCV’20 Fully - 43.6 27.9 32.5 37.1 35.6
TGNN [15] AAAI’21 Fully - 44.2 30.6 35.8 38.0 37.3
3DRefTransformer [2] WACV’22 Fully - 46.4 32.0 34.7 41.2 39.0
InstanceRefer [39] ICCV’21 Fully - 46.0 31.8 34.5 41.9 38.8
FFL-3DOG [9] ICCV’21 Fully - 48.2 35.0 37.1 44.7 41.7
LanguageRefer [29] CoRL’22 Fully - 51.0 36.6 41.7 45.0 43.9
3DVG-Transformer [41] ICCV’21 Fully - 48.5 34.8 34.8 43.7 40.8
TransRefer3D [13] MM’21 Fully - 48.5 36.0 36.5 44.9 42.1
BUTD-DETR [19] ECCV’22 Fully - 60.7 48.4 46.0 58.0 54.6

WS-3DVG [33] ICCV’23 Weakly - 27.3 18.0 21.6 22.9 22.5

ZSVG3D [40] CVPR’24 Zero-Shot GPT-4 [3] 46.5 31.7 36.8 40.0 39.0
3DVG-LLM Ours Zero-Shot Llama-3.1-8B [8] 50.4 31.0 37.3 42.0 40.4
3DVG-LLM✝ Ours Zero-Shot Llama-3.1-8B [8] 63.0 36.7 40.1 54.5 49.3

Table 3. Ablation study on the performance after post-training. We
report the accuracy on NR3D of (1) base model Llama-3.1-8B, (2)
base model after post-training on our collected data.

Post-training Easy Hard Dep. Indep. Overall

44.6 22.7 31.1 34.5 33.3
✓ 63.0 36.7 40.1 54.5 49.3

formance of our model using the oracle class label to es-351
timate the upper bound performance. The increased accu-352
racy after incorporating the oracle class label suggests that353
our performance is mainly limited by the quality of object354
proposal, which can be improved by using a better detector.355

4.4. Ablation Studies356

Performance under different training settings. To ver-357
ify the effectiveness of post-training on our collected data,358
we evaluate our model and base model’s performance on359
NR3D in Table. 3. After post-training on our collected360
data, the model’s performance increased by a notable mar-361
gin across all categories in NR3D, showcasing that conduct-362
ing post-training on our data can effectively enhance the363
model’s performance on 3D visual grounding task.364

Importance of Reasoning. We also train the base model365
on our collected data without the reasoning process. In this366
training setting, the model directly generates the final pre-367
diction without the reasoning process. The resulting model368
is similar to the existing 3D-LLMs [11, 14], which leans369
to generate short and concise answers due to the character-370
istics of the existing 3D understanding training data. Ta-371
ble. 4 showcases that involving the reasoning process dur-372

Table 4. Performance comparison on NR3D when training the
base model with and without reasoning process.

Reasoning Easy Hard Dep. Indep. Overall

42.2 25.4 30.2 35.4 33.5
✓ 63.0 36.7 40.1 54.5 49.3

Table 5. Experiments on extra prompt’s effectiveness on reducing
the spatial hallucination of GPT-4o. We report the accuracy on
50 left relationship queries and 50 right relationship queries.

Extra Prompt Left Query Acc Right Query Acc

40.0 52.0
✓ 82.0 90.0

ing training can largely improves the performance, which 373
demonstrates the importance of our collected data. 374
Data collection prompt. To verify the effectiveness of 375
our proposed extra prompt on reducing the spatial hallu- 376
cination of GPT-4o during the data collection process, we 377
conduct ablation study on a subset of our collected data, 378
which consists of 100 visual grounding queries sampled 379
from left and right spatial relationship (50 queries each). In 380
Table. 5, GPT-4o achieves a large accuracy boost on both 381
types of relationship queries with our extra prompt, show- 382
casing the effectiveness of our prompt design in reducing 383
spatial hallucination in our data collection framework. 384

4.5. Qualitative Results 385

We provide some qualitative results in Fig. 5. We include 386
an in-domain query with similar spatial relationships in our 387
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When facing the desks choose the one on the right. 
(In-domain)

The chair that is next to the TV, it is between the table 
and the tv. (Out-of-domain)

The chair that is most in the middle of the room. 
(Out-of-domain)

The relevant objects are those with the name "chair" which are:
- obj_9: "chair", box: 3.7, 1.2, 0.4, 0.7, 0.7, 0.8
…
- obj_12: "chair", box: 3.0, 1.9, 0.6, 0.7, 0.6, 0.5
…
Assuming the current location is the center of "floor" which is at (2.8, 2.3).
To determine which chair is in the middle of the room, we can calculate the Euclidean distance of each chair …
1. Distance from obj_9 (3.7, 1.2):
Distance = sqrt((3.7 - 2.8)^2 + (1.2 - 2.3)^2) = sqrt(0.9^2 + 1.1^2) = sqrt(0.81 + 1.21) = sqrt(2.02) ≈ 1.42

…
4. Distance from obj_12 (3.0, 1.9):
Distance = sqrt((3.0 - 2.8)^2 + (1.9 - 2.3)^2) = sqrt(0.2^2 + 0.4^2) = sqrt(0.04 + 0.16) = sqrt(0.2) ≈ 0.44

The closest chair to the assumed location is obj_12 with a distance of approximately 0.44.

Answer: obj_12.

To find the object ID of the chair in the middle of the room, we need to identify which chair is in the middle.
…
To confirm that this is the middle chair, we need to look at the x and y coordinates of the chairs. obj_10 has an x
coordinate of 1.4, which is relatively close to the middle of the room.
…
Based on this information, we can conclude the object ID of the dark color chair in the middle of the room is:

Answer: obj_10.

The objects that might be related to the provided caption are:
- obj_2: Chair at (4.4, 3.7, 0.6) with dimensions (0.7, 0.7, 0.9).
- obj_3: Chair at (5.3, 3.2, 0.5) with dimensions (0.6, 0.6, 0.9).
- obj_9: TV at (3.9, 4.1, 1.5) with dimensions (0.6, 0.4, 0.5).
- obj_8: Table at (4.9, 3.4, 0.5) with dimensions (1.0, 1.0, 0.9).
…
The caption describes a chair next to the TV, between the table and the TV. Given the 2D positions:
- obj_2 is very close to obj_9 (TV) and lies between obj_8 (table) and obj_9 (TV).
- obj_3 is closer to obj_8 (table) and not directly next to obj_9 (TV).

Thus, obj_2 is the chair next to the TV, between the table and the TV.

Answer: obj_2.

To find the object ID of the chair that is next to the TV, we need to identify the chair and the TV in the scene.

The TV is located at obj_9 with the box coordinates [3.9, 4.1, 1.5, 0.6, 0.4, 0.5].
The chair is located at obj_2 with the box coordinates [4.4, 3.7, 0.6, 0.7, 0.7, 0.9].
However, this chair is not next to the TV.

The next chair is located at obj_3 with the box coordinates [5.3, 3.2, 0.5, 0.6, 0.6, 0.9].
This chair is indeed between the table and the TV. The table is located at obj_8 with the box coordinates [4.9,
3.4, 0.5, 1.0, 1.0, 0.9].

Answer: obj_3.

To determine the object ID based on the given description, we need to identify the desks and then choose the
one on the right.

The desks are obj_10 and obj_11. Since obj_11 is on the right of obj_10, the object ID is obj_11.

Answer: obj_11.

The objects that are desks are "obj_10" and "obj_11". Their coordinates are:
- obj_10: 2.8, 4.1, 0.8
- obj_11: 1.3, 4.0, 1.1

Assume my current location is at the center of the floor. The coordinates are:
- obj_14: 2.4, 3.3, 0.5

To determine which desk is on the right from my current location:
1. Calculate vectors from my position (O) to the desks:
- Vector OA for obj_10: (2.8 - 2.4, 4.1 - 3.3) = (0.4, 0.8)
- Vector OB for obj_11: (1.3 - 2.4, 4.0 - 3.3) = (-1.1, 0.7)

2. Calculate the cross product OA x OB to determine relative position:
- Cross product C = (0.4 * 0.7) - (0.8 * -1.1) = 0.28 + 0.88 = 1.16

Since the cross product C is positive, obj_10 is on the right, and obj_11 is on the left.

Answer: obj_10.

Base Model

Ours

Base Model

Ours

Base Model

Ours

Figure 5. Qualitative results from NR3D. Green box and red box represents the prediction from our model and Llama-3.1-8B, respectively.
Boxes are re-plotted for better visualization and some sentences are skipped due to space limits. Best viewed when zoomed in.

training data, and out-of-domain queries that have unseen388
spatial relationships in training data. The out-of-domain389
examples demonstrate the effectiveness of our post-training390
strategy to enable LLM reasoning.391

5. Conclusion392

In this work, we introduce a novel 3D visual grounding and393
reasoning data collection pipeline, which can generate post-394
training data to enhance LLM for 3D visual grounding task.395

In the data collection process, we also identify and miti- 396
gate spatial hallucination in SoTA proprietary LLMs by de- 397
signing an effective prompt strategy, leading to a more re- 398
liable and efficient data collection process. Leveraging our 399
collected training data, we conduct post-training and intro- 400
duce 3DVG-LLM, a powerful reasoning LLM specifically 401
tailored for 3D visual grounding tasks. In our experiments, 402
3DVG-LLM achieves SoTA performance among all zero- 403
shot methods on ScanRefer and NR3D, demonstrating its 404
effectiveness in reasoning for 3D visual grounding task. 405
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