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ABSTRACT

Vision-language models (VLMs) have made significant advances, debates persist
about their ability to understand the combined meaning of vision and linguistic.
Existing research primarily relies on computer vision knowledge and static images
to deliver insights into compositional understanding of VLMs. There is still a lim-
ited understanding of how VLMs handle subtle differences between visual and lin-
guistic information. This paper introduces an interactive visualization and analysis
approach from outside the computer vision community. We found that CLIP’s per-
formance in compositional understanding only slightly exceeds the chance level
of 50%. Particularly, it primarily relies on entities in visual and textual modalities,
but is limited in recognizing spatial relationships, attribute ownership, and inter-
action relationships. Additionally, It behaves more like a “bag-of-words” model
and relies on global feature alignment rather than fine-grained alignment, leading
to insensitivity to subtle perturbations in text and images.

1 INTRODUCTION

In vision-language research, “composition understanding” involves the ability to process
text and images—managing not only words, phrases and their combinations but also rec-
ognizing independent elements in images (such as objects, actions, or scenes), under-
standing how these elements are interrelated, and how they collectively function within
a given context. For instance, the model should be able to recognize each component
(such as “lawn”, “girl”, “white dress”, “yellow ball”’) as well as their combination (the
scene semantics of “a girl in a white dress playing with a yellow ball on the lawn”).

The recently introduced CLIP Radford et al.
(2021), through contrastive learning on large-

scale datasets, has demonstrated remarkable ca-
pability in understanding both vision and lin-
guistic information. Though vision-language
models (VLMs) show high performance on
numerous established benchmarks, however,
their effectiveness in composition understand-
ing remains a matter of debate Yuksekgonul
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veal even advanced VLMs struggle with chal- resentation shows a tendency to focus on indi-
lenge of integrating vision and linguistic in- vidual words and image objects, rather than their

formation, especially when dealing with fine- compositional relations.
grained linguistic phenomena.  As shown in Fig[l] CLIP fails to match true captions.
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Specifically, Winoground introduced by Thrush et al. Thrush et al.| (2022) reveals that mainstream
VLMs such as CLIP, UNITER |Chen et al.| (2020), and LXMERT [Tan & Bansal|(2019) fail to exceed
chance level on this dataset. Yuksekgonul et al. [Yuksekgonul et al.| (2022) introduced the ARO
benchmark (as shown in Fig@ to assess ability of VLMs to handle relations, attributes, and order.

The studies mentioned have contributed to un-
derstanding VLMs’ composition capabilities by
introducing new benchmark datasets. How-
ever, we identify several critical shortcomings .
in presenting and conveying insights: (1) lack e
of interactive representation methods: current
research primarily relies on static graphs to
present findings, which limits our ability to dy- o ‘ ]
namically explore model performance. For in- et B o e i
stance, it is challenging to discern the perfor-

mance differences of a single image across dif-  oigina

ferent composition tasks using a bar chart. (2) s
limited data representation: existing research

typically concentrates on quantitative metrics,

failing'to convey th.e feature encoding, trans- Figure 2: ARO benchmark [Yuksekgonul et al.
formation, and learning processes at the model (2022) was proposed to evaluate VLMs’ compre-

level. A singular emphasis on accuracy or re-  pengion of relationships, attributes, and order by
call metrics fails to reveal why CLIP exhibits a disrupting captions.

higher matching degree with permuted caption.

"the [attribute 1] [object 1] and the [attribute 2] [object 2]"
"the [attribute 2] [object 1] and the [attribute 1] [object 2]"

“the parked car and the grey road” " ®% 4/ "the blue sky and the red hydrant"
"the grey car and the parked road” @i X "the red sky and the bluc hydrant”

"the [object 1] is [relation] [object 2]
"the [object 2] is [relation] [object 1] "

/ "a white dog playing with a yellow ball and lying on the moist beach"
X "a yellow beach playing with a moist dog and lying on the white ball”
X "with white dog a on playing a yellow ball lying and the moist beach”
X "a white dog the moist beach playing with a yellow ball and lying on"
X "dog a white with playing ball a yellow on and lying moist beach the"

Our method and tool extend beyond mere reliance on quantitative metrics. It enables dynamic repre-
sentation and interpretation of VLMs’ behaviors in interpreting diverse vision-linguistic constructs
within the pixel space, gaining the following insights: In which composition tasks do VLMs excel,
and in which do they struggle? How do patterns and trends in cross-modal alignment emerge? To
our knowledge, this is the first exploration of VLMs’ compositional understanding from visualiza-
tion representation. We fill this gap by introducing innovative representation methods and tool to
interpret specific patterns where VLMs behave like bags-of-words. In summary, the contributions
of this paper are as follows:

* We propose a multi-layered visualization representation and analysis method that traverses
from a global overview to subspace details and down to instance specifics. This approach
encompasses global grid representation of sample performance, dynamic analysis of atten-
tion biases, and interactive exploration of cross-modal alignment.

* We develop an interactive visual analysis tool that integrates cross-domain knowledge, en-
abling users without domain expertise to actively gain insights into VLMs’ compositional
understanding.

* We reveal the limitations of VLMs in compositional understanding, particularly the ne-
glect of cross-modal fine-grained alignment. These findings will enhance the community’s
understanding of VLMs and provide guidance for optimization directions.

2 RELATED WORK AND BACKGROUND

2.1 VISION-LINGUISTIC COMPOSITIONITY

The recently proposed CLIP Radford et al. (2021) showcases robust joint vision-linguistic under-
standing. Subsequent VLMs, such as BLIP [Li et al| (2022a)), ALIGN Jia et al. (2021), Coca |Yu
et al.| (2022)), and Flava |Singh et al.| (2022), have further advanced research in this domain. These
models demonstrate high performance on various benchmarks, particularly excelling in zero-shot
prediction scenarios, effectively adapting to diverse downstream tasks. In vision and language re-
search, composition understanding describes the model’s capacity to identify elements in texts or
images and discern their interconnected meanings. Despite matching simple images with captions
seeming overly straightforward, recent NLP research [Sinha et al.|(2021]) has shown that transform-
ers are often remarkably insensitive to word order. Even the words in sentences are permuted, the
performance of these models on downstream tasks is only slightly impacted.
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Parcalabescu et al. |[Parcalabescu et al.| (2021)) assessed VLMs’ ability to recognize correct linguis-
tic phenomena in images, revealing significant challenges for current models in addressing most
phenomena. Similarly, Thrush et al. [Thrush et al.| (2022) introduced the Winoground to evaluate
VLMs’ composition understanding. Mainstream models like CLIP, UNITER, and LXMERT did
not surpass random chance levels despite excelling in other tasks. Their findings highlight the main
challenges for VLMs: composition understanding and the integration of vision and linguistic in-
formation. Further, Yuksekgonul et al. [Yuksekgonul et al.| (2022) systematically assessed VLMs’
ability to understand various types of relations, attributes, and order information.

2.2  VISUALIZATION FOR FOUNDATION MODELS

Recent strides in foundational models Bommasani et al. (2021)) like BERT|Devlin et al. (2018), GPT-
3Brown et al.|(2020), and CLIP have surpassed our expectations. Our understanding of their internal
mechanisms and how they influence outputs remains limited. Recent research indicates that visual-
ization is pivotal in comprehending complex models|Yang et al.| (2023)); Sacha et al.[(2018]).

A series of works have significantly enhanced the explainability, evaluation capabilities, and in-
teractivity of large language models (LLM). Puchert et al. |Puchert et al.| (2023) used visualization
techniques to hierarchically assessment LLM performance, especially uncovering “hallucinations”
in knowledge subdomains. Kahng et al. [Kahng et al.| (2024) realized visual comparison of model
outputs, revealing performance disparities on various contexts. Attention mechanism visualization
research focuses on analyzing how models process sequential data, such as text or image segments,
and the role of attention mechanisms in model decision-making. Yeh Yeh et al.[(2023)) and Li et al. L1
et al.[(2023b) expanded in-depth analysis boundaries of the self-attention mechanism. The former
utilized joint embedding visualization of query and key vectors, providing insights into global self-
attention patterns on varied input sequences. The latter offered visual exploration of attention head
importance, strength, and patterns, offering insights into how ViT process image data.

Vision-language pre-trained model visualization work shifts focus towards demonstrating models’
capabilities in handling cross-modal information. Recent research on VLMs interpretability ad-
dresses biases with architecture adjustment and visual technique improvements |L1i et al.| (2023a;
2022b); [Chen et al| (2022). It also introduces efficient methods for multi-object scene interpreta-
tion. Furthermore, Palit et al. Palit et al.|(2023)) designed the BLIP causal tracing tool, unveiling text
generation mechanisms and opening new causal pathways for understanding VLMs. The interactive
tool VL-InterpreT [Aflalo et al.| (2022) enables in-depth analysis of models’ attention mechanisms
and hidden states, offering new insights into vision-language interactions for understanding.

3  VISUALIZATION REPRESENTATION AND ANALYSIS

In this paper, we employ the CLIP for evaluation. CLIP learns representations of images and texts
through the self-attention mechanism, maximizing semantic consistency between images and their
corresponding textual descriptions via contrastive learning, thereby facilitating efficient cross-modal
retrieval and matching. We utilize the dataset sourced from ARO benchmark |Yuksekgonul et al.
(2022), as shown in Fig.2. Each sample contains an image, a correct caption, and a permuted
caption. Specifically, for each sample, CLIP calculates the cosine similarity between the image and
captions. These similarity scores are then normalized using the Softmax function to generate the
final matching scores.

3.1 GRID-BASED PERFORMANCE REPRESENTATION

To explore the overall performance of CLIP on the dataset, we constructed a grid representation
based on cross-modal feature representations of samples (images and text captions) and their match-
ing results, aiming to achieve the following objectives: 1) represent the overall performance of CLIP
on the dataset to quantify its effectiveness and provide a global overview; 2) construct a visual prox-
imity representation of similar semantic samples to identify CLIP’s consistency and variability when
handling specific permuted semantics or categories. Specifically, the pipeline is shown in Fig[3}

Cross-modal Representation. For each sample, we extract feature encodings of images and cap-
tions from CLIP’s output, generating the cross-modal semantic representation.
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Matching Labels. For each sample, we com- input samples
pute the cosine similarity between the image
and both the correct and permuted captions,

normalizing the scores using the softmax func- et

tion to generate the final matching scores, and e postve e negative match
create three categories of match labels: Pos- input layer neeren mah
itive Match: The correct caption receives a ) Qi grid besed

/ representation
higher matching score. Negative Match: The $ ‘ /7

permuted caption receives a hlgher.matchlng & D A asamlple N
score. Uncertain Match: The matching scores

within each neuron
for the correct and permuted caption are closely
aligned (e.g., within 0.1).

Grid Representation. Based on the self- Figure 3: The pipeline of grid-based CLIP per-
organizing map and resource-controlled self- formance repyesentatlon. n projects samples nto
organizing map [Kohonen & Honkela (2007); 2 .2D tppploglcal space, visually clustering thgse
Tu et al| (2022), we introduce homologous en- with similar cross-modal features and matching
hancement mechanism. Each neuron maintains esults, providing a global overview representa-
a weight vector to capture sample features w; € 10N of CLIP performance.

R? and a match vector P; € R° to capture

matching information, where d is 1024, and c is the number of matching labels. Also, each neuron
is assigned a resource control right, allowing it to accept only one data sample mapping. In each
iteration, the best matching unit (BMU) is selected as the neuron closest to the input sample. The
BMU and its neighboring neurons are then updated in terms of their weight vectors, match vectors,
and resource control rights. Ultimately, each sample is projected into a two-dimensional topological
space and assigned to a single neuron, ensuring that samples with similar cross-modal features and
matching results are placed close to each other. Simultaneously, samples with similar cross-modal
features and matching results will be placed close to each other in the topological space, forming an
organized and visually unobstructed representation.

match output CLIP embedding

awhite T-shirt 1

¥ andared hydrant ;&i ®

x Dimension

Visualization Presentation. We map the topological structure to pixel space, where each cell
represents a sample and is arranged in a grid according to its position in the topological space.
M encodes positive matches, M encodes negative matches, and encodes uncertain matches.
The shade of the color encodes the match score, with darker shades indicating higher scores.

attention matrix

a white T-shirt
3.2 ATTENTION-BASED 8 B e et
SEMANTIC DIFFERENCE REPRESENTATION : i
o a red T-shirt

. . [TMET™NT  and a white hydrant
To further analyze the decision-making process Image Patches  Text Tokens
of the CLIP in image-text matching tasks, we gradient map
employ a gradient-based attention mechanism

: : hite  T-shirt  and
to generate fine-grained representations. The  ° L B L R

primary objective is to reveal the regions and
features that CLIP focuses on when dealing
with different semantics: correct and permuted
captions. The pipeline is shown in Fig[4}

T-shirt and a white -

Grgdlent Attent.lon Presentqtlon. Slmllaﬂy, " Token Attention . Image Attention
we input a set of image-text pairs, each consist- === Gradient L Gradient Heatmap
ing of an image, a correct caption, and a per-

muted caption, into the CLIP model to obtain  Fjgure 4: The pipeline of attention-based seman-
the cross-modal similarity for both correct and ¢ difference representation. It projects CLIP’s
permuted pairs. Next, for each image-text pair, regponse differences to two semantic information

we calculate the attention gradients for bothim-  4pt0 jmage patches and text tokens, enabling di-
age and text modalities and accumulate these rect observation of these differences.

across the attention layers to generate weighted
attention maps. These maps highlight CLIP’s
focus on image patches and text tokens under
different semantic conditions.
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Visualization Presentation. For the gradient attention representation, we employ heat maps to
map it onto the original image and text sequence, offering an intuitive visual representation. Blue
indicates that image patch contributes less to the matching, while orange indicates that image patch
has a significant positive impact on the matching result. Similarly, the intensity of text color encodes
the importance of each textual element in semantic matching. This representation can demonstrate
how various visual and linguistic elements contribute to the matching outcomes. Additionally, by
comparing the heat maps under two semantic conditions, we can observe the differences in CLIP’s
focuses and response when handling correct and permuted captions.

3.3 FEATURE-BASED ALIGNMENT REPRESENTATION

To explore CLIP’s cross-modal alignment mechanism, we employ a collection retrieval approach
based on high-dimensional feature representations to generate alignment representations. The pur-
pose of this module is to reveal CLIP’s alignment capabilities when dealing with fine-grained and
compositional semantics. The pipeline is shown in Fig[5}

Cross-modal Feature Visualization Repre-

sentation. We extract fine-grained feature rep- Fine-grained Alignment Retrievel
resentations from image patches and text to-

kens, including global CLS features. We then | i oo oo
employ t-SNE|Van der Maaten & Hinton|(2008)) Projection
technology to project these cross-modal fea- f s BR
tures into a two-dimensional space, ensuring i) FH o B
that features similar in high-dimensional space o —
remain close in the two-dimensional plane. In

terms of visualization, we map the projected

features onto pixel space and use bubble sets Figure 5: The pipeline of feature-based alignment
to enhance the visual representation of differ- representation. It projects CLIP’s handling of in-
ent modal patches or token sets. This represen- dividual and composite text semantics into an in-
tation facilitates the observation of alignment teractive pixel space, facilitating the observation
within and between modalities, providing an in-  of its alignment mechanisms.

tuitive validation of alignment.

y 5120 Token Query: Shirt SR

Patches Set

Set Representation
-

Cross-modal and Fine-grained Retrieval. This module allows the use of text tokens as query
keywords to search through collections of image patches. The retrieval process returns the top k
image patches that best match the query token, based on rankings derived from cosine similarity.
By observing changes within the collection, we can understand the differences in how the CLIP
performs with individual text entities and composite semantics.

4 CASE STUDY

In this section, we present preliminary insights gained from the visualization representations and
our interactive analysis tool. We randomly selected 900, 1600, and 10,000 samples (Fig@Al) from
the dataset to observe the visualization output of the grid representation module, respectively. The
differences in the number of red and green cells across these grid views are not significant. Moreover,
the statistical bar chart (Fig|6}A2) indicates that CLIP’s success rate in positive matching fluctuates
around 50%, failing to reach the expected high level. This highlights CLIP’s limitations in handling
semantically permuted yet textually similar inputs. Specifically, CLIP shows insensitivity to spatial
perception (e.g., ’to the left of’, ”’to the right of’, on”), spatially oriented action relationships (e.g.,
sitting on the top of”, “sitting on”, ’standing in front of”’), inter-object interactions, and the object
properties, all of which do not achieve upstream levels of positive matching.

Next, we randomly selected 2,500 samples from the relationship perturbations dataset for analysis,
observing the performance of data subsets under different relational perturbations in the grid repre-
sentation view (Fig[6}B). Sample 23371 exhibited a deep red cell, indicating a high level of negative
matching. By analyzing the gradient attention differences (Figl6}B1) for this sample under both
correct and permuted caption, we found that the responses of image patches and text tokens did not
change significantly due to the relationship perturbations. Conversely, the image and text heat maps
were almost identical, focusing predominantly on the visual and textual entities related to “skis”,
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Figure 6: Case studies based on three visualization representation modules and our interactive anal-
ysis tool. We found that CLIP primarily relies on entities within the visual and textual modal-
ities, showing limited sensitivity to relationships between these entities. This is largely due to
CLIP’s cross-modal alignment not adequately considering the alignment between fine-grained im-
age patches and text tokens.

which occupied the majority of the pixel area, suggesting it was a key factor influencing CLIP’s
image-text matching. Similar observations were noted in other samples, suggesting that CLIP tends
to focus on individual entities rather than complex semantic relationships. When querying with to-
ken “man” from both the correct and permuted semantics (Figl6}B3), image patches sets primarily
consisted of patches related to the scene, with minimal variation among the elements.

In addition, sample 20849 exhibited a deep green cell, but upon analyzing the gradient attention
distribution under both correct and permuted captions, no significant differences were observed
(Figl6}C1). The image response continued to center on visual entity “people” despite relatively more
attention given to the text token right”. We explored sample 20849 in the cross-modal alignment
representation view. Querying with the token “people” (Fig[6}C3) yielded an image set that did
not feature the expected numerous body image tokens; instead, it primarily consisted of patches
related to the background wall. When querying with the token “wall” (FigJ6}C4), some image
patches associated with walls were retrieved under permuted conditions, while the correct image
set contained many patches related to T-shirts. These observations indicate that CLIP’s cross-modal
alignment is not optimal, failing to effectively focus on the alignment between fine-grained image
patches and text tokens. This could be one reason for its behavior resembling that of a “bag-of-
words” model.

5 DISCUSSION

Our work is based on new problems and demands, providing solutions from beyond the com-
puter vision and NLP communities. Recent debates have questioned the composition understand-
ing capabilities of VLMs. Additionally, as shown in Fig.[7} our user survey (20 male and 16 fe-
male participants, from fields like multi-modal image-text retrieval, multi-modal sentiment analysis,
object detection and tracking, natural language processing, and visualization) found that many par-
ticipants experienced poor performance in composition understanding when using popular models
like CLIP, BLIP, and ALIGN. Notably, 5.6% (Q4) of participants frequently encountered these is-
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sues. Existing research primarily relies on static images and domain-specific knowledge to present
findings and insights, often overlooking the importance of dynamic analysis and multidimensional
exploration. For instance, understanding these insights requires VLMs knowledge, such as attention
mechanisms, contrastive learning, embedding techniques, and neural network architectures. More-
over, static charts only offer a limited summary of metrics, insufficient to reveal model’s specific
performance when processing different vision or linguistic structures. We propose an interactive
visual analysis method. This approach, spanning from global overview to data subspaces and spe-
cific instances, lowers technical barriers, allowing a wider users to access and understand this topic.
According to questionnaire results, 89% (Q6) participants prefer visualization methods to analyze
this issue, and 92% (Q7) look forward to the introduction of related visual analysis tool.

Our efforts bridge the gap between com-
puter vision and visualization, fostering in-
terest and exploration across various fields.
Our preliminary survey reveals that while many
researchers use VLMs, only 13.9% (Q3) of
participants recognize their limitations in inte-
grating vision and linguistic information. This
shortcoming could hinder VLMs’ application  |.a, ‘
in fields like healthcare, security surveillance, L b L
and autonomous driving, where a low tolerance

for errors is crucial. The survey also reveals that  Figure 7: Preliminary user survey Q1-Q7 (N =
90% (Q7) participants believe that enhancing 36). Results reveal 72.2% participants experience
this capability could advance related technolo- problems with composition understanding when
gies and impact multi-modal applications. Fur- using mainstream VLMs, with 5.6% frequently
ther, our study employs an intuitive approach, encountering these issues. However, only 13.9%
encouraging interdisciplinary researchers to ex-  are well-informed about these problems. Addi-
plore deficiencies in composition understand- tionally, 89% prefer using visualization methods
ing and to initiate discussions about unknown for analysis, and 92% look forward to the intro-
issues. Specifically, our research provides guid-  duction of relevant visual analysis tool.

ance for researchers looking to optimize VLMs.

For instance, incorporating more negative samples in model training for contrastive learning, or de-
signing network layers that more effectively learn cross-modal features, can enhance the processing
capabilities of VLMs.
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