
UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

Ziyun Zhang * 1 Xinyi Liu * 1 Xiaoyi Zhang 2 Jun Wang 2 Gang Chen 2 Yan Lu 2

Abstract
External knowledge has played a crucial role in
the recent development of computer use agents.
We identify a critical knowledge-execution gap:
retrieved knowledge often fails to translate into
effective real-world task execution. Our analy-
sis shows even 90% correct knowledge yields
only 41% success rate. To bridge this gap, we
propose UI-Evol, a plug-and-play module for au-
tonomous GUI knowledge evolution. UI-Evol
consists of two stages: a Retrace Stage that ex-
tracts faithful objective action sequences from
actual agent-environment interactions, and a Cri-
tique Stage that refines existing knowledge by
comparing these sequences against external ref-
erences. We conduct comprehensive experiments
on the OSWorld benchmark with the state-of-the-
art Agent S2. Our results demonstrate that UI-
Evol not only significantly boosts success rate but
also addresses a previously overlooked issue of
high behavioral standard deviation in computer
use agents, leading to superior performance on
computer use tasks and substantially improved
agent reliability.

1. Introduction
Building a computer use agent that can automatically in-
teract with Graphical User Interfaces (GUI) and complete
specified tasks with minimal human intervention has al-
ways been a major challenge in the field of Autonomous
Agents (Hu et al.; ant, 2024; ope, 2024). The diversity
and heterogeneity inherent in modern GUI interfaces (Com-
mon Crawl, 2025) demand that computer use agents ex-
hibit highly robust and generalizable visual perception ca-
pabilities. Moreover, the successful long-trace execution

*Equal contribution 1School of Software and Microelectronics,
Peking University. Work done during internship in Microsoft
Research Asia 2Microsoft Research Asia. Contract to: Xiaoyi
Zhang <xiaoyizhang@microsoft.com>.

Workshop on Computer-use Agents @ Proceedings of the 42nd In-
ternational Conference on Machine Learning, Vancouver, Canada.
PMLR 267, 2026. Copyright 2025 by the author(s).

of complex, long-horizon tasks further necessitates agents
to demonstrate strong reasoning and sequential decision-
making capability. Recent progress in proprietary Large
Multimodal Models (LMMs) (OpenAI, 2023; Anthropic,
2024) has substantially advanced the foundational capabili-
ties of computer use agents. This has enabled a surge in re-
search efforts utilizing LMMs as core reasoning engines for
automated interface manipulation (Yan et al., 2023; Zheng
et al., 2024; Agashe et al., 2024; 2025).

Despite these advancements, it is still challenging for current
LMMs to manipulate software and computer system (Xie
et al., 2024; Bonatti et al., 2024; Zhou et al.) based solely
on their own knowledge learned in training. To mitigate
these limitations, some studies (Zhang et al., 2023a; Li et al.,
2024; Wu et al.; Zheng et al., 2025) have adopted Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020) to aug-
ment agents with external task-specific knowledge. By re-
trieving task-relevant external knowledge, these systems can
enhance task planning and execution, alleviating the burden
on agents to synthesize execution strategies from scratch for
every single scenario (Zhang et al., 2023a; Li et al., 2024;
Wu et al.; Zheng et al., 2025; Agashe et al., 2024; 2025). For
instance, representative Agent S series (Agashe et al., 2024;
2025) utilize online web search to obtain existing rich and
up-to-date knowledge for given task instruction, including
task interpretations and step-by-step plans. Experiments
have shown that web-based knowledge can significantly
improve agent performance.

Nevertheless, our analysis of Agent S2 (Agashe et al., 2025)
based on GPT-4o reveals a persistent gap between the avail-
ability of correct knowledge and the knowledge can be effec-
tively consumed by agent for task execution. Specifically, in
our sampling survey, even when 90% of the knowledge re-
trieved via Perplexica (per, 2024) is deemed “correct” from
the human perspective, the best agent’s success rate is only
41%. More details on the sampling survey are provided in
Appendix B. Further investigation into this phenomenon
reveals that although the external knowledge may appear
theoretically correct and appropriate, it often suffers from
certain practical drawbacks, including the omission of nec-
essary intermediate steps (which human might consider as
natural), assumptions inconsistent with the initial task condi-
tions, and the suggestion of sub-optimal execution paths de-
manding overly complex manipulations. Figure 1 illustrates

1

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

Subtask 1: Load file.

Subtask 2: Select the cell where you want to

display the total sales.

Subtask 3: Enter the formula `=SUM(B2:D2)`

(adjust the cell references as necessary) to

calculate the total sales for the first month.

Subtask 4: Highlight the range of cells that

includes…

…

Subtask 1: Load file.

Subtask 2: Click the cell to store Jan. sales,

which is B12.

Subtask 3: type =SUM(B2:B11), press

Enter to calculate the total sales.

Subtask 4: Drag fill handle of B12

horizontally to G12.

…

UI Knowledge Evolution UI Knowledge Evolution

…

Subtask 1: Open the Document.

Subtask 2: Click and drag your mouse

over the text you want to modify to

highlight it. This could be any block of

text within your document.

Subtask 3: Capitalize Each Word…

…

…

Subtask 1: Activate Writer window / open

file.

Subtask 2: Press Ctrl+A to select all text.

Subtask 3: Capitalize Each Word…

…

subtask 3 execution result (success). subtask 3 execution result (success).

subtask 3 execution result (failure).
subtask 3 execution result (failure).

Case 1: Work out the monthly total sales in a new row called \"Total\" and

then create a line chart to show the results (x-axis be Months).
Case 2: Please help me make the first letter of each word to uppercase.

Figure 1. The green box shows web-retrieved task knowledge, while the yellow box shows evolved knowledge from our approach. Web
knowledge is generally correct but often lacks practical details (left) or suggests with more complex manipulations (right).

two representative cases. In Subtask 3 of Case 1, the exter-
nal knowledge merely suggests summarizing the column
and adjusting the cell reference, which misdirects the agent
and leads to task execution failure. Similarly, in Case 2,
the provided external web knowledge advises using a click-
and-drag action to select text, whereas the task explicitly
requires selecting “all”. Such advice proves challenging for
a computer use agent to execute accurately through mouse
dragging alone. These shortcomings underline a critical
gap between externally retrieved web knowledge and the
actionable knowledge that agents can effectively consume
for practical task completion.

To address the aforementioned problem, we propose UI-
Evol, a plug-and-play module that can be seamlessly inte-
grated into existing computer use agent systems by introduc-
ing an autonomous GUI knowledge evolution mechanism
aimed at improving knowledge through realistic interac-
tions with practical environments. Specifically, given a
particular task and corresponding initial task knowledge, a
computer use agent first performs task operations within the
environment, producing an interaction record of actual task
execution behaviors. Subsequently, UI-Evol autonomously
refines the existing knowledge based on actual task execu-
tion behaviors, thus mitigating the gap between external
knowledge and practical environments. Specifically, UI-
Evol consists of two stages: Retrace Stage and Critique
Stage. In the Retrace stage, instead of solely relying on the
agent’s planned actions for introspective reflection, UI-Evol
extracts the actual actions executed by the computer use
agent based on the screenshots before and after each manip-
ulation. These vision-driven observations are then synthe-
sized into a objective action sequence, which is a detailed,

structural trajectory description that faithfully captures the
agent’s behavior in the environment, thereby ensuring an
accurate and unbiased representation of the agent’s concrete
interactions with the computer environment. In the Cri-
tique stage, leveraging our earlier observation that retrieved
web knowledge is largely reliable, UI-Evol uses the exter-
nally retrieved knowledge as a reference anchor and further
complement it. A carefully constructed series of reasoning
patterns then assesses and critiques the extracted objective
action sequence. Specifically, the Critique stage compares
the agent-produced action sequences against the reference
web knowledge, identifies deviations or anomalies, analyzes
underlying causes for these discrepancies, with chain-of-
thought reasoning (Wei et al., 2022) to generate a refined
version of task-specific knowledge. This newly evolved
knowledge is subsequently stored in a dedicated knowledge
base, where it serves as improved reference guidance for
subsequent agent executions.

We conduct comprehensive experiments on OSWorld (Xie
et al., 2024) to evaluate the effectiveness of UI-Evol on
state-of-the-art Agent S2. The experimental results demon-
strate that knowledge evolved by UI-Evol is better aligned
with an agent in the practical environment. Notably, during
experimentation, we discovered significant instability (high
standard deviation) in the baseline computer use agents even
when we fix all the hyperparameters we can set, which has
been largely overlooked in prior research. To systemati-
cally examine this instability issue and rigorously evaluate
robustness of our approach, we developed a highly effi-
cient parallel evaluation framework. Utilizing 30 parallel
instances, this framework greatly accelerates the agent eval-
uation, reducing running time from 10 hours to 2.5 hours,

2

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

achieving approximately 4 times accelerate, thus allowing
extensive repetitions of experiments to observe and report
the significance of our experiment. We repeated each exper-
iment variant three times to precisely measure variability.
The extensive experimental analyses confirm that UI-Evol
not only boosts overall success rate but also notably reduces
behavioral standard deviation, thus significantly enhancing
the robustness and stability of computer use agents.

Our contributions can be summarized as follows:

• We identify the gap between externally acquired knowl-
edge and real task execution, and propose UI-Evol, a
plug-and-play module that effectively bridges this gap by
autonomously evolving GUI task knowledge.

• We are the first to systematically identify and analyze the
previously overlooked instability issue in contemporary
computer use agents, and develop a highly parallelized
environment to facilitate efficient investigation.

• Comprehensive experiments on the OSWorld benchmark
show UI-Evol achieves state-of-the-art accuracy and sig-
nificantly reduces behavioral standard deviation, substan-
tially enhancing agent robustness and stability.

2. Related Work
2.1. Computer Use Agent

Through the early exploration on automatic computer task
execution (Zhang et al., 2023c; Fu et al., 2024; Li et al.,
2020), recent computer use agents can be broadly catego-
rized into two types: monolithic agents and modular agents.
A monolithic agent is typically built using a single post-
trained, end-to-end model that independently handles the
entire computer use task (Zhang et al., 2023c; Hong et al.,
2024; Cheng et al., 2024; Wu et al., 2024; Liu et al., 2025b;
Lin et al., 2024; Xu et al., 2024; Qin et al., 2025). Recent
open-source pre-trained MLLMs also have native support
for computer use via function calls (Bai et al., 2025). In ad-
dition to supervised fine-tuning, recent works have explored
reinforcement learning approaches to train R1-like mod-
els (Zhang et al., 2023b; Xia & Luo, 2025; Liu et al., 2025c;
Lu et al., 2025). With the increase in both data size and
model size, monolithic agents have achieved stronger perfor-
mance on benchmarks. However, this comes at the expense
of high computational demands and scalability limitations.
Modular agents decompose computer use into multiple mod-
ules to reduce the burden on each single model. Some ap-
proaches train a separate grounding model and use propriety
models to generate actions (Gou et al., 2024; Liu et al.,
2025a; Yang et al., 2024). Some works further divide action
generation into multiple stages such as planning and acting,
and incorporate external tools for support. For example,
some works design multi-level hierarchical planning proce-
dures (Agashe et al., 2024; Wang & Liu, 2024), while some
construct skill libraries to simplify action generation (Zheng

et al., 2025; Zhang et al., 2023a; Tan et al., 2024; Wu et al.).
There are also methods that retrieve knowledge from the
web to serve as a reference during planning (Agashe et al.,
2025). However, these additional modules increase the com-
plexity of the overall system and the coupling among them
can negatively affect the robustness of the agent.

2.2. Knowledge refinement and self-evolution

Early work has demonstrated that LLM-based agents are
capable of analyzing failures and summarizing experiences
in interactive environments (Wang et al., 2023; Zhu et al.,
2023), thereby enabling self-evolution (Zhou et al., 2024).
A complete self-evolution process typically contains an iter-
ative cycle involving the acquisition, refinement, updating,
and evaluation of knowledge (Tao et al., 2024). Among
them, knowledge refinement refers to filtering or correcting
knowledge based on environmental feedback, which assists
the LLM to adapt to new information and contexts. In envi-
ronments with factual feedback, some work utilizes such ob-
jective signals to guide the refinement of knowledge (Chen
et al., 2023; Zelikman et al., 2024). More commonly, refine-
ment is driven by an additional critique process, including
critiques independently generated by LLM itself (Lu et al.,
2023; Madaan et al., 2023), or critiques produced during
interactions between LLM and external tools such as code
interpreter and Wikipedia (Gou et al.; Jiang et al., 2023).
Providing appropriate references for the critique process in
complex tasks can lead to substantial improvements.

3. Preliminary
Computer use agent with external knowledge. Recent
computer use agents typically leverage external knowledge
sources to reduce the necessity of generating execution
strategies entirely from scratch for each given task. This
external knowledge-based approach, which serves as the
starting point for our proposed approach, enhances the ro-
bustness and success rate of agent execution. To clearly il-
lustrate how external knowledge is generated and integrated
into agent execution, we take Agent S2 (Agashe et al., 2025)
as a representative example. Specifically, Agent S2 first
synthesizes an appropriate query based on the provided task
instruction and initial environment state. It then retrieves rel-
evant information via Perplexica (per, 2024), subsequently
summarizing the retrieved information into a structured
list of sub-tasks. This sub-task list represents the external
knowledge format adopted throughout this work. During
task execution, the structured sub-task list is utilized as part
of the prompting context provided to the agent, offering a
soft prior to assist in efficient and accurate task planning.

3

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

Critique Stage

Completion

Access

Alternative

Exploration Mitigation

with

RationalesDeviation

Detection

Objective Action Sequence

Web

Knowledge

Task

Instruction

Computer Use

Agent

Computer

Environment

Recorded Trajectory

Synthesized

from

web

search

with

knowledge

Retrace Stage

…

መ𝐴𝑡
Objective

Precited Action መ𝐴𝑡+1 መ𝐴𝑡+2 …

Screenshot

Observation
𝑂𝑡 𝑂𝑡+1 𝑂𝑡+2

Figure 2. UI-Evol consists of two stages: Retrace replays screenshots to recover objective actions; Critique uses web knowledge to detect
deviations, explore alternatives, and output rationale-backed fixes that are fed back into the knowledge base.

4. Method
To mitigate the gap between external knowledge and the
actual computer use environment, we propose UI-Evol, a
plug-and-play retrospective knowledge evolution module
for computer use agents. Though our method can be applied
into any knowledge-based agent, here we take Agent S se-
ries as the example to describe our framework. Following
Agent S series (Agashe et al., 2024; 2025), we interpret the
web-based knowledge retrieved by agents as a soft prior
task plan over the agent’s action policy via prompts. As
depicted in Figure 2, to evolve it, after we obtain the web
knowledge as described in Section 3, we first execute the
task instructions to obtain the recorded trajectory. For the
recorded trajectory and web knowledge, UI-Evol consists
of two stages: Retrace and Critique. In the Retrace stage,
UI-Evol reconstructs the agent’s actual trajectory based on
screenshots. In the Critique Stage, carefully designed chain-
of-thought reasoning patterns are employed to guide the
agent in analyzing the causes of deviation and updating the
knowledge accordingly. Without additional human super-
vision, this process enables the knowledge base to evolve
automatically and better support agent execution. We then
introduce the details of the two stages separately.

4.1. Retrace Stage

Due to the intrinsic hallucination tendency and limited UI
perception capabilities of Large Multimodal Models, exist-
ing computer use agents often generate infeasible actions or
incorrectly interpret the current computer state. Moreover,

the inherent complexity of the computer use environment
further exacerbates this issue, leading to executed actions
failing to produce the intended effects. As a result, the
action sequences originally output by agents, termed subjec-
tive action sequences, may not accurately represent actual
state changes on the user interface. In practice, the subjec-
tive action sequence merely represents the intended (rather
than actual) behavior of the agent. To address the misalign-
ment between the subjective trajectory and the actual state
transitions, we introduce the Retrace Stage. In this stage,
we propose the Retrace stage to reconstruct an accurate
sequence of executed actions, termed objective action se-
quences, based purely on the observed screenshots captured
during execution.

Formally, for each step t in the recorded trajectory, given
the observations Ot and Ot+1 before and after the step, the
Retrace Stage first enumerates the screenshot in Ot, and
then compares the changes in Ot+1 relative to Ot. A LMM
is used to analyze these changes and objectively predict the
action Ât that occurred during step t. If the LMM thinks
nothing happen between Ot and Ot+1, Ât is assigned a null
value. The union of all objective actions across steps yields
the objective action sequence.

We represent the objective action sequence as a sequence
of textual descriptions of action, which serves as the input
for the next stage. Through the Retrace Stage, the resulting
objective trajectory is free from noise introduced by invalid
actions, thereby enabling a more reliable comparison with
external knowledge sources.

4

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

Table 1. Performance (%) of original web knowledge versus UI-Evol-refined knowledge across different backbone models on five task
groups. SR. denotes the success rate. Std. denotes the standard deviation. Agent S2* is our reproduction result.

Method Base Model Min. SR. Max. SR. Std. SR. Avg. SR. Reported SR.

OpenAI Operator OpenAI CUA - - - - 19.7
UI-TARS UI-TARS-72B-SFT - - - - 18.7
UI-TARS UI-TARS-72B-DPO - - - - 22.7
Aria-UI GPT-4o - - - - 15.2
Aguvis-72B GPT-4o - - - - 17.0
Agent S2 GPT-4o - - - - 21.1
Agent S2 Claude-3.7-Sonnet - - - - 27.0

Agent S2* GPT-4o 18.3 20.8 ±1.00 19.5 19.5
+ UI-Evol GPT-4o 21.0 22.7 ±0.71 22.0 22.0

Agent S2* OpenAI-o3 24.3 27.0 ±1.09 25.6 25.6
+ UI-Evol OpenAI-o3 28.1 28.6 ±0.26 28.4 28.4

Table 2. Performance (%) of random vs. completion-based trajectory selection. Rand. Select denotes random selection, and
Comp. Select denotes completion-based selection.

Method Base Model OS Daily Office Professional Workflow Avg. SR.

Ours w/Rand. Select GPT-4o 47.22 27.83 17.98 35.61 10.43 22.0
Ours w/Comp. Select GPT-4o 44.45 30.39 20.54 29.96 11.43 22.7

Table 3. Performance (%) of transfering evolved knowledge from OpenAI-o3 to GPT-4o.

Knowledge Base Base Model OS Daily Office Professional Workflow Avg. SR.

Web Search GPT-4o 51.39 23.98 14.27 32.43 9.11 19.5
Evolved from 4o Traj. GPT-4o 47.22 27.83 17.98 35.61 10.43 22.0
Evolved from o3 Traj. GPT-4o 48.61 26.12 23.09 31.33 8.78 22.4

4.2. Critique Stage

The Critique Stage is designed to refine and systemati-
cally enhance the quality of agent knowledge. Our pre-
liminary sampling analysis has demonstrated that the re-
trieved web-based knowledge generally represents a reliable
task-guidance source and thus is leveraged as a reference
anchor and further complement it in our framework. By
comparing the reference anchor and the objective action se-
quence reconstructed during the Retrace Stage, the Critique
Stage identifies the gaps between the knowledge and the
agent’s actual behavior. Subsequently, it formulates targeted
refinements to directly address and mitigate these discrep-
ancies, thereby systematically evolving the knowledge base
toward a closer alignment with the agent’s actual execution
policies within real-world task environments. This process
results in more effective guidance, greater interpretability,
and improved performance for future agent runs.

Specifically, the Critique Stage leverages the chain-of-
thought reasoning paradigm, composed of a carefully struc-
tured sequence of reasoning steps. Given the objective ac-

tion sequence generated in the Retrace Stage, along with
previously acquired web-based knowledge and the task in-
struction itself, a large language model (LLM) conducts a
progressive, multi-stage analysis. This analysis comprises
three investigation stages, namely (1) Completion Assess-
ment, (2) Deviation Detection, and (3) Alternative Explo-
ration, followed by a final mitigation stage, namely (4) Miti-
gation with Rationales. In detail, each analysis step serves a
distinct analytical purpose as outlined below:

• Completion Assessment: This initial step involves as-
sessing whether the agent successfully completed the in-
tended task. Specifically, the LLM compares the outcome
depicted in the objective action sequence to the task goal
defined in the provided instruction, clearly determining if
the task was fully executed or partially completed.

• Deviation Detection: Subsequently, the LLM conducts a
thorough comparative examination between the objective
action sequence and the original knowledge-guided action
plan. The goal of this step is to explicitly identify devi-
ations, i.e., discrepancies or contradictions between the

5

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

intended actions outlined by the external knowledge and
the actual actions performed by the agent. Crucially, the
LLM also infers plausible explanations and root-causes
underlying these mismatches, providing deeper insight
into systemic failures in action planning or perception that
caused the divergence.

• Alternative Exploration: In this stage, analysis shifts
toward understanding the agent’s strategic behavior more
comprehensively. The LLM assesses whether the agent,
during task execution, attempted valid alternative ac-
tion strategies beyond or deviating from the original
knowledge-based instructions. Identifying such alterna-
tive solutions not only yields insights into the robustness
and flexibility of the agent’s behavior, but also helps to en-
rich and diversify the evolved knowledge representation.

• Mitigation with Rationales: Based upon observations,
insights, and causal explanations extracted from previous
steps, the final mitigation stage synthesizes actionable
refinements and corrections. The LLM systematically
proposes clear and logically-grounded revisions to the
original knowledge base, along with corresponding ra-
tionales that explicitly justify changes introduced by this
critique process. The resultant output maintains the same
representational format as the original knowledge, but is
systematically refined and enhanced.

Ultimately, upon completing these carefully designed rea-
soning steps, the LLM generates an updated and refined
knowledge representation that explicitly incorporates the
identified corrections, clarifications, and supplementary al-
ternative strategies. This renewed knowledge aligns more
closely with the agent’s actual behavior, addresses pre-
viously discovered inconsistencies, and provides richer,
instruction-specific guidance. The evolved knowledge is
then recorded and stored in the knowledge base to guide
next-round agent executions of analogous tasks.

5. Experiments
To demonstrate the effectiveness of our approach, we con-
ducted a series of experiments on OSWorld (Xie et al.,
2024). OSWorld is an interactive environment compris-
ing 369 open-ended computer tasks, where the agent can
interact with the environment using screenshots as observa-
tions. We first introduce our parallelization improvements
to OSWorld. We then evaluate the performance of UI-Evol
against the baseline, followed by further ablation studies.
All experiments are conducted under maximum 15 steps.

5.1. Parallel Evaluation Framework

Because of the inherent stochasticity of large language mod-
els, reliably assessing agent performance requires running a
large number of repeated trials. However, the original OS-

World benchmark supports only single-machine evaluation
and takes about 10 hours to finish even the screenshot-only
setting, making large-scale experimentation impractical. To
address this limitation, inspired by Windows Agent Arena
(Bonatti et al., 2024), we extend OSWorld by developing a
parallel evaluation infrastructure on Microsoft Azure.

Specifically, we employ Azure Machine Learning jobs to
parallelize benchmark evaluations across multiple com-
pute instances. Unlike OSWorld, which launches multiple
VMWare virtual machines on a single local machine, our
implementation automatically provisions one virtual ma-
chine per compute instance. Evaluation tasks are evenly dis-
tributed across these instances to enable parallel execution.
During environment setup, our implementation bypasses
repeated Docker image builds that are required in Windows
Agent Arena. Instead, it downloads the environment and
code directly from the cloud storage. The results are also
aggregated in the cloud storage when all experiments finish.

Our implementation enables scalable evaluation of OS-
World, allowing the number of instances to scale up to the
total number of benchmark tasks. In our experiments, we
used 30 instances, which reduces the full-process runtime
of the OSWorld benchmark from approximately 10 hours to
2.5 hours under maximum 15 steps.

5.2. Main Results

Settings. For our experiments, we adopt GPT-4o and
OpenAI-o3 as the base models for Retrace Stage and Cri-
tique Stage separately. We first run computer use agent
with web knowledge to obtain the recorded trajectory and
the knowledge to be evolved later. Then we run our UI-
Evol to evolve the knowledge. Finally we equip the same
computer agent with the updated knowledge to evaluate the
improvement brought by the knowledge evolution. We se-
lect Agent S2 (Agashe et al., 2025) as our baseline, which is
the leading computer use agent on OSWorld. Agent S2 uses
Perplexica for web search and references the retrieved exter-
nal knowledge to decompose user instructions into multiple
subtasks, which are then executed by a coordinated set of
agents. Since Agent S2 retrieves web knowledge at the be-
ginning of each run, we capture and freeze a snapshot of the
entire knowledge base before the first experiment while set
all hyperparameters as constant value including temperature
as 0. This eliminates variability caused by dynamic web.

Stability. During experiments, we observe that even with
static precaptured web knowledge and fixed hyperparame-
ters, repeated evaluations may still yield different results.
We argue that producing stable and reproducible outcomes
is a critical capability for agents, especially for real-world
deployment. Therefore, we include stability as one of our
evaluation criteria. For each experimental variant, we re-

6

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

peat the same run three times and compute the mean and
standard deviation of the success rate. The mean reflects the
agent’s overall performance, while the standard deviation
indicates the agent’s stability.

Results Using Agent S2 as the baseline, we compare the
performance of using only the original web search knowl-
edge with that of using knowledge refined by UI-Evol across
different base models. As reported in Table 1, UI-Evol con-
sistently improves the average success rate and reduces stan-
dard deviation on both models. This demonstrates that UI-
Evol can effectively enhance both agent performance and
stability. Notably, when integrating UI-Evol, the standard
deviation of OpenAI-o3 drops to as low as 0.26, approxi-
mately 4.19 times the reduction observed with GPT-4o. This
suggests that models with stronger reasoning capabilities are
better at understanding and leveraging external knowledge,
and therefore benefit more from UI-Evol.

5.3. Ablation Study

As mentioned in Section 5.2, we repeat each run for three
times during evaluation. Due to the stochastic nature of
LLMs, the trajectories generated in each run may differ. To
study how the selection strategy affects the final results, we
compare two approaches: (1)Random selection, where a
trajectory is randomly chosen from the repeated runs; (2)
Completion-based selection, where all trajectories are first
transformed to textual format through the Retrace Stage,
and then an LLM is prompted to select the trajectory from
completeness. We detail the prompt in our appendix.

To measure the quality of selection, we introduce the Se-
lection Success Rate (SSR) metric, defined as SSR = Nsucc

Nsolv
,

where Nsucc is the number of cases where the selected tra-
jectory (τi) is successful, and Nsolv is the number of cases
in which at least one out of three repeated runs succeeds.
Here, τi denotes a trajectory generated in an experiment. A
higher SSR indicates that the completeness of trajectories.

Under this metric, random selection achieves an SSR of
70%, while completion-based selection reaches 85%. This
demonstrates that the LLM can identify trajectories that
are more likely to be correct. We use trajectories selected
by these two approaches as inputs to UI-Evol, and com-
pare their performance using GPT-4o as the base model. As
shown in Table 2, UI-Evol with the trajectories chosen based
on completeness performs only marginally better. These
results suggest that UI-Evol is robust to the quality of trajec-
tory selection and can effectively leverage knowledge from
both better and worse inputs.

5.4. Knowledge Transfer

To evaluate whether knowledge evolved from one model
can be effectively reused by another, we use the OSWorld

trajectories generated by OpenAI-o3 to derive refined knowl-
edge through UI-Evol. This knowledge is then provided as
input to Agent S2 with GPT-4o, as shown in Table 3. Com-
pared to the original GPT-4o baseline which leverages web
knowledge, the agent using refined knowledge derived from
OpenAI-o3 trajectories performs similarly to that of using
GPT-4o’s own trajectories. These findings demonstrate that
the knowledge refined through UI-Evol can indeed be trans-
ferred across different models, capturing task regularities.

5.5. Case Study

Case introduction. In the task of Figure 3, the agent
is required to capitalize the first letter of each word in a
LibreOffice Writer file. The first step is to select all the
words in the document. From web knowledge, the agent is
instructed to select entire text by clicking and dragging with
the mouse. However, despite strictly following the guidance
of the knowledge, the agent only selected part of the text in
the first attempt and dragged the selected text to the end of
the passage in the second, ultimately failing the task.

Evolution progress. After the trajectory is fed into UI-
Evol, the system first enters the Retrace Stage, where each
step is distilled into two textual elements: Action and Result.
In the first Retrace step, UI-Evol analyzes the pre-execution
screenshot and summarizes the initial state, correctly noting
that the agent selected only the section from “Question Two:
Geography and Magical Realism” to “so important.” In the
second Retrace step, UI-Evol precisely describes both the
outcome of that action and the agent’s error—dragging the
selected text from the beginning to the end of the passage.

With this objective record in hand, the Critique Stage eval-
uates the trajectory. During Completion Assessment it ob-
serves that the task failed because the drag operation altered
the document’s structure. In Deviation Detection it traces
the failure to an error in the selection step and labels it an
Output/Screen Misunderstanding. The Alternative Explo-
ration stage finds no evidence that the agent attempted other
methods. In the Mitigation with Rationales stage, it recom-
mends replacing manual dragging with the more reliable
Ctrl + A shortcut, noting that this change will appear in step
2 of the final plan.

Finally, drawing on all prior analyses, UI-Evol revises step
2 accordingly, thereby completing the learning pipeline and
incorporating the new knowledge into its repertoire.

5.6. Computational Cost and Scalability

As detailed in Section 4, UI-Evol consists of an initial raw-
trace collection phase followed by two sequential stages:
Retrace and Critique. During the raw-trace collection phase,
30 OSWorld instances process jobs in parallel, requiring
approximately two hours to generate the raw traces. The

7

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

Trajectory

Agent Step t :

pyautogui.moveTo(648, 397);

pyautogui.dragTo(1023, 518, duration=1.);

pyautogui.mouseUp();

Agent Step t+1 :

pyautogui.moveTo(924, 396);

pyautogui.dragTo(904, 1042, duration=1.);

pyautogui.mouseUp();

Task Instruction: Please help me make the first letter of each word to uppercase

Subtask Goal: Select all the text

Knowledge: Select the Text: Click and drag your mouse over the text you want to modify to highlight it.

Completion Assessment

No, the Agent

unnecessarily dragged a

large block of text to a

new location, altering

document structure

Retrace Stage

Critique Stage

Deviation Detection

Expected Action:

Highlight text, then format.

Actual Action:

Dragged highlighted text

to end of document

Root Cause:

a) Output/screen

misunderstanding

Alternative Exploration

No alternative approach is

tried during the object

action sequence

Mitigation with Rationales

a) Output/screen

misunderstanding:

Replace manual drag with

Ctrl + A for reliable full-

document selection

(handled in Step 2).

Refined Plan

…

2. Select all text:

 - Press Ctrl + A

 - Purpose: Mark

entire document for

formatting

…

At in Objective Action Sequence
- Highlighted the text span from "Question Two: Geography and

Magical Realism" to "so important.", changing the background color

of the selected text.

Agent Step t Retrace Result Agent Step t+1 Retrace Result

At+1 in Objective Action Sequence
- Dragged the highlighted text from the beginning of the document to

the end, moving the text to the bottom of the document.

Figure 3. Case study on the “capitalize every word” task from the OSWorld benchmark: Our UI-Evol first retraces the objective action
sequence from the screenshots and identifies that the action taken at step t was selecting only a part of the paragraph. In the Critique Stage,
it detects that this action deviates from the objective, as the entire document should have been selected rather than a partial selection.
Finally, our framework corrects this deviation by proposing a simpler keyboard shortcut, “Ctrl + A”, instead of dragging with the mouse.

8

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

subsequent Retrace and Critique stages are executed on 12
parallel threads and together process all 369 OSWorld tasks
in roughly one hour.

The primary monetary cost stems from OpenAI API usage.
In the Retrace stage, each 15-step trace consumes around
85000 input tokens and 400 output tokens and is processed
by the GPT-4o model. In the Critique stage, each trace
requires around 800 input tokens and 150 output tokens and
is handled by the OpenAI-o3 model. On average, each task
incurs a cost of $0.22, resulting in a total expenditure of
approximately $81.18 for the entire benchmark.

For scalability, UI-Evol’s task-level pipeline is highly par-
allelizable: adding compute instances yields near-linear
throughput gains while maintaining per-task latency, ensur-
ing efficient development iteration at scale.

6. Conclusion
In this work, we tackle the knowledge-execution gap in
computer use agents. We propose UI-Evol, an autonomous,
plug-and-play module that evolves GUI interaction knowl-
edge by evolving external knowledge based on actual agent
behaviors. Our experiments on OSWorld show UI-Evol
significantly improves task accuracy and, crucially, reduces
agent behavioral variance, enhancing stability. This work of-
fers a possible solution towards more reliable and advanced
autonomous computer use.

Impact Statement
Computer use agents hold immense potential to significantly
boost human productivity on digital devices, yet their misuse
poses considerable risks to society. For instance, these
agents could be exploited for malicious purposes, such as the
automated creation of numerous spam accounts, leading to a
deluge of unwanted content and potential security breaches.

References
Introducing computer use, a new claude 3.5

sonnet, and claude 3.5 haiku, 2024. URL
https://www.anthropic.com/news/
3-5-models-and-computer-use.

Computer-using agent, 2024. URL https://openai.
com/index/computer-using-agent/.

Perplexica, 2024. URL https://github.com/
ItzCrazyKns/Perplexica. Accessed: 2025-05-
03.

Agashe, S., Han, J., Gan, S., Yang, J., Li, A., and Wang, X. E.
Agent s: An open agentic framework that uses computers
like a human. arXiv preprint arXiv:2410.08164, 2024.

Agashe, S., Wong, K., Tu, V., Yang, J., Li, A., and Wang,
X. E. Agent s2: A compositional generalist-specialist
framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

Anthropic, A. The claude 3 model family: Opus, sonnet,
haiku. Claude-3 Model Card, 2024.

Bai, S., Chen, K., Liu, X., Wang, J., Ge, W., Song, S., Dang,
K., Wang, P., Wang, S., Tang, J., et al. Qwen2. 5-vl
technical report. arXiv preprint arXiv:2502.13923, 2025.

Bonatti, R., Zhao, D., Bonacci, F., Dupont, D., Abdali, S.,
Li, Y., Lu, Y., Wagle, J., Koishida, K., Bucker, A., et al.
Windows agent arena: Evaluating multi-modal os agents
at scale. arXiv preprint arXiv:2409.08264, 2024.

Chen, X., Lin, M., Schaerli, N., and Zhou, D. Teaching large
language models to self-debug. In The 61st Annual Meet-
ing Of The Association For Computational Linguistics,
2023.

Cheng, K., Sun, Q., Chu, Y., Xu, F., YanTao, L., Zhang,
J., and Wu, Z. Seeclick: Harnessing gui grounding for
advanced visual gui agents. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 9313–9332,
2024.

Common Crawl. Common crawl - open repository of web
crawl data, 2025. URL http://commoncrawl.org.

Fu, J., Zhang, X., Wang, Y., Zeng, W., and Zheng, N.
Understanding mobile gui: From pixel-words to screen-
sentences. Neurocomputing, 601:128200, 2024.

Gou, B., Wang, R., Zheng, B., Xie, Y., Chang, C., Shu,
Y., Sun, H., and Su, Y. Navigating the digital world as
humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

Gou, Z., Shao, Z., Gong, Y., Yang, Y., Duan, N., Chen, W.,
et al. Critic: Large language models can self-correct with
tool-interactive critiquing. In The Twelfth International
Conference on Learning Representations.

Hong, W., Wang, W., Lv, Q., Xu, J., Yu, W., Ji, J., Wang,
Y., Wang, Z., Dong, Y., Ding, M., et al. Cogagent: A
visual language model for gui agents. In 2024 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 14281–14290. IEEE, 2024.

Hu, X., Xiong, T., Yi, B., Wei, Z., Xiao, R., Chen, Y., Ye, J.,
Tao, M., Zhou, X., Zhao, Z., et al. Os agents: A survey
on mllm-based agents for computer, phone and browser
use.

9

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://openai.com/index/computer-using-agent/
https://openai.com/index/computer-using-agent/
https://github.com/ItzCrazyKns/Perplexica
https://github.com/ItzCrazyKns/Perplexica
http://commoncrawl.org

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

Jiang, S., Wang, Y., and Wang, Y. Selfevolve: A code
evolution framework via large language models. arXiv
preprint arXiv:2306.02907, 2023.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in neural information pro-
cessing systems, 33:9459–9474, 2020.

Li, Y., He, J., Zhou, X., Zhang, Y., and Baldridge,
J. Mapping natural language instructions to mo-
bile ui action sequences. In Annual Conference of
the Association for Computational Linguistics (ACL
2020), 2020. URL https://www.aclweb.org/
anthology/2020.acl-main.729.pdf.

Li, Y., Zhang, C., Yang, W., Fu, B., Cheng, P., Chen,
X., Chen, L., and Wei, Y. Appagent v2: Advanced
agent for flexible mobile interactions. arXiv preprint
arXiv:2408.11824, 2024.

Lin, K. Q., Li, L., Gao, D., Yang, Z., Bai, Z., Lei, W.,
Wang, L., and Shou, M. Z. Showui: One vision-language-
action model for generalist gui agent. In NeurIPS 2024
Workshop on Open-World Agents, 2024.

Liu, X., Zhang, X., Zhang, Z., and Lu, Y. Ui-e2i-synth:
Advancing gui grounding with large-scale instruction
synthesis. arXiv preprint arXiv:2504.11257, 2025a.

Liu, Y., Li, P., Wei, Z., Xie, C., Hu, X., Xu, X., Zhang, S.,
Han, X., Yang, H., and Wu, F. Infiguiagent: A multimodal
generalist gui agent with native reasoning and reflection.
arXiv preprint arXiv:2501.04575, 2025b.

Liu, Y., Li, P., Xie, C., Hu, X., Han, X., Zhang, S., Yang, H.,
and Wu, F. Infigui-r1: Advancing multimodal gui agents
from reactive actors to deliberative reasoners. arXiv
preprint arXiv:2504.14239, 2025c.

Lu, J., Zhong, W., Huang, W., Wang, Y., Mi, F., Wang, B.,
Wang, W., Shang, L., and Liu, Q. Self: Language-driven
self-evolution for large language model. CoRR, 2023.

Lu, Z., Chai, Y., Guo, Y., Yin, X., Liu, L., Wang, H., Xiong,
G., and Li, H. Ui-r1: Enhancing action prediction of
gui agents by reinforcement learning. arXiv preprint
arXiv:2503.21620, 2025.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,

Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36:46534–46594, 2023.

OpenAI. Gpt-4 technical report, 2023.

Qin, Y., Ye, Y., Fang, J., Wang, H., Liang, S., Tian, S.,
Zhang, J., Li, J., Li, Y., Huang, S., et al. Ui-tars: Pioneer-
ing automated gui interaction with native agents. arXiv
preprint arXiv:2501.12326, 2025.

Tan, W., Zhang, W., Xu, X., Xia, H., Ding, Z., Li, B., Zhou,
B., Yue, J., Jiang, J., Li, Y., et al. Cradle: Empower-
ing foundation agents towards general computer control.
arXiv preprint arXiv:2403.03186, 2024.

Tao, Z., Lin, T.-E., Chen, X., Li, H., Wu, Y., Li, Y., Jin,
Z., Huang, F., Tao, D., and Zhou, J. A survey on self-
evolution of large language models. CoRR, 2024.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Wang, X. and Liu, B. Oscar: Operating system control via
state-aware reasoning and re-planning. arXiv preprint
arXiv:2410.18963, 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wu, Z., Han, C., Ding, Z., Weng, Z., Liu, Z., Yao, S., Yu, T.,
and Kong, L. Os-copilot: Towards generalist computer
agents with self-improvement. In ICLR 2024 Workshop
on Large Language Model (LLM) Agents.

Wu, Z., Wu, Z., Xu, F., Wang, Y., Sun, Q., Jia, C., Cheng,
K., Ding, Z., Chen, L., Liang, P. P., et al. Os-atlas: A
foundation action model for generalist gui agents. arXiv
preprint arXiv:2410.23218, 2024.

Xia, X. and Luo, R. Gui-r1: A generalist r1-style vision-
language action model for gui agents. arXiv preprint
arXiv:2504.10458, 2025.

Xie, T., Zhang, D., Chen, J., Li, X., Zhao, S., Cao, R., Hua,
T. J., Cheng, Z., Shin, D., Lei, F., Liu, Y., Xu, Y., Zhou, S.,
Savarese, S., Xiong, C., Zhong, V., and Yu, T. Osworld:
Benchmarking multimodal agents for open-ended tasks
in real computer environments, 2024.

Xu, Y., Wang, Z., Wang, J., Lu, D., Xie, T., Saha, A., Sahoo,
D., Yu, T., and Xiong, C. Aguvis: Unified pure vision
agents for autonomous gui interaction. arXiv preprint
arXiv:2412.04454, 2024.

10

https://www.aclweb.org/anthology/2020.acl-main.729.pdf
https://www.aclweb.org/anthology/2020.acl-main.729.pdf

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

Yan, A., Yang, Z., Zhu, W., Lin, K., Li, L., Wang, J., Yang,
J., Zhong, Y., McAuley, J., Gao, J., et al. Gpt-4v in won-
derland: Large multimodal models for zero-shot smart-
phone gui navigation. arXiv preprint arXiv:2311.07562,
2023.

Yang, Y., Wang, Y., Li, D., Luo, Z., Chen, B., Huang, C.,
and Li, J. Aria-ui: Visual grounding for gui instructions.
arXiv preprint arXiv:2412.16256, 2024.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. D. Star:
Self-taught reasoner bootstrapping reasoning with reason-
ing. In Proc. the 36th International Conference on Neural
Information Processing Systems, volume 1126, 2024.

Zhang, C., Yang, Z., Liu, J., Han, Y., Chen, X., Huang,
Z., Fu, B., and Yu, G. Appagent: Multimodal agents
as smartphone users. arXiv preprint arXiv:2312.13771,
2023a.

Zhang, Z., Xie, W., Zhang, X., and Lu, Y. Reinforced ui
instruction grounding: Towards a generic ui task automa-
tion api. arXiv preprint arXiv:2310.04716, 2023b.

Zhang, Z., Zhang, X., Xie, W., and Lu, Y. Responsi-
ble task automation: Empowering large language mod-
els as responsible task automators. arXiv preprint
arXiv:2306.01242, 2023c.

Zheng, B., Gou, B., Kil, J., Sun, H., and Su, Y. Gpt-4v
(ision) is a generalist web agent, if grounded. In Proceed-
ings of the 41st International Conference on Machine
Learning, pp. 61349–61385, 2024.

Zheng, B., Fatemi, M. Y., Jin, X., Wang, Z. Z., Gandhi, A.,
Song, Y., Gu, Y., Srinivasa, J., Liu, G., Neubig, G., et al.
Skillweaver: Web agents can self-improve by discover-
ing and honing skills. arXiv preprint arXiv:2504.07079,
2025.

Zhou, S., Xu, F. F., Zhu, H., Zhou, X., Lo, R., Sridhar, A.,
Cheng, X., Ou, T., Bisk, Y., Fried, D., et al. Webarena:
A realistic web environment for building autonomous
agents. In The Twelfth International Conference on Learn-
ing Representations.

Zhou, W., Ou, Y., Ding, S., Li, L., Wu, J., Wang, T.,
Chen, J., Wang, S., Xu, X., Zhang, N., et al. Symbolic
learning enables self-evolving agents. arXiv preprint
arXiv:2406.18532, 2024.

Zhu, X., Chen, Y., Tian, H., Tao, C., Su, W., Yang, C.,
Huang, G., Li, B., Lu, L., Wang, X., et al. Ghost
in the minecraft: Generally capable agents for open-
world environments via large language models with
text-based knowledge and memory. arXiv preprint
arXiv:2305.17144, 2023.

11

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

A. Domain Specific Results on OSWorld

Table 4. Performance (%) of different settings across individual applications and overall score on GPT-4o.

Method Chrome Gimp Calc Impress Writer Multiapps OS TB VLC VSCode Avg. SR.

Agent S2* 22.31 16.66 7.09 17.10 23.18 9.11 51.39 35.56 18.30 46.38 19.49
+ UI-Evol w/Rand. Select 25.12 21.80 9.22 20.64 30.43 10.43 47.22 44.44 20.27 47.83 22.02
+ UI-Evol w/Comp. Select 27.38 17.95 11.35 18.52 43.47 11.43 44.45 44.44 26.14 40.58 22.74
+ UI-Evol w/knowledge evolved from o3 21.02 19.23 16.31 26.29 30.43 8.78 48.61 44.45 23.76 42.03 22.38

Table 5. Performance (%) of different settings across individual applications and overall score on OpenAI-o3.

Method Chrome Gimp Calc Impress Writer Multiapps OS TB VLC VSCode Avg. SR.

Agent S2* 28.21 20.51 19.15 24.19 40.57 9.11 55.55 51.11 31.82 47.83 25.64
+ UI-Evol 29.71 32.05 24.82 25.59 44.92 12.42 55.56 42.22 32.07 46.38 28.28

B. Sampling Survey On Web Knowledge
To evaluate the reliability of knowledge retrieved from web via Perplexica, we conduct a sampling survey. Specifically, we
sampled 50 test cases proportionally across various domains from OSWorld, and manually assess the correctness of the
knowledge retrieved in each case. The knowledge is considered “correct” if an annotator can successfully complete the
given task using only that information without relying on any prior domain knowledge. Under this criterion, 45 of the 50
sampled cases are deemed to contain correct knowledge from the human perspective.

C. Prompts

Prompts for Retrace Stage
You are a senior QA assistant.
You receive:
• BEFORE screenshot <image0>
• AFTER screenshot <image1>
• A snippet of Python automation code.

Your task:

PART A - BEFORE DESCRIPTION
Describe concisely and objectively what is visible in the BEFORE screenshot only.
• <= 80 words, declarative sentences.
• No speculation, no mention of AFTER, no hidden reasoning.

PART B - UI OPERATION LIST
List, in chronological order, every visible UI step (mouse-click, key-stroke, drag,

menu selection...) that converted the BEFORE state into the AFTER state.↪→

OUTPUT FORMAT (STRICT)
[A] BEFORE
<one-to-three short sentences that satisfy PART A>

[B] OPERATIONS
- <action>, <visible consequence>
- ...

RULES FOR PART B (inherited)
1. Bullet list; every line begins with "-".
2. Each bullet MUST pair the action with its visible consequence, e.g.
- Clicked the "Replace All" button in VS Code's Search sidebar, replacing all 12

occurrences of "text" with "test" in the open file↪→

12

UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

3. Do not add headings, explanations or blank lines beyond the specified format.
4. If the ONLY difference is the system clock, Part B must contain exactly one bullet:
- No operations performed.
5. If the screenshots cannot be compared, Part B must contain exactly one bullet:
- Unable to determine operations.

Think step-by-step internally but reveal ONLY the two required sections.

FEW-SHOT EXAMPLES

<BEGIN_EXAMPLE>
Normal change with visible result
BEFORE: VS Code shows 3 occurrences of "foo"
AFTER : All occurrences now read "bar"
CODE : editor.replace_all("foo", "bar")
OUTPUT:
[A] BEFORE
VS Code editor window is open; the Find/Replace panel indicates 3 matches for the word

"foo".↪→

[B] OPERATIONS
- Pressed Ctrl+H in the VS Code editor, opening the Find/Replace panel
- Typed "foo" into the Find box, highlighting 3 matches in the file
- Typed "bar" into the Replace box
- Clicked the "Replace All" button in the Find/Replace panel, replacing all 3

occurrences of "foo" with "bar" in the document↪→
<END_EXAMPLE>

<BEGIN_EXAMPLE>
Only the clock changed
BEFORE: Desktop 10:01
AFTER : Desktop 10:02
OUTPUT:
[A] BEFORE
Desktop environment showing wallpaper and system clock reading 10:01.

[B] OPERATIONS
- No operations performed.
<END_EXAMPLE>

<BEGIN_EXAMPLE>
Incomparable
BEFORE: Corrupted screenshot
AFTER : Corrupted screenshot
OUTPUT:
[A] BEFORE
Screenshot is corrupted; no discernible UI elements are visible.

[B] OPERATIONS
- Unable to determine operations.
<END_EXAMPLE>

The FIRST image (<image0>) shows the screen BEFORE the Agent acted.
The SECOND image (<image1>) shows the screen AFTER the Agent acted.

The Agent executed the following Python code:

```python
{code}
List the UI operations (action + visible result).

13



UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

Prompts for Critique Stage
INPUT

Task Instruction: ...
Action List: ...
Original Plan: ...

REQUIREMENTS
• Follow the FIVE SECTION HEADERS below exactly.
• SECTION E output style:

1. **<Subtask>**:
- <Concrete UI / CLI action(s) only>
- Purpose: <<= 10-word reason>

• If a field is not applicable, write \None" or \No deviation".
• If SECTION C judges an Alternative better, the final NEW PLAN must adopt it (or

its key advantages).↪→
• Every Root Cause from SECTION B must have a mitigation explained in SECTION D and

be implicitly addressed (not as a standalone step) in SECTION E.↪→
• Exclude passive \Confirm / Verify / Check / Make sure ..." kinds of steps.
• Visual inspections are assumed; do not list them.
• If the Action List shows a dialog / branch / extra option that the Original Plan

did not anticipate:↪→
- Treat it as a Deviation (Root Cause usually f) Invalid assumption).
- If the Agent picked the wrong option, SECTION D must state the correct option and

SECTION E must insert that corrected step.↪→
- If the Agent picked the right option, still add that step to SECTION E (it is an

\added step").↪→
- Any action shown to be unnecessary in the trajectory must be omitted from SECTION

E (this is a \removed step").↪→

SECTION A. Task Completion
Did the Agent achieve the task goal? (Yes / No)
Reason.
Did the Agent execute more than the instruction required? (Yes / No)
Reason.

SECTION B. Deviation Analysis
For every mismatch between an Original-Plan assumption and the actual screen/CLI

output in Action List, record a Deviation row. Fill in ALL items, even if \No
deviation".

↪→
↪→
• Deviation Step: <# or \None">
• Expected Action : ...
• Actual Action : ...
• Root Cause (letters, commas allowed):

a) Output/screen misunderstanding
b) Knowledge gap
c) Command / code / syntax error
d) Environment or permission issue
e) Other
f) Invalid assumption
g) External transient failure
h) Step order issue
i) Missing precondition

SECTION C. Alternative Approaches
Did the Agent attempt any approach beyond the Original Plan? (Yes / No)
If Yes:

• Describe each approach briefly.
• Which is better (Original / Alternative)? Why?

If No: \No alternative approach tried."

SECTION D. Mitigation & Rationale

14



UI-Evol: Automatic Knowledge Evolving for Computer Use Agents

For every Root Cause from SECTION B, describe the preventive or corrective idea and
mention which forthcoming step embodies it.↪→

Example:
c) Syntax error → Add \lint before run" check (handled in Step 2).
d) Permission → Verify sudo rights before executing installer (Step 5).
f) Invalid assumption → Choose \Typical" in installer dialog (Step 2).

SECTION E. REFINED PLAN:
REFINED PLAN:

1. **<Subtask>**:
- <Concrete action(s)>
- Purpose: <Why this step?>

2. **<Subtask>**:
- <Concrete action(s)>
- Purpose: ...

...
up to 15 steps total.

• No shell prompts (#, $).
• Safeguards are implicit per SECTION D; do not list them as separate lines.
• Newly added corrective steps must appear in the proper sequence among Steps 1-15;

actions deemed unnecessary must not appear here.↪→

Prompts for Completion-based selection
INPUT:
1. Task Instruction : The instruction for the task.
2. Action_List1: The list1 of actions performed by a linux user.
3. Golden_Plan1: The plan1 that the user is trying to achieve to solve a task.
4. Action_List2: The list2 of actions performed by a linux user.
5. Golden_Plan2: The plan2 that the user is trying to achieve to solve a task.
6. Action_List3: The list3 of actions performed by a linux user.
7. Golden_Plan3: The plan3 that the user is trying to achieve to solve a task.

REQUIREMENTS:
You need to find out the best action_list and golden_plan pair that is most likely

completed or closest to completion.↪→
Your output should include the following information:
- <Analysis and Score>: Analysis and Give your score(0 to 10) for each pair, 10 is the

best, 0 is the worst.↪→
- <Best Pair>: A number in [1, 2, 3] indicating the best action_list and golden_plan

pair.↪→

15


